File size: 706 Bytes
69c020d
 
 
 
 
 
 
 
 
 
 
 
36d9152
69c020d
 
 
36d9152
60af54b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
---
language:
- zh
base_model:
- Seikaijyu/RWKV6-3B-v2.1-Aphrodite-yandere-chat
tags:
- quantization
quantized_by: btaskel
---
From Seikaijyu/RWKV6-3B-v2.1-Aphrodite-yandere-chat:
https://huggingface.co/Seikaijyu/RWKV6-3B-v2.1-Aphrodite-yandere-chat

Based on my experience, Q4_K_S and Q4_K_M are usually the balance points between model size, quantization, and speed.

In some benchmarks, selecting a large-parameter low-quantization LLM tends to perform better than a small-parameter high-quantization LLM.

根据我的经验,通常Q4_K_S、Q4_K_M是模型尺寸/量化/速度的平衡点

在某些基准测试中,选择大参数低量化模型往往比选择小参数高量化模型表现更好。