url
stringlengths
58
61
repository_url
stringclasses
1 value
labels_url
stringlengths
72
75
comments_url
stringlengths
67
70
events_url
stringlengths
65
68
html_url
stringlengths
46
51
id
int64
600M
2.05B
node_id
stringlengths
18
32
number
int64
2
6.51k
title
stringlengths
1
290
user
dict
labels
listlengths
0
4
state
stringclasses
2 values
locked
bool
1 class
assignee
dict
assignees
listlengths
0
4
milestone
dict
comments
sequencelengths
0
30
created_at
unknown
updated_at
unknown
closed_at
unknown
author_association
stringclasses
3 values
active_lock_reason
float64
draft
float64
0
1
pull_request
dict
body
stringlengths
0
228k
reactions
dict
timeline_url
stringlengths
67
70
performed_via_github_app
float64
state_reason
stringclasses
3 values
is_pull_request
bool
2 classes
https://api.github.com/repos/huggingface/datasets/issues/3863
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3863/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3863/comments
https://api.github.com/repos/huggingface/datasets/issues/3863/events
https://github.com/huggingface/datasets/pull/3863
1,162,802,857
PR_kwDODunzps40HP-A
3,863
Update code blocks
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_3863). All of your documentation changes will be reflected on that endpoint." ]
"2022-03-08T15:34:43Z"
"2022-03-09T16:45:30Z"
"2022-03-09T16:45:29Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/3863.diff", "html_url": "https://github.com/huggingface/datasets/pull/3863", "merged_at": "2022-03-09T16:45:29Z", "patch_url": "https://github.com/huggingface/datasets/pull/3863.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/3863" }
Following https://github.com/huggingface/datasets/pull/3860#issuecomment-1061756712 and https://github.com/huggingface/datasets/pull/3690 we need to update the code blocks to use markdown instead of sphinx
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3863/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3863/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/1031
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1031/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1031/comments
https://api.github.com/repos/huggingface/datasets/issues/1031/events
https://github.com/huggingface/datasets/pull/1031
755,844,004
MDExOlB1bGxSZXF1ZXN0NTMxNDgyMzEy
1,031
add crows_pairs
{ "avatar_url": "https://avatars.githubusercontent.com/u/27137566?v=4", "events_url": "https://api.github.com/users/patil-suraj/events{/privacy}", "followers_url": "https://api.github.com/users/patil-suraj/followers", "following_url": "https://api.github.com/users/patil-suraj/following{/other_user}", "gists_url": "https://api.github.com/users/patil-suraj/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/patil-suraj", "id": 27137566, "login": "patil-suraj", "node_id": "MDQ6VXNlcjI3MTM3NTY2", "organizations_url": "https://api.github.com/users/patil-suraj/orgs", "received_events_url": "https://api.github.com/users/patil-suraj/received_events", "repos_url": "https://api.github.com/users/patil-suraj/repos", "site_admin": false, "starred_url": "https://api.github.com/users/patil-suraj/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/patil-suraj/subscriptions", "type": "User", "url": "https://api.github.com/users/patil-suraj" }
[]
closed
false
null
[]
null
[ "looks good now :) wdyt @yjernite ?", "Looks good to merge for me, can edit the dataset card later if required. Merging" ]
"2020-12-03T05:05:11Z"
"2020-12-03T18:29:52Z"
"2020-12-03T18:29:39Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/1031.diff", "html_url": "https://github.com/huggingface/datasets/pull/1031", "merged_at": "2020-12-03T18:29:39Z", "patch_url": "https://github.com/huggingface/datasets/pull/1031.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/1031" }
This PR adds CrowS-Pairs datasets. More info: https://github.com/nyu-mll/crows-pairs/ https://arxiv.org/pdf/2010.00133.pdf
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1031/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1031/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/481
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/481/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/481/comments
https://api.github.com/repos/huggingface/datasets/issues/481/events
https://github.com/huggingface/datasets/pull/481
674,567,389
MDExOlB1bGxSZXF1ZXN0NDY0MjM2MTA1
481
Apply utf-8 encoding to all datasets
{ "avatar_url": "https://avatars.githubusercontent.com/u/26859204?v=4", "events_url": "https://api.github.com/users/lewtun/events{/privacy}", "followers_url": "https://api.github.com/users/lewtun/followers", "following_url": "https://api.github.com/users/lewtun/following{/other_user}", "gists_url": "https://api.github.com/users/lewtun/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lewtun", "id": 26859204, "login": "lewtun", "node_id": "MDQ6VXNlcjI2ODU5MjA0", "organizations_url": "https://api.github.com/users/lewtun/orgs", "received_events_url": "https://api.github.com/users/lewtun/received_events", "repos_url": "https://api.github.com/users/lewtun/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lewtun/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lewtun/subscriptions", "type": "User", "url": "https://api.github.com/users/lewtun" }
[]
closed
false
null
[]
null
[ "Not sure why the AWS test is failing - perhaps I made too many concurrent CI builds 😢. Can someone please rerun the CI to check the error is not on my end?", "I pushed an improved docstring and the unit tests now pass, which suggests the previous failure on AWS was simply a timeout error. \r\n\r\nFor some reason the docs are now failing to build, but does not seem related to my changes:\r\n```\r\nWarning, treated as error:\r\n/home/circleci/nlp/src/nlp/dataset_dict.py:docstring of nlp.DatasetDict.filter:27:Inline interpreted text or phrase reference start-string without end-string.\r\nmake: *** [Makefile:20: html] Error 2\r\n```\r\n\r\nAny ideas what's going wrong?", "The build_doc fail has been fixed on master.\r\nIt was due to the latest update of sphinx that has some issues, so I pinned the previous version for now.", "I noticed that you also changed the Apache Beam `open` to also use utf-8. However it doesn't have an `encoding` parameter.\r\nTherefore you should ignore lines like\r\n\r\n```python\r\nbeam.io.filesystems.FileSystems.open(filepath)\r\n```\r\n\r\nI guess you could add a rule to your regex to only include the `open` call that have a space right before it.", "Good catch @lhoestq! Your suggestion to match on `open(...)` with a whitespace was a great idea - it allowed me to simplify the regexp considerably 😄.\r\n\r\nI fixed the Apache Beam false positives and also caught a few problems in `json.load()`, e.g.\r\n```python\r\nrelation_name_map = json.load(open(rel_info), encoding='utf-8')\r\n```\r\n\r\nI've tested that the new regexp doesn't reintroduce these false positives, so I think the PR is ready for another review.", "Ok to merge this @lhoestq ?" ]
"2020-08-06T20:02:09Z"
"2020-08-20T08:16:08Z"
"2020-08-20T08:16:08Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/481.diff", "html_url": "https://github.com/huggingface/datasets/pull/481", "merged_at": "2020-08-20T08:16:08Z", "patch_url": "https://github.com/huggingface/datasets/pull/481.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/481" }
## Description This PR applies utf-8 encoding for all instances of `with open(...) as f` to all Python files in `datasets/`. As suggested by @thomwolf in #468 , we use regular expressions and the following function ```python def apply_encoding_on_file_open(filepath: str): """Apply UTF-8 encoding for all instances where a non-binary file is opened.""" with open(filepath, 'r', encoding='utf-8') as input_file: regexp = re.compile(r"(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)") input_text = input_file.read() match = regexp.search(input_text) if match: output = regexp.sub(lambda m: m.group()[:-1]+', encoding="utf-8")', input_text) with open(filepath, 'w', encoding='utf-8') as output_file: output_file.write(output) ``` to perform the replacement. Note: 1. I excluded all _**binary files**_ from the search since it's possible some objects are opened for which the encoding doesn't make sense. Please correct me if I'm wrong and I'll tweak the regexp accordingly 2. There were two edge cases where the regexp failed (e.g. two `open` instances on a single line), but I decided to just fix these manually in the interest of time. 3. I only applied the replacement to files in `datasets/`. Let me know if this should be extended to other places like `metrics/` 4. I have implemented a unit test that should catch missing encodings in future CI runs Closes #468 and possibly #347
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/481/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/481/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/3591
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3591/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3591/comments
https://api.github.com/repos/huggingface/datasets/issues/3591/events
https://github.com/huggingface/datasets/pull/3591
1,106,928,613
PR_kwDODunzps4xNDoB
3,591
Add support for time, date, duration, and decimal dtypes
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko" }
[]
closed
false
null
[]
null
[ "Is there a dataset which uses these four datatypes for tests purposes?\r\n", "@severo Not yet. I'll let you know if that changes." ]
"2022-01-18T13:46:05Z"
"2022-01-31T18:29:34Z"
"2022-01-20T17:37:33Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/3591.diff", "html_url": "https://github.com/huggingface/datasets/pull/3591", "merged_at": "2022-01-20T17:37:33Z", "patch_url": "https://github.com/huggingface/datasets/pull/3591.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/3591" }
Add support for the pyarrow time (maps to `datetime.time` in python), date (maps to `datetime.time` in python), duration (maps to `datetime.timedelta` in python), and decimal (maps to `decimal.decimal` in python) dtypes. This should be helpful when writing scripts for time-series datasets.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3591/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3591/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/2992
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2992/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2992/comments
https://api.github.com/repos/huggingface/datasets/issues/2992/events
https://github.com/huggingface/datasets/pull/2992
1,012,325,594
PR_kwDODunzps4sg4ZP
2,992
Fix f1 metric with None average
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[]
closed
false
null
[]
null
[]
"2021-09-30T15:31:57Z"
"2021-10-01T14:17:39Z"
"2021-10-01T14:17:38Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/2992.diff", "html_url": "https://github.com/huggingface/datasets/pull/2992", "merged_at": "2021-10-01T14:17:38Z", "patch_url": "https://github.com/huggingface/datasets/pull/2992.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/2992" }
Fix #2979.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2992/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2992/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/3699
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3699/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3699/comments
https://api.github.com/repos/huggingface/datasets/issues/3699/events
https://github.com/huggingface/datasets/pull/3699
1,130,200,593
PR_kwDODunzps4yY49I
3,699
Add dev-only config to Natural Questions dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[]
closed
false
null
[]
null
[ "Great thanks ! I think we can fix the CI by copying the NQ folder on gcs to 0.0.3. Does that sound good ?", "I've copied the 0.0.2 folder content to 0.0.3, as suggested.\r\n\r\nI'm updating the dataset card..." ]
"2022-02-10T14:42:24Z"
"2022-02-11T09:50:22Z"
"2022-02-11T09:50:21Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/3699.diff", "html_url": "https://github.com/huggingface/datasets/pull/3699", "merged_at": "2022-02-11T09:50:21Z", "patch_url": "https://github.com/huggingface/datasets/pull/3699.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/3699" }
As suggested by @lhoestq and @thomwolf, a new config has been added to Natural Questions dataset, so that only dev split can be downloaded. Fix #413.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3699/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3699/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/5658
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5658/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5658/comments
https://api.github.com/repos/huggingface/datasets/issues/5658/events
https://github.com/huggingface/datasets/pull/5658
1,634,867,204
PR_kwDODunzps5MmJe0
5,658
docs: Update num_shards docs to mention num_proc on Dataset and DatasetDict
{ "avatar_url": "https://avatars.githubusercontent.com/u/78612354?v=4", "events_url": "https://api.github.com/users/connor-henderson/events{/privacy}", "followers_url": "https://api.github.com/users/connor-henderson/followers", "following_url": "https://api.github.com/users/connor-henderson/following{/other_user}", "gists_url": "https://api.github.com/users/connor-henderson/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/connor-henderson", "id": 78612354, "login": "connor-henderson", "node_id": "MDQ6VXNlcjc4NjEyMzU0", "organizations_url": "https://api.github.com/users/connor-henderson/orgs", "received_events_url": "https://api.github.com/users/connor-henderson/received_events", "repos_url": "https://api.github.com/users/connor-henderson/repos", "site_admin": false, "starred_url": "https://api.github.com/users/connor-henderson/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/connor-henderson/subscriptions", "type": "User", "url": "https://api.github.com/users/connor-henderson" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007351 / 0.011353 (-0.004002) | 0.005025 / 0.011008 (-0.005983) | 0.095978 / 0.038508 (0.057470) | 0.033486 / 0.023109 (0.010377) | 0.294427 / 0.275898 (0.018529) | 0.325157 / 0.323480 (0.001677) | 0.005671 / 0.007986 (-0.002315) | 0.005284 / 0.004328 (0.000955) | 0.073159 / 0.004250 (0.068909) | 0.045162 / 0.037052 (0.008110) | 0.294004 / 0.258489 (0.035515) | 0.343545 / 0.293841 (0.049704) | 0.036857 / 0.128546 (-0.091689) | 0.012245 / 0.075646 (-0.063401) | 0.332258 / 0.419271 (-0.087014) | 0.051909 / 0.043533 (0.008377) | 0.295701 / 0.255139 (0.040562) | 0.315247 / 0.283200 (0.032048) | 0.102363 / 0.141683 (-0.039320) | 1.441944 / 1.452155 (-0.010211) | 1.527161 / 1.492716 (0.034445) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.211769 / 0.018006 (0.193763) | 0.452015 / 0.000490 (0.451525) | 0.004041 / 0.000200 (0.003841) | 0.000078 / 0.000054 (0.000024) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027396 / 0.037411 (-0.010015) | 0.108318 / 0.014526 (0.093793) | 0.116851 / 0.176557 (-0.059706) | 0.172658 / 0.737135 (-0.564478) | 0.122876 / 0.296338 (-0.173462) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.406484 / 0.215209 (0.191275) | 4.053849 / 2.077655 (1.976194) | 1.842947 / 1.504120 (0.338827) | 1.649473 / 1.541195 (0.108278) | 1.728629 / 1.468490 (0.260139) | 0.699519 / 4.584777 (-3.885258) | 3.730823 / 3.745712 (-0.014889) | 2.139624 / 5.269862 (-3.130237) | 1.487839 / 4.565676 (-3.077837) | 0.086699 / 0.424275 (-0.337576) | 0.012815 / 0.007607 (0.005208) | 0.514014 / 0.226044 (0.287969) | 5.153315 / 2.268929 (2.884387) | 2.324431 / 55.444624 (-53.120193) | 1.971533 / 6.876477 (-4.904944) | 2.074480 / 2.142072 (-0.067592) | 0.842419 / 4.805227 (-3.962808) | 0.169140 / 6.500664 (-6.331524) | 0.065206 / 0.075469 (-0.010263) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.180887 / 1.841788 (-0.660901) | 14.627401 / 8.074308 (6.553093) | 14.382699 / 10.191392 (4.191307) | 0.143986 / 0.680424 (-0.536438) | 0.017460 / 0.534201 (-0.516741) | 0.422100 / 0.579283 (-0.157183) | 0.417474 / 0.434364 (-0.016890) | 0.493712 / 0.540337 (-0.046625) | 0.589744 / 1.386936 (-0.797193) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007538 / 0.011353 (-0.003815) | 0.005122 / 0.011008 (-0.005887) | 0.073858 / 0.038508 (0.035350) | 0.034561 / 0.023109 (0.011451) | 0.341250 / 0.275898 (0.065352) | 0.373063 / 0.323480 (0.049583) | 0.005785 / 0.007986 (-0.002200) | 0.005393 / 0.004328 (0.001065) | 0.072354 / 0.004250 (0.068104) | 0.047005 / 0.037052 (0.009953) | 0.341179 / 0.258489 (0.082690) | 0.386299 / 0.293841 (0.092458) | 0.038315 / 0.128546 (-0.090231) | 0.012200 / 0.075646 (-0.063446) | 0.086132 / 0.419271 (-0.333140) | 0.049873 / 0.043533 (0.006340) | 0.337985 / 0.255139 (0.082846) | 0.354806 / 0.283200 (0.071607) | 0.103557 / 0.141683 (-0.038126) | 1.445682 / 1.452155 (-0.006473) | 1.551008 / 1.492716 (0.058291) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.235873 / 0.018006 (0.217867) | 0.448445 / 0.000490 (0.447955) | 0.001307 / 0.000200 (0.001108) | 0.000087 / 0.000054 (0.000032) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029809 / 0.037411 (-0.007603) | 0.108833 / 0.014526 (0.094307) | 0.123289 / 0.176557 (-0.053268) | 0.176516 / 0.737135 (-0.560620) | 0.127186 / 0.296338 (-0.169153) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.422037 / 0.215209 (0.206828) | 4.188073 / 2.077655 (2.110418) | 1.999295 / 1.504120 (0.495175) | 1.809229 / 1.541195 (0.268034) | 1.930798 / 1.468490 (0.462308) | 0.694371 / 4.584777 (-3.890406) | 3.833432 / 3.745712 (0.087719) | 3.235600 / 5.269862 (-2.034262) | 1.867822 / 4.565676 (-2.697854) | 0.085734 / 0.424275 (-0.338541) | 0.012727 / 0.007607 (0.005120) | 0.542261 / 0.226044 (0.316217) | 5.289366 / 2.268929 (3.020437) | 2.469636 / 55.444624 (-52.974988) | 2.139392 / 6.876477 (-4.737084) | 2.193305 / 2.142072 (0.051233) | 0.846747 / 4.805227 (-3.958481) | 0.168965 / 6.500664 (-6.331699) | 0.064463 / 0.075469 (-0.011006) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.263818 / 1.841788 (-0.577970) | 15.254642 / 8.074308 (7.180334) | 14.428111 / 10.191392 (4.236719) | 0.164770 / 0.680424 (-0.515654) | 0.017476 / 0.534201 (-0.516725) | 0.420198 / 0.579283 (-0.159085) | 0.443250 / 0.434364 (0.008886) | 0.496904 / 0.540337 (-0.043434) | 0.596541 / 1.386936 (-0.790395) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#4db8e33eb9cf6cd4453cdfa246c065e0eedf170c \"CML watermark\")\n" ]
"2023-03-22T00:12:18Z"
"2023-03-24T16:43:34Z"
"2023-03-24T16:36:21Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5658.diff", "html_url": "https://github.com/huggingface/datasets/pull/5658", "merged_at": "2023-03-24T16:36:21Z", "patch_url": "https://github.com/huggingface/datasets/pull/5658.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5658" }
Closes #5653 @mariosasko
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5658/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5658/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/2841
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2841/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2841/comments
https://api.github.com/repos/huggingface/datasets/issues/2841/events
https://github.com/huggingface/datasets/issues/2841
980,497,321
MDU6SXNzdWU5ODA0OTczMjE=
2,841
Adding GLUECoS Hinglish and Spanglish code-switching bemchmark
{ "avatar_url": "https://avatars.githubusercontent.com/u/10469459?v=4", "events_url": "https://api.github.com/users/yjernite/events{/privacy}", "followers_url": "https://api.github.com/users/yjernite/followers", "following_url": "https://api.github.com/users/yjernite/following{/other_user}", "gists_url": "https://api.github.com/users/yjernite/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/yjernite", "id": 10469459, "login": "yjernite", "node_id": "MDQ6VXNlcjEwNDY5NDU5", "organizations_url": "https://api.github.com/users/yjernite/orgs", "received_events_url": "https://api.github.com/users/yjernite/received_events", "repos_url": "https://api.github.com/users/yjernite/repos", "site_admin": false, "starred_url": "https://api.github.com/users/yjernite/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/yjernite/subscriptions", "type": "User", "url": "https://api.github.com/users/yjernite" }
[ { "color": "e99695", "default": false, "description": "Requesting to add a new dataset", "id": 2067376369, "name": "dataset request", "node_id": "MDU6TGFiZWwyMDY3Mzc2MzY5", "url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20request" } ]
open
false
null
[]
null
[ "Hi @yjernite I am interested in adding this dataset. \r\nIn the repo they have also added a code mixed MT task from English to Hinglish [here](https://github.com/microsoft/GLUECoS#code-mixed-machine-translation-task). I think this could be a good dataset addition in itself and then I can add the rest of the GLUECoS tasks as one dataset. What do you think?" ]
"2021-08-26T17:47:39Z"
"2021-10-20T18:41:20Z"
null
MEMBER
null
null
null
## Adding a Dataset - **Name:** GLUECoS - **Description:** a Microsoft Benchmark to evaluate code-switching for only two language pairs but a variety of tasks - **Paper:** https://aclanthology.org/2020.acl-main.329/ - **Data:** https://github.com/microsoft/GLUECoS - **Motivation:** We currently only have [one other](https://huggingface.co/datasets/lince) dataset for code-switching Instructions to add a new dataset can be found [here](https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md).
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2841/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2841/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6488
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6488/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6488/comments
https://api.github.com/repos/huggingface/datasets/issues/6488/events
https://github.com/huggingface/datasets/issues/6488
2,035,899,898
I_kwDODunzps55WV36
6,488
429 Client Error
{ "avatar_url": "https://avatars.githubusercontent.com/u/7882383?v=4", "events_url": "https://api.github.com/users/sasaadi/events{/privacy}", "followers_url": "https://api.github.com/users/sasaadi/followers", "following_url": "https://api.github.com/users/sasaadi/following{/other_user}", "gists_url": "https://api.github.com/users/sasaadi/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/sasaadi", "id": 7882383, "login": "sasaadi", "node_id": "MDQ6VXNlcjc4ODIzODM=", "organizations_url": "https://api.github.com/users/sasaadi/orgs", "received_events_url": "https://api.github.com/users/sasaadi/received_events", "repos_url": "https://api.github.com/users/sasaadi/repos", "site_admin": false, "starred_url": "https://api.github.com/users/sasaadi/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sasaadi/subscriptions", "type": "User", "url": "https://api.github.com/users/sasaadi" }
[]
open
false
null
[]
null
[ "Transferring repos as this is a datasets issue " ]
"2023-12-11T15:06:01Z"
"2023-12-11T15:34:23Z"
null
NONE
null
null
null
Hello, I was downloading the following dataset and after 20% of data was downloaded, I started getting error 429. It is not resolved since a few days. How should I resolve it? Thanks Dataset: https://huggingface.co/datasets/cerebras/SlimPajama-627B Error: `requests.exceptions.HTTPError: 429 Client Error: Too Many Requests for url: https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/train/chunk1/example_train_3300.jsonl.zst`
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6488/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6488/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/1447
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1447/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1447/comments
https://api.github.com/repos/huggingface/datasets/issues/1447/events
https://github.com/huggingface/datasets/pull/1447
761,067,955
MDExOlB1bGxSZXF1ZXN0NTM1NzkxODk1
1,447
Update step-by-step guide for windows
{ "avatar_url": "https://avatars.githubusercontent.com/u/7353373?v=4", "events_url": "https://api.github.com/users/thomwolf/events{/privacy}", "followers_url": "https://api.github.com/users/thomwolf/followers", "following_url": "https://api.github.com/users/thomwolf/following{/other_user}", "gists_url": "https://api.github.com/users/thomwolf/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/thomwolf", "id": 7353373, "login": "thomwolf", "node_id": "MDQ6VXNlcjczNTMzNzM=", "organizations_url": "https://api.github.com/users/thomwolf/orgs", "received_events_url": "https://api.github.com/users/thomwolf/received_events", "repos_url": "https://api.github.com/users/thomwolf/repos", "site_admin": false, "starred_url": "https://api.github.com/users/thomwolf/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/thomwolf/subscriptions", "type": "User", "url": "https://api.github.com/users/thomwolf" }
[]
closed
false
null
[]
null
[ "Hi @thomwolf, for simplification purposes, I think you could remove the \"`pip install ...`\" steps from this commit, 'cause these deps (black, isort, flake8) are already installed on `pip install -e \".[dev]\"` on the [Start by preparing your environment](https://github.com/huggingface/datasets/blob/704107f924e74445f6f0fbde69a218b72178b588/ADD_NEW_DATASET.md#start-by-preparing-your-environment)\r\n" ]
"2020-12-10T09:30:59Z"
"2020-12-10T12:18:47Z"
"2020-12-10T09:31:14Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/1447.diff", "html_url": "https://github.com/huggingface/datasets/pull/1447", "merged_at": "2020-12-10T09:31:14Z", "patch_url": "https://github.com/huggingface/datasets/pull/1447.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/1447" }
Update step-by-step guide for windows to give an alternative to `make style`.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1447/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1447/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/5241
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5241/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5241/comments
https://api.github.com/repos/huggingface/datasets/issues/5241/events
https://github.com/huggingface/datasets/pull/5241
1,448,510,407
PR_kwDODunzps5C3MTG
5,241
Support hfh rc version
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
"2022-11-14T18:05:47Z"
"2022-11-15T16:11:30Z"
"2022-11-15T16:09:31Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5241.diff", "html_url": "https://github.com/huggingface/datasets/pull/5241", "merged_at": "2022-11-15T16:09:31Z", "patch_url": "https://github.com/huggingface/datasets/pull/5241.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5241" }
otherwise the code doesn't work for hfh 0.11.0rc0 following #5237
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5241/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5241/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/1249
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1249/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1249/comments
https://api.github.com/repos/huggingface/datasets/issues/1249/events
https://github.com/huggingface/datasets/pull/1249
758,472,863
MDExOlB1bGxSZXF1ZXN0NTMzNjQwNjA1
1,249
Add doc2dial dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/35491698?v=4", "events_url": "https://api.github.com/users/KMFODA/events{/privacy}", "followers_url": "https://api.github.com/users/KMFODA/followers", "following_url": "https://api.github.com/users/KMFODA/following{/other_user}", "gists_url": "https://api.github.com/users/KMFODA/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/KMFODA", "id": 35491698, "login": "KMFODA", "node_id": "MDQ6VXNlcjM1NDkxNjk4", "organizations_url": "https://api.github.com/users/KMFODA/orgs", "received_events_url": "https://api.github.com/users/KMFODA/received_events", "repos_url": "https://api.github.com/users/KMFODA/repos", "site_admin": false, "starred_url": "https://api.github.com/users/KMFODA/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/KMFODA/subscriptions", "type": "User", "url": "https://api.github.com/users/KMFODA" }
[]
closed
false
null
[]
null
[ "It not always practical to use nested `Sequence`. If you have troubles with sequence you can use lists instead. \r\n\r\nFor example\r\n```python\r\n\r\nfeatures=datasets.Features(\r\n {\r\n \"dial_id\": datasets.Value(\"string\"),\r\n \"doc_id\": datasets.Value(\"string\"),\r\n \"domain\": datasets.Value(\"string\"),\r\n \"turns\": [\r\n {\r\n \"turn_id\": datasets.Value(\"int32\"),\r\n \"role\": datasets.Value(\"string\"),\r\n \"da\": datasets.Value(\"string\"),\r\n \"reference\": [\r\n {\r\n \"keys\" : datasets.Value(\"string\"),\r\n \"values\": datasets.Value(\"string\"), \r\n }\r\n\r\n ],\r\n \"utterance\": datasets.Value(\"string\"),\r\n }\r\n ],\r\n }\r\n),\r\n```\r\n\r\nthis way `turns` will be a list of dict, and the \"reference\" key of `turns` will be a list of dict as well", "No problem thanks for all your help getting this to the final stages! Added .gitignore, removed .lock and applied the changes you asked for." ]
"2020-12-07T12:39:09Z"
"2020-12-14T16:17:14Z"
"2020-12-14T16:17:14Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/1249.diff", "html_url": "https://github.com/huggingface/datasets/pull/1249", "merged_at": "2020-12-14T16:17:14Z", "patch_url": "https://github.com/huggingface/datasets/pull/1249.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/1249" }
### Doc2dial: A Goal-Oriented Document-Grounded Dialogue Dataset v0.9 Once complete this will add the [Doc2dial](https://doc2dial.github.io/data.html) dataset from the generic data sets list.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1249/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1249/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/1281
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1281/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1281/comments
https://api.github.com/repos/huggingface/datasets/issues/1281/events
https://github.com/huggingface/datasets/pull/1281
759,203,317
MDExOlB1bGxSZXF1ZXN0NTM0MjQ0MTA1
1,281
adding hybrid_qa
{ "avatar_url": "https://avatars.githubusercontent.com/u/27137566?v=4", "events_url": "https://api.github.com/users/patil-suraj/events{/privacy}", "followers_url": "https://api.github.com/users/patil-suraj/followers", "following_url": "https://api.github.com/users/patil-suraj/following{/other_user}", "gists_url": "https://api.github.com/users/patil-suraj/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/patil-suraj", "id": 27137566, "login": "patil-suraj", "node_id": "MDQ6VXNlcjI3MTM3NTY2", "organizations_url": "https://api.github.com/users/patil-suraj/orgs", "received_events_url": "https://api.github.com/users/patil-suraj/received_events", "repos_url": "https://api.github.com/users/patil-suraj/repos", "site_admin": false, "starred_url": "https://api.github.com/users/patil-suraj/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/patil-suraj/subscriptions", "type": "User", "url": "https://api.github.com/users/patil-suraj" }
[]
closed
false
null
[]
null
[]
"2020-12-08T08:10:19Z"
"2020-12-08T18:09:28Z"
"2020-12-08T18:07:00Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/1281.diff", "html_url": "https://github.com/huggingface/datasets/pull/1281", "merged_at": "2020-12-08T18:07:00Z", "patch_url": "https://github.com/huggingface/datasets/pull/1281.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/1281" }
Adding HybridQA: A Dataset of Multi-Hop Question Answering over Tabular and Textual Data https://github.com/wenhuchen/HybridQA
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1281/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1281/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/2175
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2175/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2175/comments
https://api.github.com/repos/huggingface/datasets/issues/2175/events
https://github.com/huggingface/datasets/issues/2175
851,836,096
MDU6SXNzdWU4NTE4MzYwOTY=
2,175
dataset.search_batch() function outputs all -1 indices sometime.
{ "avatar_url": "https://avatars.githubusercontent.com/u/16892570?v=4", "events_url": "https://api.github.com/users/shamanez/events{/privacy}", "followers_url": "https://api.github.com/users/shamanez/followers", "following_url": "https://api.github.com/users/shamanez/following{/other_user}", "gists_url": "https://api.github.com/users/shamanez/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/shamanez", "id": 16892570, "login": "shamanez", "node_id": "MDQ6VXNlcjE2ODkyNTcw", "organizations_url": "https://api.github.com/users/shamanez/orgs", "received_events_url": "https://api.github.com/users/shamanez/received_events", "repos_url": "https://api.github.com/users/shamanez/repos", "site_admin": false, "starred_url": "https://api.github.com/users/shamanez/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/shamanez/subscriptions", "type": "User", "url": "https://api.github.com/users/shamanez" }
[]
closed
false
null
[]
null
[ "Actually, I found the answer [here](https://github.com/facebookresearch/faiss/wiki/FAQ#what-does-it-mean-when-a-search-returns--1-ids). \r\n\r\nSo we have to do some modifications to the code for instances where the index doesn't retrieve any IDs.", "@lhoestq @patrickvonplaten \r\n\r\nI also found another short bug in the retrieval part. Especially, when retrieving documents. If Faiss returns the -1 as the index, the retriever will always use the last element in the dataset.\r\n\r\nplease check [def get_doc_dicts function](https://github.com/huggingface/transformers/blob/master/src/transformers/models/rag/retrieval_rag.py#L222)\r\n\r\n\r\nDoes the use of the HNSW guarantee to retrieve valid indexes always? \r\n\r\n", "Hi !\r\nNo it happens sometimes to return -1, especially if your dataset is small.\r\nIf your dataset is big enough it shouldn't happen in my experience.\r\n\r\nIdeally we should ignore all the -1 that are returned. It should be possible to change that in RAG's code ", "I also checked with some indexes it returns more -1s. Specially with IVF\nwhen nprobr is very low. It doesn't happen when using HNSW though. But at\nthe moment if it happens, dataset will always return the last element.\nMaybe we should change it to repeat the most last valid retrieved doc id.\nWhat do you think?\n\nOn Wed, Apr 7, 2021, 21:09 Quentin Lhoest ***@***.***> wrote:\n\n> Hi !\n> No it happens sometimes to return -1, especially if your dataset is small.\n> If your dataset is big enough it shouldn't happen.\n>\n> Ideally we should ignore all the -1 that are returned. It should be\n> possible to change that in RAG's code\n>\n> —\n> You are receiving this because you authored the thread.\n> Reply to this email directly, view it on GitHub\n> <https://github.com/huggingface/datasets/issues/2175#issuecomment-814746509>,\n> or unsubscribe\n> <https://github.com/notifications/unsubscribe-auth/AEA4FGTENOTLBEZTXEO2RS3THQOMPANCNFSM42PRVYDA>\n> .\n>\n", "That would be an easy way to workaround this issue. Feel free to open a PR on `transformers` and ping me ! :)", "Sure. Will push everything together with RAG end to end. :) thanks a lot.\n\nOn Wed, Apr 7, 2021, 21:16 Quentin Lhoest ***@***.***> wrote:\n\n> That would be an easy way to workaround this issue. Feel free to open a PR\n> on transformers and ping me ! :)\n>\n> —\n> You are receiving this because you authored the thread.\n> Reply to this email directly, view it on GitHub\n> <https://github.com/huggingface/datasets/issues/2175#issuecomment-814752589>,\n> or unsubscribe\n> <https://github.com/notifications/unsubscribe-auth/AEA4FGWLROCGARKN7WOJYSTTHQPH5ANCNFSM42PRVYDA>\n> .\n>\n" ]
"2021-04-06T21:50:49Z"
"2021-04-16T12:21:16Z"
"2021-04-16T12:21:15Z"
NONE
null
null
null
I am working with RAG and playing around with different faiss indexes. At the moment I use **index = faiss.index_factory(768, "IVF65536_HNSW32,Flat")**. During the retrieval phase exactly in [this line of retrieval_rag.py](https://github.com/huggingface/transformers/blob/master/src/transformers/models/rag/retrieval_rag.py#L231) an error issue when all retrieved indices are -1. Please refer to the screenshot of a PID worker. ![image](https://user-images.githubusercontent.com/16892570/113782387-37a67600-9786-11eb-9c29-acad661a9648.png) Here, my retrieve batch size is 2 and n_docs is 5. I can solve this by working around np. stack, but I want to ask, why we get an output index of -1. Do you have any idea :) ? Is this a problem of the index, where the faiss can't find any similar vector? Is there documentation on the output index being -1? @lhoestq
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2175/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2175/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/3130
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3130/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3130/comments
https://api.github.com/repos/huggingface/datasets/issues/3130/events
https://github.com/huggingface/datasets/pull/3130
1,032,299,417
PR_kwDODunzps4tfBJU
3,130
Create SECURITY.md
{ "avatar_url": "https://avatars.githubusercontent.com/u/28839565?v=4", "events_url": "https://api.github.com/users/zidingz/events{/privacy}", "followers_url": "https://api.github.com/users/zidingz/followers", "following_url": "https://api.github.com/users/zidingz/following{/other_user}", "gists_url": "https://api.github.com/users/zidingz/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/zidingz", "id": 28839565, "login": "zidingz", "node_id": "MDQ6VXNlcjI4ODM5NTY1", "organizations_url": "https://api.github.com/users/zidingz/orgs", "received_events_url": "https://api.github.com/users/zidingz/received_events", "repos_url": "https://api.github.com/users/zidingz/repos", "site_admin": false, "starred_url": "https://api.github.com/users/zidingz/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/zidingz/subscriptions", "type": "User", "url": "https://api.github.com/users/zidingz" }
[]
closed
false
null
[]
null
[ "Hi @zidingz, thanks for your contribution.\r\n\r\nHowever I am closing it because it is a duplicate of a previous PR:\r\n - #2958\r\n\r\n" ]
"2021-10-21T10:03:03Z"
"2021-10-21T14:33:28Z"
"2021-10-21T14:31:50Z"
NONE
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/3130.diff", "html_url": "https://github.com/huggingface/datasets/pull/3130", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/3130.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/3130" }
To let the repository confirm [email protected] as its security contact.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3130/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3130/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/1744
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1744/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1744/comments
https://api.github.com/repos/huggingface/datasets/issues/1744/events
https://github.com/huggingface/datasets/pull/1744
787,649,811
MDExOlB1bGxSZXF1ZXN0NTU2MzA0MjU4
1,744
Add missing "brief" entries to reuters
{ "avatar_url": "https://avatars.githubusercontent.com/u/2238344?v=4", "events_url": "https://api.github.com/users/jbragg/events{/privacy}", "followers_url": "https://api.github.com/users/jbragg/followers", "following_url": "https://api.github.com/users/jbragg/following{/other_user}", "gists_url": "https://api.github.com/users/jbragg/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jbragg", "id": 2238344, "login": "jbragg", "node_id": "MDQ6VXNlcjIyMzgzNDQ=", "organizations_url": "https://api.github.com/users/jbragg/orgs", "received_events_url": "https://api.github.com/users/jbragg/received_events", "repos_url": "https://api.github.com/users/jbragg/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jbragg/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jbragg/subscriptions", "type": "User", "url": "https://api.github.com/users/jbragg" }
[]
closed
false
null
[]
null
[ "@lhoestq I ran `make style` but CI code quality still failing and I don't have access to logs", "It's also likely that due to the previous placement of the field initialization, much of the data about topics etc was simply wrong and carried over from previous entries. Model scores seem to improve significantly with this PR." ]
"2021-01-17T07:58:49Z"
"2021-01-18T11:26:09Z"
"2021-01-18T11:26:09Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/1744.diff", "html_url": "https://github.com/huggingface/datasets/pull/1744", "merged_at": "2021-01-18T11:26:09Z", "patch_url": "https://github.com/huggingface/datasets/pull/1744.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/1744" }
This brings the number of examples for ModApte to match the stated `Training set (9,603 docs)...Test Set (3,299 docs)`
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1744/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1744/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/4692
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4692/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4692/comments
https://api.github.com/repos/huggingface/datasets/issues/4692/events
https://github.com/huggingface/datasets/issues/4692
1,306,609,680
I_kwDODunzps5N4UgQ
4,692
Unable to cast a column with `Image()` by using the `cast_column()` feature
{ "avatar_url": "https://avatars.githubusercontent.com/u/28833916?v=4", "events_url": "https://api.github.com/users/skrishnan99/events{/privacy}", "followers_url": "https://api.github.com/users/skrishnan99/followers", "following_url": "https://api.github.com/users/skrishnan99/following{/other_user}", "gists_url": "https://api.github.com/users/skrishnan99/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/skrishnan99", "id": 28833916, "login": "skrishnan99", "node_id": "MDQ6VXNlcjI4ODMzOTE2", "organizations_url": "https://api.github.com/users/skrishnan99/orgs", "received_events_url": "https://api.github.com/users/skrishnan99/received_events", "repos_url": "https://api.github.com/users/skrishnan99/repos", "site_admin": false, "starred_url": "https://api.github.com/users/skrishnan99/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/skrishnan99/subscriptions", "type": "User", "url": "https://api.github.com/users/skrishnan99" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
null
[]
null
[ "Hi, thanks for reporting! A PR (https://github.com/huggingface/datasets/pull/4614) has already been opened to address this issue." ]
"2022-07-15T22:56:03Z"
"2022-07-19T13:36:24Z"
"2022-07-19T13:36:24Z"
NONE
null
null
null
## Describe the bug A clear and concise description of what the bug is. When I create a dataset, then add a column to the created dataset through the `dataset.add_column` feature and then try to cast a column of the dataset (this column contains image paths) with `Image()` by using the `cast_column()` feature, I get the following error - ``` TypeError: Couldn't cast array of type string to {'bytes': Value(dtype='binary', id=None), 'path': Value(dtype='string', id=None)} ``` When I try and cast the same column, but without doing the `add_column` in the previous step, it works as expected. ## Steps to reproduce the bug ```python from datasets import Dataset, Image data_dict = { "img_path": ["https://picsum.photos/200/300"] } dataset = Dataset.from_dict(data_dict) #NOTE Comment out this line and use cast_column and it works properly dataset = dataset.add_column("yeet", [1]) #NOTE This line fails to execute properly if `add_column` is called before dataset = dataset.cast_column("img_path", Image()) # #NOTE This is my current workaround. This seems to work fine with/without `add_column`. While # # running this, make sure to comment out the `cast_column` line # new_features = dataset.features.copy() # new_features["img_path"] = Image() # dataset = dataset.cast(new_features) print(dataset) print(dataset.features) print(dataset[0]) ``` ## Expected results A clear and concise description of the expected results. Able to successfully use `cast_column` to cast a column containing img_paths to now be Image() features after modifying the dataset using `add_column` in a previous step ## Actual results Specify the actual results or traceback. ``` Traceback (most recent call last): File "/home/surya/Desktop/hf_bug_test.py", line 14, in <module> dataset = dataset.cast_column("img_path", Image()) File "/home/surya/anaconda3/envs/snap_test/lib/python3.9/site-packages/datasets/fingerprint.py", line 458, in wrapper out = func(self, *args, **kwargs) File "/home/surya/anaconda3/envs/snap_test/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 1580, in cast_column dataset._data = dataset._data.cast(dataset.features.arrow_schema) File "/home/surya/anaconda3/envs/snap_test/lib/python3.9/site-packages/datasets/table.py", line 1487, in cast new_tables.append(subtable.cast(subschema, *args, **kwargs)) File "/home/surya/anaconda3/envs/snap_test/lib/python3.9/site-packages/datasets/table.py", line 834, in cast return InMemoryTable(table_cast(self.table, *args, **kwargs)) File "/home/surya/anaconda3/envs/snap_test/lib/python3.9/site-packages/datasets/table.py", line 1897, in table_cast return cast_table_to_schema(table, schema) File "/home/surya/anaconda3/envs/snap_test/lib/python3.9/site-packages/datasets/table.py", line 1880, in cast_table_to_schema arrays = [cast_array_to_feature(table[name], feature) for name, feature in features.items()] File "/home/surya/anaconda3/envs/snap_test/lib/python3.9/site-packages/datasets/table.py", line 1880, in <listcomp> arrays = [cast_array_to_feature(table[name], feature) for name, feature in features.items()] File "/home/surya/anaconda3/envs/snap_test/lib/python3.9/site-packages/datasets/table.py", line 1673, in wrapper return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks]) File "/home/surya/anaconda3/envs/snap_test/lib/python3.9/site-packages/datasets/table.py", line 1673, in <listcomp> return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks]) File "/home/surya/anaconda3/envs/snap_test/lib/python3.9/site-packages/datasets/table.py", line 1846, in cast_array_to_feature raise TypeError(f"Couldn't cast array of type\n{array.type}\nto\n{feature}") TypeError: Couldn't cast array of type string to {'bytes': Value(dtype='binary', id=None), 'path': Value(dtype='string', id=None)} ``` ## Environment info <!-- You can run the command `datasets-cli env` and copy-and-paste its output below. --> - `datasets` version: 2.3.2 - Platform: Ubuntu 20.04.3 LTS - Python version: 3.9.7 - PyArrow version: 7.0.0
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4692/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4692/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/2967
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2967/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2967/comments
https://api.github.com/repos/huggingface/datasets/issues/2967/events
https://github.com/huggingface/datasets/issues/2967
1,007,194,837
I_kwDODunzps48CJLV
2,967
Adding vision-and-language datasets (e.g., VQA, VCR) to Datasets
{ "avatar_url": "https://avatars.githubusercontent.com/u/42200725?v=4", "events_url": "https://api.github.com/users/WadeYin9712/events{/privacy}", "followers_url": "https://api.github.com/users/WadeYin9712/followers", "following_url": "https://api.github.com/users/WadeYin9712/following{/other_user}", "gists_url": "https://api.github.com/users/WadeYin9712/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/WadeYin9712", "id": 42200725, "login": "WadeYin9712", "node_id": "MDQ6VXNlcjQyMjAwNzI1", "organizations_url": "https://api.github.com/users/WadeYin9712/orgs", "received_events_url": "https://api.github.com/users/WadeYin9712/received_events", "repos_url": "https://api.github.com/users/WadeYin9712/repos", "site_admin": false, "starred_url": "https://api.github.com/users/WadeYin9712/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/WadeYin9712/subscriptions", "type": "User", "url": "https://api.github.com/users/WadeYin9712" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
closed
false
null
[]
null
[]
"2021-09-25T20:58:15Z"
"2021-10-03T20:34:22Z"
"2021-10-03T20:34:22Z"
NONE
null
null
null
**Is your feature request related to a problem? Please describe.** Would you like to add any vision-and-language datasets (e.g., VQA, VCR) to Huggingface Datasets? **Describe the solution you'd like** N/A **Describe alternatives you've considered** N/A **Additional context** This is Da Yin at UCLA. Recently, we have published an EMNLP 2021 paper about geo-diverse visual commonsense reasoning (https://arxiv.org/abs/2109.06860). We propose a new dataset called GD-VCR, a vision-and-language dataset to evaluate how well V&L models perform on scenarios involving geo-location-specific commonsense. We hope to have our V&L dataset incorporated into Huggingface to further promote our project, but I haven't seen much V&L datasets in the current package. Is it possible to add V&L datasets, and if so, how should we prepare for the loading? Thank you very much!
