clt013's picture
Update README.md
59d8260 verified
metadata
language:
  - ms
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - clt013/malay-speech-3k-rows-dataset
metrics:
  - wer
model-index:
  - name: Whisper Small FT Malay - CLT013
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Malay Speech 3k
          type: clt013/malay-speech-3k-rows-dataset
          config: default
          split: train
          args: default
        metrics:
          - name: Wer
            type: wer
            value: 27.169943

Whisper Small FT Malay - CLT013

This model is a fine-tuned version of openai/whisper-small on the Malay Speech 3k dataset. It achieves the following results on the evaluation set:

  • Loss: 0.545344
  • Wer: 27.169943

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.7275 0.1 100 0.677592 38.9111
0.521 0.2 200 0.565486 36.6151
0.3128 0.3 300 0.525294 29.7965
0.2964 0.4 400 0.500519 35.2235
0.1631 0.5 500 0.508256 36.2845
0.0731 0.6 600 0.532225 38.4414
0.0548 0.7 700 0.519905 27.2743
0.0289 0.8 800 0.533013 27.6917
0.0131 0.9 900 0.548259 26.9090
0.0071 1.0 1000 0.545344 27.1699

Framework versions

  • Transformers 4.41.2
  • Datasets 2.19.1
  • Tokenizers 0.19.1