metadata
base_model: sentence-transformers/all-MiniLM-L12-v2
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:100
- loss:CosineSimilarityLoss
widget:
- source_sentence: Children smiling and waving at camera
sentences:
- There are women showing affection.
- The woman is waiting for a friend.
- There are children present
- source_sentence: >-
A woman is walking across the street eating a banana, while a man is
following with his briefcase.
sentences:
- The boy does a skateboarding trick.
- A boy flips a burger.
- >-
A woman eats a banana and walks across a street, and there is a man
trailing behind her.
- source_sentence: >-
Two adults, one female in white, with shades and one male, gray clothes,
walking across a street, away from a eatery with a blurred image of a dark
colored red shirted person in the foreground.
sentences:
- An elderly man sits in a small shop.
- A person is training his horse for a competition.
- Two adults swimming in water
- source_sentence: >-
The school is having a special event in order to show the american culture
on how other cultures are dealt with in parties.
sentences:
- The woman is wearing green.
- A school is hosting an event.
- The adults are both male and female.
- source_sentence: >-
A woman is walking across the street eating a banana, while a man is
following with his briefcase.
sentences:
- The boy is wearing safety equipment.
- Two women are at a restaurant drinking wine.
- A person that is hungry.
model-index:
- name: SentenceTransformer based on sentence-transformers/all-MiniLM-L12-v2
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: snli dev
type: snli-dev
metrics:
- type: pearson_cosine
value: -0.6052519474756299
name: Pearson Cosine
- type: spearman_cosine
value: -0.6083622621490653
name: Spearman Cosine
- type: pearson_manhattan
value: -0.5848188618976576
name: Pearson Manhattan
- type: spearman_manhattan
value: -0.6065714846764287
name: Spearman Manhattan
- type: pearson_euclidean
value: -0.5863856474033792
name: Pearson Euclidean
- type: spearman_euclidean
value: -0.6083622185008256
name: Spearman Euclidean
- type: pearson_dot
value: -0.6052519468947102
name: Pearson Dot
- type: spearman_dot
value: -0.6083623057915619
name: Spearman Dot
- type: pearson_max
value: -0.5848188618976576
name: Pearson Max
- type: spearman_max
value: -0.6065714846764287
name: Spearman Max
SentenceTransformer based on sentence-transformers/all-MiniLM-L12-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L12-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L12-v2
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("cherifkhalifah/finetuned-snli-MiniLM-L12-v2")
# Run inference
sentences = [
'A woman is walking across the street eating a banana, while a man is following with his briefcase.',
'A person that is hungry.',
'Two women are at a restaurant drinking wine.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
snli-dev
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | -0.6053 |
spearman_cosine | -0.6084 |
pearson_manhattan | -0.5848 |
spearman_manhattan | -0.6066 |
pearson_euclidean | -0.5864 |
spearman_euclidean | -0.6084 |
pearson_dot | -0.6053 |
spearman_dot | -0.6084 |
pearson_max | -0.5848 |
spearman_max | -0.6066 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 100 training samples
- Columns:
sentence_0
,sentence_1
, andlabel
- Approximate statistics based on the first 100 samples:
sentence_0 sentence_1 label type string string float details - min: 8 tokens
- mean: 23.59 tokens
- max: 46 tokens
- min: 5 tokens
- mean: 11.36 tokens
- max: 25 tokens
- min: 0.0
- mean: 0.49
- max: 1.0
- Samples:
sentence_0 sentence_1 label Woman in white in foreground and a man slightly behind walking with a sign for John's Pizza and Gyro in the background.
They are working for John's Pizza.
0.5
A man with blond-hair, and a brown shirt drinking out of a public water fountain.
A blond man getting a drink of water from a fountain in the park.
0.5
A woman is walking across the street eating a banana, while a man is following with his briefcase.
A person eating.
0.0
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 4fp16
: Truemulti_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | snli-dev_spearman_max |
---|---|---|
1.0 | 7 | -0.6099 |
2.0 | 14 | -0.6095 |
3.0 | 21 | -0.6085 |
4.0 | 28 | -0.6066 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.1
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu121
- Accelerate: 0.34.2
- Datasets: 3.0.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}