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2967/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2967/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/864
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/864/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/864/comments
https://api.github.com/repos/huggingface/datasets/issues/864/events
https://github.com/huggingface/datasets/issues/864
745,322,357
MDU6SXNzdWU3NDUzMjIzNTc=
864
Unable to download cnn_dailymail dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/46031058?v=4", "events_url": "https://api.github.com/users/rohitashwa1907/events{/privacy}", "followers_url": "https://api.github.com/users/rohitashwa1907/followers", "following_url": "https://api.github.com/users/rohitashwa1907/following{/other_user}", "gists_url": "https://api.github.com/users/rohitashwa1907/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/rohitashwa1907", "id": 46031058, "login": "rohitashwa1907", "node_id": "MDQ6VXNlcjQ2MDMxMDU4", "organizations_url": "https://api.github.com/users/rohitashwa1907/orgs", "received_events_url": "https://api.github.com/users/rohitashwa1907/received_events", "repos_url": "https://api.github.com/users/rohitashwa1907/repos", "site_admin": false, "starred_url": "https://api.github.com/users/rohitashwa1907/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/rohitashwa1907/subscriptions", "type": "User", "url": "https://api.github.com/users/rohitashwa1907" }
[ { "color": "2edb81", "default": false, "description": "A bug in a dataset script provided in the library", "id": 2067388877, "name": "dataset bug", "node_id": "MDU6TGFiZWwyMDY3Mzg4ODc3", "url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20bug" } ]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" } ]
null
[ "Same error here!\r\n", "Same here! My kaggle notebook stopped working like yesterday. It's strange because I have fixed version of datasets==1.1.2", "I'm looking at it right now", "I couldn't reproduce unfortunately. I tried\r\n```python\r\nfrom datasets import load_dataset\r\n\r\nload_dataset(\"cnn_dailymail\", \"3.0.0\", download_mode=\"force_redownload\")\r\n```\r\nand it worked fine on both my env (python 3.7.2) and colab (python 3.6.9)\r\n\r\nMaybe there was an issue with the google drive download link of the dataset ?\r\nAre you still having the issue ? If so could your give me more info about your python and requests version ?", "No, It's working fine now. Very strange. Here are my python and request versions\r\n\r\nrequests 2.24.0\r\nPython 3.8.2", "It's working as expected. Closing the issue \r\n\r\nThanks everybody." ]
"2020-11-18T04:38:02Z"
"2020-11-20T05:22:11Z"
"2020-11-20T05:22:10Z"
NONE
null
null
null
### Script to reproduce the error ``` from datasets import load_dataset train_dataset = load_dataset("cnn_dailymail", "3.0.0", split= 'train[:10%') valid_dataset = load_dataset("cnn_dailymail","3.0.0", split="validation[:5%]") ``` ### Error ``` --------------------------------------------------------------------------- NotADirectoryError Traceback (most recent call last) <ipython-input-8-47c39c228935> in <module>() 1 from datasets import load_dataset 2 ----> 3 train_dataset = load_dataset("cnn_dailymail", "3.0.0", split= 'train[:10%') 4 valid_dataset = load_dataset("cnn_dailymail","3.0.0", split="validation[:5%]") 5 frames /usr/local/lib/python3.6/dist-packages/datasets/load.py in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, ignore_verifications, save_infos, script_version, **config_kwargs) 609 download_config=download_config, 610 download_mode=download_mode, --> 611 ignore_verifications=ignore_verifications, 612 ) 613 /usr/local/lib/python3.6/dist-packages/datasets/builder.py in download_and_prepare(self, download_config, download_mode, ignore_verifications, try_from_hf_gcs, dl_manager, **download_and_prepare_kwargs) 469 if not downloaded_from_gcs: 470 self._download_and_prepare( --> 471 dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs 472 ) 473 # Sync info /usr/local/lib/python3.6/dist-packages/datasets/builder.py in _download_and_prepare(self, dl_manager, verify_infos, **prepare_split_kwargs) 524 split_dict = SplitDict(dataset_name=self.name) 525 split_generators_kwargs = self._make_split_generators_kwargs(prepare_split_kwargs) --> 526 split_generators = self._split_generators(dl_manager, **split_generators_kwargs) 527 528 # Checksums verification /root/.cache/huggingface/modules/datasets_modules/datasets/cnn_dailymail/0128610a44e10f25b4af6689441c72af86205282d26399642f7db38fa7535602/cnn_dailymail.py in _split_generators(self, dl_manager) 252 def _split_generators(self, dl_manager): 253 dl_paths = dl_manager.download_and_extract(_DL_URLS) --> 254 train_files = _subset_filenames(dl_paths, datasets.Split.TRAIN) 255 # Generate shared vocabulary 256 /root/.cache/huggingface/modules/datasets_modules/datasets/cnn_dailymail/0128610a44e10f25b4af6689441c72af86205282d26399642f7db38fa7535602/cnn_dailymail.py in _subset_filenames(dl_paths, split) 153 else: 154 logging.fatal("Unsupported split: %s", split) --> 155 cnn = _find_files(dl_paths, "cnn", urls) 156 dm = _find_files(dl_paths, "dm", urls) 157 return cnn + dm /root/.cache/huggingface/modules/datasets_modules/datasets/cnn_dailymail/0128610a44e10f25b4af6689441c72af86205282d26399642f7db38fa7535602/cnn_dailymail.py in _find_files(dl_paths, publisher, url_dict) 132 else: 133 logging.fatal("Unsupported publisher: %s", publisher) --> 134 files = sorted(os.listdir(top_dir)) 135 136 ret_files = [] NotADirectoryError: [Errno 20] Not a directory: '/root/.cache/huggingface/datasets/downloads/1bc05d24fa6dda2468e83a73cf6dc207226e01e3c48a507ea716dc0421da583b/cnn/stories' ``` Thanks for any suggestions.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/864/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/864/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/5183
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5183/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5183/comments
https://api.github.com/repos/huggingface/datasets/issues/5183/events
https://github.com/huggingface/datasets/issues/5183
1,431,418,066
I_kwDODunzps5VUbTS
5,183
Loading an external dataset in a format similar to conll2003
{ "avatar_url": "https://avatars.githubusercontent.com/u/112555442?v=4", "events_url": "https://api.github.com/users/Taghreed7878/events{/privacy}", "followers_url": "https://api.github.com/users/Taghreed7878/followers", "following_url": "https://api.github.com/users/Taghreed7878/following{/other_user}", "gists_url": "https://api.github.com/users/Taghreed7878/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Taghreed7878", "id": 112555442, "login": "Taghreed7878", "node_id": "U_kgDOBrV1sg", "organizations_url": "https://api.github.com/users/Taghreed7878/orgs", "received_events_url": "https://api.github.com/users/Taghreed7878/received_events", "repos_url": "https://api.github.com/users/Taghreed7878/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Taghreed7878/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Taghreed7878/subscriptions", "type": "User", "url": "https://api.github.com/users/Taghreed7878" }
[]
closed
false
null
[]
null
[]
"2022-11-01T13:18:29Z"
"2022-11-02T11:57:50Z"
"2022-11-02T11:57:50Z"
NONE
null
null
null
I'm trying to load a custom dataset in a Dataset object, it's similar to conll2003 but with 2 columns only (word entity), I used the following script: features = datasets.Features( {"tokens": datasets.Sequence(datasets.Value("string")), "ner_tags": datasets.Sequence( datasets.features.ClassLabel( names=["B-PER", .... etc.]))} ) from datasets import Dataset INPUT_COLUMNS = "tokens ner_tags".split(" ") def read_conll(file): #all_labels = [] example = {col: [] for col in INPUT_COLUMNS} idx = 0 with open(file) as f: for line in f: if line: if line.startswith("-DOCSTART-") and example["tokens"] != []: print(idx, example) yield idx, example idx += 1 example = {col: [] for col in INPUT_COLUMNS} elif line == "\n" or (line.startswith("-DOCSTART-") and example["tokens"] == []): continue else: row_cols = line.split(" ") for i, col in enumerate(example): example[col] = row_cols[i].rstrip() dset = Dataset.from_generator(read_conll, gen_kwargs={"file": "/content/new_train.txt"}, features = features) The following error happened: [/usr/local/lib/python3.7/dist-packages/datasets/utils/py_utils.py](https://localhost:8080/#) in <genexpr>(.0) 285 for key in unique_values(itertools.chain(*dicts)): # set merge all keys 286 # Will raise KeyError if the dict don't have the same keys --> 287 yield key, tuple(d[key] for d in dicts) 288 TypeError: tuple indices must be integers or slices, not str What does this mean and what should I modify?
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5183/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5183/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/3709
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3709/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3709/comments
https://api.github.com/repos/huggingface/datasets/issues/3709/events
https://github.com/huggingface/datasets/pull/3709
1,132,997,904
PR_kwDODunzps4yi0J4
3,709
Set base path to hub url for canonical datasets
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
[]
closed
false
null
[]
null
[ "If we agree to have data files in a dedicated directory \"data/\" then we should be fine. You're right we should not try to edit a dataset script from the repository directly, but from github, in order to avoid conflicts" ]
"2022-02-11T19:23:20Z"
"2022-02-16T14:02:28Z"
"2022-02-16T14:02:27Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/3709.diff", "html_url": "https://github.com/huggingface/datasets/pull/3709", "merged_at": "2022-02-16T14:02:27Z", "patch_url": "https://github.com/huggingface/datasets/pull/3709.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/3709" }
This should allow canonical datasets to use relative paths to download data files from the Hub cc @polinaeterna this will be useful if we have audio datasets that are canonical and for which you'd like to host data files
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 2, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 3, "url": "https://api.github.com/repos/huggingface/datasets/issues/3709/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3709/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/2420
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2420/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2420/comments
https://api.github.com/repos/huggingface/datasets/issues/2420/events
https://github.com/huggingface/datasets/pull/2420
904,821,772
MDExOlB1bGxSZXF1ZXN0NjU1OTQ1ODgw
2,420
Updated Dataset Description
{ "avatar_url": "https://avatars.githubusercontent.com/u/10741860?v=4", "events_url": "https://api.github.com/users/binny-mathew/events{/privacy}", "followers_url": "https://api.github.com/users/binny-mathew/followers", "following_url": "https://api.github.com/users/binny-mathew/following{/other_user}", "gists_url": "https://api.github.com/users/binny-mathew/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/binny-mathew", "id": 10741860, "login": "binny-mathew", "node_id": "MDQ6VXNlcjEwNzQxODYw", "organizations_url": "https://api.github.com/users/binny-mathew/orgs", "received_events_url": "https://api.github.com/users/binny-mathew/received_events", "repos_url": "https://api.github.com/users/binny-mathew/repos", "site_admin": false, "starred_url": "https://api.github.com/users/binny-mathew/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/binny-mathew/subscriptions", "type": "User", "url": "https://api.github.com/users/binny-mathew" }
[]
closed
false
null
[]
null
[]
"2021-05-28T07:10:51Z"
"2021-06-10T12:11:35Z"
"2021-06-10T12:11:35Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/2420.diff", "html_url": "https://github.com/huggingface/datasets/pull/2420", "merged_at": "2021-06-10T12:11:35Z", "patch_url": "https://github.com/huggingface/datasets/pull/2420.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/2420" }
Added Point of contact information and several other details about the dataset.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2420/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2420/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/4269
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4269/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4269/comments
https://api.github.com/repos/huggingface/datasets/issues/4269/events
https://github.com/huggingface/datasets/pull/4269
1,223,865,145
PR_kwDODunzps43Nzwh
4,269
Add license and point of contact to big_patent dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
"2022-05-03T09:24:07Z"
"2022-05-06T08:38:09Z"
"2022-05-03T11:16:19Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/4269.diff", "html_url": "https://github.com/huggingface/datasets/pull/4269", "merged_at": "2022-05-03T11:16:19Z", "patch_url": "https://github.com/huggingface/datasets/pull/4269.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4269" }
Update metadata of big_patent dataset with: - license - point of contact
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4269/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4269/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/3426
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3426/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3426/comments
https://api.github.com/repos/huggingface/datasets/issues/3426/events
https://github.com/huggingface/datasets/pull/3426
1,078,670,031
PR_kwDODunzps4vxEN5
3,426
Update disaster_response_messages download urls (+ add validation split)
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko" }
[]
closed
false
null
[]
null
[]
"2021-12-13T15:30:12Z"
"2021-12-14T14:38:30Z"
"2021-12-14T14:38:29Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/3426.diff", "html_url": "https://github.com/huggingface/datasets/pull/3426", "merged_at": "2021-12-14T14:38:29Z", "patch_url": "https://github.com/huggingface/datasets/pull/3426.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/3426" }
Fixes #3240, fixes #3416
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3426/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3426/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/3342
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3342/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3342/comments
https://api.github.com/repos/huggingface/datasets/issues/3342/events
https://github.com/huggingface/datasets/pull/3342
1,067,481,390
PR_kwDODunzps4vM3wh
3,342
Fix ASSET dataset data URLs
{ "avatar_url": "https://avatars.githubusercontent.com/u/4812544?v=4", "events_url": "https://api.github.com/users/tianjianjiang/events{/privacy}", "followers_url": "https://api.github.com/users/tianjianjiang/followers", "following_url": "https://api.github.com/users/tianjianjiang/following{/other_user}", "gists_url": "https://api.github.com/users/tianjianjiang/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/tianjianjiang", "id": 4812544, "login": "tianjianjiang", "node_id": "MDQ6VXNlcjQ4MTI1NDQ=", "organizations_url": "https://api.github.com/users/tianjianjiang/orgs", "received_events_url": "https://api.github.com/users/tianjianjiang/received_events", "repos_url": "https://api.github.com/users/tianjianjiang/repos", "site_admin": false, "starred_url": "https://api.github.com/users/tianjianjiang/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tianjianjiang/subscriptions", "type": "User", "url": "https://api.github.com/users/tianjianjiang" }
[]
closed
false
null
[]
null
[ "> Hi @tianjianjiang, thanks for the fix.\r\n> The links should also be updated in the `dataset_infos.json` file.\r\n> The failing tests are due to the missing tag in the header of the `README.md` file:\r\n\r\nHi @albertvillanova, thank you for the info! My apologies for the messy PR.\r\n" ]
"2021-11-30T17:13:30Z"
"2021-12-14T14:50:00Z"
"2021-12-14T14:50:00Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/3342.diff", "html_url": "https://github.com/huggingface/datasets/pull/3342", "merged_at": "2021-12-14T14:50:00Z", "patch_url": "https://github.com/huggingface/datasets/pull/3342.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/3342" }
Change the branch name "master" to "main" in the data URLs, since facebookresearch has changed that.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3342/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3342/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/795
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/795/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/795/comments
https://api.github.com/repos/huggingface/datasets/issues/795/events
https://github.com/huggingface/datasets/issues/795
735,198,265
MDU6SXNzdWU3MzUxOTgyNjU=
795
Descriptions of raw and processed versions of wikitext are inverted
{ "avatar_url": "https://avatars.githubusercontent.com/u/16835358?v=4", "events_url": "https://api.github.com/users/fraboniface/events{/privacy}", "followers_url": "https://api.github.com/users/fraboniface/followers", "following_url": "https://api.github.com/users/fraboniface/following{/other_user}", "gists_url": "https://api.github.com/users/fraboniface/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/fraboniface", "id": 16835358, "login": "fraboniface", "node_id": "MDQ6VXNlcjE2ODM1MzU4", "organizations_url": "https://api.github.com/users/fraboniface/orgs", "received_events_url": "https://api.github.com/users/fraboniface/received_events", "repos_url": "https://api.github.com/users/fraboniface/repos", "site_admin": false, "starred_url": "https://api.github.com/users/fraboniface/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/fraboniface/subscriptions", "type": "User", "url": "https://api.github.com/users/fraboniface" }
[ { "color": "2edb81", "default": false, "description": "A bug in a dataset script provided in the library", "id": 2067388877, "name": "dataset bug", "node_id": "MDU6TGFiZWwyMDY3Mzg4ODc3", "url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20bug" } ]
closed
false
null
[]
null
[ "Yes indeed ! Thanks for reporting", "Fixed by:\r\n- #3241" ]
"2020-11-03T10:24:51Z"
"2022-02-14T15:46:21Z"
"2022-02-14T15:46:21Z"
NONE
null
null
null
Nothing of importance, but it looks like the descriptions of wikitext-n-v1 and wikitext-n-raw-v1 are inverted for both n=2 and n=103. I just verified by loading them and the `<unk>` tokens are present in the non-raw versions, which confirms that it's a mere inversion of the descriptions and not of the datasets themselves. Also it would be nice if those descriptions appeared in the dataset explorer. https://github.com/huggingface/datasets/blob/87bd0864845ea0a1dd7167918dc5f341bf807bd3/datasets/wikitext/wikitext.py#L52
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/795/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/795/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/2632
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2632/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2632/comments
https://api.github.com/repos/huggingface/datasets/issues/2632/events
https://github.com/huggingface/datasets/pull/2632
942,293,727
MDExOlB1bGxSZXF1ZXN0Njg4MDQyMjcw
2,632
add image-classification task template
{ "avatar_url": "https://avatars.githubusercontent.com/u/32437151?v=4", "events_url": "https://api.github.com/users/nateraw/events{/privacy}", "followers_url": "https://api.github.com/users/nateraw/followers", "following_url": "https://api.github.com/users/nateraw/following{/other_user}", "gists_url": "https://api.github.com/users/nateraw/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/nateraw", "id": 32437151, "login": "nateraw", "node_id": "MDQ6VXNlcjMyNDM3MTUx", "organizations_url": "https://api.github.com/users/nateraw/orgs", "received_events_url": "https://api.github.com/users/nateraw/received_events", "repos_url": "https://api.github.com/users/nateraw/repos", "site_admin": false, "starred_url": "https://api.github.com/users/nateraw/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/nateraw/subscriptions", "type": "User", "url": "https://api.github.com/users/nateraw" }
[]
closed
false
null
[]
null
[ "Awesome!", "Thanks for adding a new task template - great work @nateraw 🚀 !" ]
"2021-07-12T17:41:03Z"
"2021-07-13T15:44:28Z"
"2021-07-13T15:28:16Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/2632.diff", "html_url": "https://github.com/huggingface/datasets/pull/2632", "merged_at": "2021-07-13T15:28:15Z", "patch_url": "https://github.com/huggingface/datasets/pull/2632.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/2632" }
Snippet below is the tl;dr, but you can try it out directly here: [![Open In Collab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/gist/nateraw/005c025d41f0e48ae3d4ee61c0f20b70/image-classification-task-template-demo.ipynb) ```python from datasets import load_dataset ds = load_dataset('nateraw/image-folder', data_files='PetImages/') # DatasetDict({ # train: Dataset({ # features: ['file', 'labels'], # num_rows: 23410 # }) # }) ds = ds.prepare_for_task('image-classification') # DatasetDict({ # train: Dataset({ # features: ['image_file_path', 'labels'], # num_rows: 23410 # }) # }) ```
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 3, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 3, "url": "https://api.github.com/repos/huggingface/datasets/issues/2632/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2632/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/4718
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4718/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4718/comments
https://api.github.com/repos/huggingface/datasets/issues/4718/events
https://github.com/huggingface/datasets/pull/4718
1,309,520,453
PR_kwDODunzps47prWR
4,718
Make Extractor accept Path as input
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
"2022-07-19T13:25:06Z"
"2022-07-22T13:42:27Z"
"2022-07-22T13:29:43Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/4718.diff", "html_url": "https://github.com/huggingface/datasets/pull/4718", "merged_at": "2022-07-22T13:29:43Z", "patch_url": "https://github.com/huggingface/datasets/pull/4718.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4718" }
This PR: - Makes `Extractor` accept instance of `Path` as input - Removes unnecessary castings of `Path` to `str`
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4718/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4718/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/2949
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2949/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2949/comments
https://api.github.com/repos/huggingface/datasets/issues/2949/events
https://github.com/huggingface/datasets/pull/2949
1,001,026,680
PR_kwDODunzps4r90Pt
2,949
Introduce web and wiki config in triviaqa dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/1706443?v=4", "events_url": "https://api.github.com/users/shirte/events{/privacy}", "followers_url": "https://api.github.com/users/shirte/followers", "following_url": "https://api.github.com/users/shirte/following{/other_user}", "gists_url": "https://api.github.com/users/shirte/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/shirte", "id": 1706443, "login": "shirte", "node_id": "MDQ6VXNlcjE3MDY0NDM=", "organizations_url": "https://api.github.com/users/shirte/orgs", "received_events_url": "https://api.github.com/users/shirte/received_events", "repos_url": "https://api.github.com/users/shirte/repos", "site_admin": false, "starred_url": "https://api.github.com/users/shirte/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/shirte/subscriptions", "type": "User", "url": "https://api.github.com/users/shirte" }
[]
closed
false
null
[]
null
[ "I just made the dummy data smaller :)\r\nOnce github refreshes the change I think we can merge !", "Thank you so much for reviewing and accepting my pull request!! :)\r\n\r\nI created these rather large dummy data sets to cover all different cases for the row structure. E.g. in the web configuration, it's possible that a row has evidence from wikipedia (\"EntityPages\") and the web (\"SearchResults\"). But it also might happen that either EntityPages or SearchResults is empty. Probably, I will add this thought to the dataset description in the future.", "Ok I see ! Yes feel free to mention it in the dataset card, this can be useful.\r\n\r\nFor the dummy data though we can keep the small ones, as the tests are mainly about testing the parsing from the dataset script rather than the actual content of the dataset." ]
"2021-09-20T14:17:23Z"
"2021-10-05T13:20:52Z"
"2021-10-01T15:39:29Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/2949.diff", "html_url": "https://github.com/huggingface/datasets/pull/2949", "merged_at": "2021-10-01T15:39:29Z", "patch_url": "https://github.com/huggingface/datasets/pull/2949.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/2949" }
The TriviaQA paper suggests that the two subsets (Wikipedia and Web) should be treated differently. There are also different leaderboards for the two sets on CodaLab. For that reason, introduce additional builder configs in the trivia_qa dataset.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2949/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2949/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/2849
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2849/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2849/comments
https://api.github.com/repos/huggingface/datasets/issues/2849/events
https://github.com/huggingface/datasets/issues/2849
982,631,420
MDU6SXNzdWU5ODI2MzE0MjA=
2,849
Add Open Catalyst Project Dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/7246357?v=4", "events_url": "https://api.github.com/users/osanseviero/events{/privacy}", "followers_url": "https://api.github.com/users/osanseviero/followers", "following_url": "https://api.github.com/users/osanseviero/following{/other_user}", "gists_url": "https://api.github.com/users/osanseviero/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/osanseviero", "id": 7246357, "login": "osanseviero", "node_id": "MDQ6VXNlcjcyNDYzNTc=", "organizations_url": "https://api.github.com/users/osanseviero/orgs", "received_events_url": "https://api.github.com/users/osanseviero/received_events", "repos_url": "https://api.github.com/users/osanseviero/repos", "site_admin": false, "starred_url": "https://api.github.com/users/osanseviero/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/osanseviero/subscriptions", "type": "User", "url": "https://api.github.com/users/osanseviero" }
[ { "color": "e99695", "default": false, "description": "Requesting to add a new dataset", "id": 2067376369, "name": "dataset request", "node_id": "MDU6TGFiZWwyMDY3Mzc2MzY5", "url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20request" } ]
open
false
null
[]
null
[]
"2021-08-30T10:14:39Z"
"2021-08-30T10:14:39Z"
null
MEMBER
null
null
null
## Adding a Dataset - **Name:** Open Catalyst 2020 (OC20) Dataset - **Website:** https://opencatalystproject.org/ - **Data:** https://github.com/Open-Catalyst-Project/ocp/blob/master/DATASET.md Instructions to add a new dataset can be found [here](https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md).
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2849/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2849/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/87
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/87/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/87/comments
https://api.github.com/repos/huggingface/datasets/issues/87/events
https://github.com/huggingface/datasets/pull/87
617,267,118
MDExOlB1bGxSZXF1ZXN0NDE3MjE1NzA0
87
Add Flores
{ "avatar_url": "https://avatars.githubusercontent.com/u/23423619?v=4", "events_url": "https://api.github.com/users/patrickvonplaten/events{/privacy}", "followers_url": "https://api.github.com/users/patrickvonplaten/followers", "following_url": "https://api.github.com/users/patrickvonplaten/following{/other_user}", "gists_url": "https://api.github.com/users/patrickvonplaten/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/patrickvonplaten", "id": 23423619, "login": "patrickvonplaten", "node_id": "MDQ6VXNlcjIzNDIzNjE5", "organizations_url": "https://api.github.com/users/patrickvonplaten/orgs", "received_events_url": "https://api.github.com/users/patrickvonplaten/received_events", "repos_url": "https://api.github.com/users/patrickvonplaten/repos", "site_admin": false, "starred_url": "https://api.github.com/users/patrickvonplaten/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/patrickvonplaten/subscriptions", "type": "User", "url": "https://api.github.com/users/patrickvonplaten" }
[]
closed
false
null
[]
null
[]
"2020-05-13T08:51:29Z"
"2020-05-13T09:23:34Z"
"2020-05-13T09:23:33Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/87.diff", "html_url": "https://github.com/huggingface/datasets/pull/87", "merged_at": "2020-05-13T09:23:33Z", "patch_url": "https://github.com/huggingface/datasets/pull/87.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/87" }
Beautiful language for sure!
