|
--- |
|
language: |
|
- ms |
|
license: apache-2.0 |
|
base_model: openai/whisper-small |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- clt013/malay-speech-3k-rows-dataset |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: Whisper Small FT Malay - CLT013 |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Malay Speech 3k |
|
type: clt013/malay-speech-3k-rows-dataset |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 27.169943 |
|
--- |
|
--- |
|
|
|
# Whisper Small FT Malay - CLT013 |
|
|
|
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Malay Speech 3k dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.545344 |
|
- Wer: 27.169943 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- training_steps: 1000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:| |
|
| 0.7275 | 0.1 | 100 | 0.677592 | 38.9111 | |
|
| 0.521 | 0.2 | 200 | 0.565486 | 36.6151 | |
|
| 0.3128 | 0.3 | 300 | 0.525294 | 29.7965 | |
|
| 0.2964 | 0.4 | 400 | 0.500519 | 35.2235 | |
|
| 0.1631 | 0.5 | 500 | 0.508256 | 36.2845 | |
|
| 0.0731 | 0.6 | 600 | 0.532225 | 38.4414 | |
|
| 0.0548 | 0.7 | 700 | 0.519905 | 27.2743 | |
|
| 0.0289 | 0.8 | 800 | 0.533013 | 27.6917 | |
|
| 0.0131 | 0.9 | 900 | 0.548259 | 26.9090 | |
|
| 0.0071 | 1.0 | 1000 | 0.545344 | 27.1699 | |
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.2 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |