csikasote's picture
End of training
08137cc verified
metadata
library_name: transformers
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
  - automatic-speech-recognition
  - bigcgen
  - mms
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: mms-1b-bigcgen-female-20hrs-model
    results: []

mms-1b-bigcgen-female-20hrs-model

This model is a fine-tuned version of facebook/mms-1b-all on the BIGCGEN - BEM dataset. It achieves the following results on the evaluation set:

  • Loss: inf
  • Wer: 0.5260

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • training_steps: 2500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
13.9528 0.0752 100 inf 1.0431
6.1846 0.1505 200 inf 1.0030
5.4651 0.2257 300 inf 1.0386
4.4356 0.3010 400 inf 0.8831
2.2016 0.3762 500 inf 0.6218
1.8013 0.4515 600 inf 0.5746
1.7499 0.5267 700 inf 0.5793
1.6979 0.6020 800 inf 0.5501
1.5567 0.6772 900 inf 0.5439
1.6301 0.7524 1000 inf 0.5355
1.6362 0.8277 1100 inf 0.5367
1.5247 0.9029 1200 inf 0.5326
1.4012 0.9782 1300 inf 0.5346
1.6397 1.0534 1400 inf 0.5301
1.5258 1.1287 1500 inf 0.5285
1.4144 1.2039 1600 inf 0.5244
1.4363 1.2792 1700 inf 0.5144
1.3733 1.3544 1800 inf 0.5358
1.4592 1.4296 1900 inf 0.5598
1.3499 1.5049 2000 inf 0.5192
1.4039 1.5801 2100 inf 0.5228
1.4057 1.6554 2200 inf 0.5289
1.4961 1.7306 2300 inf 0.5323
1.3975 1.8059 2400 inf 0.5119
1.4725 1.8811 2500 inf 0.5260

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0