|
--- |
|
language: |
|
- zh |
|
base_model: |
|
- Seikaijyu/RWKV6-3B-v2.1-Aphrodite-yandere-chat |
|
tags: |
|
- quantization |
|
quantized_by: btaskel |
|
--- |
|
From Seikaijyu/RWKV6-3B-v2.1-Aphrodite-yandere-chat: |
|
https://huggingface.co/Seikaijyu/RWKV6-3B-v2.1-Aphrodite-yandere-chat |
|
|
|
Based on my experience, Q4_K_S and Q4_K_M are usually the balance points between model size, quantization, and speed. |
|
|
|
In some benchmarks, selecting a large-parameter low-quantization LLM tends to perform better than a small-parameter high-quantization LLM. |
|
|
|
根据我的经验,通常Q4_K_S、Q4_K_M是模型尺寸/量化/速度的平衡点 |
|
|
|
在某些基准测试中,选择大参数低量化模型往往比选择小参数高量化模型表现更好。 |