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/87/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/87/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/2379
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2379/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2379/comments
https://api.github.com/repos/huggingface/datasets/issues/2379/events
https://github.com/huggingface/datasets/pull/2379
895,252,597
MDExOlB1bGxSZXF1ZXN0NjQ3NDk2ODUx
2,379
Disallow duplicate keys in yaml tags
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
[]
closed
false
null
[]
null
[]
"2021-05-19T10:10:07Z"
"2021-05-19T10:45:32Z"
"2021-05-19T10:45:31Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/2379.diff", "html_url": "https://github.com/huggingface/datasets/pull/2379", "merged_at": "2021-05-19T10:45:31Z", "patch_url": "https://github.com/huggingface/datasets/pull/2379.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/2379" }
Make sure that there's no duplidate keys in yaml tags. I added the check in the yaml tree constructor's method, so that the verification is done at every level in the yaml structure. cc @julien-c
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2379/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2379/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/3948
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3948/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3948/comments
https://api.github.com/repos/huggingface/datasets/issues/3948/events
https://github.com/huggingface/datasets/pull/3948
1,171,460,560
PR_kwDODunzps40jg1F
3,948
Google BLEU Metric Card
{ "avatar_url": "https://avatars.githubusercontent.com/u/27527747?v=4", "events_url": "https://api.github.com/users/emibaylor/events{/privacy}", "followers_url": "https://api.github.com/users/emibaylor/followers", "following_url": "https://api.github.com/users/emibaylor/following{/other_user}", "gists_url": "https://api.github.com/users/emibaylor/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/emibaylor", "id": 27527747, "login": "emibaylor", "node_id": "MDQ6VXNlcjI3NTI3NzQ3", "organizations_url": "https://api.github.com/users/emibaylor/orgs", "received_events_url": "https://api.github.com/users/emibaylor/received_events", "repos_url": "https://api.github.com/users/emibaylor/repos", "site_admin": false, "starred_url": "https://api.github.com/users/emibaylor/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/emibaylor/subscriptions", "type": "User", "url": "https://api.github.com/users/emibaylor" }
[]
closed
false
null
[]
null
[ "A few things that aren't clear for me:\r\n- \"Because it performs better on individual sentence pairs as compared to BLEU, Google BLEU has also been used in RL experiments.\" -- why is this the case? why would that make it more usable for RL? (also, you should put \"Reinforcement Learning\" explicitly, not just the acronym)\r\n- (Minor issue) -- I put inputs before the first example code, I think that's clearer somehow\r\n\r\nOtherwise, it looks great, good job @emibaylor !\r\n" ]
"2022-03-16T19:27:17Z"
"2022-03-21T16:04:26Z"
"2022-03-21T16:04:25Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/3948.diff", "html_url": "https://github.com/huggingface/datasets/pull/3948", "merged_at": "2022-03-21T16:04:25Z", "patch_url": "https://github.com/huggingface/datasets/pull/3948.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/3948" }
Add metric card for Google BLEU (GLEU) metric One thing I noticed while writing this up is that, while this metric was made specifically to be better than BLEU at the sentence level instead of the corpus level, the current implementation only allows the calculation of the corpus-level statistic. I think changing this would be a good thing to put on the to do list for the future.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3948/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3948/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/3984
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3984/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3984/comments
https://api.github.com/repos/huggingface/datasets/issues/3984/events
https://github.com/huggingface/datasets/issues/3984
1,175,822,117
I_kwDODunzps5GFZ8l
3,984
Local and automatic tests fail
{ "avatar_url": "https://avatars.githubusercontent.com/u/20767068?v=4", "events_url": "https://api.github.com/users/MarkusSagen/events{/privacy}", "followers_url": "https://api.github.com/users/MarkusSagen/followers", "following_url": "https://api.github.com/users/MarkusSagen/following{/other_user}", "gists_url": "https://api.github.com/users/MarkusSagen/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/MarkusSagen", "id": 20767068, "login": "MarkusSagen", "node_id": "MDQ6VXNlcjIwNzY3MDY4", "organizations_url": "https://api.github.com/users/MarkusSagen/orgs", "received_events_url": "https://api.github.com/users/MarkusSagen/received_events", "repos_url": "https://api.github.com/users/MarkusSagen/repos", "site_admin": false, "starred_url": "https://api.github.com/users/MarkusSagen/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/MarkusSagen/subscriptions", "type": "User", "url": "https://api.github.com/users/MarkusSagen" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
null
[]
null
[ "Hi ! To be able to run the tests, you need to install all the test dependencies and additional ones with\r\n```\r\npip install -e .[tests]\r\npip install -r additional-tests-requirements.txt --no-deps\r\n```\r\n\r\nIn particular, you probably need to `sacrebleu`. It looks like it wasn't able to instantiate `sacrebleu.TER` properly." ]
"2022-03-21T19:07:37Z"
"2023-07-25T15:18:40Z"
"2023-07-25T15:18:40Z"
NONE
null
null
null
## Describe the bug Running the tests from CircleCI on a PR or locally fails, even with no changes. Tests seem to fail on `test_metric_common.py` ## Steps to reproduce the bug ```shell git clone https://huggingface/datasets.git cd datasets ``` ```python python -m pip install -e . pytest ``` ## Expected results All tests passing ## Actual results ``` tests/test_metric_common.py:91: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ../.pyenv/versions/3.8.5/lib/python3.8/doctest.py:1336: in __run exec(compile(example.source, filename, "single", <doctest datasets_modules.metrics.ter.c0cfb5adedac7eb15ffa47bba6a70fabd80f3eb906ee508abf5e1906285d1155.ter.Ter[3]>:1: in <module> ??? ../datasets/src/datasets/metric.py:430: in compute output = self._compute(**inputs, **compute_kwargs) _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ self = Metric(name: "ter", features: {'predictions': Value(dtype='string', id='sequence'), 'references': Sequence(feature=Val...ences=references) >>> print(results) {'score': 0.0, 'num_edits': 0, 'ref_length': 6.5} """, stored examples: 0) predictions = ['hello there general kenobi', 'foo bar foobar'] references = [['hello there general kenobi', 'hello there !'], ['foo bar foobar', 'foo bar foobar']] normalized = False, no_punct = False, asian_support = False, case_sensitive = False def _compute( self, predictions, references, normalized: bool = False, no_punct: bool = False, asian_support: bool = False, case_sensitive: bool = False, ): references_per_prediction = len(references[0]) if any(len(refs) != references_per_prediction for refs in references): raise ValueError("Sacrebleu requires the same number of references for each prediction") transformed_references = [[refs[i] for refs in references] for i in range(references_per_prediction)] > sb_ter = TER(normalized, no_punct, asian_support, case_sensitive) E TypeError: __init__() takes 2 positional arguments but 5 were given /tmp/pytest-of-markussagen/pytest-1/cache/modules/datasets_modules/metrics/ter/c0cfb5adedac7eb15ffa47bba6a70fabd80f3eb906ee508abf5e1906285d1155/ter.py:130: TypeError ------------------------------ Captured stdout call ------------------------------- Trying: predictions = ["hello there general kenobi", "foo bar foobar"] Expecting nothing ok Trying: references = [["hello there general kenobi", "hello there !"], ["foo bar foobar", "foo bar foobar"]] Expecting nothing ok Trying: ter = datasets.load_metric("ter") Expecting nothing ok Trying: results = ter.compute(predictions=predictions, references=references) Expecting nothing ================================ warnings summary ================================= ../.pyenv/versions/3.8.5/envs/huggingface/lib/python3.8/site-packages/hdfs/config.py:15 /home/markussagen/.pyenv/versions/3.8.5/envs/huggingface/lib/python3.8/site-packages/hdfs/config.py:15: DeprecationWarning: the imp module is deprecated in favour of importlib; see the module's documentation for alternative uses from imp import load_source ../datasets/src/datasets/commands/test.py:35 /home/markussagen/datasets/src/datasets/commands/test.py:35: PytestCollectionWarning: cannot collect test class 'TestCommand' because it has a __init__ constructor (from: tests/commands/test_test.py) class TestCommand(BaseDatasetsCLICommand): tests/commands/test_test.py:33 /home/markussagen/mydataset/tests/commands/test_test.py:33: PytestCollectionWarning: cannot collect test class 'TestCommandArgs' because it has a __new__ constructor (from: tests/commands/test_test.py) class TestCommandArgs: tests/test_arrow_dataset.py: 760 warnings tests/test_formatting.py: 60 warnings tests/test_search.py: 31 warnings tests/features/test_array_xd.py: 117 warnings /home/markussagen/datasets/src/datasets/formatting/formatting.py:197: DeprecationWarning: `np.object` is a deprecated alias for the builtin `object`. To silence this warning, use `object` by itself. Doing this will not modify any behavior and is safe. Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations (isinstance(x, np.ndarray) and (x.dtype == np.object or x.shape != array[0].shape)) tests/test_arrow_dataset.py: 154 warnings tests/features/test_array_xd.py: 1 warning /home/markussagen/datasets/src/datasets/formatting/formatting.py:201: DeprecationWarning: `np.object` is a deprecated alias for the builtin `object`. To silence this warning, use `object` by itself. Doing this will not modify any behavior and is safe. Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations return np.array(array, copy=False, **{**self.np_array_kwargs, "dtype": np.object}) tests/test_arrow_dataset.py: 60 warnings /home/markussagen/datasets/src/datasets/arrow_dataset.py:3105: DeprecationWarning: `np.str` is a deprecated alias for the builtin `str`. To silence this warning, use `str` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.str_` here. Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations elif np.issubdtype(values.dtype, np.str): tests/test_arrow_dataset.py: 138 warnings tests/test_formatting.py: 21 warnings /home/markussagen/datasets/src/datasets/formatting/tf_formatter.py:69: DeprecationWarning: `np.object` is a deprecated alias for the builtin `object`. To silence this warning, use `object` by itself. Doing this will not modify any behavior and is safe. Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations data_struct.dtype == np.object tests/test_arrow_dataset.py: 240 warnings tests/test_formatting.py: 20 warnings /home/markussagen/datasets/src/datasets/formatting/torch_formatter.py:49: DeprecationWarning: `np.object` is a deprecated alias for the builtin `object`. To silence this warning, use `object` by itself. Doing this will not modify any behavior and is safe. Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations if data_struct.dtype == np.object: # pytorch tensors cannot be instantied from an array of objects tests/test_arrow_dataset.py: 12 warnings tests/test_search.py: 2 warnings tests/features/test_array_xd.py: 6 warnings tests/features/test_image.py: 4 warnings /home/markussagen/datasets/src/datasets/features/features.py:1129: DeprecationWarning: `np.object` is a deprecated alias for the builtin `object`. To silence this warning, use `object` by itself. Doing this will not modify any behavior and is safe. Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations [0] + [len(arr) for arr in l_arr], dtype=np.object tests/test_dataset_common.py::LocalDatasetTest::test_builder_class_banking77 /tmp/pytest-of-markussagen/pytest-1/cache/modules/datasets_modules/datasets/banking77/aec0289529599d4572d76ab00c8944cb84f88410ad0c9e7da26189d31f62a55b/banking77.py:24: DeprecationWarning: invalid escape sequence \~ _CITATION = """\ tests/test_dataset_common.py::LocalDatasetTest::test_builder_class_universal_dependencies /tmp/pytest-of-markussagen/pytest-1/cache/modules/datasets_modules/datasets/universal_dependencies/065e728dfe9a8371434a6e87132c2386a6eacab1a076d3a12aa417b994e6ef7d/universal_dependencies.py:6: DeprecationWarning: invalid escape sequence \= _CITATION = """\ tests/test_filesystem.py: 105 warnings /home/markussagen/.pyenv/versions/3.8.5/envs/huggingface/lib/python3.8/site-packages/responses/__init__.py:398: DeprecationWarning: stream argument is deprecated. Use stream parameter in request directly warn( tests/test_formatting.py::FormatterTest::test_jax_formatter tests/test_formatting.py::FormatterTest::test_jax_formatter tests/test_formatting.py::FormatterTest::test_jax_formatter tests/test_formatting.py::FormatterTest::test_jax_formatter tests/test_formatting.py::FormatterTest::test_jax_formatter_np_array_kwargs tests/test_formatting.py::FormatterTest::test_jax_formatter_np_array_kwargs tests/test_formatting.py::FormatterTest::test_jax_formatter_np_array_kwargs tests/test_formatting.py::FormatterTest::test_jax_formatter_np_array_kwargs /home/markussagen/datasets/src/datasets/formatting/jax_formatter.py:57: DeprecationWarning: `np.object` is a deprecated alias for the builtin `object`. To silence this warning, use `object` by itself. Doing this will not modify any behavior and is safe. Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations if data_struct.dtype == np.object: # jax arrays cannot be instantied from an array of objects tests/test_formatting.py::FormatterTest::test_jax_formatter tests/test_formatting.py::FormatterTest::test_jax_formatter tests/test_formatting.py::FormatterTest::test_jax_formatter /home/markussagen/.pyenv/versions/3.8.5/envs/huggingface/lib/python3.8/site-packages/jax/_src/numpy/lax_numpy.py:3567: UserWarning: Explicitly requested dtype <class 'jax._src.numpy.lax_numpy.int64'> requested in array is not available, and will be truncated to dtype int32. To enable more dtypes, set the jax_enable_x64 configuration option or the JAX_ENABLE_X64 shell environment variable. See https://github.com/google/jax#current-gotchas for more. lax._check_user_dtype_supported(dtype, "array") tests/test_metric_common.py::LocalMetricTest::test_load_metric_frugalscore /home/markussagen/.pyenv/versions/3.8.5/envs/huggingface/lib/python3.8/site-packages/apscheduler/util.py:95: PytzUsageWarning: The zone attribute is specific to pytz's interface; please migrate to a new time zone provider. For more details on how to do so, see https://pytz-deprecation-shim.readthedocs.io/en/latest/migration.html if obj.zone == 'local': tests/test_upstream_hub.py::TestPushToHub::test_push_dataset_to_hub_custom_features _audio /home/markussagen/.pyenv/versions/3.8.5/envs/huggingface/lib/python3.8/site-packages/librosa/core/constantq.py:1059: DeprecationWarning: `np.complex` is a deprecated alias for the builtin `complex`. To silence this warning, use `complex` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.complex128` here. Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations dtype=np.complex, tests/features/test_array_xd.py::test_array_xd_with_none /home/markussagen/mydataset/tests/features/test_array_xd.py:338: DeprecationWarning: `np.object` is a deprecated alias for the builtin `object`. To silence this warning, use `object` by itself. Doing this will not modify any behavior and is safe. Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations assert isinstance(arr, np.ndarray) and arr.dtype == np.object and arr.shape == (3,) -- Docs: https://docs.pytest.org/en/stable/warnings.html ============================= short test summary info ============================= FAILED tests/test_metric_common.py::LocalMetricTest::test_load_metric_bleurt - I... FAILED tests/test_metric_common.py::LocalMetricTest::test_load_metric_chrf - Att... FAILED tests/test_metric_common.py::LocalMetricTest::test_load_metric_code_eval FAILED tests/test_metric_common.py::LocalMetricTest::test_load_metric_comet - Im... FAILED tests/test_metric_common.py::LocalMetricTest::test_load_metric_competition_math FAILED tests/test_metric_common.py::LocalMetricTest::test_load_metric_coval - Im... FAILED tests/test_metric_common.py::LocalMetricTest::test_load_metric_frugalscore FAILED tests/test_metric_common.py::LocalMetricTest::test_load_metric_perplexity FAILED tests/test_metric_common.py::LocalMetricTest::test_load_metric_ter - Type... ``` ## Environment info - `datasets` version: 2.0.1.dev0 - Platform: Linux-5.16.11-76051611-generic-x86_64-with-glibc2.33 - Python version: 3.8.5 - PyArrow version: 5.0.0
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3984/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3984/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/2440
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2440/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2440/comments
https://api.github.com/repos/huggingface/datasets/issues/2440/events
https://github.com/huggingface/datasets/issues/2440
908,521,954
MDU6SXNzdWU5MDg1MjE5NTQ=
2,440
Remove `extended` field from dataset tagger
{ "avatar_url": "https://avatars.githubusercontent.com/u/26859204?v=4", "events_url": "https://api.github.com/users/lewtun/events{/privacy}", "followers_url": "https://api.github.com/users/lewtun/followers", "following_url": "https://api.github.com/users/lewtun/following{/other_user}", "gists_url": "https://api.github.com/users/lewtun/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lewtun", "id": 26859204, "login": "lewtun", "node_id": "MDQ6VXNlcjI2ODU5MjA0", "organizations_url": "https://api.github.com/users/lewtun/orgs", "received_events_url": "https://api.github.com/users/lewtun/received_events", "repos_url": "https://api.github.com/users/lewtun/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lewtun/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lewtun/subscriptions", "type": "User", "url": "https://api.github.com/users/lewtun" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
null
[]
null
[ "The tagger also doesn't insert the value for the `size_categories` field automatically, so this should be fixed too", "Thanks for reporting. Indeed the `extended` tag doesn't exist. Not sure why we had that in the tagger.\r\nThe repo of the tagger is here if someone wants to give this a try: https://github.com/huggingface/datasets-tagging\r\nOtherwise I can probably fix it next week", "I've opened a PR on `datasets-tagging` to fix the issue 🚀 ", "thanks ! this is fixed now" ]
"2021-06-01T17:18:42Z"
"2021-06-09T09:06:31Z"
"2021-06-09T09:06:30Z"
MEMBER
null
null
null
## Describe the bug While working on #2435 I used the [dataset tagger](https://huggingface.co/datasets/tagging/) to generate the missing tags for the YAML metadata of each README.md file. However, it seems that our CI raises an error when the `extended` field is included: ``` dataset_name = 'arcd' @pytest.mark.parametrize("dataset_name", get_changed_datasets(repo_path)) def test_changed_dataset_card(dataset_name): card_path = repo_path / "datasets" / dataset_name / "README.md" assert card_path.exists() error_messages = [] try: ReadMe.from_readme(card_path) except Exception as readme_error: error_messages.append(f"The following issues have been found in the dataset cards:\nREADME:\n{readme_error}") try: DatasetMetadata.from_readme(card_path) except Exception as metadata_error: error_messages.append( f"The following issues have been found in the dataset cards:\nYAML tags:\n{metadata_error}" ) if error_messages: > raise ValueError("\n".join(error_messages)) E ValueError: The following issues have been found in the dataset cards: E YAML tags: E __init__() got an unexpected keyword argument 'extended' tests/test_dataset_cards.py:70: ValueError ``` Consider either removing this tag from the tagger or including it as part of the validation step in the CI. cc @yjernite
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 1, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/2440/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2440/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/2545
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2545/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2545/comments
https://api.github.com/repos/huggingface/datasets/issues/2545/events
https://github.com/huggingface/datasets/pull/2545
929,016,580
MDExOlB1bGxSZXF1ZXN0Njc2OTMxOTYw
2,545
Fix DuplicatedKeysError in drop dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[]
closed
false
null
[]
null
[]
"2021-06-24T09:10:39Z"
"2021-06-24T14:57:08Z"
"2021-06-24T14:57:08Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/2545.diff", "html_url": "https://github.com/huggingface/datasets/pull/2545", "merged_at": "2021-06-24T14:57:08Z", "patch_url": "https://github.com/huggingface/datasets/pull/2545.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/2545" }
Close #2542. cc: @VictorSanh.
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/2545/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2545/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6240
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6240/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6240/comments
https://api.github.com/repos/huggingface/datasets/issues/6240/events
https://github.com/huggingface/datasets/issues/6240
1,895,723,888
I_kwDODunzps5w_nNw
6,240
Dataloader stuck on multiple GPUs
{ "avatar_url": "https://avatars.githubusercontent.com/u/40049003?v=4", "events_url": "https://api.github.com/users/kuri54/events{/privacy}", "followers_url": "https://api.github.com/users/kuri54/followers", "following_url": "https://api.github.com/users/kuri54/following{/other_user}", "gists_url": "https://api.github.com/users/kuri54/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/kuri54", "id": 40049003, "login": "kuri54", "node_id": "MDQ6VXNlcjQwMDQ5MDAz", "organizations_url": "https://api.github.com/users/kuri54/orgs", "received_events_url": "https://api.github.com/users/kuri54/received_events", "repos_url": "https://api.github.com/users/kuri54/repos", "site_admin": false, "starred_url": "https://api.github.com/users/kuri54/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/kuri54/subscriptions", "type": "User", "url": "https://api.github.com/users/kuri54" }
[]
closed
false
null
[]
null
[ "What type of dataset are you using in this script? `torch.utils.data.Dataset` or `datasets.Dataset`? Please share the `datasets` package version if it's the latter. Otherwise, it's better to move this issue to the `accelerate` repo.", "Very sorry, I thought I had a repo in `accelerate!`\r\nI will close this issue and repo the issue in the appropriate place." ]
"2023-09-14T05:30:30Z"
"2023-09-14T23:54:42Z"
"2023-09-14T23:54:42Z"
NONE
null
null
null
### Describe the bug I am trying to get CLIP to fine-tuning with my code. When I tried to run it on multiple GPUs using accelerate, I encountered the following phenomenon. - Validation dataloader stuck in 2nd epoch only on multi-GPU Specifically, when the "for inputs in valid_loader:" process is finished, it does not proceed to the next step. train_loader process is completed. Also, both train and valid are working correctly in the first epoch. The accelerate command at that time is as follows. `accelerate launch --multi_gpu --num_processes=2 {script_name.py} {--arg1} {--arg2} ...` - This will not happen when single GPU is used. `CUDA_VISIBLE_DEVICES="0" accelerate launch {script_name.py} --arg1 --arg2 ...` - Setting num_workers=0 in dataloader did not change the result. ### Steps to reproduce the bug 1. The codes for fine-tuning the regular CLIP were updated for accelerate. 2. Run the code with the accelerate command as `accelerate launch --multi_gpu --num_processes=2 {script_name.py} {--arg1} {--arg2} ...` and the above problem will occur. 3. CUDA_VISIBLE_DEVICES="0" accelerate launch {script_name.py} --arg1 --arg2 ...` , it works fine. ### Expected behavior It Should end normally as if it was run on a single GPU. ### Environment info Since `datasets-cli env` did not work, the environment is described below. - OS: Ubuntu 22.04 with Docker - Docker: 24.0.5, build ced0996 - Python: 3.10.12 - torch==2.0.1 - accelerate==0.21.0 - transformers==4.33.1
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6240/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6240/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/5789
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5789/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5789/comments
https://api.github.com/repos/huggingface/datasets/issues/5789/events
https://github.com/huggingface/datasets/issues/5789
1,682,611,179
I_kwDODunzps5kSpvr
5,789
Support streaming datasets that use jsonlines
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" } ]
null
[]
"2023-04-25T07:40:02Z"
"2023-04-25T07:40:03Z"
null
MEMBER
null
null
null
Extend support for streaming datasets that use `jsonlines.open`. Currently, if `jsonlines` is installed, `datasets` raises a `FileNotFoundError`: ``` FileNotFoundError: [Errno 2] No such file or directory: 'https://...' ``` See: - https://huggingface.co/datasets/masakhane/afriqa/discussions/1
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/5789/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5789/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/1946
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1946/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1946/comments
https://api.github.com/repos/huggingface/datasets/issues/1946/events
https://github.com/huggingface/datasets/pull/1946
816,526,294
MDExOlB1bGxSZXF1ZXN0NTgwMTcyNzI2
1,946
Implement Dataset from CSV
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[]
closed
false
null
[]
null
[ "@lhoestq question about public API: `keep_in_memory` or just `in_memory`?", "For consistence I'd say `keep_in_memory`, but no strong opinion.", "@lhoestq done!" ]
"2021-02-25T15:10:13Z"
"2021-03-12T09:42:48Z"
"2021-03-12T09:42:48Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/1946.diff", "html_url": "https://github.com/huggingface/datasets/pull/1946", "merged_at": "2021-03-12T09:42:48Z", "patch_url": "https://github.com/huggingface/datasets/pull/1946.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/1946" }
Implement `Dataset.from_csv`. Analogue to #1943. If finally, the scripts should be used instead, at least we can reuse the tests here.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1946/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1946/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/3108
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3108/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3108/comments
https://api.github.com/repos/huggingface/datasets/issues/3108/events
https://github.com/huggingface/datasets/pull/3108
1,030,405,618
PR_kwDODunzps4tY8ID
3,108
Add Google BLEU (aka GLEU) metric
{ "avatar_url": "https://avatars.githubusercontent.com/u/44175589?v=4", "events_url": "https://api.github.com/users/slowwavesleep/events{/privacy}", "followers_url": "https://api.github.com/users/slowwavesleep/followers", "following_url": "https://api.github.com/users/slowwavesleep/following{/other_user}", "gists_url": "https://api.github.com/users/slowwavesleep/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/slowwavesleep", "id": 44175589, "login": "slowwavesleep", "node_id": "MDQ6VXNlcjQ0MTc1NTg5", "organizations_url": "https://api.github.com/users/slowwavesleep/orgs", "received_events_url": "https://api.github.com/users/slowwavesleep/received_events", "repos_url": "https://api.github.com/users/slowwavesleep/repos", "site_admin": false, "starred_url": "https://api.github.com/users/slowwavesleep/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/slowwavesleep/subscriptions", "type": "User", "url": "https://api.github.com/users/slowwavesleep" }
[]
closed
false
null
[]
null
[]
"2021-10-19T14:48:38Z"
"2021-10-25T14:07:04Z"
"2021-10-25T14:07:04Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/3108.diff", "html_url": "https://github.com/huggingface/datasets/pull/3108", "merged_at": "2021-10-25T14:07:04Z", "patch_url": "https://github.com/huggingface/datasets/pull/3108.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/3108" }
This PR adds the NLTK implementation of Google BLEU metric. This is also a part of an effort to resolve an unfortunate naming collision between GLEU for machine translation and GLEU for grammatical error correction. I used [this page](https://huggingface.co/docs/datasets/add_metric.html) for reference. Please, point me to the right direction if I missed anything.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3108/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3108/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/19
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/19/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/19/comments
https://api.github.com/repos/huggingface/datasets/issues/19/events
https://github.com/huggingface/datasets/pull/19
606,400,645
MDExOlB1bGxSZXF1ZXN0NDA4NjIwMjUw
19
Replace tf.constant for TF
{ "avatar_url": "https://avatars.githubusercontent.com/u/959590?v=4", "events_url": "https://api.github.com/users/jplu/events{/privacy}", "followers_url": "https://api.github.com/users/jplu/followers", "following_url": "https://api.github.com/users/jplu/following{/other_user}", "gists_url": "https://api.github.com/users/jplu/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jplu", "id": 959590, "login": "jplu", "node_id": "MDQ6VXNlcjk1OTU5MA==", "organizations_url": "https://api.github.com/users/jplu/orgs", "received_events_url": "https://api.github.com/users/jplu/received_events", "repos_url": "https://api.github.com/users/jplu/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jplu/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jplu/subscriptions", "type": "User", "url": "https://api.github.com/users/jplu" }
[]
closed
false
null
[]
null
[ "Awesome!" ]
"2020-04-24T15:32:06Z"
"2020-04-29T09:27:08Z"
"2020-04-25T21:18:45Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/19.diff", "html_url": "https://github.com/huggingface/datasets/pull/19", "merged_at": "2020-04-25T21:18:45Z", "patch_url": "https://github.com/huggingface/datasets/pull/19.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/19" }
Replace simple tf.constant type of Tensor to tf.ragged.constant which allows to have examples of different size in a tf.data.Dataset. Now the training works with TF. Here the same example than for the PT in collab: ```python import tensorflow as tf import nlp from transformers import BertTokenizerFast, TFBertForQuestionAnswering # Load our training dataset and tokenizer train_dataset = nlp.load('squad', split="train[:1%]") tokenizer = BertTokenizerFast.from_pretrained('bert-base-cased') def get_correct_alignement(context, answer): start_idx = answer['answer_start'][0] text = answer['text'][0] end_idx = start_idx + len(text) if context[start_idx:end_idx] == text: return start_idx, end_idx # When the gold label position is good elif context[start_idx-1:end_idx-1] == text: return start_idx-1, end_idx-1 # When the gold label is off by one character elif context[start_idx-2:end_idx-2] == text: return start_idx-2, end_idx-2 # When the gold label is off by two character else: raise ValueError() # Tokenize our training dataset def convert_to_features(example_batch): # Tokenize contexts and questions (as pairs of inputs) input_pairs = list(zip(example_batch['context'], example_batch['question'])) encodings = tokenizer.batch_encode_plus(input_pairs, pad_to_max_length=True) # Compute start and end tokens for labels using Transformers's fast tokenizers alignement methods. start_positions, end_positions = [], [] for i, (context, answer) in enumerate(zip(example_batch['context'], example_batch['answers'])): start_idx, end_idx = get_correct_alignement(context, answer) start_positions.append([encodings.char_to_token(i, start_idx)]) end_positions.append([encodings.char_to_token(i, end_idx-1)]) if start_positions and end_positions: encodings.update({'start_positions': start_positions, 'end_positions': end_positions}) return encodings train_dataset = train_dataset.map(convert_to_features, batched=True) columns = ['input_ids', 'token_type_ids', 'attention_mask', 'start_positions', 'end_positions'] train_dataset.set_format(type='tensorflow', columns=columns) features = {x: train_dataset[x] for x in columns[:3]} labels = {"output_1": train_dataset["start_positions"]} labels["output_2"] = train_dataset["end_positions"] tfdataset = tf.data.Dataset.from_tensor_slices((features, labels)).batch(8) model = TFBertForQuestionAnswering.from_pretrained("bert-base-cased") loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(reduction=tf.keras.losses.Reduction.NONE, from_logits=True) opt = tf.keras.optimizers.Adam(learning_rate=3e-5) model.compile(optimizer=opt, loss={'output_1': loss_fn, 'output_2': loss_fn}, loss_weights={'output_1': 1., 'output_2': 1.}, metrics=['accuracy']) model.fit(tfdataset, epochs=1, steps_per_epoch=3) ```
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/19/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/19/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/2340
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2340/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2340/comments
https://api.github.com/repos/huggingface/datasets/issues/2340/events
https://github.com/huggingface/datasets/pull/2340
882,370,824
MDExOlB1bGxSZXF1ZXN0NjM1OTExNzIx
2,340
More consistent copy logic
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko" }
[]
closed
false
null
[]
null
[]
"2021-05-09T14:17:33Z"
"2021-05-11T08:58:33Z"
"2021-05-11T08:58:33Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/2340.diff", "html_url": "https://github.com/huggingface/datasets/pull/2340", "merged_at": "2021-05-11T08:58:33Z", "patch_url": "https://github.com/huggingface/datasets/pull/2340.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/2340" }
Use `info.copy()` instead of `copy.deepcopy(info)`. `Features.copy` now creates a deep copy.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2340/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2340/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/4471
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4471/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4471/comments
https://api.github.com/repos/huggingface/datasets/issues/4471/events
https://github.com/huggingface/datasets/issues/4471
1,267,475,268
I_kwDODunzps5LjCNE
4,471
CI error with repo lhoestq/_dummy
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
null
[]
null
[ "fixed by https://github.com/huggingface/datasets/pull/4472" ]
"2022-06-10T12:26:06Z"
"2022-06-10T13:24:53Z"
"2022-06-10T13:24:53Z"
MEMBER
null
null
null
## Describe the bug CI is failing because of repo "lhoestq/_dummy". See: https://app.circleci.com/pipelines/github/huggingface/datasets/12461/workflows/1b040b45-9578-4ab9-8c44-c643c4eb8691/jobs/74269 ``` requests.exceptions.HTTPError: 401 Client Error: Unauthorized for url: https://huggingface.co/api/datasets/lhoestq/_dummy?full=true ``` The repo seems to no longer exist: https://huggingface.co/api/datasets/lhoestq/_dummy ``` error: "Repository not found" ``` CC: @lhoestq
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4471/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4471/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/793
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/793/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/793/comments
https://api.github.com/repos/huggingface/datasets/issues/793/events
https://github.com/huggingface/datasets/pull/793
735,105,907
MDExOlB1bGxSZXF1ZXN0NTE0NTU2NzY5
793
[Datasets] fix discofuse links
{ "avatar_url": "https://avatars.githubusercontent.com/u/23423619?v=4", "events_url": "https://api.github.com/users/patrickvonplaten/events{/privacy}", "followers_url": "https://api.github.com/users/patrickvonplaten/followers", "following_url": "https://api.github.com/users/patrickvonplaten/following{/other_user}", "gists_url": "https://api.github.com/users/patrickvonplaten/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/patrickvonplaten", "id": 23423619, "login": "patrickvonplaten", "node_id": "MDQ6VXNlcjIzNDIzNjE5", "organizations_url": "https://api.github.com/users/patrickvonplaten/orgs", "received_events_url": "https://api.github.com/users/patrickvonplaten/received_events", "repos_url": "https://api.github.com/users/patrickvonplaten/repos", "site_admin": false, "starred_url": "https://api.github.com/users/patrickvonplaten/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/patrickvonplaten/subscriptions", "type": "User", "url": "https://api.github.com/users/patrickvonplaten" }
[]
closed
false
null
[]
null
[]
"2020-11-03T08:03:45Z"
"2020-11-03T08:16:41Z"
"2020-11-03T08:16:40Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/793.diff", "html_url": "https://github.com/huggingface/datasets/pull/793", "merged_at": "2020-11-03T08:16:40Z", "patch_url": "https://github.com/huggingface/datasets/pull/793.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/793" }
The discofuse links were changed: https://github.com/google-research-datasets/discofuse/commit/d27641016eb5b3eb2af03c7415cfbb2cbebe8558. The old links are broken I changed the links and created the new dataset_infos.json. Pinging @thomwolf @lhoestq for notification.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/793/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/793/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/4761
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4761/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4761/comments
https://api.github.com/repos/huggingface/datasets/issues/4761/events
https://github.com/huggingface/datasets/issues/4761
1,321,068,411
I_kwDODunzps5Oved7
4,761
parallel searching in multi-gpu setting using faiss
{ "avatar_url": "https://avatars.githubusercontent.com/u/48146603?v=4", "events_url": "https://api.github.com/users/Jiaxin-Wen/events{/privacy}", "followers_url": "https://api.github.com/users/Jiaxin-Wen/followers", "following_url": "https://api.github.com/users/Jiaxin-Wen/following{/other_user}", "gists_url": "https://api.github.com/users/Jiaxin-Wen/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Jiaxin-Wen", "id": 48146603, "login": "Jiaxin-Wen", "node_id": "MDQ6VXNlcjQ4MTQ2NjAz", "organizations_url": "https://api.github.com/users/Jiaxin-Wen/orgs", "received_events_url": "https://api.github.com/users/Jiaxin-Wen/received_events", "repos_url": "https://api.github.com/users/Jiaxin-Wen/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Jiaxin-Wen/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Jiaxin-Wen/subscriptions", "type": "User", "url": "https://api.github.com/users/Jiaxin-Wen" }
[]
open
false
null
[]
null
