metadata
license: creativeml-openrail-m
library_name: diffusers
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
inference: true
base_model: runwayml/stable-diffusion-v1-5
Text-to-image finetuning - cosmo3769/test
This pipeline was finetuned from runwayml/stable-diffusion-v1-5 on the your_dataset_name dataset. Below are some example images generated with the finetuned pipeline using the following prompts: ['prompt1', 'prompt2', 'prompt3']:
Pipeline usage
You can use the pipeline like so:
from diffusers import DiffusionPipeline
import torch
pipeline = DiffusionPipeline.from_pretrained("cosmo3769/test", torch_dtype=torch.float16)
prompt = "prompt1"
image = pipeline(prompt).images[0]
image.save("my_image.png")
Training info
These are the key hyperparameters used during training:
- Epochs: num_train_epochs
- Learning rate: lr
- Batch size: batch_size
- Gradient accumulation steps: ga_steps
- Image resolution: img_resolution
- Mixed-precision: boolean
Intended uses & limitations
How to use
# TODO: add an example code snippet for running this diffusion pipeline
Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
Training details
[TODO: describe the data used to train the model]