|
--- |
|
library_name: transformers |
|
license: cc-by-nc-4.0 |
|
base_model: facebook/mms-1b-all |
|
tags: |
|
- automatic-speech-recognition |
|
- bigcgen |
|
- mms |
|
- generated_from_trainer |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: mms-1b-bigcgen-female-20hrs-model |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mms-1b-bigcgen-female-20hrs-model |
|
|
|
This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the BIGCGEN - BEM dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: inf |
|
- Wer: 0.5260 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 8 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 100 |
|
- training_steps: 2500 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:------:|:----:|:---------------:|:------:| |
|
| 13.9528 | 0.0752 | 100 | inf | 1.0431 | |
|
| 6.1846 | 0.1505 | 200 | inf | 1.0030 | |
|
| 5.4651 | 0.2257 | 300 | inf | 1.0386 | |
|
| 4.4356 | 0.3010 | 400 | inf | 0.8831 | |
|
| 2.2016 | 0.3762 | 500 | inf | 0.6218 | |
|
| 1.8013 | 0.4515 | 600 | inf | 0.5746 | |
|
| 1.7499 | 0.5267 | 700 | inf | 0.5793 | |
|
| 1.6979 | 0.6020 | 800 | inf | 0.5501 | |
|
| 1.5567 | 0.6772 | 900 | inf | 0.5439 | |
|
| 1.6301 | 0.7524 | 1000 | inf | 0.5355 | |
|
| 1.6362 | 0.8277 | 1100 | inf | 0.5367 | |
|
| 1.5247 | 0.9029 | 1200 | inf | 0.5326 | |
|
| 1.4012 | 0.9782 | 1300 | inf | 0.5346 | |
|
| 1.6397 | 1.0534 | 1400 | inf | 0.5301 | |
|
| 1.5258 | 1.1287 | 1500 | inf | 0.5285 | |
|
| 1.4144 | 1.2039 | 1600 | inf | 0.5244 | |
|
| 1.4363 | 1.2792 | 1700 | inf | 0.5144 | |
|
| 1.3733 | 1.3544 | 1800 | inf | 0.5358 | |
|
| 1.4592 | 1.4296 | 1900 | inf | 0.5598 | |
|
| 1.3499 | 1.5049 | 2000 | inf | 0.5192 | |
|
| 1.4039 | 1.5801 | 2100 | inf | 0.5228 | |
|
| 1.4057 | 1.6554 | 2200 | inf | 0.5289 | |
|
| 1.4961 | 1.7306 | 2300 | inf | 0.5323 | |
|
| 1.3975 | 1.8059 | 2400 | inf | 0.5119 | |
|
| 1.4725 | 1.8811 | 2500 | inf | 0.5260 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.47.1 |
|
- Pytorch 2.5.1+cu124 |
|
- Datasets 3.2.0 |
|
- Tokenizers 0.21.0 |
|
|