[ "And I don't see any speed up when increasing the number of GPUs while calling `get_nearest_examples_batch`.", "Hi ! Yes search_batch uses FAISS search which happens in parallel across the GPUs\r\n\r\n> And I don't see any speed up when increasing the number of GPUs while calling get_nearest_examples_batch.\r\n\r\nThat's unexpected, can you share the code you're running ?", "here is the code snippet\r\n\r\n```python\r\n\r\n# add faiss index\r\nsource_dataset = load_dataset(source_path)\r\nqueries = load_dataset(query_path)\r\ngpu = [0,1,2,3]\r\nsource_dataset.add_faiss_index(\r\n \"embedding\",\r\n device=gpu,\r\n )\r\n\r\n\r\n# batch query\r\nbatch_size = 32\r\nfor i in tqdm(range(0, len(queries), batch_size)):\r\n if i + batch_size >= len(queries):\r\n batched_queries = queries[i:]\r\n else:\r\n batched_queries = queries[i:i+batch_size]\r\n\r\n batched_query_embeddings = np.stack([i for i in batched_queries['embedding']], axis=0)\r\n scores, candidates = source_dataset.get_nearest_examples_batch(\r\n \"embedding\",\r\n batched_query_embeddings,\r\n k=5\r\n )\r\n```", "My version of datasets is `2.4.1.dev0`.", "The code looks all good to me, do you see all the GPUs being utilized ? What version of faiss are you using ?", "I can see the memory usage of all the GPUs.\r\nMy version of `faiss-gpu` is `1.7.2`", "It looks all good to me then ^^ though you said you didn't experienced speed improvements by adding more GPUs ? What size is your source dataset and what time differences did you experience ?", "query set: 1e6\r\nsource dataset: 1e6\r\nembedding size: 768\r\nindex: Flat\r\ntopk: 20\r\nGPU: V100\r\n\r\nThe time taken to traverse the query set once is about 1.5h, which is almost not influenced by the value of query batch size or the number of GPUs according to my experiments.", "Hmmm the number of GPUs should divide the time, something is going wrong. Can you check that adding more GPU does divide the memory used per GPU ? Maybe it can be worth looking at similar issues in the FAISS repository or create a noew issue over there to understand what's going on", "> Can you check that adding more GPU does divide the memory used per GPU \r\n\r\nThe memory used per GPU is unchanged while adding more GPU. Is this unexpected?\r\n\r\nI used to think that every GPU loads all the source vectors and the data parallelism is at the query level. 😆 ", "> I used to think that every GPU loads all the source vectors and the data parallelism is at the query level. 😆\r\n\r\nOh indeed that's possible, I wasn't sure. Anyway you can check that calling get_nearest_examples_batch simply calls search under the hood: \r\n\r\nhttps://github.com/huggingface/datasets/blob/f90f71fbbb33889fe75a3ffc101cdf16a88a3453/src/datasets/search.py#L375", "Here is a runnable script. \r\nMulti-GPU searching still does not work in my experiments.\r\n\r\n\r\n```python\r\nimport os\r\nfrom tqdm import tqdm\r\nimport numpy as np\r\nimport datasets\r\nfrom datasets import Dataset\r\n\r\nclass DPRSelector:\r\n\r\n def __init__(self, source, target, index_name, gpu=None):\r\n self.source = source\r\n self.target = target\r\n self.index_name = index_name\r\n\r\n cache_path = 'embedding.faiss'\r\n\r\n if not os.path.exists(cache_path):\r\n self.source.add_faiss_index(\r\n column=\"embedding\",\r\n index_name=index_name,\r\n device=gpu,\r\n )\r\n self.source.save_faiss_index(index_name, cache_path)\r\n else:\r\n self.source.load_faiss_index(\r\n index_name,\r\n cache_path,\r\n device=gpu\r\n )\r\n print('index builded!')\r\n\r\n def build_dataset(self, top_k, batch_size):\r\n print('start search')\r\n\r\n for i in tqdm(range(0, len(self.target), batch_size)):\r\n if i + batch_size >= len(self.target):\r\n batched_queries = self.target[i:]\r\n else:\r\n batched_queries = self.target[i:i+batch_size]\r\n\r\n\r\n batched_query_embeddings = np.stack([i for i in batched_queries['embedding']], axis=0)\r\n search_res = self.source.get_nearest_examples_batch(\r\n self.index_name,\r\n batched_query_embeddings,\r\n k=top_k\r\n )\r\n \r\n print('finish search')\r\n\r\n\r\ndef get_pseudo_dataset():\r\n pseudo_dict = {\"embedding\": np.zeros((1000000, 768), dtype=np.float32)}\r\n print('generate pseudo data')\r\n\r\n dataset = Dataset.from_dict(pseudo_dict)\r\n def list_to_array(data):\r\n return {\"embedding\": [np.array(vector, dtype=np.float32) for vector in data[\"embedding\"]]} \r\n dataset.set_transform(list_to_array, columns='embedding', output_all_columns=True)\r\n\r\n print('build dataset')\r\n return dataset\r\n\r\n\r\n\r\nif __name__==\"__main__\":\r\n\r\n np.random.seed(42)\r\n\r\n\r\n source_dataset = get_pseudo_dataset()\r\n target_dataset = get_pseudo_dataset()\r\n\r\n gpu = [0,1,2,3,4,5,6,7]\r\n selector = DPRSelector(source_dataset, target_dataset, \"embedding\", gpu=gpu)\r\n\r\n selector.build_dataset(top_k=20, batch_size=32)\r\n```", "@lhoestq Hi, could you please test the code above if you have time? 😄 ", "Maybe @albertvillanova you can take a look ? I won't be available in the following days", "@albertvillanova Hi, can you help with this issue?", "Hi @xwwwwww I'm investigating it, but I'm not an expert in Faiss. In principle, it is weird that your code does not work properly because it seems right...", "Have you tried passing `gpu=-1` and check if there is a speedup?", "> Have you tried passing `gpu=-1` and check if there is a speedup?\r\n\r\nyes, there is a speed up using GPU compared with CPU. ", "When passing `device=-1`, ALL existing GPUs are used (multi GPU): this is the maximum speedup you can get. To know the number of total GPUs:\r\n```\r\nimport faiss\r\n\r\nngpus = faiss.get_num_gpus()\r\nprint(ngpus)\r\n```\r\n\r\nWhen passing a list of integers to `device`, then only that number of GPUs are used (multi GPU as well)\r\n- the speedup should be proportional (more or less) to the ratio of the number of elements passed to `device` over `ngpus`\r\n- if this is not the case, then there is an issue in the implementation of this use case (however, I have reviewed the code and in principle I can't find any evident bug)\r\n\r\nWhen passing a positive integer to `device`, then only a single GPU is used.\r\n- this time should be more or less proportional to the time when passing `device=-1` over `ngpus`", "Thanks for your help!\r\nHave you run the code and replicated the same experimental results (i.e., no speedup while increasing the number of GPUs)?", "@albertvillanova @lhoestq Sorry for the bother, is there any progress on this issue? 😃 ", "I can confirm `add_faiss_index` calls `index = faiss.index_cpu_to_gpus_list(index, gpus=list(device))`.\r\n\r\nCould this be an issue with your environment ? Could you try running with 1 and 8 GPUs with a code similar to[ this one from the FAISS examples](https://github.com/facebookresearch/faiss/blob/main/tutorial/python/5-Multiple-GPUs.py) but using `gpu_index = faiss.index_cpu_to_gpus_list(cpu_index, gpus=list(device))`, and see if the speed changes ?", "Hi, I test the FAISS example and the speed indeed changes. I set `nb=1000000`, `nq=1000000` and `d=64`\r\n\r\n| num GPUS | time cost |\r\n| -------- | --------- |\r\n| 1 | 28.53 |\r\n| 5 | 7.16 |\r\n\r\n\r\n\r\n", "Ok the benchmark is great, not sure why it doesn't speed up the index in your case though. You can try running the benchmark with the same settings as your actual dataset\r\n```\r\nquery set: 1e6\r\nsource dataset: 1e6\r\nembedding size: 768\r\nindex: Flat\r\ntopk: 20\r\nGPU: V100\r\n```\r\n\r\nNote that you can still pass a FAISS index you built yourself to a dataset using https://huggingface.co/docs/datasets/v2.4.0/en/package_reference/main_classes#datasets.Dataset.add_faiss_index_from_external_arrays", "> Here is a runnable script. Multi-GPU searching still does not work in my experiments.\r\n> \r\n> ```python\r\n> import os\r\n> from tqdm import tqdm\r\n> import numpy as np\r\n> import datasets\r\n> from datasets import Dataset\r\n> \r\n> class DPRSelector:\r\n> \r\n> def __init__(self, source, target, index_name, gpu=None):\r\n> self.source = source\r\n> self.target = target\r\n> self.index_name = index_name\r\n> \r\n> cache_path = 'embedding.faiss'\r\n> \r\n> if not os.path.exists(cache_path):\r\n> self.source.add_faiss_index(\r\n> column=\"embedding\",\r\n> index_name=index_name,\r\n> device=gpu,\r\n> )\r\n> self.source.save_faiss_index(index_name, cache_path)\r\n> else:\r\n> self.source.load_faiss_index(\r\n> index_name,\r\n> cache_path,\r\n> device=gpu\r\n> )\r\n> print('index builded!')\r\n> \r\n> def build_dataset(self, top_k, batch_size):\r\n> print('start search')\r\n> \r\n> for i in tqdm(range(0, len(self.target), batch_size)):\r\n> if i + batch_size >= len(self.target):\r\n> batched_queries = self.target[i:]\r\n> else:\r\n> batched_queries = self.target[i:i+batch_size]\r\n> \r\n> \r\n> batched_query_embeddings = np.stack([i for i in batched_queries['embedding']], axis=0)\r\n> search_res = self.source.get_nearest_examples_batch(\r\n> self.index_name,\r\n> batched_query_embeddings,\r\n> k=top_k\r\n> )\r\n> \r\n> print('finish search')\r\n> \r\n> \r\n> def get_pseudo_dataset():\r\n> pseudo_dict = {\"embedding\": np.zeros((1000000, 768), dtype=np.float32)}\r\n> print('generate pseudo data')\r\n> \r\n> dataset = Dataset.from_dict(pseudo_dict)\r\n> def list_to_array(data):\r\n> return {\"embedding\": [np.array(vector, dtype=np.float32) for vector in data[\"embedding\"]]} \r\n> dataset.set_transform(list_to_array, columns='embedding', output_all_columns=True)\r\n> \r\n> print('build dataset')\r\n> return dataset\r\n> \r\n> \r\n> \r\n> if __name__==\"__main__\":\r\n> \r\n> np.random.seed(42)\r\n> \r\n> \r\n> source_dataset = get_pseudo_dataset()\r\n> target_dataset = get_pseudo_dataset()\r\n> \r\n> gpu = [0,1,2,3,4,5,6,7]\r\n> selector = DPRSelector(source_dataset, target_dataset, \"embedding\", gpu=gpu)\r\n> \r\n> selector.build_dataset(top_k=20, batch_size=32)\r\n> ```\r\n\r\nBy the way, have you run this toy example and replicated my experiment results? I think it is a more direct way to figure this out :)", "Hi,\r\n\r\nI have a similar question and would like to know if there's any progress in this issue. \r\n\r\n`dataset.add_faiss_index(column=\"embedding\")`, this takes around 5minutes to add the index.\r\n\r\n`dataset.add_faiss_index(column=\"embedding\", device=-1)`, this ran for more than 10minutes and still didn't complete execution. \r\n\r\nNow, I don't understand why that's the case as I expected for GPU the indexing should be faster" ]
"2022-07-28T14:57:03Z"
"2023-07-21T02:07:10Z"
null
CONTRIBUTOR
null
null
null
While I notice that `add_faiss_index` has supported assigning multiple GPUs, I am still confused about how it works. Does the `search-batch` function automatically parallelizes the input queries to different gpus?https://github.com/huggingface/datasets/blob/d76599bdd4d186b2e7c4f468b05766016055a0a5/src/datasets/search.py#L360
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4761/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4761/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/532
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/532/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/532/comments
https://api.github.com/repos/huggingface/datasets/issues/532/events
https://github.com/huggingface/datasets/issues/532
685,540,614
MDU6SXNzdWU2ODU1NDA2MTQ=
532
File exists error when used with TPU
{ "avatar_url": "https://avatars.githubusercontent.com/u/20531705?v=4", "events_url": "https://api.github.com/users/go-inoue/events{/privacy}", "followers_url": "https://api.github.com/users/go-inoue/followers", "following_url": "https://api.github.com/users/go-inoue/following{/other_user}", "gists_url": "https://api.github.com/users/go-inoue/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/go-inoue", "id": 20531705, "login": "go-inoue", "node_id": "MDQ6VXNlcjIwNTMxNzA1", "organizations_url": "https://api.github.com/users/go-inoue/orgs", "received_events_url": "https://api.github.com/users/go-inoue/received_events", "repos_url": "https://api.github.com/users/go-inoue/repos", "site_admin": false, "starred_url": "https://api.github.com/users/go-inoue/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/go-inoue/subscriptions", "type": "User", "url": "https://api.github.com/users/go-inoue" }
[]
open
false
null
[]
null
[ "I am facing probably facing similar issues with \r\n\r\n`wiki40b_en_100_0`", "Could you try to run `dataset = load_dataset(\"text\", data_files=file_path, split=\"train\")` once before calling the script ?\r\n\r\nIt looks like several processes try to create the dataset in arrow format at the same time. If the dataset is already created it should be fine", "Thanks! I tested on 328MB text data on `n1-standard-8 (8 vCPUs, 30 GB memory)`. The main script ran without any issue, but it seems to require a huge space in the drive.\r\n\r\nAs suggested, I ran the following script before running the pre-training command with `xla_spawn.py`.\r\n\r\n```python\r\nfrom nlp import load_dataset\r\n\r\nfile_path=\"your_file_name\"\r\nload_dataset(\"text\", data_files=file_path, split=\"train\")\r\n```\r\nThis will create `text-train.arrow` under the default cache directory. Then, I run the script with `xla_spawn.py`. It will load data from the cached file. My understanding is that there's no other way but to do this two-step process with the current version (0.4) of `nlp`.\r\n\r\nDuring another caching process that happens in the main script:\r\n\r\n```\r\n08/26/2020 09:19:51 - INFO - nlp.utils.info_utils - All the checksums matched successfully for post processing resources\r\n08/26/2020 09:19:53 - INFO - nlp.arrow_dataset - Caching processed dataset at /home/*****/.cache/huggingface/datasets/text/default-b0932b2bdbb63283/0.0.0/447f2bcfa2a721a37bc8fdf23800eade1523cf07f7eada6fe661fe4d070d380d/cache-f90f341e5308a7469\r\n8d872bcc88f9c0e.arrow\r\n```\r\n\r\n`nlp` generates a temporary file per core, each of which is three times larger than the original text data. If each process is actually writing on the disk, you will need a huge amount of space in your drive. (Maybe I'm missing something.)\r\n\r\n```\r\n-rw-r--r-- 1 ***** ***** 674 Aug 26 09:19 dataset_info.json\r\n-rw-r--r-- 1 ***** ***** 0 Aug 26 09:19 LICENSE\r\n-rw-r--r-- 1 ***** ***** 332M Aug 26 09:10 text-train.arrow\r\n-rw------- 1 ***** ***** 940M Aug 26 09:31 tmp0k43sazw\r\n-rw------- 1 ***** ***** 940M Aug 26 09:31 tmp7sxs9mj5\r\n-rw------- 1 ***** ***** 939M Aug 26 09:31 tmpbbiqw2vp\r\n-rw------- 1 ***** ***** 937M Aug 26 09:31 tmpjxb5ptyu\r\n-rw------- 1 ***** ***** 933M Aug 26 09:31 tmpk3hkdh0e\r\n-rw------- 1 ***** ***** 944M Aug 26 09:31 tmpnoalwftz\r\n-rw------- 1 ***** ***** 931M Aug 26 09:31 tmpuxdr_dz3\r\n-rw------- 1 ***** ***** 945M Aug 26 09:31 tmpxjyuy6dk\r\n```\r\nAfter the caching process, they seem to be merged into one file.\r\n\r\n```\r\n-rw------- 1 ***** ***** 989M Aug 26 09:32 cache-f90f341e5308a74698d872bcc88f9c0e.arrow\r\n-rw-r--r-- 1 ***** ***** 674 Aug 26 09:19 dataset_info.json\r\n-rw-r--r-- 1 ***** ***** 0 Aug 26 09:19 LICENSE\r\n-rw-r--r-- 1 ***** ***** 332M Aug 26 09:10 text-train.arrow\r\n```", "Again it looks like every process tries to tokenize the full dataset at the same time.\r\nIf you do the tokenization before calling `xla_spawn.py` once, then each process will then use the tokenized cached file `cache-f90f341e5308a74698d872bcc88f9c0e.arrow` and not recompute it.\r\n\r\nNot sure if there's a better way to do that cc @julien-c @thomwolf ", "I wrote a separate script just for preparing a cached file, including tokenization. Each process did use the tokenized cached file.\r\n\r\nCurrently I'm testing the pipeline on 24GB text data. It took about 1.5 hour to create a cached file on `n1-highmem-16 (16 vCPUs, 104 GB memory)`. I assume loading this cached file in the main script with `xla_spawn.py` won't be an issue (even if there are 8 processes).\r\n\r\n```\r\ntotal 98G\r\ndrwxr-xr-x 2 ***** ***** 4.0K Aug 26 13:38 .\r\ndrwxr-xr-x 3 ***** ***** 4.0K Aug 26 12:24 ..\r\n-rw------- 1 ***** ***** 74G Aug 26 13:38 cache-a7aa04134ba7b1aff5d9710f14a4e334.arrow\r\n-rw-r--r-- 1 ***** ***** 681 Aug 26 12:24 dataset_info.json\r\n-rw-r--r-- 1 ***** ***** 0 Aug 26 12:24 LICENSE\r\n-rw-r--r-- 1 ***** ***** 25G Aug 26 12:24 text-train.arrow\r\n```", "Yes loading the cached file should be fine from different processes", "Sorry, I thought it was working, but actually the second call doesn't use the cached file that was generated separately, and it will generate another cache-****.arrorw file with a different name. If I run the training script again (with `xla_spawn.py`), it will use the second cached file, which was generated by the training script itself in the previous run.\r\n\r\n```\r\ndrwxr-xr-x 2 ***** ***** 4.0K Aug 26 15:35 .\r\ndrwxr-xr-x 3 ***** ***** 4.0K Aug 26 15:29 ..\r\n-rw------- 1 ***** ***** 99M Aug 26 15:35 cache-0d77dfce704493dbe63f071eed6a5431.arrow\r\n-rw------- 1 ***** ***** 99M Aug 26 15:29 cache-69633651476e943b93c89ace715f9487.arrow\r\n-rw-r--r-- 1 ***** ***** 670 Aug 26 15:33 dataset_info.json\r\n-rw-r--r-- 1 ***** ***** 0 Aug 26 15:33 LICENSE\r\n-rw-r--r-- 1 ***** ***** 33M Aug 26 15:29 text-train.arrow\r\n```", "So if I understand correctly it means that the cached file generated by your separated script is different by the one used by the training script ?", "Yes.\r\n\r\n1. `cache-69633651476e943b93c89ace715f9487.arrow` was generated with a separate script. \r\n2. I ran the entire script with `xla_spawn.py`.\r\n3. `cache-69633651476e943b93c89ace715f9487.arrow` is not used.\r\n4. `cache-0d77dfce704493dbe63f071eed6a5431.arrow` is created.\r\n5. training starts...\r\n\r\nNow, if I kill the process at step 5, and do the step 2 again, it will use `cache-0d77dfce704493dbe63f071eed6a5431.arrow` (cached file created at step 4) without any issue.\r\n\r\nI used the following to generate the first cached file.\r\n```python\r\ndataset = load_dataset(\"text\", data_files=file_path, split=\"train\")\r\ndataset = dataset.map(lambda ex: tokenizer(ex[\"text\"], add_special_tokens=True,\r\n truncation=True, max_length=args.block_size), batched=True)\r\ndataset.set_format(type='torch', columns=['input_ids'])\r\n```", "1. Here's the log from the first step.\r\n```\r\nDownloading and preparing dataset text/default-e84dd29acc4ad9ef (download: Unknown size, generated: Unknown size, post-processed: Unknown size, total: Unknown size) to /home/*****/.cache/huggingface/datasets/text/default-e84dd29acc4ad9ef/0.0.0/\r\n447f2bcfa2a721a37bc8fdf23800eade1523cf07f7eada6fe661fe4d070d380d...\r\nDataset text downloaded and prepared to /home/*****/.cache/huggingface/datasets/text/default-e84dd29acc4ad9ef/0.0.0/447f2bcfa2a721a37bc8fdf23800eade1523cf07f7eada6fe661fe4d070d380d. Subsequent calls will reuse this data.\r\n```\r\nThere's a file named `cache-7b1440ba7077af0f0d9035b5a55d01fc.arrow`, so it did create a cached file.\r\n```\r\ndrwxr-xr-x 2 ***** ***** 4.0K Aug 26 15:59 .\r\ndrwxr-xr-x 3 ***** ***** 4.0K Aug 26 15:58 ..\r\n-rw------- 1 ***** ***** 99M Aug 26 15:59 cache-7b1440ba7077af0f0d9035b5a55d01fc.arrow\r\n-rw-r--r-- 1 ***** ***** 670 Aug 26 15:58 dataset_info.json\r\n-rw-r--r-- 1 ***** ***** 0 Aug 26 15:58 LICENSE\r\n-rw-r--r-- 1 ***** ***** 33M Aug 26 15:58 text-train.arrow\r\n```\r\n2. Ideally, `cache-7b1440ba7077af0f0d9035b5a55d01fc.arrow` should be used in `run_language_modeling.py` (modified version using `nlp`) with `xla_spawn.py`. But it looks like it's creating a new cached file.\r\n\r\n```\r\n08/26/2020 16:13:03 - INFO - filelock - Lock 139635836351096 released on /home/*****/.cache/huggingface/datasets/3e34209a2741375a1db1ff03bf1abba1a9bd0e6016912d3ead0114b9d1ca2685.202fa4f84f552bff1f5400ae012663839c61efb3de068c6c8722d34ac0ea6192\r\n.py.lock\r\n08/26/2020 16:13:03 - WARNING - nlp.builder - Using custom data configuration default\r\n08/26/2020 16:13:03 - INFO - nlp.builder - Overwrite dataset info from restored data version.\r\n08/26/2020 16:13:03 - INFO - nlp.info - Loading Dataset info from /home/*****/.cache/huggingface/datasets/text/default-e84dd29acc4ad9ef/0.0.0/447f2bcfa2a721a37bc8fdf23800eade1523cf07f7eada6fe661fe4d070d380d\r\n08/26/2020 16:13:03 - INFO - nlp.builder - Reusing dataset text (/home/*****/.cache/huggingface/datasets/text/default-e84dd29acc4ad9ef/0.0.0/447f2bcfa2a721a37bc8fdf23800eade1523cf07f7eada6fe661fe4d070d380d)\r\n08/26/2020 16:13:03 - INFO - nlp.builder - Constructing Dataset for split train, from /home/*****/.cache/huggingface/datasets/text/default-e84dd29acc4ad9ef/0.0.0/447f2bcfa2a721a37bc8fdf23800eade1523cf07f7eada6fe661fe4d070d380d\r\n08/26/2020 16:13:03 - INFO - nlp.utils.info_utils - All the checksums matched successfully for post processing resources\r\n08/26/2020 16:13:03 - INFO - nlp.builder - Overwrite dataset info from restored data version.\r\n08/26/2020 16:13:03 - INFO - nlp.info - Loading Dataset info from /home/*****/.cache/huggingface/datasets/text/default-e84dd29acc4ad9ef/0.0.0/447f2bcfa2a721a37bc8fdf23800eade1523cf07f7eada6fe661fe4d070d380d\r\n08/26/2020 16:13:03 - INFO - nlp.builder - Reusing dataset text (/home/*****/.cache/huggingface/datasets/text/default-e84dd29acc4ad9ef/0.0.0/447f2bcfa2a721a37bc8fdf23800eade1523cf07f7eada6fe661fe4d070d380d)\r\n08/26/2020 16:13:03 - INFO - nlp.builder - Constructing Dataset for split train, from /home/*****/.cache/huggingface/datasets/text/default-e84dd29acc4ad9ef/0.0.0/447f2bcfa2a721a37bc8fdf23800eade1523cf07f7eada6fe661fe4d070d380d\r\n08/26/2020 16:13:03 - INFO - nlp.utils.info_utils - All the checksums matched successfully for post processing resources\r\n08/26/2020 16:13:05 - INFO - nlp.arrow_dataset - Caching processed dataset at /home/*****/.cache/huggingface/datasets/text/default-e84dd29acc4ad9ef/0.0.0/447f2bcfa2a721a37bc8fdf23800eade1523cf07f7eada6fe661fe4d070d380d/cache-0d77dfce704493dbe\r\n63f071eed6a5431.arrow\r\n^M 0%| | 0/100 [00:00<?, ?it/s]08/26/2020 16:13:05 - INFO - nlp.arrow_dataset - Caching processed dataset at /home/*****/.cache/huggingface/datasets/text/default-e84dd29acc4ad9ef/0.0.0/447f2bcfa2a721a37bc8fdf23800eade1523cf07f7eada6\r\nfe661fe4d070d380d/cache-0d77dfce704493dbe63f071eed6a5431.arrow\r\n```\r\n\r\nThere are two cached files in the directory:\r\n\r\n```\r\ndrwxr-xr-x 2 ***** ***** 4.0K Aug 26 16:14 .\r\ndrwxr-xr-x 3 ***** ***** 4.0K Aug 26 15:58 ..\r\n-rw------- 1 ***** ***** 99M Aug 26 16:14 cache-0d77dfce704493dbe63f071eed6a5431.arrow\r\n-rw------- 1 ***** ***** 99M Aug 26 15:59 cache-7b1440ba7077af0f0d9035b5a55d01fc.arrow\r\n-rw-r--r-- 1 ***** ***** 670 Aug 26 16:13 dataset_info.json\r\n-rw-r--r-- 1 ***** ***** 0 Aug 26 16:13 LICENSE\r\n-rw-r--r-- 1 ***** ***** 33M Aug 26 15:58 text-train.arrow\r\n```\r\n\r\nIf I kill the process, and run it again, it will use the second cached file.\r\n\r\n```\r\n08/26/2020 16:19:52 - WARNING - nlp.builder - Using custom data configuration default\r\n08/26/2020 16:19:52 - INFO - nlp.builder - Overwrite dataset info from restored data version.\r\n08/26/2020 16:19:52 - INFO - nlp.info - Loading Dataset info from /home/*****/.cache/huggingface/datasets/text/default-e84dd29acc4ad9ef/0.0.0/447f2bcfa2a721a37bc8fdf23800eade1523cf07f7eada6fe661fe4d070d380d\r\n08/26/2020 16:19:52 - INFO - nlp.builder - Reusing dataset text (/home/*****/.cache/huggingface/datasets/text/default-e84dd29acc4ad9ef/0.0.0/447f2bcfa2a721a37bc8fdf23800eade1523cf07f7eada6fe661fe4d070d380d)\r\n08/26/2020 16:19:52 - INFO - nlp.builder - Constructing Dataset for split train, from /home/*****/.cache/huggingface/datasets/text/default-e84dd29acc4ad9ef/0.0.0/447f2bcfa2a721a37bc8fdf23800eade1523cf07f7eada6fe661fe4d070d380d\r\n08/26/2020 16:19:52 - INFO - nlp.utils.info_utils - All the checksums matched successfully for post processing resources\r\n08/26/2020 16:19:53 - INFO - nlp.arrow_dataset - Loading cached processed dataset at /home/*****/.cache/huggingface/datasets/text/default-e84dd29acc4ad9ef/0.0.0/447f2bcfa2a721a37bc8fdf23800eade1523cf07f7eada6fe661fe4d070d380d/cache-0d77dfce70\r\n4493dbe63f071eed6a5431.arrow\r\n08/26/2020 16:19:53 - INFO - nlp.arrow_dataset - Set __getitem__(key) output type to torch for ['input_ids'] columns (when key is int or slice) and don't output other (un-formatted) columns.\r\n```", "Thanks for all the details.\r\nThe two cached files are supposed to be the same. I suspect that the caching has a problem with the tokenizer.\r\nWhich tokenizer did you use ?", "I trained a byte-level BPE tokenizer on my data with `tokenziers` library following this [example](https://github.com/huggingface/tokenizers/blob/master/bindings/python/examples/train_bytelevel_bpe.py).\r\n\r\nAnd I put these model files in a directory named `\"model_name\"`. I also put config.json, which is the original RoBERTa config file.\r\n\r\n```bash\r\n%ls model_name\r\nconfig.json merges.txt vocab.json\r\n```\r\n\r\n[This](https://github.com/huggingface/transformers/blob/4bd7be9a4268221d2a0000c7e8033aaeb365c03b/examples/language-modeling/run_language_modeling.py#L196) is the line where `run_language_modeling.py` loads the tokenier.\r\n\r\n```python\r\ntokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, cache_dir=model_args.cache_dir)\r\n```\r\n\r\nI use `\"model_name\"` for `model_args.tokenizer_name`. I don't specify `model_args.cache_dir`. It is 'None' by default.", "In my separated script for caching, I'm using `use_fast=True` when initializing a tokenizer.\r\n\r\n```python\r\ntokenizer = AutoTokenizer.from_pretrained(args.config_name, use_fast=True)\r\n```\r\nI wasn't using that option in the main script. That could be the reason...", "Yea it could definitely explain why you have two different cache files.\r\nLet me know if using the same tokenizers on both sides fixes the issue", "It still creates a new file even if I remove `use_fast=True`... \r\n\r\nHere's the script used to create a cached file.\r\n```python \r\n#!/usr/bin/env python3\r\n\r\nimport argparse\r\n\r\nfrom transformers import AutoTokenizer\r\n\r\nfrom nlp import load_dataset\r\n\r\n\r\ndef main():\r\n parser = argparse.ArgumentParser(description='description')\r\n parser.add_argument('--config_name', type=str, help='Pretrained config name or path if not the same as model_name')\r\n parser.add_argument('--data_file', type=str, help='The input data file (a text file).')\r\n parser.add_argument('--block_size', type=int, default=-1, help='The training dataset will be truncated in block of this size for training')\r\n args = parser.parse_args()\r\n\r\n tokenizer = AutoTokenizer.from_pretrained(args.config_name)\r\n\r\n dataset = load_dataset(\"text\", data_files=args.data_file, split=\"train\")\r\n dataset = dataset.map(lambda ex: tokenizer(ex[\"text\"], add_special_tokens=True,\r\n truncation=True, max_length=args.block_size), batched=True)\r\n dataset.set_format(type='torch', columns=['input_ids'])\r\n\r\n\r\nif __name__ == \"__main__\":\r\n main()\r\n```\r\n\r\nHere's how the data is loaded in the modified `run_language_modeling.py`. [[original function](https://github.com/huggingface/transformers/blob/971d1802d009d9996b36a34a34477cee849ef39f/examples/language-modeling/run_language_modeling.py#L128-L135)]\r\n\r\n```python\r\ndef get_dataset(args: DataTrainingArguments, tokenizer: PreTrainedTokenizer, evaluate=False):\r\n file_path = args.eval_data_file if evaluate else args.train_data_file\r\n split = \"validation\" if evaluate else \"train\"\r\n if args.line_by_line:\r\n # return LineByLineTextDataset(tokenizer=tokenizer, file_path=file_path, block_size=args.block_size)\r\n dataset = load_dataset(\"text\", data_files=file_path, split=\"train\")\r\n dataset = dataset.map(lambda ex: tokenizer(ex[\"text\"], add_special_tokens=True,\r\n truncation=True, max_length=args.block_size), batched=True)\r\n dataset.set_format(type='torch', columns=['input_ids'])\r\n return dataset\r\n\r\n else:\r\n return TextDataset(\r\n tokenizer=tokenizer, file_path=file_path, block_size=args.block_size, overwrite_cache=args.overwrite_cache\r\n )\r\n```\r\n\r\nProbably I don't need this part in the main script,\r\n\r\n```python\r\ndataset = dataset.map(lambda ex: tokenizer(ex[\"text\"], add_special_tokens=True,\r\n truncation=True, max_length=args.block_size), batched=True)\r\n dataset.set_format(type='torch', columns=['input_ids'])\r\n```\r\nand simply do this?\r\n```python\r\ndataset = load_dataset(\"text\", data_files=file_path, split=\"train\")\r\nreturn dataset\r\n```", "You need this part in the main script or it will use the dataset that is not tokenized\r\n\r\n", "I can see that the tokenizer in `run_language_modeling.py` is not instantiated the same way as in your separated script.\r\nIndeed we can see L196:\r\n```python\r\ntokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, cache_dir=model_args.cache_dir)\r\n```\r\nCould you try to make it so they are instantiated the exact same way please ?", "I updated my separated script, but it's creating a cached file again. If I don't use the `model_args.cache_dir`, both will get `None`, so they should be the same.\r\n\r\n```python\r\n#!/usr/bin/env python3\r\nimport argparse\r\n\r\nfrom transformers import AutoTokenizer\r\nfrom nlp import load_dataset\r\n\r\ndef main():\r\n parser = argparse.ArgumentParser(description='description')\r\n parser.add_argument('--tokenizer_name', type=str, help='Pretrained tokenizer name or path if not the same as model_name')\r\n parser.add_argument('--data_file', type=str, help='The input data file (a text file).')\r\n parser.add_argument('--cache_dir', type=str, default=None, help='Where do you want to store the pretrained models downloaded from s3')\r\n parser.add_argument('--block_size', type=int, default=-1, help='The training dataset will be truncated in block of this size for training')\r\n\r\n model_args = parser.parse_args()\r\n\r\n tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, cache_dir=model_args.cache_dir)\r\n\r\n dataset = load_dataset(\"text\", data_files=model_args.data_file, split=\"train\")\r\n dataset = dataset.map(lambda ex: tokenizer(ex[\"text\"], add_special_tokens=True,\r\n truncation=True, max_length=model_args.block_size), batched=True)\r\n dataset.set_format(type='torch', columns=['input_ids'])\r\n\r\nif __name__ == \"__main__\":\r\n main()\r\n```\r\n\r\nIs there a way to specify the cache file to load, and skip the re-computation?", "Could you also check that the `args.block_size` used in the lambda function is the same as well ?", "Here's a minimal working example to reproduce this issue.\r\n\r\nAssumption:\r\n- You have access to TPU.\r\n- You have installed `transformers` and `nlp`.\r\n- You have tokenizer files (`config.json`, `merges.txt`, `vocab.json`) under the directory named `model_name`.\r\n- You have `xla_spawn.py` (Download from https://github.com/huggingface/transformers/blob/master/examples/xla_spawn.py).\r\n- You have saved the following script as `prepare_cached_dataset.py`.\r\n\r\n```python\r\n#!/usr/bin/env python3\r\nimport argparse\r\nfrom transformers import AutoTokenizer\r\nfrom nlp import load_dataset\r\n\r\ndef main():\r\n parser = argparse.ArgumentParser(description='description')\r\n parser.add_argument('--tokenizer_name', type=str, help='Pretrained tokenizer name or path if not the same as model_name')\r\n parser.add_argument('--data_file', type=str, help='The input data file (a text file).')\r\n parser.add_argument('--cache_dir', type=str, default=None, help='Where do you want to store the pretrained models downloaded from s3')\r\n parser.add_argument('--block_size', type=int, default=-1, help='The training dataset will be truncated in block of this size for training')\r\n parser.add_argument('--tpu_num_cores', type=int, default=1, help='Number of TPU cores to use (1 or 8). For xla_apwan.py')\r\n model_args = parser.parse_args()\r\n \r\n tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, cache_dir=model_args.cache_dir, use_fast=True)\r\n \r\n dataset = load_dataset(\"text\", data_files=model_args.data_file, split=\"train\")\r\n dataset = dataset.map(lambda ex: tokenizer(ex[\"text\"], add_special_tokens=True,\r\n truncation=True, max_length=model_args.block_size), batched=True)\r\n dataset.set_format(type='torch', columns=['input_ids'])\r\n\r\ndef _mp_fn(index):\r\n # For xla_spawn (TPUs)\r\n main()\r\n\r\nif __name__ == \"__main__\":\r\n main()\r\n```\r\n\r\n- Run the following command. Replace `your_training_data` with some text file.\r\n\r\n```bash\r\nexport TRAIN_DATA=your_training_data\r\n\r\npython prepare_cached_dataset.py \\\r\n--tokenizer_name=model_name \\\r\n--block_size=512 \\\r\n--data_file=$TRAIN_DATA\r\n```\r\n- Check the cached directory.\r\n```bash\r\nls -lha /home/*****/.cache/huggingface/datasets/text/default-e84dd29acc4ad9ef/0.0.0/447f2bcfa2a721a37bc8fdf23800eade1523cf07f7eada6fe661fe4d070d380d\r\ntotal 132M\r\ndrwxr-xr-x 2 ***** ***** 4.0K Aug 28 13:08 .\r\ndrwxr-xr-x 3 ***** ***** 4.0K Aug 28 13:08 ..\r\n-rw------- 1 ***** ***** 99M Aug 28 13:08 cache-bfc7cb0702426d19242db5e8c079f04b.arrow\r\n-rw-r--r-- 1 ***** ***** 670 Aug 28 13:08 dataset_info.json\r\n-rw-r--r-- 1 ***** ***** 0 Aug 28 13:08 LICENSE\r\n-rw-r--r-- 1 ***** ***** 33M Aug 28 13:08 text-train.arrow\r\n```\r\n\r\n- Run the same script again. (The output should be just `Using custom data configuration default`.)\r\n```\r\npython prepare_cached_dataset.py \\\r\n--tokenizer_name=model_name \\\r\n--block_size=512 \\\r\n--data_file=$TRAIN_DATA\r\n```\r\n- Check the cached directory.\r\n```bash\r\nls -lha /home/*****/.cache/huggingface/datasets/text/default-e84dd29acc4ad9ef/0.0.0/447f2bcfa2a721a37bc8fdf23800eade1523cf07f7eada6fe661fe4d070d380d\r\ntotal 132M\r\ndrwxr-xr-x 2 ***** ***** 4.0K Aug 28 13:08 .\r\ndrwxr-xr-x 3 ***** ***** 4.0K Aug 28 13:08 ..\r\n-rw------- 1 ***** ***** 99M Aug 28 13:08 cache-bfc7cb0702426d19242db5e8c079f04b.arrow\r\n-rw-r--r-- 1 ***** ***** 670 Aug 28 13:20 dataset_info.json\r\n-rw-r--r-- 1 ***** ***** 0 Aug 28 13:20 LICENSE\r\n-rw-r--r-- 1 ***** ***** 33M Aug 28 13:08 text-train.arrow\r\n```\r\n- The cached file (`cache-bfc7cb0702426d19242db5e8c079f04b.arrow`) is reused.\r\n- Now, run this script with `xla_spawn.py`. Ideally, it should reuse the cached file, however, you will see each process is creating a cache file again.\r\n\r\n```bash\r\npython xla_spawn.py --num_cores 8 \\\r\nprepare_cached_dataset.py \\\r\n--tokenizer_name=model_name \\\r\n--block_size=512 \\\r\n--data_file=$TRAIN_DATA\r\n```\r\n\r\n- Check the cached directory. There are two arrrow files.\r\n```bash\r\nls -lha /home/*****/.cache/huggingface/datasets/text/default-e84dd29acc4ad9ef/0.0.0/447f2bcfa2a721a37bc8fdf23800eade1523cf07f7eada6fe661fe4d070d380d\r\ntotal 230M\r\ndrwxr-xr-x 2 ***** ***** 4.0K Aug 28 13:25 .\r\ndrwxr-xr-x 3 ***** ***** 4.0K Aug 28 13:08 ..\r\n-rw------- 1 ***** ***** 99M Aug 28 13:08 cache-bfc7cb0702426d19242db5e8c079f04b.arrow\r\n-rw------- 1 ***** ***** 99M Aug 28 13:25 cache-e0e2313e49c8a110aafcc8133154c19a.arrow\r\n-rw-r--r-- 1 ***** ***** 670 Aug 28 13:24 dataset_info.json\r\n-rw-r--r-- 1 ***** ***** 0 Aug 28 13:24 LICENSE\r\n-rw-r--r-- 1 ***** ***** 33M Aug 28 13:08 text-train.arrow\r\n```\r\n", "I ended up specifying the `cache_file_name` argument when I call `map` function.\r\n\r\n```python\r\ndataset = dataset.map(lambda ex: tokenizer(ex[\"text\"], add_special_tokens=True, truncation=True, max_length=args.block_size),\r\n batched=True,\r\n cache_file_name=cache_file_name)\r\n```\r\n\r\nNote:\r\n- `text` dataset in `nlp` does not strip `\"\\n\"`. If you want the same output as in [`LineByLineTextDataset`](https://github.com/huggingface/transformers/blob/afc4ece462ad83a090af620ff4da099a0272e171/src/transformers/data/datasets/language_modeling.py#L88-L111), you would need to create your own dataset class where you replace `line` to `line.strip()` [here](https://github.com/huggingface/nlp/blob/master/datasets/text/text.py#L35).\r\n" ]
"2020-08-25T14:36:38Z"
"2020-09-01T12:14:56Z"
null
NONE
null
null
null
