|
--- |
|
library_name: peft |
|
license: llama3.1 |
|
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct |
|
tags: |
|
- axolotl |
|
- generated_from_trainer |
|
model-index: |
|
- name: harm-category-labelled-multi-task-16cat-26_12-leaveone-without-animal_env_abuse-llama8b |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) |
|
<details><summary>See axolotl config</summary> |
|
|
|
axolotl version: `0.4.1` |
|
```yaml |
|
# Configure the base model |
|
|
|
strict: false |
|
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct |
|
tokenizer_config: meta-llama/Meta-Llama-3.1-8B-Instruct |
|
model_type: AutoModelForCausalLM |
|
|
|
|
|
# Output configuration |
|
hub_model_id: collinear-ai/harm-category-labelled-multi-task-16cat-26_12-leaveone-without-animal_env_abuse-llama8b |
|
dataset_prepared_path: /workspace/gen_judge/data/collinear-ai/harm-category-labelled-multi-task-16cat-26_12-leaveone-without-animal_env_abuse-llama8b |
|
output_dir: /workspace/gen_judge/collinear-ai/harm-category-labelled-multi-task-16cat-26_12-leaveone-without-animal_env_abuse-llama8b |
|
|
|
# Format the dataset into the right instruction format. |
|
chat_template: llama3 #llama 3 instruct chat template USE |
|
datasets: |
|
- path: collinear-ai/prompt-response-eval-classification-dataset-final-axolotl |
|
split: without_animal_env_abuse_train |
|
type: chat_template |
|
chat_template: llama3 |
|
field_messages: train_conv |
|
message_field_role: role |
|
message_field_content: content |
|
train_on_inputs: false #FALSE |
|
|
|
val_set_size: 0.05 |
|
# Data packing |
|
sequence_len: 2048 |
|
eval_sample_packing: false |
|
sample_packing: false |
|
pad_to_sequence_len: true |
|
group_by_length: false |
|
|
|
# Lora config |
|
adapter: qlora |
|
lora_model_dir: |
|
load_in_8bit: false |
|
load_in_4bit: true |
|
lora_r: 64 |
|
lora_alpha: 32 |
|
lora_dropout: 0.1 |
|
lora_target_linear: true |
|
lora_fan_in_fan_out: |
|
lora_target_modules: |
|
- gate_proj |
|
- down_proj |
|
- up_proj |
|
- q_proj |
|
- v_proj |
|
- k_proj |
|
- o_proj |
|
lora_modules_to_save: |
|
- embed_tokens |
|
- lm_head |
|
|
|
# Logging config |
|
wandb_project: general-judge-harmfulness-bif-data |
|
wandb_entity: nazneen |
|
wandb_name: collinear-ai/harm-category-labelled-multi-task-16cat-26_12-leaveone-without-animal_env_abuse-llama8b |
|
|
|
# Trainer config |
|
gradient_accumulation_steps: 2 |
|
micro_batch_size: 12 |
|
num_epochs: 3 |
|
optimizer: paged_adamw_8bit |
|
lr_scheduler: cosine |
|
learning_rate: 0.00005 |
|
|
|
bfloat16: true |
|
bf16: true |
|
fp16: |
|
tf32: false |
|
|
|
gradient_checkpointing: true |
|
early_stopping_patience: |
|
resume_from_checkpoint: |
|
local_rank: |
|
logging_steps: 10 |
|
xformers_attention: |
|
flash_attention: true |
|
save_safetensors: true |
|
|
|
loss_watchdog_threshold: 5.0 |
|
loss_watchdog_patience: 3 |
|
|
|
warmup_steps: 50 |
|
evals_per_epoch: 3 |
|
eval_table_size: |
|
eval_max_new_tokens: 500 |
|
saves_per_epoch: 1 |
|
debug: |
|
deepspeed: |
|
weight_decay: 0.02 |
|
fsdp_config: |
|
special_tokens: |
|
pad_token: "<|end_of_text|>" |
|
|
|
|
|
## weight decay |
|
## add validation set (split add) |
|
|
|
``` |
|
|
|
</details><br> |
|
|
|
# harm-category-labelled-multi-task-16cat-26_12-leaveone-without-animal_env_abuse-llama8b |
|
|
|
This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1492 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 12 |
|
- eval_batch_size: 12 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 2 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 48 |
|
- total_eval_batch_size: 24 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 50 |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:----:|:---------------:| |
|
| No log | 0.0007 | 1 | 1.8779 | |
|
| 0.0152 | 0.3332 | 461 | 0.1341 | |
|
| 0.0072 | 0.6664 | 922 | 0.1252 | |
|
| 0.0046 | 0.9996 | 1383 | 0.1301 | |
|
| 0.0022 | 1.3329 | 1844 | 0.1315 | |
|
| 0.0028 | 1.6661 | 2305 | 0.1361 | |
|
| 0.0018 | 1.9993 | 2766 | 0.1338 | |
|
| 0.0005 | 2.3325 | 3227 | 0.1465 | |
|
| 0.0003 | 2.6657 | 3688 | 0.1488 | |
|
| 0.0002 | 2.9989 | 4149 | 0.1492 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.11.1 |
|
- Transformers 4.45.0 |
|
- Pytorch 2.1.2+cu118 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.20.3 |