csikasote's picture
End of training
b5ab886 verified
|
raw
history blame
3.13 kB
metadata
library_name: transformers
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
  - automatic-speech-recognition
  - bigcgen
  - mms
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: mms-1b-bigcgen-combined-25hrs-model
    results: []

mms-1b-bigcgen-combined-25hrs-model

This model is a fine-tuned version of facebook/mms-1b-all on the BIGCGEN - BEM dataset. It achieves the following results on the evaluation set:

  • Loss: inf
  • Wer: 0.5156

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • training_steps: 2500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
14.5485 0.0611 100 inf 1.0039
6.1502 0.1222 200 inf 1.0675
5.1685 0.1833 300 inf 1.0053
2.0876 0.2443 400 inf 0.5857
1.7116 0.3054 500 inf 0.5759
1.6505 0.3665 600 inf 0.5579
1.6573 0.4276 700 inf 0.5471
1.4679 0.4887 800 inf 0.5528
1.4955 0.5498 900 inf 0.5369
1.664 0.6109 1000 inf 0.5328
1.61 0.6720 1100 inf 0.5335
1.6414 0.7330 1200 inf 0.5293
1.6321 0.7941 1300 inf 0.5271
1.4686 0.8552 1400 inf 0.5297
1.5073 0.9163 1500 inf 0.5326
1.6164 0.9774 1600 inf 0.5235
1.577 1.0385 1700 inf 0.5238
1.383 1.0996 1800 inf 0.5217
1.4391 1.1607 1900 inf 0.5292
1.5327 1.2217 2000 inf 0.5255
1.3653 1.2828 2100 inf 0.5195
1.4901 1.3439 2200 inf 0.5187
1.4263 1.4050 2300 inf 0.5169
1.4603 1.4661 2400 inf 0.5179
1.4802 1.5272 2500 inf 0.5155

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0