Hi, I'm getting a "File exists" error when I use [text dataset](https://github.com/huggingface/nlp/tree/master/datasets/text) for pre-training a RoBERTa model using `transformers` (3.0.2) and `nlp`(0.4.0) on a VM with TPU (v3-8). I modified [line 131 in the original `run_language_modeling.py`](https://github.com/huggingface/transformers/blob/master/examples/language-modeling/run_language_modeling.py#L131) as follows: ```python # line 131: return LineByLineTextDataset(tokenizer=tokenizer, file_path=file_path, block_size=args.block_size) dataset = load_dataset("text", data_files=file_path, split="train") dataset = dataset.map(lambda ex: tokenizer(ex["text"], add_special_tokens=True, truncation=True, max_length=args.block_size), batched=True) dataset.set_format(type='torch', columns=['input_ids']) return dataset ``` When I run this with [`xla_spawn.py`](https://github.com/huggingface/transformers/blob/master/examples/xla_spawn.py), I get the following error (it produces one message per core in TPU, which I believe is fine). It seems the current version doesn't take into account distributed training processes as in [this example](https://github.com/huggingface/transformers/blob/a573777901e662ec2e565be312ffaeedef6effec/src/transformers/data/datasets/language_modeling.py#L35-L38)? ``` 08/25/2020 13:59:41 - WARNING - nlp.builder - Using custom data configuration default 08/25/2020 13:59:43 - INFO - nlp.builder - Generating dataset text (/home/*****/.cache/huggingface/datasets/text/default-b0932b2bdbb63283/0.0.0/447f2bcfa2a721a37bc8fdf23800eade1523cf07f7eada6fe661fe4d070d380d) 08/25/2020 13:59:43 - INFO - nlp.builder - Generating dataset text (/home/*****/.cache/huggingface/datasets/text/default-b0932b2bdbb63283/0.0.0/447f2bcfa2a721a37bc8fdf23800eade1523cf07f7eada6fe661fe4d070d380d) 08/25/2020 13:59:43 - INFO - nlp.builder - Generating dataset text (/home/*****/.cache/huggingface/datasets/text/default-b0932b2bdbb63283/0.0.0/447f2bcfa2a721a37bc8fdf23800eade1523cf07f7eada6fe661fe4d070d380d) 08/25/2020 13:59:43 - INFO - nlp.builder - Generating dataset text (/home/*****/.cache/huggingface/datasets/text/default-b0932b2bdbb63283/0.0.0/447f2bcfa2a721a37bc8fdf23800eade1523cf07f7eada6fe661fe4d070d380d) 08/25/2020 13:59:43 - INFO - nlp.builder - Generating dataset text (/home/*****/.cache/huggingface/datasets/text/default-b0932b2bdbb63283/0.0.0/447f2bcfa2a721a37bc8fdf23800eade1523cf07f7eada6fe661fe4d070d380d) 08/25/2020 13:59:43 - INFO - nlp.builder - Generating dataset text (/home/*****/.cache/huggingface/datasets/text/default-b0932b2bdbb63283/0.0.0/447f2bcfa2a721a37bc8fdf23800eade1523cf07f7eada6fe661fe4d070d380d) 08/25/2020 13:59:43 - INFO - nlp.builder - Generating dataset text (/home/*****/.cache/huggingface/datasets/text/default-b0932b2bdbb63283/0.0.0/447f2bcfa2a721a37bc8fdf23800eade1523cf07f7eada6fe661fe4d070d380d) 08/25/2020 13:59:43 - INFO - nlp.builder - Generating dataset text (/home/*****/.cache/huggingface/datasets/text/default-b0932b2bdbb63283/0.0.0/447f2bcfa2a721a37bc8fdf23800eade1523cf07f7eada6fe661fe4d070d380d) Downloading and preparing dataset text/default-b0932b2bdbb63283 (download: Unknown size, generated: Unknown size, post-processed: Unknown size, total: Unknown size) to /home/*****/.cache/huggingface/datasets/text/default-b0932b2bdbb63283/0.0.0/ 447f2bcfa2a721a37bc8fdf23800eade1523cf07f7eada6fe661fe4d070d380d... Downloading and preparing dataset text/default-b0932b2bdbb63283 (download: Unknown size, generated: Unknown size, post-processed: Unknown size, total: Unknown size) to /home/*****/.cache/huggingface/datasets/text/default-b0932b2bdbb63283/0.0.0/ 447f2bcfa2a721a37bc8fdf23800eade1523cf07f7eada6fe661fe4d070d380d... Downloading and preparing dataset text/default-b0932b2bdbb63283 (download: Unknown size, generated: Unknown size, post-processed: Unknown size, total: Unknown size) to /home/*****/.cache/huggingface/datasets/text/default-b0932b2bdbb63283/0.0.0/ 447f2bcfa2a721a37bc8fdf23800eade1523cf07f7eada6fe661fe4d070d380d... Downloading and preparing dataset text/default-b0932b2bdbb63283 (download: Unknown size, generated: Unknown size, post-processed: Unknown size, total: Unknown size) to /home/*****/.cache/huggingface/datasets/text/default-b0932b2bdbb63283/0.0.0/ 447f2bcfa2a721a37bc8fdf23800eade1523cf07f7eada6fe661fe4d070d380d... Downloading and preparing dataset text/default-b0932b2bdbb63283 (download: Unknown size, generated: Unknown size, post-processed: Unknown size, total: Unknown size) to /home/*****/.cache/huggingface/datasets/text/default-b0932b2bdbb63283/0.0.0/ 447f2bcfa2a721a37bc8fdf23800eade1523cf07f7eada6fe661fe4d070d380d... Downloading and preparing dataset text/default-b0932b2bdbb63283 (download: Unknown size, generated: Unknown size, post-processed: Unknown size, total: Unknown size) to /home/*****/.cache/huggingface/datasets/text/default-b0932b2bdbb63283/0.0.0/ 447f2bcfa2a721a37bc8fdf23800eade1523cf07f7eada6fe661fe4d070d380d... Exception in device=TPU:6: [Errno 17] File exists: '/home/*****/.cache/huggingface/datasets/text/default-b0932b2bdbb63283/0.0.0/447f2bcfa2a721a37bc8fdf23800eade1523cf07f7eada6fe661fe4d070d380d.incomplete' Exception in device=TPU:4: [Errno 17] File exists: '/home/*****/.cache/huggingface/datasets/text/default-b0932b2bdbb63283/0.0.0/447f2bcfa2a721a37bc8fdf23800eade1523cf07f7eada6fe661fe4d070d380d.incomplete' Exception in device=TPU:1: [Errno 17] File exists: '/home/*****/.cache/huggingface/datasets/text/default-b0932b2bdbb63283/0.0.0/447f2bcfa2a721a37bc8fdf23800eade1523cf07f7eada6fe661fe4d070d380d.incomplete' Downloading and preparing dataset text/default-b0932b2bdbb63283 (download: Unknown size, generated: Unknown size, post-processed: Unknown size, total: Unknown size) to /home/*****/.cache/huggingface/datasets/text/default-b0932b2bdbb63283/0.0.0/ 447f2bcfa2a721a37bc8fdf23800eade1523cf07f7eada6fe661fe4d070d380d... Exception in device=TPU:7: [Errno 17] File exists: '/home/*****/.cache/huggingface/datasets/text/default-b0932b2bdbb63283/0.0.0/447f2bcfa2a721a37bc8fdf23800eade1523cf07f7eada6fe661fe4d070d380d.incomplete' Exception in device=TPU:3: [Errno 17] File exists: '/home/*****/.cache/huggingface/datasets/text/default-b0932b2bdbb63283/0.0.0/447f2bcfa2a721a37bc8fdf23800eade1523cf07f7eada6fe661fe4d070d380d.incomplete' Downloading and preparing dataset text/default-b0932b2bdbb63283 (download: Unknown size, generated: Unknown size, post-processed: Unknown size, total: Unknown size) to /home/*****/.cache/huggingface/datasets/text/default-b0932b2bdbb63283/0.0.0/ 447f2bcfa2a721a37bc8fdf23800eade1523cf07f7eada6fe661fe4d070d380d... Exception in device=TPU:2: [Errno 17] File exists: '/home/*****/.cache/huggingface/datasets/text/default-b0932b2bdbb63283/0.0.0/447f2bcfa2a721a37bc8fdf23800eade1523cf07f7eada6fe661fe4d070d380d.incomplete' Exception in device=TPU:0: [Errno 17] File exists: '/home/*****/.cache/huggingface/datasets/text/default-b0932b2bdbb63283/0.0.0/447f2bcfa2a721a37bc8fdf23800eade1523cf07f7eada6fe661fe4d070d380d.incomplete' Traceback (most recent call last): File "/anaconda3/envs/torch-xla-1.6/lib/python3.6/site-packages/torch_xla/distributed/xla_multiprocessing.py", line 231, in _start_fn fn(gindex, *args) File "/anaconda3/envs/torch-xla-1.6/lib/python3.6/site-packages/torch_xla/distributed/xla_multiprocessing.py", line 231, in _start_fn fn(gindex, *args) File "/anaconda3/envs/torch-xla-1.6/lib/python3.6/site-packages/torch_xla/distributed/xla_multiprocessing.py", line 231, in _start_fn fn(gindex, *args) File "/home/*****/huggingface_roberta/run_language_modeling.py", line 300, in _mp_fn main() File "/home/*****/huggingface_roberta/run_language_modeling.py", line 300, in _mp_fn main() File "/home/*****/huggingface_roberta/run_language_modeling.py", line 300, in _mp_fn main() File "/home/*****/huggingface_roberta/run_language_modeling.py", line 240, in main train_dataset = get_dataset(data_args, tokenizer=tokenizer) if training_args.do_train else None File "/home/*****/huggingface_roberta/run_language_modeling.py", line 240, in main train_dataset = get_dataset(data_args, tokenizer=tokenizer) if training_args.do_train else None File "/home/*****/huggingface_roberta/run_language_modeling.py", line 240, in main train_dataset = get_dataset(data_args, tokenizer=tokenizer) if training_args.do_train else None File "/home/*****/huggingface_roberta/run_language_modeling.py", line 134, in get_dataset dataset = load_dataset("text", data_files=file_path, split="train") File "/anaconda3/envs/torch-xla-1.6/lib/python3.6/site-packages/nlp/load.py", line 546, in load_dataset download_config=download_config, download_mode=download_mode, ignore_verifications=ignore_verifications, File "/home/*****/huggingface_roberta/run_language_modeling.py", line 134, in get_dataset dataset = load_dataset("text", data_files=file_path, split="train") File "/home/*****/huggingface_roberta/run_language_modeling.py", line 134, in get_dataset dataset = load_dataset("text", data_files=file_path, split="train") File "/anaconda3/envs/torch-xla-1.6/lib/python3.6/site-packages/nlp/builder.py", line 450, in download_and_prepare with incomplete_dir(self._cache_dir) as tmp_data_dir: Traceback (most recent call last): File "/anaconda3/envs/torch-xla-1.6/lib/python3.6/site-packages/nlp/load.py", line 546, in load_dataset download_config=download_config, download_mode=download_mode, ignore_verifications=ignore_verifications, File "/anaconda3/envs/torch-xla-1.6/lib/python3.6/contextlib.py", line 81, in __enter__ return next(self.gen) File "/anaconda3/envs/torch-xla-1.6/lib/python3.6/site-packages/nlp/load.py", line 546, in load_dataset download_config=download_config, download_mode=download_mode, ignore_verifications=ignore_verifications, File "/anaconda3/envs/torch-xla-1.6/lib/python3.6/site-packages/torch_xla/distributed/xla_multiprocessing.py", line 231, in _start_fn fn(gindex, *args) File "/anaconda3/envs/torch-xla-1.6/lib/python3.6/site-packages/nlp/builder.py", line 450, in download_and_prepare with incomplete_dir(self._cache_dir) as tmp_data_dir: File "/anaconda3/envs/torch-xla-1.6/lib/python3.6/site-packages/nlp/builder.py", line 422, in incomplete_dir os.makedirs(tmp_dir) File "/anaconda3/envs/torch-xla-1.6/lib/python3.6/site-packages/nlp/builder.py", line 450, in download_and_prepare with incomplete_dir(self._cache_dir) as tmp_data_dir: File "/home/*****/huggingface_roberta/run_language_modeling.py", line 300, in _mp_fn main() File "/anaconda3/envs/torch-xla-1.6/lib/python3.6/contextlib.py", line 81, in __enter__ return next(self.gen) File "/anaconda3/envs/torch-xla-1.6/lib/python3.6/os.py", line 220, in makedirs mkdir(name, mode) File "/anaconda3/envs/torch-xla-1.6/lib/python3.6/contextlib.py", line 81, in __enter__ return next(self.gen) File "/home/*****/huggingface_roberta/run_language_modeling.py", line 240, in main train_dataset = get_dataset(data_args, tokenizer=tokenizer) if training_args.do_train else None File "/anaconda3/envs/torch-xla-1.6/lib/python3.6/site-packages/nlp/builder.py", line 422, in incomplete_dir os.makedirs(tmp_dir) File "/anaconda3/envs/torch-xla-1.6/lib/python3.6/site-packages/torch_xla/distributed/xla_multiprocessing.py", line 231, in _start_fn fn(gindex, *args) File "/anaconda3/envs/torch-xla-1.6/lib/python3.6/site-packages/nlp/builder.py", line 422, in incomplete_dir os.makedirs(tmp_dir) File "/home/*****/huggingface_roberta/run_language_modeling.py", line 134, in get_dataset dataset = load_dataset("text", data_files=file_path, split="train") File "/anaconda3/envs/torch-xla-1.6/lib/python3.6/os.py", line 220, in makedirs mkdir(name, mode) File "/anaconda3/envs/torch-xla-1.6/lib/python3.6/site-packages/nlp/load.py", line 546, in load_dataset download_config=download_config, download_mode=download_mode, ignore_verifications=ignore_verifications, FileExistsError: [Errno 17] File exists: '/home/*****/.cache/huggingface/datasets/text/default-b0932b2bdbb63283/0.0.0/447f2bcfa2a721a37bc8fdf23800eade1523cf07f7eada6fe661fe4d070d380d.incomplete' File "/home/*****/huggingface_roberta/run_language_modeling.py", line 300, in _mp_fn main() File "/anaconda3/envs/torch-xla-1.6/lib/python3.6/site-packages/nlp/builder.py", line 450, in download_and_prepare with incomplete_dir(self._cache_dir) as tmp_data_dir: File "/anaconda3/envs/torch-xla-1.6/lib/python3.6/os.py", line 220, in makedirs mkdir(name, mode) FileExistsError: [Errno 17] File exists: '/home/*****/.cache/huggingface/datasets/text/default-b0932b2bdbb63283/0.0.0/447f2bcfa2a721a37bc8fdf23800eade1523cf07f7eada6fe661fe4d070d380d.incomplete' File "/home/*****/huggingface_roberta/run_language_modeling.py", line 240, in main train_dataset = get_dataset(data_args, tokenizer=tokenizer) if training_args.do_train else None File "/anaconda3/envs/torch-xla-1.6/lib/python3.6/contextlib.py", line 81, in __enter__ return next(self.gen) FileExistsError: [Errno 17] File exists: '/home/*****/.cache/huggingface/datasets/text/default-b0932b2bdbb63283/0.0.0/447f2bcfa2a721a37bc8fdf23800eade1523cf07f7eada6fe661fe4d070d380d.incomplete' File "/home/*****/huggingface_roberta/run_language_modeling.py", line 134, in get_dataset dataset = load_dataset("text", data_files=file_path, split="train") File "/anaconda3/envs/torch-xla-1.6/lib/python3.6/site-packages/nlp/builder.py", line 422, in incomplete_dir os.makedirs(tmp_dir) File "/anaconda3/envs/torch-xla-1.6/lib/python3.6/site-packages/nlp/load.py", line 546, in load_dataset download_config=download_config, download_mode=download_mode, ignore_verifications=ignore_verifications, File "/anaconda3/envs/torch-xla-1.6/lib/python3.6/os.py", line 220, in makedirs mkdir(name, mode) File "/anaconda3/envs/torch-xla-1.6/lib/python3.6/site-packages/nlp/builder.py", line 450, in download_and_prepare with incomplete_dir(self._cache_dir) as tmp_data_dir: File "/anaconda3/envs/torch-xla-1.6/lib/python3.6/contextlib.py", line 81, in __enter__ return next(self.gen) FileExistsError: [Errno 17] File exists: '/home/*****/.cache/huggingface/datasets/text/default-b0932b2bdbb63283/0.0.0/447f2bcfa2a721a37bc8fdf23800eade1523cf07f7eada6fe661fe4d070d380d.incomplete' File "/anaconda3/envs/torch-xla-1.6/lib/python3.6/site-packages/nlp/builder.py", line 422, in incomplete_dir os.makedirs(tmp_dir) File "/anaconda3/envs/torch-xla-1.6/lib/python3.6/os.py", line 220, in makedirs mkdir(name, mode) Traceback (most recent call last): FileExistsError: [Errno 17] File exists: '/home/*****/.cache/huggingface/datasets/text/default-b0932b2bdbb63283/0.0.0/447f2bcfa2a721a37bc8fdf23800eade1523cf07f7eada6fe661fe4d070d380d.incomplete' Traceback (most recent call last): File "/anaconda3/envs/torch-xla-1.6/lib/python3.6/site-packages/torch_xla/distributed/xla_multiprocessing.py", line 231, in _start_fn fn(gindex, *args) File "/home/*****/huggingface_roberta/run_language_modeling.py", line 300, in _mp_fn main() File "/home/*****/huggingface_roberta/run_language_modeling.py", line 240, in main train_dataset = get_dataset(data_args, tokenizer=tokenizer) if training_args.do_train else None File "/home/*****/huggingface_roberta/run_language_modeling.py", line 134, in get_dataset dataset = load_dataset("text", data_files=file_path, split="train") File "/anaconda3/envs/torch-xla-1.6/lib/python3.6/site-packages/torch_xla/distributed/xla_multiprocessing.py", line 231, in _start_fn fn(gindex, *args) File "/anaconda3/envs/torch-xla-1.6/lib/python3.6/site-packages/nlp/load.py", line 546, in load_dataset download_config=download_config, download_mode=download_mode, ignore_verifications=ignore_verifications, File "/anaconda3/envs/torch-xla-1.6/lib/python3.6/site-packages/nlp/builder.py", line 450, in download_and_prepare with incomplete_dir(self._cache_dir) as tmp_data_dir: File "/home/*****/huggingface_roberta/run_language_modeling.py", line 300, in _mp_fn main() File "/home/*****/huggingface_roberta/run_language_modeling.py", line 240, in main train_dataset = get_dataset(data_args, tokenizer=tokenizer) if training_args.do_train else None File "/home/*****/huggingface_roberta/run_language_modeling.py", line 134, in get_dataset dataset = load_dataset("text", data_files=file_path, split="train") File "/anaconda3/envs/torch-xla-1.6/lib/python3.6/site-packages/nlp/load.py", line 546, in load_dataset download_config=download_config, download_mode=download_mode, ignore_verifications=ignore_verifications, File "/anaconda3/envs/torch-xla-1.6/lib/python3.6/site-packages/nlp/builder.py", line 450, in download_and_prepare with incomplete_dir(self._cache_dir) as tmp_data_dir: File "/anaconda3/envs/torch-xla-1.6/lib/python3.6/contextlib.py", line 81, in __enter__ return next(self.gen) File "/anaconda3/envs/torch-xla-1.6/lib/python3.6/site-packages/nlp/builder.py", line 422, in incomplete_dir os.makedirs(tmp_dir) File "/anaconda3/envs/torch-xla-1.6/lib/python3.6/os.py", line 220, in makedirs mkdir(name, mode) FileExistsError: [Errno 17] File exists: '/home/*****/.cache/huggingface/datasets/text/default-b0932b2bdbb63283/0.0.0/447f2bcfa2a721a37bc8fdf23800eade1523cf07f7eada6fe661fe4d070d380d.incomplete' ```
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/532/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/532/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/5568
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5568/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5568/comments
https://api.github.com/repos/huggingface/datasets/issues/5568/events
https://github.com/huggingface/datasets/issues/5568
1,596,900,532
I_kwDODunzps5fLsS0
5,568
dataset.to_iterable_dataset() loses useful info like dataset features
{ "avatar_url": "https://avatars.githubusercontent.com/u/48770768?v=4", "events_url": "https://api.github.com/users/Hubert-Bonisseur/events{/privacy}", "followers_url": "https://api.github.com/users/Hubert-Bonisseur/followers", "following_url": "https://api.github.com/users/Hubert-Bonisseur/following{/other_user}", "gists_url": "https://api.github.com/users/Hubert-Bonisseur/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Hubert-Bonisseur", "id": 48770768, "login": "Hubert-Bonisseur", "node_id": "MDQ6VXNlcjQ4NzcwNzY4", "organizations_url": "https://api.github.com/users/Hubert-Bonisseur/orgs", "received_events_url": "https://api.github.com/users/Hubert-Bonisseur/received_events", "repos_url": "https://api.github.com/users/Hubert-Bonisseur/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Hubert-Bonisseur/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Hubert-Bonisseur/subscriptions", "type": "User", "url": "https://api.github.com/users/Hubert-Bonisseur" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" }, { "color": "7057ff", "default": true, "description": "Good for newcomers", "id": 1935892877, "name": "good first issue", "node_id": "MDU6TGFiZWwxOTM1ODkyODc3", "url": "https://api.github.com/repos/huggingface/datasets/labels/good%20first%20issue" } ]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/48770768?v=4", "events_url": "https://api.github.com/users/Hubert-Bonisseur/events{/privacy}", "followers_url": "https://api.github.com/users/Hubert-Bonisseur/followers", "following_url": "https://api.github.com/users/Hubert-Bonisseur/following{/other_user}", "gists_url": "https://api.github.com/users/Hubert-Bonisseur/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Hubert-Bonisseur", "id": 48770768, "login": "Hubert-Bonisseur", "node_id": "MDQ6VXNlcjQ4NzcwNzY4", "organizations_url": "https://api.github.com/users/Hubert-Bonisseur/orgs", "received_events_url": "https://api.github.com/users/Hubert-Bonisseur/received_events", "repos_url": "https://api.github.com/users/Hubert-Bonisseur/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Hubert-Bonisseur/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Hubert-Bonisseur/subscriptions", "type": "User", "url": "https://api.github.com/users/Hubert-Bonisseur" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/48770768?v=4", "events_url": "https://api.github.com/users/Hubert-Bonisseur/events{/privacy}", "followers_url": "https://api.github.com/users/Hubert-Bonisseur/followers", "following_url": "https://api.github.com/users/Hubert-Bonisseur/following{/other_user}", "gists_url": "https://api.github.com/users/Hubert-Bonisseur/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Hubert-Bonisseur", "id": 48770768, "login": "Hubert-Bonisseur", "node_id": "MDQ6VXNlcjQ4NzcwNzY4", "organizations_url": "https://api.github.com/users/Hubert-Bonisseur/orgs", "received_events_url": "https://api.github.com/users/Hubert-Bonisseur/received_events", "repos_url": "https://api.github.com/users/Hubert-Bonisseur/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Hubert-Bonisseur/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Hubert-Bonisseur/subscriptions", "type": "User", "url": "https://api.github.com/users/Hubert-Bonisseur" } ]
null
[ "Hi ! Oh good catch. I think the features should be passed to `IterableDataset.from_generator()` in `to_iterable_dataset()` indeed.\r\n\r\nSetting this as a good first issue if someone would like to contribute, otherwise we can take care of it :)", "#self-assign", "seems like the feature parameter is missing from `return IterableDataset.from_generator(Dataset._iter_shards, gen_kwargs={\"shards\": shards})` hence it defaults to None." ]
"2023-02-23T13:45:33Z"
"2023-02-24T13:22:36Z"
"2023-02-24T13:22:36Z"
CONTRIBUTOR
null
null
null
### Describe the bug Hello, I like the new `to_iterable_dataset` feature but I noticed something that seems to be missing. When using `to_iterable_dataset` to transform your map style dataset into iterable dataset, you lose valuable metadata like the features. These metadata are useful if you want to interleave iterable datasets, cast columns etc. ### Steps to reproduce the bug ```python dataset = load_dataset("lhoestq/demo1")["train"] print(dataset.features) # {'id': Value(dtype='string', id=None), 'package_name': Value(dtype='string', id=None), 'review': Value(dtype='string', id=None), 'date': Value(dtype='string', id=None), 'star': Value(dtype='int64', id=None), 'version_id': Value(dtype='int64', id=None)} dataset = dataset.to_iterable_dataset() print(dataset.features) # None ``` ### Expected behavior Keep the relevant information ### Environment info datasets==2.10.0
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5568/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5568/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/3359
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3359/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3359/comments
https://api.github.com/repos/huggingface/datasets/issues/3359/events
https://github.com/huggingface/datasets/pull/3359
1,068,638,213
PR_kwDODunzps4vQtI0
3,359
Add The Pile Free Law subset
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[]
closed
false
null
[]
null
[ "@albertvillanova Is there a specific reason you’re adding the Pile under “the” instead of under “pile”? That does not appear to be consistent with other datasets.", "Hi @StellaAthena,\r\n\r\nI asked myself the same question, but at the end I decided to be consistent with previously added Pile subsets:\r\n- #2817\r\n\r\nI guess the reason is to stress that the definite article is always used before the name of the dataset (your site says: \"The Pile. An 800GB Dataset of Diverse Text for Language Modeling\"). Other datasets are not usually preceded by the definite article, like \"the SQuAD\" or \"the GLUE\" or \"the Common Voice\"...\r\n\r\nCC: @lhoestq ", "> I guess the reason is to stress that the definite article is always used before the name of the dataset (your site says: \"The Pile. An 800GB Dataset of Diverse Text for Language Modeling\").\r\n\r\nYes that's because of this that it starts with \"the\"" ]
"2021-12-01T16:46:04Z"
"2021-12-06T10:12:17Z"
"2021-12-01T17:30:44Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/3359.diff", "html_url": "https://github.com/huggingface/datasets/pull/3359", "merged_at": "2021-12-01T17:30:43Z", "patch_url": "https://github.com/huggingface/datasets/pull/3359.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/3359" }
Add: - Free Law subset of The Pile: "free_law" config Close bigscience-workshop/data_tooling#75. CC: @StellaAthena
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3359/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3359/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/359
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/359/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/359/comments
https://api.github.com/repos/huggingface/datasets/issues/359/events
https://github.com/huggingface/datasets/issues/359
653,656,279
MDU6SXNzdWU2NTM2NTYyNzk=
359
ArrowBasedBuilder _prepare_split parse_schema breaks on nested structures
{ "avatar_url": "https://avatars.githubusercontent.com/u/2000204?v=4", "events_url": "https://api.github.com/users/timothyjlaurent/events{/privacy}", "followers_url": "https://api.github.com/users/timothyjlaurent/followers", "following_url": "https://api.github.com/users/timothyjlaurent/following{/other_user}", "gists_url": "https://api.github.com/users/timothyjlaurent/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/timothyjlaurent", "id": 2000204, "login": "timothyjlaurent", "node_id": "MDQ6VXNlcjIwMDAyMDQ=", "organizations_url": "https://api.github.com/users/timothyjlaurent/orgs", "received_events_url": "https://api.github.com/users/timothyjlaurent/received_events", "repos_url": "https://api.github.com/users/timothyjlaurent/repos", "site_admin": false, "starred_url": "https://api.github.com/users/timothyjlaurent/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/timothyjlaurent/subscriptions", "type": "User", "url": "https://api.github.com/users/timothyjlaurent" }
[]
closed
false
null
[]
null
[ "Hi, it depends on what it is in your `dataset_builder.py` file. Can you share it?\r\n\r\nIf you are just loading `json` files, you can also directly use the `json` script (which will find the schema/features from your JSON structure):\r\n\r\n```python\r\nfrom nlp import load_dataset\r\nds = load_dataset(\"json\", data_files=rel_datafiles)\r\n```", "The behavior I'm seeing is from the `json` script. \r\nI hacked this together to overcome the error with the `JSON` dataloader\r\n\r\n```\r\nclass DatasetBuilder(hf_nlp.ArrowBasedBuilder):\r\n BUILDER_CONFIG_CLASS = BuilderConfig\r\n\r\n def _info(self):\r\n return DatasetInfo()\r\n\r\n def _split_generators(self, dl_manager):\r\n \"\"\" We handle string, list and dicts in datafiles\r\n \"\"\"\r\n if isinstance(self.config.data_files, (str, list, tuple)):\r\n files = self.config.data_files\r\n if isinstance(files, str):\r\n files = [files]\r\n return [SplitGenerator(name=Split.TRAIN, gen_kwargs={\"files\": files})]\r\n splits = []\r\n for split_name in [Split.TRAIN, Split.VALIDATION, Split.TEST]:\r\n if split_name in self.config.data_files:\r\n files = self.config.data_files[split_name]\r\n if isinstance(files, str):\r\n files = [files]\r\n splits.append(SplitGenerator(name=split_name, gen_kwargs={\"files\": files}))\r\n return splits\r\n\r\n def _prepare_split(self, split_generator):\r\n fname = \"{}-{}.arrow\".format(self.name, split_generator.name)\r\n fpath = os.path.join(self._cache_dir, fname)\r\n\r\n writer = ArrowWriter(path=fpath)\r\n\r\n generator = self._generate_tables(**split_generator.gen_kwargs)\r\n for key, table in utils.tqdm(generator, unit=\" tables\", leave=False):\r\n writer.write_table(table)\r\n num_examples, num_bytes = writer.finalize()\r\n\r\n split_generator.split_info.num_examples = num_examples\r\n split_generator.split_info.num_bytes = num_bytes\r\n # this is where the error is coming from\r\n # def parse_schema(schema, schema_dict):\r\n # for field in schema:\r\n # if pa.types.is_struct(field.type):\r\n # schema_dict[field.name] = {}\r\n # parse_schema(field.type, schema_dict[field.name])\r\n # elif pa.types.is_list(field.type) and pa.types.is_struct(field.type.value_type):\r\n # schema_dict[field.name] = {}\r\n # parse_schema(field.type.value_type, schema_dict[field.name])\r\n # else:\r\n # schema_dict[field.name] = Value(str(field.type))\r\n # \r\n # parse_schema(writer.schema, features)\r\n # self.info.features = Features(features)\r\n\r\n def _generate_tables(self, files):\r\n for i, file in enumerate(files):\r\n pa_table = paj.read_json(\r\n file\r\n )\r\n yield i, pa_table\r\n```\r\n\r\nSo I basically just don't populate the `self.info.features` though this doesn't seem to cause any problems in my downstream applications. \r\n\r\nThe other workaround I was doing was to just use pyarrow.json to build a table and then to create the Dataset with its constructor or from_table methods. `load_dataset` has nice split logic, so I'd prefer to use that.\r\n\r\n", "Also noticed that if you for example in a loader script\r\n\r\n```\r\nfrom nlp import ArrowBasedBuilder\r\n\r\nclass MyBuilder(ArrowBasedBuilder):\r\n...\r\n\r\n```\r\nand use that in the subclass, it will be on the module's __dict__ and will be selected before the `MyBuilder` subclass, and it will raise `NotImplementedError` on its `_generate_examples` method... In the code it check for abstract classes but Builder and ArrowBasedBuilder aren't abstract classes, they're regular classes with `@abstract_methods`.", "Indeed this is part of a more general limitation which is the fact that we should generate and update the `features` from the auto-inferred Arrow schema when they are not provided (also happen when a user change the schema using `map()`, the features should be auto-generated and guessed as much as possible to keep the `features` synced with the underlying Arrow table schema).\r\n\r\nWe will try to solve this soon." ]
"2020-07-08T23:24:05Z"
"2020-07-10T14:52:06Z"
"2020-07-10T14:52:06Z"
NONE
null
null
null
I tried using the Json dataloader to load some JSON lines files. but get an exception in the parse_schema function. ``` --------------------------------------------------------------------------- ValueError Traceback (most recent call last) <ipython-input-23-9aecfbee53bd> in <module> 55 from nlp import load_dataset 56 ---> 57 ds = load_dataset("../text2struct/model/dataset_builder.py", data_files=rel_datafiles) 58 59 ~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/nlp/load.py in load_dataset(path, name, version, data_dir, data_files, split, cache_dir, download_config, download_mode, ignore_verifications, save_infos, **config_kwargs) 522 download_mode=download_mode, 523 ignore_verifications=ignore_verifications, --> 524 save_infos=save_infos, 525 ) 526 ~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/nlp/builder.py in download_and_prepare(self, download_config, download_mode, ignore_verifications, save_infos, try_from_hf_gcs, dl_manager, **download_and_prepare_kwargs) 430 verify_infos = not save_infos and not ignore_verifications 431 self._download_and_prepare( --> 432 dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs 433 ) 434 # Sync info ~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/nlp/builder.py in _download_and_prepare(self, dl_manager, verify_infos, **prepare_split_kwargs) 481 try: 482 # Prepare split will record examples associated to the split --> 483 self._prepare_split(split_generator, **prepare_split_kwargs) 484 except OSError: 485 raise OSError("Cannot find data file. " + (self.manual_download_instructions or "")) ~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/nlp/builder.py in _prepare_split(self, split_generator) 736 schema_dict[field.name] = Value(str(field.type)) 737 --> 738 parse_schema(writer.schema, features) 739 self.info.features = Features(features) 740 ~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/nlp/builder.py in parse_schema(schema, schema_dict) 734 parse_schema(field.type.value_type, schema_dict[field.name]) 735 else: --> 736 schema_dict[field.name] = Value(str(field.type)) 737 738 parse_schema(writer.schema, features) <string> in __init__(self, dtype, id, _type) ~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/nlp/features.py in __post_init__(self) 55 56 def __post_init__(self): ---> 57 self.pa_type = string_to_arrow(self.dtype) 58 59 def __call__(self): ~/.virtualenvs/inv-text2struct/lib/python3.6/site-packages/nlp/features.py in string_to_arrow(type_str) 32 if str(type_str + "_") not in pa.__dict__: 33 raise ValueError( ---> 34 f"Neither {type_str} nor {type_str + '_'} seems to be a pyarrow data type. " 35 f"Please make sure to use a correct data type, see: " 36 f"https://arrow.apache.org/docs/python/api/datatypes.html#factory-functions" ValueError: Neither list<item: string> nor list<item: string>_ seems to be a pyarrow data type. Please make sure to use a correct data type, see: https://arrow.apache.org/docs/python/api/datatypes.html#factory-functions ``` If I create the dataset imperatively, using a pyarrow table, the dataset is created correctly. If I override the `_prepare_split` method to avoid calling the validate schema, the dataset can load as well.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/359/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/359/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/1719
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1719/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1719/comments
https://api.github.com/repos/huggingface/datasets/issues/1719/events
https://github.com/huggingface/datasets/pull/1719
783,557,542
MDExOlB1bGxSZXF1ZXN0NTUyODk3MzY4
1,719
Fix column list comparison in transmit format
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
[]
closed
false
null
[]
null
[]
"2021-01-11T17:23:56Z"
"2021-01-11T18:45:03Z"
"2021-01-11T18:45:02Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/1719.diff", "html_url": "https://github.com/huggingface/datasets/pull/1719", "merged_at": "2021-01-11T18:45:02Z", "patch_url": "https://github.com/huggingface/datasets/pull/1719.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/1719" }
As noticed in #1718 the cache might not reload the cache files when new columns were added. This is because of an issue in `transmit_format` where the column list comparison fails because the order was not deterministic. This causes the `transmit_format` to apply an unnecessary `set_format` transform with shuffled column names. I fixed that by sorting the columns for the comparison and added a test. To properly test that I added a third column `col_3` to the dummy_dataset used for tests.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1719/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1719/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6113
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6113/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6113/comments
https://api.github.com/repos/huggingface/datasets/issues/6113/events
https://github.com/huggingface/datasets/issues/6113
1,833,854,030
I_kwDODunzps5tTmRO
6,113
load_dataset() fails with streamlit caching inside docker
{ "avatar_url": "https://avatars.githubusercontent.com/u/987574?v=4", "events_url": "https://api.github.com/users/fierval/events{/privacy}", "followers_url": "https://api.github.com/users/fierval/followers", "following_url": "https://api.github.com/users/fierval/following{/other_user}", "gists_url": "https://api.github.com/users/fierval/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/fierval", "id": 987574, "login": "fierval", "node_id": "MDQ6VXNlcjk4NzU3NA==", "organizations_url": "https://api.github.com/users/fierval/orgs", "received_events_url": "https://api.github.com/users/fierval/received_events", "repos_url": "https://api.github.com/users/fierval/repos", "site_admin": false, "starred_url": "https://api.github.com/users/fierval/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/fierval/subscriptions", "type": "User", "url": "https://api.github.com/users/fierval" }
[]
closed
false
null
[]
null
[ "Hi! This should be fixed in the latest (patch) release (run `pip install -U datasets` to install it). This behavior was due to a bug in our authentication logic." ]
"2023-08-02T20:20:26Z"
"2023-08-21T18:18:27Z"
"2023-08-21T18:18:27Z"
NONE
null
null
null
### Describe the bug When calling `load_dataset` in a streamlit application running within a docker container, get a failure with the error message: EmptyDatasetError: The directory at hf://datasets/fetch-rewards/inc-rings-2000@bea27cf60842b3641eae418f38864a2ec4cde684 doesn't contain any data files Traceback: File "/opt/conda/lib/python3.10/site-packages/streamlit/runtime/scriptrunner/script_runner.py", line 552, in _run_script exec(code, module.__dict__) File "/home/user/app/app.py", line 62, in <module> dashboard() File "/home/user/app/app.py", line 47, in dashboard feat_dict, path_gml = load_data(hf_repo, model_gml_dict[selected_model], hf_token) File "/opt/conda/lib/python3.10/site-packages/streamlit/runtime/caching/cache_utils.py", line 211, in wrapper return cached_func(*args, **kwargs) File "/opt/conda/lib/python3.10/site-packages/streamlit/runtime/caching/cache_utils.py", line 240, in __call__ return self._get_or_create_cached_value(args, kwargs) File "/opt/conda/lib/python3.10/site-packages/streamlit/runtime/caching/cache_utils.py", line 266, in _get_or_create_cached_value return self._handle_cache_miss(cache, value_key, func_args, func_kwargs) File "/opt/conda/lib/python3.10/site-packages/streamlit/runtime/caching/cache_utils.py", line 320, in _handle_cache_miss computed_value = self._info.func(*func_args, **func_kwargs) File "/home/user/app/hf_interface.py", line 16, in load_data hf_dataset = load_dataset(repo_id, use_auth_token=hf_token) File "/opt/conda/lib/python3.10/site-packages/datasets/load.py", line 2109, in load_dataset builder_instance = load_dataset_builder( File "/opt/conda/lib/python3.10/site-packages/datasets/load.py", line 1795, in load_dataset_builder dataset_module = dataset_module_factory( File "/opt/conda/lib/python3.10/site-packages/datasets/load.py", line 1486, in dataset_module_factory raise e1 from None File "/opt/conda/lib/python3.10/site-packages/datasets/load.py", line 1476, in dataset_module_factory ).get_module() File "/opt/conda/lib/python3.10/site-packages/datasets/load.py", line 1032, in get_module else get_data_patterns(base_path, download_config=self.download_config) File "/opt/conda/lib/python3.10/site-packages/datasets/data_files.py", line 458, in get_data_patterns raise EmptyDatasetError(f"The directory at {base_path} doesn't contain any data files") from None ### Steps to reproduce the bug ```python @st.cache_resource def load_data(repo_id: str, hf_token=None): """Load data from HuggingFace Hub """ hf_dataset = load_dataset(repo_id, use_auth_token=hf_token) hf_dataset = hf_dataset.map(lambda x: json.loads(x["ground_truth"]), remove_columns=["ground_truth"]) return hf_dataset ``` ### Expected behavior Expect to load. Note: works fine with datasets==2.13.1 ### Environment info datasets==2.14.2, Ubuntu bionic-based Docker container.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6113/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6113/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6055
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6055/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6055/comments
https://api.github.com/repos/huggingface/datasets/issues/6055/events
https://github.com/huggingface/datasets/issues/6055
1,813,524,145
I_kwDODunzps5sGC6x
6,055
Fix host URL in The Pile datasets
{ "avatar_url": "https://avatars.githubusercontent.com/u/7540752?v=4", "events_url": "https://api.github.com/users/nickovchinnikov/events{/privacy}", "followers_url": "https://api.github.com/users/nickovchinnikov/followers", "following_url": "https://api.github.com/users/nickovchinnikov/following{/other_user}", "gists_url": "https://api.github.com/users/nickovchinnikov/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/nickovchinnikov", "id": 7540752, "login": "nickovchinnikov", "node_id": "MDQ6VXNlcjc1NDA3NTI=", "organizations_url": "https://api.github.com/users/nickovchinnikov/orgs", "received_events_url": "https://api.github.com/users/nickovchinnikov/received_events", "repos_url": "https://api.github.com/users/nickovchinnikov/repos", "site_admin": false, "starred_url": "https://api.github.com/users/nickovchinnikov/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/nickovchinnikov/subscriptions", "type": "User", "url": "https://api.github.com/users/nickovchinnikov" }
[]
open
false
null
[]
null
[]
"2023-07-20T09:08:52Z"
"2023-07-20T09:09:37Z"
null
NONE
null
null
null
### Describe the bug In #3627 and #5543, you tried to fix the host URL in The Pile datasets. But both URLs are not working now: `HTTPError: 404 Client Error: Not Found for URL: https://the-eye.eu/public/AI/pile_preliminary_components/PUBMED_title_abstracts_2019_baseline.jsonl.zst` And `ConnectTimeout: HTTPSConnectionPool(host='mystic.the-eye.eu', port=443): Max retries exceeded with url: /public/AI/pile_preliminary_components/PUBMED_title_abstracts_2019_baseline.jsonl.zst (Caused by ConnectTimeoutError(, 'Connection to mystic.the-eye.eu timed out. (connect timeout=10.0)'))` ### Steps to reproduce the bug ``` from datasets import load_dataset # This takes a few minutes to run, so go grab a tea or coffee while you wait :) data_files = "https://mystic.the-eye.eu/public/AI/pile_preliminary_components/PUBMED_title_abstracts_2019_baseline.jsonl.zst" pubmed_dataset = load_dataset("json", data_files=data_files, split="train") pubmed_dataset ``` Result: `ConnectTimeout: HTTPSConnectionPool(host='mystic.the-eye.eu', port=443): Max retries exceeded with url: /public/AI/pile_preliminary_components/PUBMED_title_abstracts_2019_baseline.jsonl.zst (Caused by ConnectTimeoutError(, 'Connection to mystic.the-eye.eu timed out. (connect timeout=10.0)'))` And ``` from datasets import load_dataset # This takes a few minutes to run, so go grab a tea or coffee while you wait :) data_files = "https://the-eye.eu/public/AI/pile_preliminary_components/PUBMED_title_abstracts_2019_baseline.jsonl.zst" pubmed_dataset = load_dataset("json", data_files=data_files, split="train") pubmed_dataset ``` Result: `HTTPError: 404 Client Error: Not Found for URL: https://the-eye.eu/public/AI/pile_preliminary_components/PUBMED_title_abstracts_2019_baseline.jsonl.zst` ### Expected behavior Downloading as normal. ### Environment info Environment info `datasets` version: 2.9.0 Platform: Windows Python version: 3.9.13
{ "+1": 3, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 3, "url": "https://api.github.com/repos/huggingface/datasets/issues/6055/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6055/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/5875
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5875/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5875/comments
https://api.github.com/repos/huggingface/datasets/issues/5875/events
https://github.com/huggingface/datasets/issues/5875
1,716,770,394
I_kwDODunzps5mU9Za
5,875
Why split slicing doesn't behave like list slicing ?
