word-detection-1-6 / README.md
charisgao's picture
5300-biased-word-detection
409c7f5 verified
metadata
library_name: transformers
license: mit
base_model: roberta-base
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: model
    results: []

model

This model is a fine-tuned version of roberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.0309
  • Precision: 0.2689
  • Recall: 0.2544
  • F1: 0.2615
  • Accuracy: 0.8742

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.1094 0.4292 100 1.8029 0.3026 0.1599 0.2092 0.8942
0.1068 0.8584 200 1.7311 0.2883 0.2617 0.2744 0.8789
0.059 1.2876 300 2.0629 0.3091 0.2212 0.2579 0.8886
0.0713 1.7167 400 2.5245 0.3529 0.1308 0.1909 0.9029
0.0634 2.1459 500 2.3395 0.3122 0.1786 0.2272 0.8937
0.0572 2.5751 600 2.2058 0.2864 0.2347 0.2580 0.8819

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0