llama3-8b-amd-npu / README.md
dahara1's picture
Update README.md
e46f1e5 verified
|
raw
history blame
3.77 kB
metadata
tags:
  - npu
  - amd
  - llama3

This is a model that has been AWQ quantized and converted to run on the NPU installed in the Ryzen AI PC (for example, Ryzen 9 7940HS Processor) (for Windows environment)

For information on setting up Ryzen AI for LLMs in window 11, see Running LLM on AMD NPU Hardware.

The following sample assumes that the setup on the above page has been completed.

setup

In cmd windows.

conda activate ryzenai-transformers
<your_install_path>\RyzenAI-SW\example\transformers\setup.bat
git lfs install
git clone https://huggingface.co/dahara1/llama3-8b-amd-npu
cd llama3-8b-amd-npu
git lfs pull
cd ..
copy <your_install_path>\RyzenAI-SW\example\transformers\models\llama2\modeling_llama_amd.py .

# set up Runtime. see [Runtime Setup](https://ryzenai.docs.amd.com/en/latest/runtime_setup.html)
set XLNX_VART_FIRMWARE=<your_install_path>\voe-4.0-win_amd64\1x4.xclbin
set NUM_OF_DPU_RUNNERS=1

# save below sample script as utf8 and llama-3-test.py
python llama3-test.py

Sample Script

import torch
import time
import os
import psutil
import transformers
from transformers import AutoTokenizer, set_seed
import qlinear
import logging

set_seed(123)
transformers.logging.set_verbosity_error()
logging.disable(logging.CRITICAL)

messages = [
    {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
]

message_list = [
    "Who are you? ", 
    # Japanese
    "あなたの乗っている船の名前は何ですか?英語ではなく全て日本語だけを使って返事をしてください",
    # Chainese
    "你经历过的最危险的冒险是什么?请用中文回答所有问题,不要用英文。",
    # French
    "À quelle vitesse va votre bateau ? Veuillez répondre uniquement en français et non en anglais.",
    # Korean
    "당신은 그 배의 어디를 좋아합니까? 영어를 사용하지 않고 모두 한국어로 대답하십시오.",
    # German
    "Wie würde Ihr Schiffsname auf Deutsch lauten? Bitte antwortet alle auf Deutsch statt auf Englisch.", 
    # Taiwanese
    "您發現過的最令人驚奇的寶藏是什麼?請僅使用台語和繁體中文回答,不要使用英文。",
]


if __name__ == "__main__":
    p = psutil.Process()
    p.cpu_affinity([0, 1, 2, 3])
    torch.set_num_threads(4)

    tokenizer = AutoTokenizer.from_pretrained("llama3-8b-amd-npu")
    ckpt = "llama3-8b-amd-npu/pytorch_llama3_8b_w_bit_4_awq_lm_amd.pt"
    terminators = [
        tokenizer.eos_token_id,
        tokenizer.convert_tokens_to_ids("<|eot_id|>")
    ]
    model = torch.load(ckpt)
    model.eval()
    model = model.to(torch.bfloat16)

    for n, m in model.named_modules():
        if isinstance(m, qlinear.QLinearPerGrp):
            print(f"Preparing weights of layer : {n}")
            m.device = "aie"
            m.quantize_weights()

    print("system: " + messages[0]['content'])

    for i in range(len(message_list)):
        messages.append({"role": "user",  "content": message_list[i]})
        print("user: " + message_list[i])

        input = tokenizer.apply_chat_template(
        messages,
        add_generation_prompt=True,
        return_tensors="pt",
        return_dict=True
        )

        outputs = model.generate(input['input_ids'],
        max_new_tokens=600,
            eos_token_id=terminators,
        attention_mask=input['attention_mask'],
            do_sample=True,
            temperature=0.6,
            top_p=0.9)

        response = outputs[0][input['input_ids'].shape[-1]:]
        response_message = tokenizer.decode(response, skip_special_tokens=True)
        print("assistant: " + response_message)
        messages.append({"role": "system", "content": response_message})