{ "avatar_url": "https://avatars.githubusercontent.com/u/43774355?v=4", "events_url": "https://api.github.com/users/astariul/events{/privacy}", "followers_url": "https://api.github.com/users/astariul/followers", "following_url": "https://api.github.com/users/astariul/following{/other_user}", "gists_url": "https://api.github.com/users/astariul/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/astariul", "id": 43774355, "login": "astariul", "node_id": "MDQ6VXNlcjQzNzc0MzU1", "organizations_url": "https://api.github.com/users/astariul/orgs", "received_events_url": "https://api.github.com/users/astariul/received_events", "repos_url": "https://api.github.com/users/astariul/repos", "site_admin": false, "starred_url": "https://api.github.com/users/astariul/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/astariul/subscriptions", "type": "User", "url": "https://api.github.com/users/astariul" }
[ { "color": "cfd3d7", "default": true, "description": "This issue or pull request already exists", "id": 1935892865, "name": "duplicate", "node_id": "MDU6TGFiZWwxOTM1ODkyODY1", "url": "https://api.github.com/repos/huggingface/datasets/labels/duplicate" } ]
open
false
null
[]
null
[ "A duplicate of https://github.com/huggingface/datasets/issues/1774" ]
"2023-05-19T07:21:10Z"
"2023-05-23T16:02:14Z"
null
NONE
null
null
null
### Describe the bug If I want to get the first 10 samples of my dataset, I can do : ``` ds = datasets.load_dataset('mnist', split='train[:10]') ``` But if I exceed the number of samples in the dataset, an exception is raised : ``` ds = datasets.load_dataset('mnist', split='train[:999999999]') ``` > ValueError: Requested slice [:999999999] incompatible with 60000 examples. ### Steps to reproduce the bug ``` ds = datasets.load_dataset('mnist', split='train[:999999999]') ``` ### Expected behavior I would expect it to behave like python lists (no exception raised, the whole list is kept) : ``` d = list(range(1000))[:999999] print(len(d)) # > 1000 ``` ### Environment info - `datasets` version: 2.9.0 - Platform: macOS-12.6-arm64-arm-64bit - Python version: 3.9.12 - PyArrow version: 11.0.0 - Pandas version: 1.5.3
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5875/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5875/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/1581
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1581/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1581/comments
https://api.github.com/repos/huggingface/datasets/issues/1581/events
https://github.com/huggingface/datasets/issues/1581
768,320,594
MDU6SXNzdWU3NjgzMjA1OTQ=
1,581
Installing datasets and transformers in a tensorflow docker image throws Permission Error on 'import transformers'
{ "avatar_url": "https://avatars.githubusercontent.com/u/702586?v=4", "events_url": "https://api.github.com/users/eduardofv/events{/privacy}", "followers_url": "https://api.github.com/users/eduardofv/followers", "following_url": "https://api.github.com/users/eduardofv/following{/other_user}", "gists_url": "https://api.github.com/users/eduardofv/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/eduardofv", "id": 702586, "login": "eduardofv", "node_id": "MDQ6VXNlcjcwMjU4Ng==", "organizations_url": "https://api.github.com/users/eduardofv/orgs", "received_events_url": "https://api.github.com/users/eduardofv/received_events", "repos_url": "https://api.github.com/users/eduardofv/repos", "site_admin": false, "starred_url": "https://api.github.com/users/eduardofv/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/eduardofv/subscriptions", "type": "User", "url": "https://api.github.com/users/eduardofv" }
[]
closed
false
null
[]
null
[ "Thanks for reporting !\r\nYou can override the directory in which cache file are stored using for example\r\n```\r\nENV HF_HOME=\"/root/cache/hf_cache_home\"\r\n```\r\n\r\nThis way both `transformers` and `datasets` will use this directory instead of the default `.cache`", "Great, thanks. I didn't see documentation about than ENV variable, looks like an obvious solution. ", "> Thanks for reporting !\r\n> You can override the directory in which cache file are stored using for example\r\n> \r\n> ```\r\n> ENV HF_HOME=\"/root/cache/hf_cache_home\"\r\n> ```\r\n> \r\n> This way both `transformers` and `datasets` will use this directory instead of the default `.cache`\r\n\r\ncan we disable caching directly?", "Hi ! Unfortunately no since we need this directory to load datasets.\r\nWhen you load a dataset, it downloads the raw data files in the cache directory inside <cache_dir>/downloads. Then it builds the dataset and saves it as arrow data inside <cache_dir>/<dataset_name>.\r\n\r\nHowever you can specify the directory of your choice, and it can be a temporary directory if you want to clean everything up at one point.", "I'm closing this to keep issues a bit cleaner" ]
"2020-12-16T00:02:21Z"
"2021-06-17T15:40:45Z"
"2021-06-17T15:40:45Z"
NONE
null
null
null
I am using a docker container, based on latest tensorflow-gpu image, to run transformers and datasets (4.0.1 and 1.1.3 respectively - Dockerfile attached below). Importing transformers throws a Permission Error to access `/.cache`: ``` $ docker run --gpus=all --rm -it -u $(id -u):$(id -g) -v $(pwd)/data:/root/data -v $(pwd):/root -v $(pwd)/models/:/root/models -v $(pwd)/saved_models/:/root/saved_models -e "HOST_HOSTNAME=$(hostname)" hf-error:latest /bin/bash ________ _______________ ___ __/__________________________________ ____/__ /________ __ __ / _ _ \_ __ \_ ___/ __ \_ ___/_ /_ __ /_ __ \_ | /| / / _ / / __/ / / /(__ )/ /_/ / / _ __/ _ / / /_/ /_ |/ |/ / /_/ \___//_/ /_//____/ \____//_/ /_/ /_/ \____/____/|__/ You are running this container as user with ID 1000 and group 1000, which should map to the ID and group for your user on the Docker host. Great! tf-docker /root > python Python 3.6.9 (default, Oct 8 2020, 12:12:24) [GCC 8.4.0] on linux Type "help", "copyright", "credits" or "license" for more information. >>> import transformers 2020-12-15 23:53:21.165827: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudart.so.11.0 Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/usr/local/lib/python3.6/dist-packages/transformers/__init__.py", line 22, in <module> from .integrations import ( # isort:skip File "/usr/local/lib/python3.6/dist-packages/transformers/integrations.py", line 5, in <module> from .trainer_utils import EvaluationStrategy File "/usr/local/lib/python3.6/dist-packages/transformers/trainer_utils.py", line 25, in <module> from .file_utils import is_tf_available, is_torch_available, is_torch_tpu_available File "/usr/local/lib/python3.6/dist-packages/transformers/file_utils.py", line 88, in <module> import datasets # noqa: F401 File "/usr/local/lib/python3.6/dist-packages/datasets/__init__.py", line 26, in <module> from .arrow_dataset import Dataset, concatenate_datasets File "/usr/local/lib/python3.6/dist-packages/datasets/arrow_dataset.py", line 40, in <module> from .arrow_reader import ArrowReader File "/usr/local/lib/python3.6/dist-packages/datasets/arrow_reader.py", line 31, in <module> from .utils import cached_path, logging File "/usr/local/lib/python3.6/dist-packages/datasets/utils/__init__.py", line 20, in <module> from .download_manager import DownloadManager, GenerateMode File "/usr/local/lib/python3.6/dist-packages/datasets/utils/download_manager.py", line 25, in <module> from .file_utils import HF_DATASETS_CACHE, cached_path, get_from_cache, hash_url_to_filename File "/usr/local/lib/python3.6/dist-packages/datasets/utils/file_utils.py", line 118, in <module> os.makedirs(HF_MODULES_CACHE, exist_ok=True) File "/usr/lib/python3.6/os.py", line 210, in makedirs makedirs(head, mode, exist_ok) File "/usr/lib/python3.6/os.py", line 210, in makedirs makedirs(head, mode, exist_ok) File "/usr/lib/python3.6/os.py", line 220, in makedirs mkdir(name, mode) PermissionError: [Errno 13] Permission denied: '/.cache' ``` I've pinned the problem to `RUN pip install datasets`, and by commenting it you can actually import transformers correctly. Another workaround I've found is creating the directory and giving permissions to it directly on the Dockerfile. ``` FROM tensorflow/tensorflow:latest-gpu-jupyter WORKDIR /root EXPOSE 80 EXPOSE 8888 EXPOSE 6006 ENV SHELL /bin/bash ENV PATH="/root/.local/bin:${PATH}" ENV CUDA_CACHE_PATH="/root/cache/cuda" ENV CUDA_CACHE_MAXSIZE="4294967296" ENV TFHUB_CACHE_DIR="/root/cache/tfhub" RUN pip install --upgrade pip RUN apt update -y && apt upgrade -y RUN pip install transformers #Installing datasets will throw the error, try commenting and rebuilding RUN pip install datasets #Another workaround is creating the directory and give permissions explicitly #RUN mkdir /.cache #RUN chmod 777 /.cache ```
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1581/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1581/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6378
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6378/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6378/comments
https://api.github.com/repos/huggingface/datasets/issues/6378/events
https://github.com/huggingface/datasets/pull/6378
1,973,942,770
PR_kwDODunzps5eaqhv
6,378
Support pyarrow 14.0.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007561 / 0.011353 (-0.003792) | 0.004824 / 0.011008 (-0.006184) | 0.110372 / 0.038508 (0.071864) | 0.076767 / 0.023109 (0.053657) | 0.357094 / 0.275898 (0.081196) | 0.420566 / 0.323480 (0.097086) | 0.004753 / 0.007986 (-0.003232) | 0.004734 / 0.004328 (0.000405) | 0.072926 / 0.004250 (0.068675) | 0.058045 / 0.037052 (0.020992) | 0.401109 / 0.258489 (0.142620) | 0.444585 / 0.293841 (0.150744) | 0.046492 / 0.128546 (-0.082055) | 0.013948 / 0.075646 (-0.061698) | 0.305188 / 0.419271 (-0.114083) | 0.063112 / 0.043533 (0.019579) | 0.384711 / 0.255139 (0.129572) | 0.411375 / 0.283200 (0.128175) | 0.048147 / 0.141683 (-0.093536) | 1.632357 / 1.452155 (0.180202) | 1.661021 / 1.492716 (0.168304) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.281104 / 0.018006 (0.263098) | 0.567152 / 0.000490 (0.566662) | 0.007178 / 0.000200 (0.006978) | 0.000121 / 0.000054 (0.000066) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029337 / 0.037411 (-0.008075) | 0.081644 / 0.014526 (0.067118) | 0.103326 / 0.176557 (-0.073230) | 0.155299 / 0.737135 (-0.581836) | 0.093518 / 0.296338 (-0.202821) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.517979 / 0.215209 (0.302769) | 5.250052 / 2.077655 (3.172397) | 2.220543 / 1.504120 (0.716424) | 1.901087 / 1.541195 (0.359892) | 1.920564 / 1.468490 (0.452073) | 0.766289 / 4.584777 (-3.818488) | 5.130968 / 3.745712 (1.385256) | 4.561874 / 5.269862 (-0.707988) | 2.702808 / 4.565676 (-1.862868) | 0.078929 / 0.424275 (-0.345346) | 0.007834 / 0.007607 (0.000226) | 0.636628 / 0.226044 (0.410583) | 6.309391 / 2.268929 (4.040463) | 2.942180 / 55.444624 (-52.502445) | 2.369557 / 6.876477 (-4.506920) | 2.347528 / 2.142072 (0.205456) | 0.911110 / 4.805227 (-3.894117) | 0.189102 / 6.500664 (-6.311562) | 0.068012 / 0.075469 (-0.007457) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.494431 / 1.841788 (-0.347356) | 22.161476 / 8.074308 (14.087168) | 19.426403 / 10.191392 (9.235011) | 0.211154 / 0.680424 (-0.469270) | 0.030655 / 0.534201 (-0.503546) | 0.440449 / 0.579283 (-0.138834) | 0.526522 / 0.434364 (0.092158) | 0.517494 / 0.540337 (-0.022844) | 0.727387 / 1.386936 (-0.659549) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008354 / 0.011353 (-0.002999) | 0.006108 / 0.011008 (-0.004900) | 0.069079 / 0.038508 (0.030571) | 0.080402 / 0.023109 (0.057292) | 0.452166 / 0.275898 (0.176268) | 0.440264 / 0.323480 (0.116784) | 0.005942 / 0.007986 (-0.002043) | 0.003397 / 0.004328 (-0.000932) | 0.079856 / 0.004250 (0.075606) | 0.056329 / 0.037052 (0.019276) | 0.424261 / 0.258489 (0.165772) | 0.464362 / 0.293841 (0.170521) | 0.051968 / 0.128546 (-0.076578) | 0.015204 / 0.075646 (-0.060442) | 0.085940 / 0.419271 (-0.333332) | 0.066673 / 0.043533 (0.023140) | 0.436481 / 0.255139 (0.181342) | 0.445285 / 0.283200 (0.162085) | 0.035188 / 0.141683 (-0.106495) | 1.579442 / 1.452155 (0.127288) | 1.686120 / 1.492716 (0.193404) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.319039 / 0.018006 (0.301032) | 0.655080 / 0.000490 (0.654591) | 0.005445 / 0.000200 (0.005245) | 0.000112 / 0.000054 (0.000057) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028566 / 0.037411 (-0.008845) | 0.092131 / 0.014526 (0.077605) | 0.103654 / 0.176557 (-0.072902) | 0.158082 / 0.737135 (-0.579054) | 0.107520 / 0.296338 (-0.188819) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.573479 / 0.215209 (0.358270) | 5.629751 / 2.077655 (3.552096) | 2.501722 / 1.504120 (0.997602) | 2.156255 / 1.541195 (0.615061) | 2.251296 / 1.468490 (0.782805) | 0.767686 / 4.584777 (-3.817091) | 5.080866 / 3.745712 (1.335154) | 4.353351 / 5.269862 (-0.916510) | 2.818707 / 4.565676 (-1.746970) | 0.082617 / 0.424275 (-0.341658) | 0.008045 / 0.007607 (0.000438) | 0.665462 / 0.226044 (0.439417) | 6.961380 / 2.268929 (4.692452) | 3.308717 / 55.444624 (-52.135907) | 2.664239 / 6.876477 (-4.212238) | 2.782790 / 2.142072 (0.640718) | 0.919567 / 4.805227 (-3.885660) | 0.186731 / 6.500664 (-6.313933) | 0.063437 / 0.075469 (-0.012032) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.668076 / 1.841788 (-0.173712) | 22.720187 / 8.074308 (14.645879) | 19.803359 / 10.191392 (9.611967) | 0.237201 / 0.680424 (-0.443223) | 0.041156 / 0.534201 (-0.493045) | 0.458974 / 0.579283 (-0.120309) | 0.620276 / 0.434364 (0.185912) | 0.544079 / 0.540337 (0.003741) | 0.722715 / 1.386936 (-0.664221) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#1ed9306b6c512befb721b681fba3222221c8468e \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006882 / 0.011353 (-0.004471) | 0.004238 / 0.011008 (-0.006770) | 0.084042 / 0.038508 (0.045534) | 0.074175 / 0.023109 (0.051065) | 0.308771 / 0.275898 (0.032873) | 0.346300 / 0.323480 (0.022820) | 0.005455 / 0.007986 (-0.002530) | 0.003638 / 0.004328 (-0.000690) | 0.065326 / 0.004250 (0.061076) | 0.056080 / 0.037052 (0.019028) | 0.326324 / 0.258489 (0.067834) | 0.360133 / 0.293841 (0.066292) | 0.031577 / 0.128546 (-0.096969) | 0.008675 / 0.075646 (-0.066971) | 0.288051 / 0.419271 (-0.131221) | 0.052769 / 0.043533 (0.009236) | 0.308689 / 0.255139 (0.053550) | 0.328270 / 0.283200 (0.045070) | 0.025028 / 0.141683 (-0.116655) | 1.520670 / 1.452155 (0.068515) | 1.585229 / 1.492716 (0.092513) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.284078 / 0.018006 (0.266072) | 0.558134 / 0.000490 (0.557644) | 0.015042 / 0.000200 (0.014842) | 0.000429 / 0.000054 (0.000375) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028747 / 0.037411 (-0.008664) | 0.083816 / 0.014526 (0.069290) | 0.207467 / 0.176557 (0.030911) | 0.163527 / 0.737135 (-0.573608) | 0.100148 / 0.296338 (-0.196190) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.376109 / 0.215209 (0.160900) | 3.749639 / 2.077655 (1.671984) | 1.827081 / 1.504120 (0.322961) | 1.662021 / 1.541195 (0.120827) | 1.734655 / 1.468490 (0.266165) | 0.483701 / 4.584777 (-4.101075) | 3.454772 / 3.745712 (-0.290941) | 3.465079 / 5.269862 (-1.804783) | 2.070874 / 4.565676 (-2.494802) | 0.056714 / 0.424275 (-0.367561) | 0.007786 / 0.007607 (0.000179) | 0.455980 / 0.226044 (0.229936) | 4.530612 / 2.268929 (2.261683) | 2.345757 / 55.444624 (-53.098867) | 2.030289 / 6.876477 (-4.846188) | 2.068440 / 2.142072 (-0.073632) | 0.576502 / 4.805227 (-4.228725) | 0.131787 / 6.500664 (-6.368878) | 0.060038 / 0.075469 (-0.015431) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.272225 / 1.841788 (-0.569563) | 19.373635 / 8.074308 (11.299327) | 14.167831 / 10.191392 (3.976439) | 0.166336 / 0.680424 (-0.514088) | 0.018420 / 0.534201 (-0.515781) | 0.387878 / 0.579283 (-0.191405) | 0.413105 / 0.434364 (-0.021259) | 0.458618 / 0.540337 (-0.081720) | 0.639031 / 1.386936 (-0.747905) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007122 / 0.011353 (-0.004230) | 0.004193 / 0.011008 (-0.006815) | 0.066194 / 0.038508 (0.027686) | 0.077775 / 0.023109 (0.054666) | 0.349780 / 0.275898 (0.073882) | 0.383417 / 0.323480 (0.059937) | 0.006416 / 0.007986 (-0.001570) | 0.003651 / 0.004328 (-0.000677) | 0.064837 / 0.004250 (0.060587) | 0.058012 / 0.037052 (0.020959) | 0.351085 / 0.258489 (0.092596) | 0.387302 / 0.293841 (0.093462) | 0.032447 / 0.128546 (-0.096099) | 0.008636 / 0.075646 (-0.067011) | 0.071962 / 0.419271 (-0.347309) | 0.047839 / 0.043533 (0.004306) | 0.349508 / 0.255139 (0.094369) | 0.361892 / 0.283200 (0.078693) | 0.024129 / 0.141683 (-0.117554) | 1.523828 / 1.452155 (0.071673) | 1.607371 / 1.492716 (0.114655) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.245928 / 0.018006 (0.227922) | 0.567708 / 0.000490 (0.567218) | 0.003789 / 0.000200 (0.003589) | 0.000092 / 0.000054 (0.000037) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034107 / 0.037411 (-0.003304) | 0.092539 / 0.014526 (0.078014) | 0.110735 / 0.176557 (-0.065821) | 0.163251 / 0.737135 (-0.573884) | 0.110353 / 0.296338 (-0.185985) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.399992 / 0.215209 (0.184783) | 3.976526 / 2.077655 (1.898872) | 2.056182 / 1.504120 (0.552062) | 1.856624 / 1.541195 (0.315429) | 1.941540 / 1.468490 (0.473050) | 0.484662 / 4.584777 (-4.100115) | 3.548228 / 3.745712 (-0.197484) | 3.352900 / 5.269862 (-1.916962) | 2.056310 / 4.565676 (-2.509366) | 0.056952 / 0.424275 (-0.367323) | 0.007284 / 0.007607 (-0.000323) | 0.473749 / 0.226044 (0.247704) | 4.736510 / 2.268929 (2.467581) | 2.570711 / 55.444624 (-52.873913) | 2.204237 / 6.876477 (-4.672239) | 2.438512 / 2.142072 (0.296439) | 0.575542 / 4.805227 (-4.229685) | 0.129260 / 6.500664 (-6.371404) | 0.057704 / 0.075469 (-0.017765) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.316659 / 1.841788 (-0.525128) | 20.103340 / 8.074308 (12.029032) | 14.488385 / 10.191392 (4.296993) | 0.171841 / 0.680424 (-0.508583) | 0.020148 / 0.534201 (-0.514053) | 0.398456 / 0.579283 (-0.180828) | 0.443516 / 0.434364 (0.009152) | 0.479597 / 0.540337 (-0.060741) | 0.643665 / 1.386936 (-0.743271) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#370be814b0c18769ea8e699e3647fadcf431e6df \"CML watermark\")\n" ]
"2023-11-02T10:25:10Z"
"2023-11-02T15:24:28Z"
"2023-11-02T15:15:44Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6378.diff", "html_url": "https://github.com/huggingface/datasets/pull/6378", "merged_at": "2023-11-02T15:15:44Z", "patch_url": "https://github.com/huggingface/datasets/pull/6378.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6378" }
Support `pyarrow` 14.0.0. Fix #6377 and fix #6374 (root cause). This fix is analog to a previous one: - #6175
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6378/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6378/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/2587
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2587/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2587/comments
https://api.github.com/repos/huggingface/datasets/issues/2587/events
https://github.com/huggingface/datasets/pull/2587
936,771,339
MDExOlB1bGxSZXF1ZXN0NjgzNDI5NjQy
2,587
Add aiohttp to tests extras require
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[]
closed
false
null
[]
null
[]
"2021-07-05T07:14:01Z"
"2021-07-05T09:04:38Z"
"2021-07-05T09:04:38Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/2587.diff", "html_url": "https://github.com/huggingface/datasets/pull/2587", "merged_at": "2021-07-05T09:04:38Z", "patch_url": "https://github.com/huggingface/datasets/pull/2587.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/2587" }
Currently, none of the streaming tests are runned within our CI test suite, because the streaming tests require aiohttp and this is missing from our tests extras require dependencies. Our CI test suite should be exhaustive and test all the library functionalities.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2587/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2587/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/5931
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5931/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5931/comments
https://api.github.com/repos/huggingface/datasets/issues/5931/events
https://github.com/huggingface/datasets/issues/5931
1,745,408,784
I_kwDODunzps5oCNMQ
5,931
`datasets.map` not reusing cached copy by default
{ "avatar_url": "https://avatars.githubusercontent.com/u/19718818?v=4", "events_url": "https://api.github.com/users/bhavitvyamalik/events{/privacy}", "followers_url": "https://api.github.com/users/bhavitvyamalik/followers", "following_url": "https://api.github.com/users/bhavitvyamalik/following{/other_user}", "gists_url": "https://api.github.com/users/bhavitvyamalik/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/bhavitvyamalik", "id": 19718818, "login": "bhavitvyamalik", "node_id": "MDQ6VXNlcjE5NzE4ODE4", "organizations_url": "https://api.github.com/users/bhavitvyamalik/orgs", "received_events_url": "https://api.github.com/users/bhavitvyamalik/received_events", "repos_url": "https://api.github.com/users/bhavitvyamalik/repos", "site_admin": false, "starred_url": "https://api.github.com/users/bhavitvyamalik/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/bhavitvyamalik/subscriptions", "type": "User", "url": "https://api.github.com/users/bhavitvyamalik" }
[]
closed
false
null
[]
null
[ "This can happen when a map transform cannot be hashed deterministically (e.g., an object referenced by the transform changes its state after the first call - an issue with fast tokenizers). The solution is to provide `cache_file_name` in the `map` call to check this file for the cached result instead of relying on the default caching mechanism." ]
"2023-06-07T09:03:33Z"
"2023-06-21T16:15:40Z"
"2023-06-21T16:15:40Z"
CONTRIBUTOR
null
null
null
### Describe the bug When I load the dataset from local directory, it's cached copy is picked up after first time. However, for `map` operation, the operation is applied again and cached copy is not picked up. Is there any way to pick cached copy instead of processing it again? The only solution I could think of was to use `save_to_disk` after my last transform and then use that in my DataLoader pipeline. Are there any other solutions for the same? One more thing, my dataset is occupying 6GB storage memory after I use `map`, is there any way I can reduce that memory usage? ### Steps to reproduce the bug ``` # make sure that dataset decodes audio with correct sampling rate dataset_sampling_rate = next(iter(self.raw_datasets.values())).features["audio"].sampling_rate if dataset_sampling_rate != self.feature_extractor.sampling_rate: self.raw_datasets = self.raw_datasets.cast_column( "audio", datasets.features.Audio(sampling_rate=self.feature_extractor.sampling_rate) ) vectorized_datasets = self.raw_datasets.map( self.prepare_dataset, remove_columns=next(iter(self.raw_datasets.values())).column_names, num_proc=self.num_workers, desc="preprocess datasets", ) # filter data that is longer than max_input_length self.vectorized_datasets = vectorized_datasets.filter( self.is_audio_in_length_range, num_proc=self.num_workers, input_columns=["input_length"], ) def prepare_dataset(self, batch): # load audio sample = batch["audio"] inputs = self.feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"]) batch["input_values"] = inputs.input_values[0] batch["input_length"] = len(batch["input_values"]) batch["labels"] = self.tokenizer(batch["target_text"]).input_ids return batch ``` ### Expected behavior `map` to use cached copy and if possible an alternative technique to reduce memory usage after using `map` ### Environment info - `datasets` version: 2.12.0 - Platform: Linux-3.10.0-1160.71.1.el7.x86_64-x86_64-with-glibc2.17 - Python version: 3.8.16 - Huggingface_hub version: 0.15.1 - PyArrow version: 12.0.0 - Pandas version: 2.0.2
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5931/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5931/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/1048
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1048/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1048/comments
https://api.github.com/repos/huggingface/datasets/issues/1048/events
https://github.com/huggingface/datasets/pull/1048
756,133,072
MDExOlB1bGxSZXF1ZXN0NTMxNzI3MDA0
1,048
Adding NCHLT dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/204321?v=4", "events_url": "https://api.github.com/users/Narsil/events{/privacy}", "followers_url": "https://api.github.com/users/Narsil/followers", "following_url": "https://api.github.com/users/Narsil/following{/other_user}", "gists_url": "https://api.github.com/users/Narsil/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Narsil", "id": 204321, "login": "Narsil", "node_id": "MDQ6VXNlcjIwNDMyMQ==", "organizations_url": "https://api.github.com/users/Narsil/orgs", "received_events_url": "https://api.github.com/users/Narsil/received_events", "repos_url": "https://api.github.com/users/Narsil/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Narsil/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Narsil/subscriptions", "type": "User", "url": "https://api.github.com/users/Narsil" }
[]
closed
false
null
[]
null
[ "merging since the CI is fixed on master" ]
"2020-12-03T11:59:25Z"
"2020-12-04T13:29:57Z"
"2020-12-04T13:29:57Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/1048.diff", "html_url": "https://github.com/huggingface/datasets/pull/1048", "merged_at": "2020-12-04T13:29:56Z", "patch_url": "https://github.com/huggingface/datasets/pull/1048.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/1048" }
https://repo.sadilar.org/handle/20.500.12185/7/discover?filtertype_0=database&filtertype_1=title&filter_relational_operator_1=contains&filter_relational_operator_0=equals&filter_1=&filter_0=Monolingual+Text+Corpora%3A+Annotated&filtertype=project&filter_relational_operator=equals&filter=NCHLT+Text+II
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1048/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1048/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/4255
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4255/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4255/comments
https://api.github.com/repos/huggingface/datasets/issues/4255/events
https://github.com/huggingface/datasets/pull/4255
1,221,142,899
PR_kwDODunzps43FHgR
4,255
No google drive URL for pubmed_qa
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "CI is failing because some sections are missing in the dataset card, but this is unrelated to this PR - Merging !" ]
"2022-04-29T15:55:46Z"
"2022-04-29T16:24:55Z"
"2022-04-29T16:18:56Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/4255.diff", "html_url": "https://github.com/huggingface/datasets/pull/4255", "merged_at": "2022-04-29T16:18:56Z", "patch_url": "https://github.com/huggingface/datasets/pull/4255.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4255" }
I hosted the data files in https://huggingface.co/datasets/pubmed_qa. This is allowed because the data is under the MIT license. cc @stas00
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4255/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4255/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/5930
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5930/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5930/comments
https://api.github.com/repos/huggingface/datasets/issues/5930/events
https://github.com/huggingface/datasets/issues/5930
1,745,184,395
I_kwDODunzps5oBWaL
5,930
loading private custom dataset script - authentication error
{ "avatar_url": "https://avatars.githubusercontent.com/u/103381497?v=4", "events_url": "https://api.github.com/users/flckv/events{/privacy}", "followers_url": "https://api.github.com/users/flckv/followers", "following_url": "https://api.github.com/users/flckv/following{/other_user}", "gists_url": "https://api.github.com/users/flckv/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/flckv", "id": 103381497, "login": "flckv", "node_id": "U_kgDOBil5-Q", "organizations_url": "https://api.github.com/users/flckv/orgs", "received_events_url": "https://api.github.com/users/flckv/received_events", "repos_url": "https://api.github.com/users/flckv/repos", "site_admin": false, "starred_url": "https://api.github.com/users/flckv/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/flckv/subscriptions", "type": "User", "url": "https://api.github.com/users/flckv" }
[]
closed
false
null
[]
null
[ "This issue seems to have been resolved, so I'm closing it." ]
"2023-06-07T06:58:23Z"
"2023-06-15T14:49:21Z"
"2023-06-15T14:49:20Z"
NONE
null
null
null
### Describe the bug Train model with my custom dataset stored in HuggingFace and loaded with the loading script requires authentication but I am not sure how ? I am logged in in the terminal, in the browser. I receive this error: /python3.8/site-packages/datasets/utils/file_utils.py", line 566, in get_from_cache raise ConnectionError(f"Couldn't reach {url} ({repr(head_error)})") ConnectionError: Couldn't reach https://huggingface.co/datasets/fkov/s/blob/main/data/s/train/labels `(ConnectionError('Unauthorized for URL `https://huggingface.co/datasets/fkov/s/blob/main/data/s/train/labels. Please use the parameter `**`use_auth_token=True`**` after logging in with `**`huggingface-cli login`**`')) when I added: `use_auth_token=True` and logged in via terminal then I received error: or the same error in different format: raise ConnectionError(f"`Couldn't reach {url} (error {response.status_code}`)") ConnectionError: Couldn't reach https://huggingface.co/datasets/fkov/s/blob/main/data/s/train/labels (`error 401`) ### Steps to reproduce the bug 1. cloned transformers library locally: https://huggingface.co/docs/transformers/v4.15.0/examples : > git clone https://github.com/huggingface/transformers > cd transformers > pip install . > cd /transformers/examples/pytorch/audio-classification > pip install -r requirements.txt 2. created **loading script** > https://huggingface.co/docs/datasets/dataset_script added next to dataset: 3. uploaded **private custom dataset** with loading script to HuggingFace > https://huggingface.co/docs/datasets/dataset_script 4. added dataset loading script to **local directory** in the above cloned transformers library: > cd /transformers/examples/pytorch/audio-classification 5. logged in to HuggingFace on local terminal with : > **huggingface-cli login** 6. run the model with the custom dataset stored on HuggingFace with code: https://github.com/huggingface/transformers/blob/main/examples/pytorch/audio-classification/README.md cd /transformers/examples/pytorch/audio-classification > python run_audio_classification.py \ > --model_name_or_path facebook/wav2vec2-base \ > --output_dir l/users/flck/outputs/wav2vec2-base-s \ > --overwrite_output_dir \ > --dataset_name s \ > --dataset_config_name s \ > --remove_unused_columns False \ > --do_train \ > --do_eval \ > --fp16 \ > --learning_rate 3e-5 \ > --max_length_seconds 1 \ > --attention_mask False \ > --warmup_ratio 0.1 \ > --num_train_epochs 5 \ > --per_device_train_batch_size 32 \ > --gradient_accumulation_steps 4 \ > --per_device_eval_batch_size 32 \ > --dataloader_num_workers 4 \ > --logging_strategy steps \ > --logging_steps 10 \ > --evaluation_strategy epoch \ > --save_strategy epoch \ > --load_best_model_at_end True \ > --metric_for_best_model accuracy \ > --save_total_limit 3 \ > --seed 0 \ > --push_to_hub \ > **--use_auth_token=True** ### Expected behavior Be able to train a model the https://github.com/huggingface/transformers/blob/main/examples/pytorch/audio-classification/ run_audio_classification.py with private custom dataset stored on HuggingFace. ### Environment info - datasets version: 2.12.0 - `transformers` version: 4.30.0.dev0 - Platform: Linux-5.4.204-ql-generic-12.0-19-x86_64-with-glibc2.17 - Python version: 3.8.12 - Huggingface_hub version: 0.15.1 - Safetensors version: 0.3.1 - PyTorch version (GPU?): 2.0.1+cu117 (True) Versions of relevant libraries: [pip3] numpy==1.24.3 [pip3] torch==2.0.1 [pip3] torchaudio==2.0.2 [conda] numpy 1.24.3 pypi_0 pypi [conda] torch 2.0.1 pypi_0 pypi [conda] torchaudio 2.0.2 pypi_0 pypi
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5930/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5930/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/3681
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3681/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3681/comments
https://api.github.com/repos/huggingface/datasets/issues/3681/events
https://github.com/huggingface/datasets/pull/3681
1,124,237,458
PR_kwDODunzps4yFcpM
3,681
Fix TestCommand to move dataset_infos instead of copying
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[]
closed
false
null
[]
null
[ "All the datasets that are loaded normally with `load_dataset`, if `dataset_infos.json` exists, have this file in the importable directory. So it's fine if we copy the file instead of moving it but it's not a big deal.\r\n\r\nAny reason to prefer moving it rather than copying it ?", "@lvwerra reported than when generating the `dataset_infos.json` for multiple dataset directories containing only JSONL files, subsequent `dataset_infos.json` files contained all previous directories as configs:\r\n- First generate metadata for dataset in dir `dir1`: dataset_infos.json contains one config for `dir1`\r\n- Then generate metadata for dataset in dir `dir2`: dataset_infos.json contains 2 configs, for `dir1` and `dir2`\r\n\r\nThe reason is that all dataset_infos.json files are first created in the same dir (the one containing the json builder) and then **copied** to the user dir.\r\n\r\nSubsequent calls of TestCommand don't replace the dataset_infos.json already present in the dir of the json builder, but append to it.\r\n\r\nMAYBE: we should just move for this use case, and copy for the other use cases? See this use case here:\r\n- #3680", "@lhoestq aren't you mentioning the case in the else clause?\r\n```python\r\nelse: # in case of a remote dataset\r\n dataset_dir = None\r\n```\r\n\r\nIn that case `dataset_infos.json` is not copied: `dataset_dir = None`", "When using the JSON loader, calling `get_imported_module_dir()` returns a path inside the pip installed packages, so we shouldn't write files in it anyway, and the dataset_infos.json file should be written directly in the user's directory instead (some users don't have write access to the pip installed packages for example).\r\n\r\nMaybe the packaged modules like `json` should override `_save_infos` to save them in the user's directory instead of next to the builder's script. What do you think ?", "Anyway as a hotfix we can just add an exception for the `json` builder for now, if the issue has to be fixed soon", "I'm closing this PR." ]
"2022-02-04T14:01:52Z"
"2023-09-24T10:00:11Z"
"2023-09-24T09:59:55Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/3681.diff", "html_url": "https://github.com/huggingface/datasets/pull/3681", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/3681.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/3681" }
Why do we copy instead of moving the file? CC: @lhoestq @lvwerra
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3681/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3681/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/3755
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3755/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3755/comments
https://api.github.com/repos/huggingface/datasets/issues/3755/events
https://github.com/huggingface/datasets/issues/3755
1,143,032,961
I_kwDODunzps5EIUyB
3,755
Cannot preview dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/2518789?v=4", "events_url": "https://api.github.com/users/frascuchon/events{/privacy}", "followers_url": "https://api.github.com/users/frascuchon/followers", "following_url": "https://api.github.com/users/frascuchon/following{/other_user}", "gists_url": "https://api.github.com/users/frascuchon/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/frascuchon", "id": 2518789, "login": "frascuchon", "node_id": "MDQ6VXNlcjI1MTg3ODk=", "organizations_url": "https://api.github.com/users/frascuchon/orgs", "received_events_url": "https://api.github.com/users/frascuchon/received_events", "repos_url": "https://api.github.com/users/frascuchon/repos", "site_admin": false, "starred_url": "https://api.github.com/users/frascuchon/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/frascuchon/subscriptions", "type": "User", "url": "https://api.github.com/users/frascuchon" }
[ { "color": "E5583E", "default": false, "description": "Related to the dataset viewer on huggingface.co", "id": 3470211881, "name": "dataset-viewer", "node_id": "LA_kwDODunzps7O1zsp", "url": "https://api.github.com/repos/huggingface/datasets/labels/dataset-viewer" } ]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/1676121?v=4", "events_url": "https://api.github.com/users/severo/events{/privacy}", "followers_url": "https://api.github.com/users/severo/followers", "following_url": "https://api.github.com/users/severo/following{/other_user}", "gists_url": "https://api.github.com/users/severo/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/severo", "id": 1676121, "login": "severo", "node_id": "MDQ6VXNlcjE2NzYxMjE=", "organizations_url": "https://api.github.com/users/severo/orgs", "received_events_url": "https://api.github.com/users/severo/received_events", "repos_url": "https://api.github.com/users/severo/repos", "site_admin": false, "starred_url": "https://api.github.com/users/severo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/severo/subscriptions", "type": "User", "url": "https://api.github.com/users/severo" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/1676121?v=4", "events_url": "https://api.github.com/users/severo/events{/privacy}", "followers_url": "https://api.github.com/users/severo/followers", "following_url": "https://api.github.com/users/severo/following{/other_user}", "gists_url": "https://api.github.com/users/severo/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/severo", "id": 1676121, "login": "severo", "node_id": "MDQ6VXNlcjE2NzYxMjE=", "organizations_url": "https://api.github.com/users/severo/orgs", "received_events_url": "https://api.github.com/users/severo/received_events", "repos_url": "https://api.github.com/users/severo/repos", "site_admin": false, "starred_url": "https://api.github.com/users/severo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/severo/subscriptions", "type": "User", "url": "https://api.github.com/users/severo" } ]
null
[ "Thanks for reporting. The dataset viewer depends on some backend treatments, and for now, they might take some hours to get processed. We're working on improving it.", "It has finally been processed. Thanks for the patience.", "Thanks for the info @severo !" ]
"2022-02-18T13:06:45Z"
"2022-02-19T14:30:28Z"
"2022-02-18T15:41:33Z"
NONE
null
null
null
## Dataset viewer issue for '*rubrix/news*' **Link:https://huggingface.co/datasets/rubrix/news** *link to the dataset viewer page* Cannot see the dataset preview: ``` Status code: 400 Exception: Status400Error Message: Not found. Cache is waiting to be refreshed. ``` Am I the one who added this dataset ? No
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3755/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3755/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/1129
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1129/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1129/comments
https://api.github.com/repos/huggingface/datasets/issues/1129/events
https://github.com/huggingface/datasets/pull/1129
757,255,492
MDExOlB1bGxSZXF1ZXN0NTMyNjYxNzM2
1,129
Adding initial version of cord-19 dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/5583410?v=4", "events_url": "https://api.github.com/users/ggdupont/events{/privacy}", "followers_url": "https://api.github.com/users/ggdupont/followers", "following_url": "https://api.github.com/users/ggdupont/following{/other_user}", "gists_url": "https://api.github.com/users/ggdupont/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/ggdupont", "id": 5583410, "login": "ggdupont", "node_id": "MDQ6VXNlcjU1ODM0MTA=", "organizations_url": "https://api.github.com/users/ggdupont/orgs", "received_events_url": "https://api.github.com/users/ggdupont/received_events", "repos_url": "https://api.github.com/users/ggdupont/repos", "site_admin": false, "starred_url": "https://api.github.com/users/ggdupont/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ggdupont/subscriptions", "type": "User", "url": "https://api.github.com/users/ggdupont" }
[]
closed
false
null
[]
null
[ "Hi @ggdupont !\r\nHave you had a chance to take a look at my suggestions ?\r\nFeel free to ping me if you have questions or when you're ready for a review", "> Hi @ggdupont !\r\n> Have you had a chance to take a look at my suggestions ?\r\n> Feel free to ping me if you have questions or when you're ready for a review\r\n\r\nYes I did, just busy period (and no time on weekend right now ;-) )", "With some delay, reduced the dummy data and had t rebase", "Thanks !\r\n\r\nIt looks like the rebase messed up the github diff for this PR (2.000+ files changed)\r\nCould you create another branch and another PR please ?", "Cleaned PR: https://github.com/huggingface/datasets/pull/1850" ]
"2020-12-04T17:03:17Z"
"2021-02-09T10:22:35Z"
"2021-02-09T10:18:06Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/1129.diff", "html_url": "https://github.com/huggingface/datasets/pull/1129", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/1129.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/1129" }
Initial version only reading the metadata in CSV. ### Checklist: - [x] Create the dataset script /datasets/my_dataset/my_dataset.py using the template - [x] Fill the _DESCRIPTION and _CITATION variables - [x] Implement _infos(), _split_generators() and _generate_examples() - [x] Make sure that the BUILDER_CONFIGS class attribute is filled with the different configurations of the dataset and that the BUILDER_CONFIG_CLASS is specified if there is a custom config class. - [x] Generate the metadata file dataset_infos.json for all configurations - [x] Generate the dummy data dummy_data.zip files to have the dataset script tested and that they don't weigh too much (<50KB) - [x] Add the dataset card README.md using the template and at least fill the tags - [x] Both tests for the real data and the dummy data pass. ### TODO: - [x] add more metadata - [x] add full text - [x] add pre-computed document embedding
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1129/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1129/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/898
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/898/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/898/comments
https://api.github.com/repos/huggingface/datasets/issues/898/events
https://github.com/huggingface/datasets/pull/898
752,148,284
MDExOlB1bGxSZXF1ZXN0NTI4NTI4MDY1
898
Adding SQA dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/7353373?v=4", "events_url": "https://api.github.com/users/thomwolf/events{/privacy}", "followers_url": "https://api.github.com/users/thomwolf/followers", "following_url": "https://api.github.com/users/thomwolf/following{/other_user}", "gists_url": "https://api.github.com/users/thomwolf/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/thomwolf", "id": 7353373, "login": "thomwolf", "node_id": "MDQ6VXNlcjczNTMzNzM=", "organizations_url": "https://api.github.com/users/thomwolf/orgs", "received_events_url": "https://api.github.com/users/thomwolf/received_events", "repos_url": "https://api.github.com/users/thomwolf/repos", "site_admin": false, "starred_url": "https://api.github.com/users/thomwolf/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/thomwolf/subscriptions", "type": "User", "url": "https://api.github.com/users/thomwolf" }
[]
closed
false
null
[]
null
[ "This dataset seems to have around 1000 configs. Therefore when creating the dummy data we end up with hundreds of MB of dummy data which we don't want to add in the repo.\r\nLet's make this PR on hold for now and find a solution after the sprint of next week", "Closing in favor of #1566 " ]
"2020-11-27T10:29:18Z"
"2020-12-15T12:54:40Z"
"2020-12-15T12:54:19Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/898.diff", "html_url": "https://github.com/huggingface/datasets/pull/898", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/898.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/898" }
As discussed in #880 Seems like automatic dummy-data generation doesn't work if the builder is a `ArrowBasedBuilder`, do you think you could take a look @lhoestq ?
