hungnm's picture
Model save
ee81b15 verified
|
raw
history blame
2.18 kB
metadata
library_name: transformers
license: apache-2.0
base_model: answerdotai/ModernBERT-base
tags:
  - generated_from_trainer
metrics:
  - f1
  - precision
  - recall
model-index:
  - name: modernBERT-base-multilingual-sentiment
    results: []

modernBERT-base-multilingual-sentiment

This model is a fine-tuned version of answerdotai/ModernBERT-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5464
  • F1: 0.7944
  • Precision: 0.7945
  • Recall: 0.7944

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 512
  • eval_batch_size: 512
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 2048
  • total_eval_batch_size: 1024
  • optimizer: Use adamw_torch_fused with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.01
  • num_epochs: 5.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss F1 Precision Recall
0.9287 1.0 1537 0.4626 0.7910 0.7940 0.7897
0.8356 2.0 3074 0.4441 0.8011 0.8009 0.8015
0.7488 3.0 4611 0.4517 0.8012 0.8020 0.8007
0.6177 4.0 6148 0.4915 0.7990 0.7989 0.7991
0.5174 5.0 7685 0.5464 0.7944 0.7945 0.7944

Framework versions

  • Transformers 4.48.0.dev0
  • Pytorch 2.4.0+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0