language: | |
- en | |
license: mit | |
datasets: | |
- cardiffnlp/super_tweeteval | |
pipeline_tag: text-classification | |
# cardiffnlp/twitter-roberta-large-hate-latest | |
This is a RoBERTa-large model trained on 154M tweets until the end of December 2022 and finetuned for hate speech detection (multiclass classification) on the _TweetHate_ dataset of [SuperTweetEval](https://huggingface.co/datasets/cardiffnlp/super_tweeteval). | |
The original Twitter-based RoBERTa model can be found [here](https://huggingface.co/cardiffnlp/twitter-roberta-large-2022-154m). | |
# Labels | |
<code> | |
"id2label": { | |
"0": "hate_gender", | |
"1": "hate_race", | |
"2": "hate_sexuality", | |
"3": "hate_religion", | |
"4": "hate_origin", | |
"5": "hate_disability", | |
"6": "hate_age", | |
"7": "not_hate" | |
} | |
</code> | |
## Example | |
```python | |
from transformers import pipeline | |
text = 'Eid Mubarak Everyone!!! ❤ May Allah unite all Muslims, show us the right path, and bless us with good health.❣' | |
pipe = pipeline('text-classification', model="cardiffnlp/twitter-roberta-large-hate-latest") | |
pipe(text) | |
>> [{'label': 'not_hate', 'score': 0.9997966885566711}] | |
``` | |
## Citation Information | |
Please cite the [reference paper](https://arxiv.org/abs/2310.14757) if you use this model. | |
```bibtex | |
@inproceedings{antypas2023supertweeteval, | |
title={SuperTweetEval: A Challenging, Unified and Heterogeneous Benchmark for Social Media NLP Research}, | |
author={Dimosthenis Antypas and Asahi Ushio and Francesco Barbieri and Leonardo Neves and Kiamehr Rezaee and Luis Espinosa-Anke and Jiaxin Pei and Jose Camacho-Collados}, | |
booktitle={Findings of the Association for Computational Linguistics: EMNLP 2023}, | |
year={2023} | |
} | |
``` |