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/898/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/898/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/3105
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3105/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3105/comments
https://api.github.com/repos/huggingface/datasets/issues/3105/events
https://github.com/huggingface/datasets/issues/3105
1,029,098,843
I_kwDODunzps49Vs1b
3,105
download_mode=`force_redownload` does not work on removed datasets
{ "avatar_url": "https://avatars.githubusercontent.com/u/1676121?v=4", "events_url": "https://api.github.com/users/severo/events{/privacy}", "followers_url": "https://api.github.com/users/severo/followers", "following_url": "https://api.github.com/users/severo/following{/other_user}", "gists_url": "https://api.github.com/users/severo/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/severo", "id": 1676121, "login": "severo", "node_id": "MDQ6VXNlcjE2NzYxMjE=", "organizations_url": "https://api.github.com/users/severo/orgs", "received_events_url": "https://api.github.com/users/severo/received_events", "repos_url": "https://api.github.com/users/severo/repos", "site_admin": false, "starred_url": "https://api.github.com/users/severo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/severo/subscriptions", "type": "User", "url": "https://api.github.com/users/severo" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" }, { "color": "E5583E", "default": false, "description": "Related to the dataset viewer on huggingface.co", "id": 3470211881, "name": "dataset-viewer", "node_id": "LA_kwDODunzps7O1zsp", "url": "https://api.github.com/repos/huggingface/datasets/labels/dataset-viewer" } ]
open
false
null
[]
null
[]
"2021-10-18T13:12:38Z"
"2021-10-22T09:36:10Z"
null
CONTRIBUTOR
null
null
null
## Describe the bug If a cached dataset is removed from the library, I don't see how to delete it programmatically. I thought that using `force_redownload` would try to refresh the cache, then raise an exception, but it reuses the cache instead. ## Steps to reproduce the bug _requires to already have `wit` in the cache_: see https://github.com/huggingface/datasets/pull/2981 ```python import datasets as ds dataset = ds.load_dataset("wit", split="train", download_mode='force_redownload') ``` ## Expected results It should raise an exception, since the dataset does not exist anymore. ## Actual results It uses the cached result ``` Using the latest cached version of the module from /home/slesage/.cache/huggingface/modules/datasets_modules/datasets/wit/107afbffd48e058b19101bddc47fbee25fa68eb6d50a733e262875f1285a5171 (last modified on Wed Sep 29 08:21:10 2021) since it couldn't be found locally at wit, or remotely on the Hugging Face Hub. ``` ## Environment info - `datasets` version: 1.13.4.dev0 - Platform: Linux-5.11.0-1019-aws-x86_64-with-glibc2.31 - Python version: 3.9.6 - PyArrow version: 4.0.1
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3105/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3105/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/3632
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3632/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3632/comments
https://api.github.com/repos/huggingface/datasets/issues/3632/events
https://github.com/huggingface/datasets/issues/3632
1,115,027,185
I_kwDODunzps5Cdfbx
3,632
Adding CC-100: Monolingual Datasets from Web Crawl Data (Datasets links are invalid)
{ "avatar_url": "https://avatars.githubusercontent.com/u/55232459?v=4", "events_url": "https://api.github.com/users/AnzorGozalishvili/events{/privacy}", "followers_url": "https://api.github.com/users/AnzorGozalishvili/followers", "following_url": "https://api.github.com/users/AnzorGozalishvili/following{/other_user}", "gists_url": "https://api.github.com/users/AnzorGozalishvili/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/AnzorGozalishvili", "id": 55232459, "login": "AnzorGozalishvili", "node_id": "MDQ6VXNlcjU1MjMyNDU5", "organizations_url": "https://api.github.com/users/AnzorGozalishvili/orgs", "received_events_url": "https://api.github.com/users/AnzorGozalishvili/received_events", "repos_url": "https://api.github.com/users/AnzorGozalishvili/repos", "site_admin": false, "starred_url": "https://api.github.com/users/AnzorGozalishvili/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/AnzorGozalishvili/subscriptions", "type": "User", "url": "https://api.github.com/users/AnzorGozalishvili" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" } ]
null
[ "Hi @AnzorGozalishvili,\r\n\r\nMaybe their site was temporarily down, but it seems to work fine now.\r\n\r\nCould you please try again and confirm if the problem persists? ", "Hi @albertvillanova \r\nI checked and it works. \r\nIt seems that it was really temporarily down.\r\nThanks!" ]
"2022-01-26T13:35:37Z"
"2022-02-10T06:58:11Z"
"2022-02-10T06:58:11Z"
CONTRIBUTOR
null
null
null
## Describe the bug The dataset links are no longer valid for CC-100. It seems that the website which was keeping these files are no longer accessible and therefore this dataset became unusable. Check out the dataset [homepage](http://data.statmt.org/cc-100/) which isn't accessible. Also the URLs for dataset file per language isn't accessible: http://data.statmt.org/cc-100/<language code here>.txt.xz (language codes: am, sr, ka, etc.) ## Steps to reproduce the bug ```python from datasets import load_dataset dataset = load_dataset("cc100", "ka") ``` It throws 503 error. ## Expected results It should successfully download and load dataset but it throws an exception because the dataset files are no longer accessible. ## Environment info Run from google colab. Just installed the library using pip: ```!pip install -U datasets```
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3632/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3632/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/3176
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3176/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3176/comments
https://api.github.com/repos/huggingface/datasets/issues/3176/events
https://github.com/huggingface/datasets/pull/3176
1,039,068,312
PR_kwDODunzps4t00xS
3,176
OpenSLR dataset: update generate_examples to properly extract data for SLR83
{ "avatar_url": "https://avatars.githubusercontent.com/u/4561309?v=4", "events_url": "https://api.github.com/users/tyrius02/events{/privacy}", "followers_url": "https://api.github.com/users/tyrius02/followers", "following_url": "https://api.github.com/users/tyrius02/following{/other_user}", "gists_url": "https://api.github.com/users/tyrius02/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/tyrius02", "id": 4561309, "login": "tyrius02", "node_id": "MDQ6VXNlcjQ1NjEzMDk=", "organizations_url": "https://api.github.com/users/tyrius02/orgs", "received_events_url": "https://api.github.com/users/tyrius02/received_events", "repos_url": "https://api.github.com/users/tyrius02/repos", "site_admin": false, "starred_url": "https://api.github.com/users/tyrius02/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tyrius02/subscriptions", "type": "User", "url": "https://api.github.com/users/tyrius02" }
[]
closed
false
null
[]
null
[ "Also fix #3125." ]
"2021-10-29T00:59:27Z"
"2021-11-04T16:20:45Z"
"2021-10-29T10:04:09Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/3176.diff", "html_url": "https://github.com/huggingface/datasets/pull/3176", "merged_at": "2021-10-29T10:04:09Z", "patch_url": "https://github.com/huggingface/datasets/pull/3176.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/3176" }
Fixed #3168. The SLR38 indices are CSV files and there wasn't any code in openslr.py to process these files properly. The end result was an empty table. I've added code to properly process these CSV files.
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/3176/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3176/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6073
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6073/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6073/comments
https://api.github.com/repos/huggingface/datasets/issues/6073/events
https://github.com/huggingface/datasets/issues/6073
1,822,167,804
I_kwDODunzps5snBL8
6,073
version2.3.2 load_dataset()data_files can't include .xxxx in path
{ "avatar_url": "https://avatars.githubusercontent.com/u/45893496?v=4", "events_url": "https://api.github.com/users/BUAAChuanWang/events{/privacy}", "followers_url": "https://api.github.com/users/BUAAChuanWang/followers", "following_url": "https://api.github.com/users/BUAAChuanWang/following{/other_user}", "gists_url": "https://api.github.com/users/BUAAChuanWang/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/BUAAChuanWang", "id": 45893496, "login": "BUAAChuanWang", "node_id": "MDQ6VXNlcjQ1ODkzNDk2", "organizations_url": "https://api.github.com/users/BUAAChuanWang/orgs", "received_events_url": "https://api.github.com/users/BUAAChuanWang/received_events", "repos_url": "https://api.github.com/users/BUAAChuanWang/repos", "site_admin": false, "starred_url": "https://api.github.com/users/BUAAChuanWang/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/BUAAChuanWang/subscriptions", "type": "User", "url": "https://api.github.com/users/BUAAChuanWang" }
[]
closed
false
null
[]
null
[ "Version 2.3.2 is over one year old, so please use the latest release (2.14.0) to get the expected behavior. Version 2.3.2 does not contain some fixes we made to fix resolving hidden files/directories (starting with a dot)." ]
"2023-07-26T11:09:31Z"
"2023-08-29T15:53:59Z"
"2023-08-29T15:53:59Z"
NONE
null
null
null
### Describe the bug First, I cd workdir. Then, I just use load_dataset("json", data_file={"train":"/a/b/c/.d/train/train.json", "test":"/a/b/c/.d/train/test.json"}) that couldn't work and <FileNotFoundError: Unable to find '/a/b/c/.d/train/train.jsonl' at /a/b/c/.d/> And I debug, it is fine in version2.1.2 So there maybe a bug in path join. Here is the whole bug report: /x/datasets/loa │ │ d.py:1656 in load_dataset │ │ │ │ 1653 │ ignore_verifications = ignore_verifications or save_infos │ │ 1654 │ │ │ 1655 │ # Create a dataset builder │ │ ❱ 1656 │ builder_instance = load_dataset_builder( │ │ 1657 │ │ path=path, │ │ 1658 │ │ name=name, │ │ 1659 │ │ data_dir=data_dir, │ │ │ │ x/datasets/loa │ │ d.py:1439 in load_dataset_builder │ │ │ │ 1436 │ if use_auth_token is not None: │ │ 1437 │ │ download_config = download_config.copy() if download_config e │ │ 1438 │ │ download_config.use_auth_token = use_auth_token │ │ ❱ 1439 │ dataset_module = dataset_module_factory( │ │ 1440 │ │ path, │ │ 1441 │ │ revision=revision, │ │ 1442 │ │ download_config=download_config, │ │ │ │ x/datasets/loa │ │ d.py:1097 in dataset_module_factory │ │ │ │ 1094 │ │ │ 1095 │ # Try packaged │ │ 1096 │ if path in _PACKAGED_DATASETS_MODULES: │ │ ❱ 1097 │ │ return PackagedDatasetModuleFactory( │ │ 1098 │ │ │ path, │ │ 1099 │ │ │ data_dir=data_dir, │ │ 1100 │ │ │ data_files=data_files, │ │ │ │x/datasets/loa │ │ d.py:743 in get_module │ │ │ │ 740 │ │ │ if self.data_dir is not None │ │ 741 │ │ │ else get_patterns_locally(str(Path().resolve())) │ │ 742 │ │ ) │ │ ❱ 743 │ │ data_files = DataFilesDict.from_local_or_remote( │ │ 744 │ │ │ patterns, │ │ 745 │ │ │ use_auth_token=self.download_config.use_auth_token, │ │ 746 │ │ │ base_path=str(Path(self.data_dir).resolve()) if self.data │ │ │ │ x/datasets/dat │ │ a_files.py:590 in from_local_or_remote │ │ │ │ 587 │ │ out = cls() │ │ 588 │ │ for key, patterns_for_key in patterns.items(): │ │ 589 │ │ │ out[key] = ( │ │ ❱ 590 │ │ │ │ DataFilesList.from_local_or_remote( │ │ 591 │ │ │ │ │ patterns_for_key, │ │ 592 │ │ │ │ │ base_path=base_path, │ │ 593 │ │ │ │ │ allowed_extensions=allowed_extensions, │ │ │ │ /x/datasets/dat │ │ a_files.py:558 in from_local_or_remote │ │ │ │ 555 │ │ use_auth_token: Optional[Union[bool, str]] = None, │ │ 556 │ ) -> "DataFilesList": │ │ 557 │ │ base_path = base_path if base_path is not None else str(Path() │ │ ❱ 558 │ │ data_files = resolve_patterns_locally_or_by_urls(base_path, pa │ │ 559 │ │ origin_metadata = _get_origin_metadata_locally_or_by_urls(data │ │ 560 │ │ return cls(data_files, origin_metadata) │ │ 561 │ │ │ │ /x/datasets/dat │ │ a_files.py:195 in resolve_patterns_locally_or_by_urls │ │ │ │ 192 │ │ if is_remote_url(pattern): │ │ 193 │ │ │ data_files.append(Url(pattern)) │ │ 194 │ │ else: │ │ ❱ 195 │ │ │ for path in _resolve_single_pattern_locally(base_path, pat │ │ 196 │ │ │ │ data_files.append(path) │ │ 197 │ │ │ 198 │ if not data_files: │ │ │ │ /x/datasets/dat │ │ a_files.py:145 in _resolve_single_pattern_locally │ │ │ │ 142 │ │ error_msg = f"Unable to find '{pattern}' at {Path(base_path).r │ │ 143 │ │ if allowed_extensions is not None: │ │ 144 │ │ │ error_msg += f" with any supported extension {list(allowed │ │ ❱ 145 │ │ raise FileNotFoundError(error_msg) │ │ 146 │ return sorted(out) │ │ 147 ### Steps to reproduce the bug 1. Version=2.3.2 2. In shell, cd workdir.(cd /a/b/c/.d/) 3. load_dataset("json", data_file={"train":"/a/b/c/.d/train/train.json", "test":"/a/b/c/.d/train/test.json"}) ### Expected behavior fix it please~ ### Environment info 2.3.2
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6073/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6073/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/5245
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5245/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5245/comments
https://api.github.com/repos/huggingface/datasets/issues/5245/events
https://github.com/huggingface/datasets/issues/5245
1,450,376,433
I_kwDODunzps5Wcvzx
5,245
Unable to rename columns in streaming dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/9079808?v=4", "events_url": "https://api.github.com/users/peregilk/events{/privacy}", "followers_url": "https://api.github.com/users/peregilk/followers", "following_url": "https://api.github.com/users/peregilk/following{/other_user}", "gists_url": "https://api.github.com/users/peregilk/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/peregilk", "id": 9079808, "login": "peregilk", "node_id": "MDQ6VXNlcjkwNzk4MDg=", "organizations_url": "https://api.github.com/users/peregilk/orgs", "received_events_url": "https://api.github.com/users/peregilk/received_events", "repos_url": "https://api.github.com/users/peregilk/repos", "site_admin": false, "starred_url": "https://api.github.com/users/peregilk/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/peregilk/subscriptions", "type": "User", "url": "https://api.github.com/users/peregilk" }
[]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/36760800?v=4", "events_url": "https://api.github.com/users/alvarobartt/events{/privacy}", "followers_url": "https://api.github.com/users/alvarobartt/followers", "following_url": "https://api.github.com/users/alvarobartt/following{/other_user}", "gists_url": "https://api.github.com/users/alvarobartt/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/alvarobartt", "id": 36760800, "login": "alvarobartt", "node_id": "MDQ6VXNlcjM2NzYwODAw", "organizations_url": "https://api.github.com/users/alvarobartt/orgs", "received_events_url": "https://api.github.com/users/alvarobartt/received_events", "repos_url": "https://api.github.com/users/alvarobartt/repos", "site_admin": false, "starred_url": "https://api.github.com/users/alvarobartt/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/alvarobartt/subscriptions", "type": "User", "url": "https://api.github.com/users/alvarobartt" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/36760800?v=4", "events_url": "https://api.github.com/users/alvarobartt/events{/privacy}", "followers_url": "https://api.github.com/users/alvarobartt/followers", "following_url": "https://api.github.com/users/alvarobartt/following{/other_user}", "gists_url": "https://api.github.com/users/alvarobartt/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/alvarobartt", "id": 36760800, "login": "alvarobartt", "node_id": "MDQ6VXNlcjM2NzYwODAw", "organizations_url": "https://api.github.com/users/alvarobartt/orgs", "received_events_url": "https://api.github.com/users/alvarobartt/received_events", "repos_url": "https://api.github.com/users/alvarobartt/repos", "site_admin": false, "starred_url": "https://api.github.com/users/alvarobartt/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/alvarobartt/subscriptions", "type": "User", "url": "https://api.github.com/users/alvarobartt" } ]
null
[ "Hi @peregilk this bug is directly related to https://github.com/huggingface/datasets/issues/3888, and still not fixed... But I'll try to have a look!", "Thanks @alvarobartt. It is great if you are able to fix it, but when reading the explanation it seems like it is possible to work around it.\r\n\r\nWe also tried keeping the 'info.features' and then adding a modified version back after the remove/rename. Unforutunately that leads to a dataset that is not possible to iterate over.", "So if you iterate over the `IterableDataset` as `next(iter(ds))` and then run `rename_columns` when checking that data it will work, but in the end, it's just renaming the column one example/batch at a time, not renaming the column name for all the entries in the dataset, which is the ideal.", "@alvarobartt Thanks. My use case was that I wanted to do multiple things, ie removing all unnecessary columns, renaming some valid columns, and then using cast (in my case checking if the audio is not 16K and casting it). It is just convenient to look into the info.features between each of these operations. Alternatively, I will just plan ahead...;) To me it seems like all the operations are working.\r\n\r\nThanks for the advice. It was very useful.", "If we know the features before renaming, then we know the features after renaming, so we can pass the new features to the returned dataset in `rename_column` indeed ! If anyone is interested in contributing, feel free to open a PR and I'd be happy to help / give some pointers :)", "Sure @lhoestq thanks! I’ll try to work on that", "#self-assign" ]
"2022-11-15T21:04:41Z"
"2022-11-28T12:53:24Z"
"2022-11-28T12:53:24Z"
NONE
null
null
null
### Describe the bug Trying to rename column in a streaming datasets, destroys the features object. ### Steps to reproduce the bug The following code illustrates the error: ``` from datasets import load_dataset dataset = load_dataset('mc4', 'en', streaming=True, split='train') dataset.info.features # {'text': Value(dtype='string', id=None), 'timestamp': Value(dtype='string', id=None), 'url': Value(dtype='string', id=None)} dataset = dataset.rename_column("text", "content") dataset.info.features # This returned object is now None! ``` ### Expected behavior This should just alter the renamed column. ### Environment info datasets 2.6.1
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5245/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5245/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/5739
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5739/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5739/comments
https://api.github.com/repos/huggingface/datasets/issues/5739/events
https://github.com/huggingface/datasets/issues/5739
1,663,762,901
I_kwDODunzps5jKwHV
5,739
weird result during dataset split when data path starts with `/data`
{ "avatar_url": "https://avatars.githubusercontent.com/u/1772912?v=4", "events_url": "https://api.github.com/users/ericxsun/events{/privacy}", "followers_url": "https://api.github.com/users/ericxsun/followers", "following_url": "https://api.github.com/users/ericxsun/following{/other_user}", "gists_url": "https://api.github.com/users/ericxsun/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/ericxsun", "id": 1772912, "login": "ericxsun", "node_id": "MDQ6VXNlcjE3NzI5MTI=", "organizations_url": "https://api.github.com/users/ericxsun/orgs", "received_events_url": "https://api.github.com/users/ericxsun/received_events", "repos_url": "https://api.github.com/users/ericxsun/repos", "site_admin": false, "starred_url": "https://api.github.com/users/ericxsun/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ericxsun/subscriptions", "type": "User", "url": "https://api.github.com/users/ericxsun" }
[]
open
false
null
[]
null
[ "Same problem.", "hi! \r\nI think you can run python from `/data/train/raw/` directory and load dataset as `load_dataset(\"code_contests\")` to mitigate this issue as a workaround. \r\n@ericxsun Do you want to open a PR to fix the regex? As you already found the solution :) ", "> hi! I think you can run python from `/data/train/raw/` directory and load dataset as `load_dataset(\"code_contests\")` to mitigate this issue as a workaround. @ericxsun Do you want to open a PR to fix the regex? As you already found the solution :)\r\n\r\nSure, please see https://github.com/huggingface/datasets/pull/5748 @polinaeterna ", "I think `string_to_dict` is ok, and that the issue is that it gets `'/data2/train/raw/code_contests/data/test-00000-of-00001-9c49eeff30aacaa8.parquet'` as input instead of `'data/test-00000-of-00001-9c49eeff30aacaa8.parquet'`. The path should be relative to the directory being loaded by `load_dataset`" ]
"2023-04-12T04:51:35Z"
"2023-04-21T14:20:59Z"
null
NONE
null
null
null
### Describe the bug The regex defined here https://github.com/huggingface/datasets/blob/f2607935c4e45c70c44fcb698db0363ca7ba83d4/src/datasets/utils/py_utils.py#L158 will cause a weird result during dataset split when data path starts with `/data` ### Steps to reproduce the bug 1. clone dataset into local path ``` cd /data/train/raw/ git lfs clone https://huggingface.co/datasets/deepmind/code_contests.git ls /data/train/raw/code_contests # README.md data dataset_infos.json ls /data/train/raw/code_contests/data # test-00000-of-00001-9c49eeff30aacaa8.parquet # train-[0-9]+-of-[0-9]+-xx.parquet # valid-00000-of-00001-5e672c5751f060d3.parquet ``` 2. loading data from local ``` from datasets import load_dataset dataset = load_dataset('/data/train/raw/code_contests') FileNotFoundError: Unable to resolve any data file that matches '['data/train/raw/code_contests/data/train-[0-9][0-9][0-9][0-9][0-9]-of-[0-9][0-9][0-9][0-9][0-9]*.*']' at /data/train/raw/code_contests with any supported extension ``` weird path `data/train/raw/code_contests/data/train-[0-9][0-9][0-9][0-9][0-9]-of-[0-9][0-9][0-9][0-9][0-9]*.*` While dive deep into `LocalDatasetModuleFactoryWithoutScript` defined in [load.py](https://github.com/huggingface/datasets/blob/f2607935c4e45c70c44fcb698db0363ca7ba83d4/src/datasets/load.py#L627) and _get_data_files_patterns https://github.com/huggingface/datasets/blob/f2607935c4e45c70c44fcb698db0363ca7ba83d4/src/datasets/data_files.py#L228. I found the weird behavior caused by `string_to_dict` 3. check `string_to_dict` ``` p = '/data/train/raw/code_contests/data/test-00000-of-00001-9c49eeff30aacaa8.parquet' split_pattern = 'data/{split}-[0-9][0-9][0-9][0-9][0-9]-of-[0-9][0-9][0-9][0-9][0-9]*.*' string_to_dict(p, split_pattern) # {'split': 'train/raw/code_contests/data/test'} p = '/data2/train/raw/code_contests/data/test-00000-of-00001-9c49eeff30aacaa8.parquet' string_to_dict(p, split_pattern) {'split': 'test'} ``` go deep into string_to_dict https://github.com/huggingface/datasets/blob/f2607935c4e45c70c44fcb698db0363ca7ba83d4/src/datasets/utils/py_utils.py#L158. 4. test the regex: <img width="680" alt="image" src="https://user-images.githubusercontent.com/1772912/231351129-75179f01-fb9f-4f12-8fa9-0dfcc3d5f3bd.png"> <img width="679" alt="image" src="https://user-images.githubusercontent.com/1772912/231351025-009f3d83-2cf3-4e15-9ed4-6b9663dcb2ee.png"> ### Expected behavior statement in `steps to reproduce the bug` 3. check `string_to_dict` ``` p = '/data/train/raw/code_contests/data/test-00000-of-00001-9c49eeff30aacaa8.parquet' split_pattern = 'data/{split}-[0-9][0-9][0-9][0-9][0-9]-of-[0-9][0-9][0-9][0-9][0-9]*.*' string_to_dict(p, split_pattern) # {'split': 'train/raw/code_contests/data/test'} p = '/data2/train/raw/code_contests/data/test-00000-of-00001-9c49eeff30aacaa8.parquet' string_to_dict(p, split_pattern) {'split': 'test'} ``` ### Environment info - linux(debian) - python 3.7 - datasets 2.8.0
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5739/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5739/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/5786
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5786/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5786/comments
https://api.github.com/repos/huggingface/datasets/issues/5786/events
https://github.com/huggingface/datasets/issues/5786
1,680,957,070
I_kwDODunzps5kMV6O
5,786
Multiprocessing in a `filter` or `map` function with a Pytorch model
{ "avatar_url": "https://avatars.githubusercontent.com/u/44556846?v=4", "events_url": "https://api.github.com/users/HugoLaurencon/events{/privacy}", "followers_url": "https://api.github.com/users/HugoLaurencon/followers", "following_url": "https://api.github.com/users/HugoLaurencon/following{/other_user}", "gists_url": "https://api.github.com/users/HugoLaurencon/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/HugoLaurencon", "id": 44556846, "login": "HugoLaurencon", "node_id": "MDQ6VXNlcjQ0NTU2ODQ2", "organizations_url": "https://api.github.com/users/HugoLaurencon/orgs", "received_events_url": "https://api.github.com/users/HugoLaurencon/received_events", "repos_url": "https://api.github.com/users/HugoLaurencon/repos", "site_admin": false, "starred_url": "https://api.github.com/users/HugoLaurencon/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/HugoLaurencon/subscriptions", "type": "User", "url": "https://api.github.com/users/HugoLaurencon" }
[]
closed
false
null
[]
null
[ "Hi ! PyTorch may hang when calling `load_state_dict()` in a subprocess. To fix that, set the multiprocessing start method to \"spawn\". Since `datasets` uses `multiprocess`, you should do:\r\n\r\n```python\r\n# Required to avoid issues with pytorch (otherwise hangs during load_state_dict in multiprocessing)\r\nimport multiprocess.context as ctx\r\nctx._force_start_method('spawn')\r\n```\r\n\r\nAlso make sure to run your main code in `if __name__ == \"__main__\":` to avoid issues with python multiprocesing", "Thanks!", "@lhoestq Hello, I also encountered this problem but maybe with another reason. Here is my code:\r\n```python\r\ntokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, cache_dir=model_args.cache_dir, model_max_length=training_args.model_max_length)\r\ndata = load_dataset(\"json\", data_files=data_args.train_file, cache_dir=data_args.data_cache_dir)\r\ndef func(samples):\r\n # main operation\r\n for sentence_value in samples:\r\n sentence_ids = tokenizer.encode(sentence_value, add_special_tokens=False, max_length=tokenizer.model_max_length, truncation=True)\r\n ... ...\r\ntrain_data = data[\"train\"].shuffle().map(func, num_proc=os.cpu_count())\r\n```\r\nIt hangs after the progress reaches 100%. Could you help me point out the reason?", "@SkyAndCloud your issue doesn't seem related to the original post - could you open a new issue and provide more details ? (size of the dataset, number of cpus, how much time it took to run, `datasets` version)", "@lhoestq Hi, I just solved this problem. Because the input is extremely long and the tokenizer requests a large amount of memory, which leads to a OOM error and may eventually causes the hang. I didn't filter those too-long sentences because I thought `tokenizer` would stop once the length exceeds the `max_length`. However, it actually firstly complete the tokenization of entire sentence and then truncate it." ]
"2023-04-24T10:38:07Z"
"2023-05-30T09:56:30Z"
"2023-04-24T10:43:58Z"
MEMBER
null
null
null
### Describe the bug I am trying to use a Pytorch model loaded on CPUs with multiple processes with a `.map` or a `.filter` method. Usually, when dealing with models that are non-pickable, creating a class such that the `map` function is the method `__call__`, and adding `reduce` helps to solve the problem. However, here, the command hangs without throwing an error. ### Steps to reproduce the bug ``` from datasets import Dataset import torch from torch import nn from torchvision import models ​ ​ class FilterFunction: #__slots__ = ("path_model", "model") # Doesn't change anything uncommented def __init__(self, path_model): self.path_model = path_model model = models.resnet50() model.fc = nn.Sequential( nn.Linear(2048, 512), nn.ReLU(), nn.Dropout(0.2), nn.Linear(512, 10), nn.LogSoftmax(dim=1) ) model.load_state_dict(torch.load(path_model, map_location=torch.device("cpu"))) model.eval() self.model = model def __call__(self, batch): return [True] * len(batch["id"]) # Comment this to have an error def __reduce__(self): return (self.__class__, (self.path_model,)) ​ ​ dataset = Dataset.from_dict({"id": [0, 1, 2, 4]}) ​ # Download (100 MB) at https://github.com/emiliantolo/pytorch_nsfw_model/raw/master/ResNet50_nsfw_model.pth path_model = "/fsx/hugo/nsfw_image/ResNet50_nsfw_model.pth" ​ filter_function = FilterFunction(path_model=path_model) ​ # Works filtered_dataset = dataset.filter(filter_function, num_proc=1, batched=True, batch_size=2) # Doesn't work filtered_dataset = dataset.filter(filter_function, num_proc=2, batched=True, batch_size=2) ``` ### Expected behavior The command `filtered_dataset = dataset.filter(filter_function, num_proc=2, batched=True, batch_size=2)` should work and not hang. ### Environment info Datasets: 2.11.0 Pyarrow: 11.0.0 Ubuntu
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5786/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5786/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/1286
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1286/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1286/comments
https://api.github.com/repos/huggingface/datasets/issues/1286/events
https://github.com/huggingface/datasets/issues/1286
759,291,509
MDU6SXNzdWU3NTkyOTE1MDk=
1,286
[libprotobuf FATAL /sentencepiece/src/../third_party/protobuf-lite/google/protobuf/repeated_field.h:1505] CHECK failed: (index) >= (0): terminate called after throwing an instance of 'google::protobuf::FatalException' what(): CHECK failed: (index) >= (0): Aborted
{ "avatar_url": "https://avatars.githubusercontent.com/u/6278280?v=4", "events_url": "https://api.github.com/users/rabeehk/events{/privacy}", "followers_url": "https://api.github.com/users/rabeehk/followers", "following_url": "https://api.github.com/users/rabeehk/following{/other_user}", "gists_url": "https://api.github.com/users/rabeehk/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/rabeehk", "id": 6278280, "login": "rabeehk", "node_id": "MDQ6VXNlcjYyNzgyODA=", "organizations_url": "https://api.github.com/users/rabeehk/orgs", "received_events_url": "https://api.github.com/users/rabeehk/received_events", "repos_url": "https://api.github.com/users/rabeehk/repos", "site_admin": false, "starred_url": "https://api.github.com/users/rabeehk/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/rabeehk/subscriptions", "type": "User", "url": "https://api.github.com/users/rabeehk" }
[]
closed
false
null
[]
null
[ "I remember also getting the same issue for several other translation datasets like all the iwslt2017 group, this is blokcing me and I really need to fix it and I was wondering if you have an idea on this. @lhoestq thanks,. ", "maybe there is an empty line or something inside these datasets? could you tell me why this is happening? thanks ", "I just checked and the wmt16 en-ro doesn't have empty lines\r\n```python\r\nfrom datasets import load_dataset\r\n\r\nd = load_dataset(\"wmt16\", \"ro-en\", split=\"train\")\r\nlen(d) # 610320\r\nlen(d.filter(lambda x: len(x[\"translation\"][\"en\"].strip()) > 0)) # 610320\r\nlen(d.filter(lambda x: len(x[\"translation\"][\"ro\"].strip()) > 0)) # 610320\r\n# also tested for split=\"validation\" and \"test\"\r\n```\r\n\r\nCan you open an issue on the `transformers` repo ? also cc @sgugger ", "Hi @lhoestq \r\nI am not really sure which part is causing this, to me this is more related to dataset library as this is happening for some of the datassets below please find the information to reprodcue the bug, this is really blocking me and I appreciate your help\r\n\r\n\r\n## Environment info\r\n- `transformers` version: 3.5.1\r\n- Platform: GPU\r\n- Python version: 3.7 \r\n- PyTorch version (GPU?): 1.0.4\r\n- Tensorflow version (GPU?): - \r\n- Using GPU in script?: - \r\n- Using distributed or parallel set-up in script?: - \r\n\r\n### Who can help\r\n tokenizers: @mfuntowicz\r\n Trainer: @sgugger\r\n TextGeneration: @TevenLeScao \r\n nlp datasets: [different repo](https://github.com/huggingface/nlp)\r\n rust tokenizers: [different repo](https://github.com/huggingface/tokenizers)\r\n examples/seq2seq: @patil-suraj\r\n\r\n## Information\r\nHi\r\nI am testing seq2seq model with T5 on different datasets and this is always getting the following bug, this is really blocking me as this fails for many datasets. could you have a look please? thanks \r\n\r\n```\r\n[libprotobuf FATAL /sentencepiece/src/../third_party/protobuf-lite/google/protobuf/repeated_field.h:1505] CHECK failed: (index) >= (0): \r\nterminate called after throwing an instance of 'google::protobuf::FatalException'\r\n what(): CHECK failed: (index) >= (0): \r\nAborted\r\n\r\n```\r\n\r\nTo reproduce the error please run on 1 GPU:\r\n```\r\ngit clone [email protected]:rabeehk/debug-seq2seq.git\r\npython setup.py develop \r\ncd seq2seq \r\npython finetune_t5_trainer.py temp.json\r\n\r\n```\r\n\r\nFull output of the program:\r\n\r\n```\r\n(internship) rkarimi@vgnh008:/idiap/user/rkarimi/dev/debug-seq2seq/seq2seq$ python finetune_t5_trainer.py temp.json \r\n2020-12-12 15:38:16.234542: W tensorflow/stream_executor/platform/default/dso_loader.cc:60] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory\r\n2020-12-12 15:38:16.234598: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.\r\n12/12/2020 15:38:32 - WARNING - __main__ - Process rank: -1, device: cuda:0, n_gpu: 1, distributed training: False, 16-bits training: False\r\n12/12/2020 15:38:32 - INFO - __main__ - Training/evaluation parameters Seq2SeqTrainingArguments(output_dir='outputs/test', overwrite_output_dir=True, do_train=True, do_eval=True, do_predict=False, evaluate_during_training=False, evaluation_strategy=<EvaluationStrategy.NO: 'no'>, prediction_loss_only=False, per_device_train_batch_size=64, per_device_eval_batch_size=64, per_gpu_train_batch_size=None, per_gpu_eval_batch_size=None, gradient_accumulation_steps=1, eval_accumulation_steps=None, learning_rate=0.01, weight_decay=0.0, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, max_grad_norm=1.0, num_train_epochs=2, max_steps=-1, warmup_steps=500, logging_dir='runs/Dec12_15-38-32_vgnh008', logging_first_step=True, logging_steps=200, save_steps=200, save_total_limit=1, no_cuda=False, seed=42, fp16=False, fp16_opt_level='O1', local_rank=-1, tpu_num_cores=None, tpu_metrics_debug=False, debug=False, dataloader_drop_last=False, eval_steps=200, dataloader_num_workers=0, past_index=-1, run_name='outputs/test', disable_tqdm=False, remove_unused_columns=True, label_names=None, load_best_model_at_end=False, metric_for_best_model=None, greater_is_better=None, label_smoothing=0.1, sortish_sampler=False, predict_with_generate=True, adafactor=False, encoder_layerdrop=None, decoder_layerdrop=None, dropout=None, attention_dropout=None, lr_scheduler='linear', fixed_length_emb=None, encoder_projection=None, encoder_pooling=None, projection_length=None, only_projection_bottleneck=False, concat_projection_token=False, gcs_bucket='ruse-xcloud-bucket', temperature=10, train_adapters=True, do_finetune=True, parametric_task_embedding=False, eval_output_dir='outputs/finetune-adapter/test-n-1-lr-1e-02-e-20')\r\nSome weights of T5ForConditionalGeneration were not initialized from the model checkpoint at t5-small and are newly initialized: ['encoder.block.0.layer.0.adapter_controller.meta_up_sampler.weight_generator.0.weight', 'encoder.block.0.layer.0.adapter_controller.meta_up_sampler.weight_generator.0.bias', 'encoder.block.0.layer.0.adapter_controller.meta_up_sampler.weight_generator.1.weight', 'encoder.block.0.layer.0.adapter_controller.meta_up_sampler.weight_generator.1.bias', 'encoder.block.0.layer.0.adapter_controller.meta_up_sampler.bias_generator.0.weight', 'encoder.block.0.layer.0.adapter_controller.meta_up_sampler.bias_generator.0.bias', 'encoder.block.0.layer.0.adapter_controller.meta_up_sampler.bias_generator.1.weight', 'encoder.block.0.layer.0.adapter_controller.meta_up_sampler.bias_generator.1.bias', 'encoder.block.0.layer.0.adapter_controller.meta_down_sampler.weight_generator.0.weight', 'encoder.block.0.layer.0.adapter_controller.meta_down_sampler.weight_generator.0.bias', 'encoder.block.0.layer.0.adapter_controller.meta_down_sampler.weight_generator.1.weight', 'encoder.block.0.layer.0.adapter_controller.meta_down_sampler.weight_generator.1.bias', 'encoder.block.0.layer.0.adapter_controller.meta_down_sampler.bias_generator.0.weight', 'encoder.block.0.layer.0.adapter_controller.meta_down_sampler.bias_generator.0.bias', 'encoder.block.0.layer.0.adapter_controller.meta_down_sampler.bias_generator.1.weight', 'encoder.block.0.layer.0.adapter_controller.meta_down_sampler.bias_generator.1.bias', 'encoder.block.0.layer.0.adapter_controller.post_layer_norm.weight', 'encoder.block.0.layer.0.adapter_controller.post_layer_norm.bias', 'encoder.block.0.layer.1.adapter_controller.meta_up_sampler.weight_generator.0.weight', 'encoder.block.0.layer.1.adapter_controller.meta_up_sampler.weight_generator.0.bias', 'encoder.block.0.layer.1.adapter_controller.meta_up_sampler.weight_generator.1.weight', 'encoder.block.0.layer.1.adapter_controller.meta_up_sampler.weight_generator.1.bias', 'encoder.block.0.layer.1.adapter_controller.meta_up_sampler.bias_generator.0.weight', 'encoder.block.0.layer.1.adapter_controller.meta_up_sampler.bias_generator.0.bias', 'encoder.block.0.layer.1.adapter_controller.meta_up_sampler.bias_generator.1.weight', 'encoder.block.0.layer.1.adapter_controller.meta_up_sampler.bias_generator.1.bias', 'encoder.block.0.layer.1.adapter_controller.meta_down_sampler.weight_generator.0.weight', 'encoder.block.0.layer.1.adapter_controller.meta_down_sampler.weight_generator.0.bias', 'encoder.block.0.layer.1.adapter_controller.meta_down_sampler.weight_generator.1.weight', 'encoder.block.0.layer.1.adapter_controller.meta_down_sampler.weight_generator.1.bias', 'encoder.block.0.layer.1.adapter_controller.meta_down_sampler.bias_generator.0.weight', 'encoder.block.0.layer.1.adapter_controller.meta_down_sampler.bias_generator.0.bias', 'encoder.block.0.layer.1.adapter_controller.meta_down_sampler.bias_generator.1.weight', 'encoder.block.0.layer.1.adapter_controller.meta_down_sampler.bias_generator.1.bias', 'encoder.block.0.layer.1.adapter_controller.post_layer_norm.weight', 'encoder.block.0.layer.1.adapter_controller.post_layer_norm.bias', 'encoder.block.1.layer.0.adapter_controller.meta_up_sampler.weight_generator.0.weight', 'encoder.block.1.layer.0.adapter_controller.meta_up_sampler.weight_generator.0.bias', 'encoder.block.1.layer.0.adapter_controller.meta_up_sampler.weight_generator.1.weight', 'encoder.block.1.layer.0.adapter_controller.meta_up_sampler.weight_generator.1.bias', 'encoder.block.1.layer.0.adapter_controller.meta_up_sampler.bias_generator.0.weight', 'encoder.block.1.layer.0.adapter_controller.meta_up_sampler.bias_generator.0.bias', 'encoder.block.1.layer.0.adapter_controller.meta_up_sampler.bias_generator.1.weight', 'encoder.block.1.layer.0.adapter_controller.meta_up_sampler.bias_generator.1.bias', 'encoder.block.1.layer.0.adapter_controller.meta_down_sampler.weight_generator.0.weight', 'encoder.block.1.layer.0.adapter_controller.meta_down_sampler.weight_generator.0.bias', 'encoder.block.1.layer.0.adapter_controller.meta_down_sampler.weight_generator.1.weight', 'encoder.block.1.layer.0.adapter_controller.meta_down_sampler.weight_generator.1.bias', 'encoder.block.1.layer.0.adapter_controller.meta_down_sampler.bias_generator.0.weight', 'encoder.block.1.layer.0.adapter_controller.meta_down_sampler.bias_generator.0.bias', 'encoder.block.1.layer.0.adapter_controller.meta_down_sampler.bias_generator.1.weight', 'encoder.block.1.layer.0.adapter_controller.meta_down_sampler.bias_generator.1.bias', 'encoder.block.1.layer.0.adapter_controller.post_layer_norm.weight', 'encoder.block.1.layer.0.adapter_controller.post_layer_norm.bias', 'encoder.block.1.layer.1.adapter_controller.meta_up_sampler.weight_generator.0.weight', 'encoder.block.1.layer.1.adapter_controller.meta_up_sampler.weight_generator.0.bias', 'encoder.block.1.layer.1.adapter_controller.meta_up_sampler.weight_generator.1.weight', 'encoder.block.1.layer.1.adapter_controller.meta_up_sampler.weight_generator.1.bias', 'encoder.block.1.layer.1.adapter_controller.meta_up_sampler.bias_generator.0.weight', 'encoder.block.1.layer.1.adapter_controller.meta_up_sampler.bias_generator.0.bias', 'encoder.block.1.layer.1.adapter_controller.meta_up_sampler.bias_generator.1.weight', 'encoder.block.1.layer.1.adapter_controller.meta_up_sampler.bias_generator.1.bias', 'encoder.block.1.layer.1.adapter_controller.meta_down_sampler.weight_generator.0.weight', 'encoder.block.1.layer.1.adapter_controller.meta_down_sampler.weight_generator.0.bias', 'encoder.block.1.layer.1.adapter_controller.meta_down_sampler.weight_generator.1.weight', 'encoder.block.1.layer.1.adapter_controller.meta_down_sampler.weight_generator.1.bias', 'encoder.block.1.layer.1.adapter_controller.meta_down_sampler.bias_generator.0.weight', 'encoder.block.1.layer.1.adapter_controller.meta_down_sampler.bias_generator.0.bias', 'encoder.block.1.layer.1.adapter_controller.meta_down_sampler.bias_generator.1.weight', 'encoder.block.1.layer.1.adapter_controller.meta_down_sampler.bias_generator.1.bias', 'encoder.block.1.layer.1.adapter_controller.post_layer_norm.weight', 'encoder.block.1.layer.1.adapter_controller.post_layer_norm.bias', 'encoder.block.2.layer.0.adapter_controller.meta_up_sampler.weight_generator.0.weight', 'encoder.block.2.layer.0.adapter_controller.meta_up_sampler.weight_generator.0.bias', 'encoder.block.2.layer.0.adapter_controller.meta_up_sampler.weight_generator.1.weight', 'encoder.block.2.layer.0.adapter_controller.meta_up_sampler.weight_generator.1.bias', 'encoder.block.2.layer.0.adapter_controller.meta_up_sampler.bias_generator.0.weight', 'encoder.block.2.layer.0.adapter_controller.meta_up_sampler.bias_generator.0.bias', 'encoder.block.2.layer.0.adapter_controller.meta_up_sampler.bias_generator.1.weight', 'encoder.block.2.layer.0.adapter_controller.meta_up_sampler.bias_generator.1.bias', 'encoder.block.2.layer.0.adapter_controller.meta_down_sampler.weight_generator.0.weight', 'encoder.block.2.layer.0.adapter_controller.meta_down_sampler.weight_generator.0.bias', 'encoder.block.2.layer.0.adapter_controller.meta_down_sampler.weight_generator.1.weight', 'encoder.block.2.layer.0.adapter_controller.meta_down_sampler.weight_generator.1.bias', 'encoder.block.2.layer.0.adapter_controller.meta_down_sampler.bias_generator.0.weight', 'encoder.block.2.layer.0.adapter_controller.meta_down_sampler.bias_generator.0.bias', 'encoder.block.2.layer.0.adapter_controller.meta_down_sampler.bias_generator.1.weight', 'encoder.block.2.layer.0.adapter_controller.meta_down_sampler.bias_generator.1.bias', 'encoder.block.2.layer.0.adapter_controller.post_layer_norm.weight', 'encoder.block.2.layer.0.adapter_controller.post_layer_norm.bias', 'encoder.block.2.layer.1.adapter_controller.meta_up_sampler.weight_generator.0.weight', 'encoder.block.2.layer.1.adapter_controller.meta_up_sampler.weight_generator.0.bias', 'encoder.block.2.layer.1.adapter_controller.meta_up_sampler.weight_generator.1.weight', 'encoder.block.2.layer.1.adapter_controller.meta_up_sampler.weight_generator.1.bias', 'encoder.block.2.layer.1.adapter_controller.meta_up_sampler.bias_generator.0.weight', 'encoder.block.2.layer.1.adapter_controller.meta_up_sampler.bias_generator.0.bias', 'encoder.block.2.layer.1.adapter_controller.meta_up_sampler.bias_generator.1.weight', 'encoder.block.2.layer.1.adapter_controller.meta_up_sampler.bias_generator.1.bias', 'encoder.block.2.layer.1.adapter_controller.meta_down_sampler.weight_generator.0.weight', 'encoder.block.2.layer.1.adapter_controller.meta_down_sampler.weight_generator.0.bias', 'encoder.block.2.layer.1.adapter_controller.meta_down_sampler.weight_generator.1.weight', 'encoder.block.2.layer.1.adapter_controller.meta_down_sampler.weight_generator.1.bias', 'encoder.block.2.layer.1.adapter_controller.meta_down_sampler.bias_generator.0.weight', 'encoder.block.2.layer.1.adapter_controller.meta_down_sampler.bias_generator.0.bias', 'encoder.block.2.layer.1.adapter_controller.meta_down_sampler.bias_generator.1.weight', 'encoder.block.2.layer.1.adapter_controller.meta_down_sampler.bias_generator.1.bias', 'encoder.block.2.layer.1.adapter_controller.post_layer_norm.weight', 'encoder.block.2.layer.1.adapter_controller.post_layer_norm.bias', 'encoder.block.3.layer.0.adapter_controller.meta_up_sampler.weight_generator.0.weight', 'encoder.block.3.layer.0.adapter_controller.meta_up_sampler.weight_generator.0.bias', 'encoder.block.3.layer.0.adapter_controller.meta_up_sampler.weight_generator.1.weight', 'encoder.block.3.layer.0.adapter_controller.meta_up_sampler.weight_generator.1.bias', 'encoder.block.3.layer.0.adapter_controller.meta_up_sampler.bias_generator.0.weight', 'encoder.block.3.layer.0.adapter_controller.meta_up_sampler.bias_generator.0.bias', 'encoder.block.3.layer.0.adapter_controller.meta_up_sampler.bias_generator.1.weight', 'encoder.block.3.layer.0.adapter_controller.meta_up_sampler.bias_generator.1.bias', 'encoder.block.3.layer.0.adapter_controller.meta_down_sampler.weight_generator.0.weight', 'encoder.block.3.layer.0.adapter_controller.meta_down_sampler.weight_generator.0.bias', 'encoder.block.3.layer.0.adapter_controller.meta_down_sampler.weight_generator.1.weight', 'encoder.block.3.layer.0.adapter_controller.meta_down_sampler.weight_generator.1.bias', 'encoder.block.3.layer.0.adapter_controller.meta_down_sampler.bias_generator.0.weight', 'encoder.block.3.layer.0.adapter_controller.meta_down_sampler.bias_generator.0.bias', 'encoder.block.3.layer.0.adapter_controller.meta_down_sampler.bias_generator.1.weight', 'encoder.block.3.layer.0.adapter_controller.meta_down_sampler.bias_generator.1.bias', 'encoder.block.3.layer.0.adapter_controller.post_layer_norm.weight', 'encoder.block.3.layer.0.adapter_controller.post_layer_norm.bias', 'encoder.block.3.layer.1.adapter_controller.meta_up_sampler.weight_generator.0.weight', 'encoder.block.3.layer.1.adapter_controller.meta_up_sampler.weight_generator.0.bias', 'encoder.block.3.layer.1.adapter_controller.meta_up_sampler.weight_generator.1.weight', 'encoder.block.3.layer.1.adapter_controller.meta_up_sampler.weight_generator.1.bias', 'encoder.block.3.layer.1.adapter_controller.meta_up_sampler.bias_generator.0.weight', 'encoder.block.3.layer.1.adapter_controller.meta_up_sampler.bias_generator.0.bias', 'encoder.block.3.layer.1.adapter_controller.meta_up_sampler.bias_generator.1.weight', 'encoder.block.3.layer.1.adapter_controller.meta_up_sampler.bias_generator.1.bias', 'encoder.block.3.layer.1.adapter_controller.meta_down_sampler.weight_generator.0.weight', 'encoder.block.3.layer.1.adapter_controller.meta_down_sampler.weight_generator.0.bias', 'encoder.block.3.layer.1.adapter_controller.meta_down_sampler.weight_generator.1.weight', 'encoder.block.3.layer.1.adapter_controller.meta_down_sampler.weight_generator.1.bias', 'encoder.block.3.layer.1.adapter_controller.meta_down_sampler.bias_generator.0.weight', 'encoder.block.3.layer.1.adapter_controller.meta_down_sampler.bias_generator.0.bias', 'encoder.block.3.layer.1.adapter_controller.meta_down_sampler.bias_generator.1.weight', 'encoder.block.3.layer.1.adapter_controller.meta_down_sampler.bias_generator.1.bias', 'encoder.block.3.layer.1.adapter_controller.post_layer_norm.weight', 'encoder.block.3.layer.1.adapter_controller.post_layer_norm.bias', 'encoder.block.4.layer.0.adapter_controller.meta_up_sampler.weight_generator.0.weight', 'encoder.block.4.layer.0.adapter_controller.meta_up_sampler.weight_generator.0.bias', 'encoder.block.4.layer.0.adapter_controller.meta_up_sampler.weight_generator.1.weight', 'encoder.block.4.layer.0.adapter_controller.meta_up_sampler.weight_generator.1.bias', 'encoder.block.4.layer.0.adapter_controller.meta_up_sampler.bias_generator.0.weight', 'encoder.block.4.layer.0.adapter_controller.meta_up_sampler.bias_generator.0.bias', 'encoder.block.4.layer.0.adapter_controller.meta_up_sampler.bias_generator.1.weight', 'encoder.block.4.layer.0.adapter_controller.meta_up_sampler.bias_generator.1.bias', 'encoder.block.4.layer.0.adapter_controller.meta_down_sampler.weight_generator.0.weight', 'encoder.block.4.layer.0.adapter_controller.meta_down_sampler.weight_generator.0.bias', 'encoder.block.4.layer.0.adapter_controller.meta_down_sampler.weight_generator.1.weight', 'encoder.block.4.layer.0.adapter_controller.meta_down_sampler.weight_generator.1.bias', 'encoder.block.4.layer.0.adapter_controller.meta_down_sampler.bias_generator.0.weight', 'encoder.block.4.layer.0.adapter_controller.meta_down_sampler.bias_generator.0.bias', 'encoder.block.4.layer.0.adapter_controller.meta_down_sampler.bias_generator.1.weight', 'encoder.block.4.layer.0.adapter_controller.meta_down_sampler.bias_generator.1.bias', 'encoder.block.4.layer.0.adapter_controller.post_layer_norm.weight', 'encoder.block.4.layer.0.adapter_controller.post_layer_norm.bias', 'encoder.block.4.layer.1.adapter_controller.meta_up_sampler.weight_generator.0.weight', 'encoder.block.4.layer.1.adapter_controller.meta_up_sampler.weight_generator.0.bias', 'encoder.block.4.layer.1.adapter_controller.meta_up_sampler.weight_generator.1.weight', 'encoder.block.4.layer.1.adapter_controller.meta_up_sampler.weight_generator.1.bias', 'encoder.block.4.layer.1.adapter_controller.meta_up_sampler.bias_generator.0.weight', 'encoder.block.4.layer.1.adapter_controller.meta_up_sampler.bias_generator.0.bias', 'encoder.block.4.layer.1.adapter_controller.meta_up_sampler.bias_generator.1.weight', 'encoder.block.4.layer.1.adapter_controller.meta_up_sampler.bias_generator.1.bias', 'encoder.block.4.layer.1.adapter_controller.meta_down_sampler.weight_generator.0.weight', 'encoder.block.4.layer.1.adapter_controller.meta_down_sampler.weight_generator.0.bias', 'encoder.block.4.layer.1.adapter_controller.meta_down_sampler.weight_generator.1.weight', 'encoder.block.4.layer.1.adapter_controller.meta_down_sampler.weight_generator.1.bias', 'encoder.block.4.layer.1.adapter_controller.meta_down_sampler.bias_generator.0.weight', 'encoder.block.4.layer.1.adapter_controller.meta_down_sampler.bias_generator.0.bias', 'encoder.block.4.layer.1.adapter_controller.meta_down_sampler.bias_generator.1.weight', 'encoder.block.4.layer.1.adapter_controller.meta_down_sampler.bias_generator.1.bias', 'encoder.block.4.layer.1.adapter_controller.post_layer_norm.weight', 'encoder.block.4.layer.1.adapter_controller.post_layer_norm.bias', 'encoder.block.5.layer.0.adapter_controller.meta_up_sampler.weight_generator.0.weight', 'encoder.block.5.layer.0.adapter_controller.meta_up_sampler.weight_generator.0.bias', 'encoder.block.5.layer.0.adapter_controller.meta_up_sampler.weight_generator.1.weight', 'encoder.block.5.layer.0.adapter_controller.meta_up_sampler.weight_generator.1.bias', 'encoder.block.5.layer.0.adapter_controller.meta_up_sampler.bias_generator.0.weight', 'encoder.block.5.layer.0.adapter_controller.meta_up_sampler.bias_generator.0.bias', 'encoder.block.5.layer.0.adapter_controller.meta_up_sampler.bias_generator.1.weight', 'encoder.block.5.layer.0.adapter_controller.meta_up_sampler.bias_generator.1.bias', 'encoder.block.5.layer.0.adapter_controller.meta_down_sampler.weight_generator.0.weight', 'encoder.block.5.layer.0.adapter_controller.meta_down_sampler.weight_generator.0.bias', 'encoder.block.5.layer.0.adapter_controller.meta_down_sampler.weight_generator.1.weight', 'encoder.block.5.layer.0.adapter_controller.meta_down_sampler.weight_generator.1.bias', 'encoder.block.5.layer.0.adapter_controller.meta_down_sampler.bias_generator.0.weight', 'encoder.block.5.layer.0.adapter_controller.meta_down_sampler.bias_generator.0.bias', 'encoder.block.5.layer.0.adapter_controller.meta_down_sampler.bias_generator.1.weight', 'encoder.block.5.layer.0.adapter_controller.meta_down_sampler.bias_generator.1.bias', 'encoder.block.5.layer.0.adapter_controller.post_layer_norm.weight', 'encoder.block.5.layer.0.adapter_controller.post_layer_norm.bias', 'encoder.block.5.layer.1.adapter_controller.meta_up_sampler.weight_generator.0.weight', 'encoder.block.5.layer.1.adapter_controller.meta_up_sampler.weight_generator.0.bias', 'encoder.block.5.layer.1.adapter_controller.meta_up_sampler.weight_generator.1.weight', 'encoder.block.5.layer.1.adapter_controller.meta_up_sampler.weight_generator.1.bias', 'encoder.block.5.layer.1.adapter_controller.meta_up_sampler.bias_generator.0.weight', 'encoder.block.5.layer.1.adapter_controller.meta_up_sampler.bias_generator.0.bias', 'encoder.block.5.layer.1.adapter_controller.meta_up_sampler.bias_generator.1.weight', 'encoder.block.5.layer.1.adapter_controller.meta_up_sampler.bias_generator.1.bias', 'encoder.block.5.layer.1.adapter_controller.meta_down_sampler.weight_generator.0.weight', 'encoder.block.5.layer.1.adapter_controller.meta_down_sampler.weight_generator.0.bias', 'encoder.block.5.layer.1.adapter_controller.meta_down_sampler.weight_generator.1.weight', 'encoder.block.5.layer.1.adapter_controller.meta_down_sampler.weight_generator.1.bias', 'encoder.block.5.layer.1.adapter_controller.meta_down_sampler.bias_generator.0.weight', 'encoder.block.5.layer.1.adapter_controller.meta_down_sampler.bias_generator.0.bias', 'encoder.block.5.layer.1.adapter_controller.meta_down_sampler.bias_generator.1.weight', 'encoder.block.5.layer.1.adapter_controller.meta_down_sampler.bias_generator.1.bias', 'encoder.block.5.layer.1.adapter_controller.post_layer_norm.weight', 'encoder.block.5.layer.1.adapter_controller.post_layer_norm.bias', 'decoder.block.0.layer.0.adapter_controller.meta_up_sampler.weight_generator.0.weight', 'decoder.block.0.layer.0.adapter_controller.meta_up_sampler.weight_generator.0.bias', 'decoder.block.0.layer.0.adapter_controller.meta_up_sampler.weight_generator.1.weight', 'decoder.block.0.layer.0.adapter_controller.meta_up_sampler.weight_generator.1.bias', 'decoder.block.0.layer.0.adapter_controller.meta_up_sampler.bias_generator.0.weight', 'decoder.block.0.layer.0.adapter_controller.meta_up_sampler.bias_generator.0.bias', 'decoder.block.0.layer.0.adapter_controller.meta_up_sampler.bias_generator.1.weight', 'decoder.block.0.layer.0.adapter_controller.meta_up_sampler.bias_generator.1.bias', 'decoder.block.0.layer.0.adapter_controller.meta_down_sampler.weight_generator.0.weight', 'decoder.block.0.layer.0.adapter_controller.meta_down_sampler.weight_generator.0.bias', 'decoder.block.0.layer.0.adapter_controller.meta_down_sampler.weight_generator.1.weight', 'decoder.block.0.layer.0.adapter_controller.meta_down_sampler.weight_generator.1.bias', 'decoder.block.0.layer.0.adapter_controller.meta_down_sampler.bias_generator.0.weight', 'decoder.block.0.layer.0.adapter_controller.meta_down_sampler.bias_generator.0.bias', 'decoder.block.0.layer.0.adapter_controller.meta_down_sampler.bias_generator.1.weight', 'decoder.block.0.layer.0.adapter_controller.meta_down_sampler.bias_generator.1.bias', 'decoder.block.0.layer.0.adapter_controller.post_layer_norm.weight', 'decoder.block.0.layer.0.adapter_controller.post_layer_norm.bias', 'decoder.block.0.layer.2.adapter_controller.meta_up_sampler.weight_generator.0.weight', 'decoder.block.0.layer.2.adapter_controller.meta_up_sampler.weight_generator.0.bias', 'decoder.block.0.layer.2.adapter_controller.meta_up_sampler.weight_generator.1.weight', 'decoder.block.0.layer.2.adapter_controller.meta_up_sampler.weight_generator.1.bias', 'decoder.block.0.layer.2.adapter_controller.meta_up_sampler.bias_generator.0.weight', 'decoder.block.0.layer.2.adapter_controller.meta_up_sampler.bias_generator.0.bias', 'decoder.block.0.layer.2.adapter_controller.meta_up_sampler.bias_generator.1.weight', 'decoder.block.0.layer.2.adapter_controller.meta_up_sampler.bias_generator.1.bias', 'decoder.block.0.layer.2.adapter_controller.meta_down_sampler.weight_generator.0.weight', 'decoder.block.0.layer.2.adapter_controller.meta_down_sampler.weight_generator.0.bias', 'decoder.block.0.layer.2.adapter_controller.meta_down_sampler.weight_generator.1.weight', 'decoder.block.0.layer.2.adapter_controller.meta_down_sampler.weight_generator.1.bias', 'decoder.block.0.layer.2.adapter_controller.meta_down_sampler.bias_generator.0.weight', 'decoder.block.0.layer.2.adapter_controller.meta_down_sampler.bias_generator.0.bias', 'decoder.block.0.layer.2.adapter_controller.meta_down_sampler.bias_generator.1.weight', 'decoder.block.0.layer.2.adapter_controller.meta_down_sampler.bias_generator.1.bias', 'decoder.block.0.layer.2.adapter_controller.post_layer_norm.weight', 'decoder.block.0.layer.2.adapter_controller.post_layer_norm.bias', 'decoder.block.1.layer.0.adapter_controller.meta_up_sampler.weight_generator.0.weight', 'decoder.block.1.layer.0.adapter_controller.meta_up_sampler.weight_generator.0.bias', 'decoder.block.1.layer.0.adapter_controller.meta_up_sampler.weight_generator.1.weight', 'decoder.block.1.layer.0.adapter_controller.meta_up_sampler.weight_generator.1.bias', 'decoder.block.1.layer.0.adapter_controller.meta_up_sampler.bias_generator.0.weight', 'decoder.block.1.layer.0.adapter_controller.meta_up_sampler.bias_generator.0.bias', 'decoder.block.1.layer.0.adapter_controller.meta_up_sampler.bias_generator.1.weight', 'decoder.block.1.layer.0.adapter_controller.meta_up_sampler.bias_generator.1.bias', 'decoder.block.1.layer.0.adapter_controller.meta_down_sampler.weight_generator.0.weight', 'decoder.block.1.layer.0.adapter_controller.meta_down_sampler.weight_generator.0.bias', 'decoder.block.1.layer.0.adapter_controller.meta_down_sampler.weight_generator.1.weight', 'decoder.block.1.layer.0.adapter_controller.meta_down_sampler.weight_generator.1.bias', 'decoder.block.1.layer.0.adapter_controller.meta_down_sampler.bias_generator.0.weight', 'decoder.block.1.layer.0.adapter_controller.meta_down_sampler.bias_generator.0.bias', 'decoder.block.1.layer.0.adapter_controller.meta_down_sampler.bias_generator.1.weight', 'decoder.block.1.layer.0.adapter_controller.meta_down_sampler.bias_generator.1.bias', 'decoder.block.1.layer.0.adapter_controller.post_layer_norm.weight', 'decoder.block.1.layer.0.adapter_controller.post_layer_norm.bias', 'decoder.block.1.layer.2.adapter_controller.meta_up_sampler.weight_generator.0.weight', 'decoder.block.1.layer.2.adapter_controller.meta_up_sampler.weight_generator.0.bias', 'decoder.block.1.layer.2.adapter_controller.meta_up_sampler.weight_generator.1.weight', 'decoder.block.1.layer.2.adapter_controller.meta_up_sampler.weight_generator.1.bias', 'decoder.block.1.layer.2.adapter_controller.meta_up_sampler.bias_generator.0.weight', 'decoder.block.1.layer.2.adapter_controller.meta_up_sampler.bias_generator.0.bias', 'decoder.block.1.layer.2.adapter_controller.meta_up_sampler.bias_generator.1.weight', 'decoder.block.1.layer.2.adapter_controller.meta_up_sampler.bias_generator.1.bias', 'decoder.block.1.layer.2.adapter_controller.meta_down_sampler.weight_generator.0.weight', 'decoder.block.1.layer.2.adapter_controller.meta_down_sampler.weight_generator.0.bias', 'decoder.block.1.layer.2.adapter_controller.meta_down_sampler.weight_generator.1.weight', 'decoder.block.1.layer.2.adapter_controller.meta_down_sampler.weight_generator.1.bias', 'decoder.block.1.layer.2.adapter_controller.meta_down_sampler.bias_generator.0.weight', 'decoder.block.1.layer.2.adapter_controller.meta_down_sampler.bias_generator.0.bias', 'decoder.block.1.layer.2.adapter_controller.meta_down_sampler.bias_generator.1.weight', 'decoder.block.1.layer.2.adapter_controller.meta_down_sampler.bias_generator.1.bias', 'decoder.block.1.layer.2.adapter_controller.post_layer_norm.weight', 'decoder.block.1.layer.2.adapter_controller.post_layer_norm.bias', 'decoder.block.2.layer.0.adapter_controller.meta_up_sampler.weight_generator.0.weight', 'decoder.block.2.layer.0.adapter_controller.meta_up_sampler.weight_generator.0.bias', 'decoder.block.2.layer.0.adapter_controller.meta_up_sampler.weight_generator.1.weight', 'decoder.block.2.layer.0.adapter_controller.meta_up_sampler.weight_generator.1.bias', 'decoder.block.2.layer.0.adapter_controller.meta_up_sampler.bias_generator.0.weight', 'decoder.block.2.layer.0.adapter_controller.meta_up_sampler.bias_generator.0.bias', 'decoder.block.2.layer.0.adapter_controller.meta_up_sampler.bias_generator.1.weight', 'decoder.block.2.layer.0.adapter_controller.meta_up_sampler.bias_generator.1.bias', 'decoder.block.2.layer.0.adapter_controller.meta_down_sampler.weight_generator.0.weight', 'decoder.block.2.layer.0.adapter_controller.meta_down_sampler.weight_generator.0.bias', 'decoder.block.2.layer.0.adapter_controller.meta_down_sampler.weight_generator.1.weight', 'decoder.block.2.layer.0.adapter_controller.meta_down_sampler.weight_generator.1.bias', 'decoder.block.2.layer.0.adapter_controller.meta_down_sampler.bias_generator.0.weight', 'decoder.block.2.layer.0.adapter_controller.meta_down_sampler.bias_generator.0.bias', 'decoder.block.2.layer.0.adapter_controller.meta_down_sampler.bias_generator.1.weight', 'decoder.block.2.layer.0.adapter_controller.meta_down_sampler.bias_generator.1.bias', 'decoder.block.2.layer.0.adapter_controller.post_layer_norm.weight', 'decoder.block.2.layer.0.adapter_controller.post_layer_norm.bias', 'decoder.block.2.layer.2.adapter_controller.meta_up_sampler.weight_generator.0.weight', 'decoder.block.2.layer.2.adapter_controller.meta_up_sampler.weight_generator.0.bias', 'decoder.block.2.layer.2.adapter_controller.meta_up_sampler.weight_generator.1.weight', 'decoder.block.2.layer.2.adapter_controller.meta_up_sampler.weight_generator.1.bias', 'decoder.block.2.layer.2.adapter_controller.meta_up_sampler.bias_generator.0.weight', 'decoder.block.2.layer.2.adapter_controller.meta_up_sampler.bias_generator.0.bias', 'decoder.block.2.layer.2.adapter_controller.meta_up_sampler.bias_generator.1.weight', 'decoder.block.2.layer.2.adapter_controller.meta_up_sampler.bias_generator.1.bias', 'decoder.block.2.layer.2.adapter_controller.meta_down_sampler.weight_generator.0.weight', 'decoder.block.2.layer.2.adapter_controller.meta_down_sampler.weight_generator.0.bias', 'decoder.block.2.layer.2.adapter_controller.meta_down_sampler.weight_generator.1.weight', 'decoder.block.2.layer.2.adapter_controller.meta_down_sampler.weight_generator.1.bias', 'decoder.block.2.layer.2.adapter_controller.meta_down_sampler.bias_generator.0.weight', 'decoder.block.2.layer.2.adapter_controller.meta_down_sampler.bias_generator.0.bias', 'decoder.block.2.layer.2.adapter_controller.meta_down_sampler.bias_generator.1.weight', 'decoder.block.2.layer.2.adapter_controller.meta_down_sampler.bias_generator.1.bias', 'decoder.block.2.layer.2.adapter_controller.post_layer_norm.weight', 'decoder.block.2.layer.2.adapter_controller.post_layer_norm.bias', 'decoder.block.3.layer.0.adapter_controller.meta_up_sampler.weight_generator.0.weight', 'decoder.block.3.layer.0.adapter_controller.meta_up_sampler.weight_generator.0.bias', 'decoder.block.3.layer.0.adapter_controller.meta_up_sampler.weight_generator.1.weight', 'decoder.block.3.layer.0.adapter_controller.meta_up_sampler.weight_generator.1.bias', 'decoder.block.3.layer.0.adapter_controller.meta_up_sampler.bias_generator.0.weight', 'decoder.block.3.layer.0.adapter_controller.meta_up_sampler.bias_generator.0.bias', 'decoder.block.3.layer.0.adapter_controller.meta_up_sampler.bias_generator.1.weight', 'decoder.block.3.layer.0.adapter_controller.meta_up_sampler.bias_generator.1.bias', 'decoder.block.3.layer.0.adapter_controller.meta_down_sampler.weight_generator.0.weight', 'decoder.block.3.layer.0.adapter_controller.meta_down_sampler.weight_generator.0.bias', 'decoder.block.3.layer.0.adapter_controller.meta_down_sampler.weight_generator.1.weight', 'decoder.block.3.layer.0.adapter_controller.meta_down_sampler.weight_generator.1.bias', 'decoder.block.3.layer.0.adapter_controller.meta_down_sampler.bias_generator.0.weight', 'decoder.block.3.layer.0.adapter_controller.meta_down_sampler.bias_generator.0.bias', 'decoder.block.3.layer.0.adapter_controller.meta_down_sampler.bias_generator.1.weight', 'decoder.block.3.layer.0.adapter_controller.meta_down_sampler.bias_generator.1.bias', 'decoder.block.3.layer.0.adapter_controller.post_layer_norm.weight', 'decoder.block.3.layer.0.adapter_controller.post_layer_norm.bias', 'decoder.block.3.layer.2.adapter_controller.meta_up_sampler.weight_generator.0.weight', 'decoder.block.3.layer.2.adapter_controller.meta_up_sampler.weight_generator.0.bias', 'decoder.block.3.layer.2.adapter_controller.meta_up_sampler.weight_generator.1.weight', 'decoder.block.3.layer.2.adapter_controller.meta_up_sampler.weight_generator.1.bias', 'decoder.block.3.layer.2.adapter_controller.meta_up_sampler.bias_generator.0.weight', 'decoder.block.3.layer.2.adapter_controller.meta_up_sampler.bias_generator.0.bias', 'decoder.block.3.layer.2.adapter_controller.meta_up_sampler.bias_generator.1.weight', 'decoder.block.3.layer.2.adapter_controller.meta_up_sampler.bias_generator.1.bias', 'decoder.block.3.layer.2.adapter_controller.meta_down_sampler.weight_generator.0.weight', 'decoder.block.3.layer.2.adapter_controller.meta_down_sampler.weight_generator.0.bias', 'decoder.block.3.layer.2.adapter_controller.meta_down_sampler.weight_generator.1.weight', 'decoder.block.3.layer.2.adapter_controller.meta_down_sampler.weight_generator.1.bias', 'decoder.block.3.layer.2.adapter_controller.meta_down_sampler.bias_generator.0.weight', 'decoder.block.3.layer.2.adapter_controller.meta_down_sampler.bias_generator.0.bias', 'decoder.block.3.layer.2.adapter_controller.meta_down_sampler.bias_generator.1.weight', 'decoder.block.3.layer.2.adapter_controller.meta_down_sampler.bias_generator.1.bias', 'decoder.block.3.layer.2.adapter_controller.post_layer_norm.weight', 'decoder.block.3.layer.2.adapter_controller.post_layer_norm.bias', 'decoder.block.4.layer.0.adapter_controller.meta_up_sampler.weight_generator.0.weight', 'decoder.block.4.layer.0.adapter_controller.meta_up_sampler.weight_generator.0.bias', 'decoder.block.4.layer.0.adapter_controller.meta_up_sampler.weight_generator.1.weight', 'decoder.block.4.layer.0.adapter_controller.meta_up_sampler.weight_generator.1.bias', 'decoder.block.4.layer.0.adapter_controller.meta_up_sampler.bias_generator.0.weight', 'decoder.block.4.layer.0.adapter_controller.meta_up_sampler.bias_generator.0.bias', 'decoder.block.4.layer.0.adapter_controller.meta_up_sampler.bias_generator.1.weight', 'decoder.block.4.layer.0.adapter_controller.meta_up_sampler.bias_generator.1.bias', 'decoder.block.4.layer.0.adapter_controller.meta_down_sampler.weight_generator.0.weight', 'decoder.block.4.layer.0.adapter_controller.meta_down_sampler.weight_generator.0.bias', 'decoder.block.4.layer.0.adapter_controller.meta_down_sampler.weight_generator.1.weight', 'decoder.block.4.layer.0.adapter_controller.meta_down_sampler.weight_generator.1.bias', 'decoder.block.4.layer.0.adapter_controller.meta_down_sampler.bias_generator.0.weight', 'decoder.block.4.layer.0.adapter_controller.meta_down_sampler.bias_generator.0.bias', 'decoder.block.4.layer.0.adapter_controller.meta_down_sampler.bias_generator.1.weight', 'decoder.block.4.layer.0.adapter_controller.meta_down_sampler.bias_generator.1.bias', 'decoder.block.4.layer.0.adapter_controller.post_layer_norm.weight', 'decoder.block.4.layer.0.adapter_controller.post_layer_norm.bias', 'decoder.block.4.layer.2.adapter_controller.meta_up_sampler.weight_generator.0.weight', 'decoder.block.4.layer.2.adapter_controller.meta_up_sampler.weight_generator.0.bias', 'decoder.block.4.layer.2.adapter_controller.meta_up_sampler.weight_generator.1.weight', 'decoder.block.4.layer.2.adapter_controller.meta_up_sampler.weight_generator.1.bias', 'decoder.block.4.layer.2.adapter_controller.meta_up_sampler.bias_generator.0.weight', 'decoder.block.4.layer.2.adapter_controller.meta_up_sampler.bias_generator.0.bias', 'decoder.block.4.layer.2.adapter_controller.meta_up_sampler.bias_generator.1.weight', 'decoder.block.4.layer.2.adapter_controller.meta_up_sampler.bias_generator.1.bias', 'decoder.block.4.layer.2.adapter_controller.meta_down_sampler.weight_generator.0.weight', 'decoder.block.4.layer.2.adapter_controller.meta_down_sampler.weight_generator.0.bias', 'decoder.block.4.layer.2.adapter_controller.meta_down_sampler.weight_generator.1.weight', 'decoder.block.4.layer.2.adapter_controller.meta_down_sampler.weight_generator.1.bias', 'decoder.block.4.layer.2.adapter_controller.meta_down_sampler.bias_generator.0.weight', 'decoder.block.4.layer.2.adapter_controller.meta_down_sampler.bias_generator.0.bias', 'decoder.block.4.layer.2.adapter_controller.meta_down_sampler.bias_generator.1.weight', 'decoder.block.4.layer.2.adapter_controller.meta_down_sampler.bias_generator.1.bias', 'decoder.block.4.layer.2.adapter_controller.post_layer_norm.weight', 'decoder.block.4.layer.2.adapter_controller.post_layer_norm.bias', 'decoder.block.5.layer.0.adapter_controller.meta_up_sampler.weight_generator.0.weight', 'decoder.block.5.layer.0.adapter_controller.meta_up_sampler.weight_generator.0.bias', 'decoder.block.5.layer.0.adapter_controller.meta_up_sampler.weight_generator.1.weight', 'decoder.block.5.layer.0.adapter_controller.meta_up_sampler.weight_generator.1.bias', 'decoder.block.5.layer.0.adapter_controller.meta_up_sampler.bias_generator.0.weight', 'decoder.block.5.layer.0.adapter_controller.meta_up_sampler.bias_generator.0.bias', 'decoder.block.5.layer.0.adapter_controller.meta_up_sampler.bias_generator.1.weight', 'decoder.block.5.layer.0.adapter_controller.meta_up_sampler.bias_generator.1.bias', 'decoder.block.5.layer.0.adapter_controller.meta_down_sampler.weight_generator.0.weight', 'decoder.block.5.layer.0.adapter_controller.meta_down_sampler.weight_generator.0.bias', 'decoder.block.5.layer.0.adapter_controller.meta_down_sampler.weight_generator.1.weight', 'decoder.block.5.layer.0.adapter_controller.meta_down_sampler.weight_generator.1.bias', 'decoder.block.5.layer.0.adapter_controller.meta_down_sampler.bias_generator.0.weight', 'decoder.block.5.layer.0.adapter_controller.meta_down_sampler.bias_generator.0.bias', 'decoder.block.5.layer.0.adapter_controller.meta_down_sampler.bias_generator.1.weight', 'decoder.block.5.layer.0.adapter_controller.meta_down_sampler.bias_generator.1.bias', 'decoder.block.5.layer.0.adapter_controller.post_layer_norm.weight', 'decoder.block.5.layer.0.adapter_controller.post_layer_norm.bias', 'decoder.block.5.layer.2.adapter_controller.meta_up_sampler.weight_generator.0.weight', 'decoder.block.5.layer.2.adapter_controller.meta_up_sampler.weight_generator.0.bias', 'decoder.block.5.layer.2.adapter_controller.meta_up_sampler.weight_generator.1.weight', 'decoder.block.5.layer.2.adapter_controller.meta_up_sampler.weight_generator.1.bias', 'decoder.block.5.layer.2.adapter_controller.meta_up_sampler.bias_generator.0.weight', 'decoder.block.5.layer.2.adapter_controller.meta_up_sampler.bias_generator.0.bias', 'decoder.block.5.layer.2.adapter_controller.meta_up_sampler.bias_generator.1.weight', 'decoder.block.5.layer.2.adapter_controller.meta_up_sampler.bias_generator.1.bias', 'decoder.block.5.layer.2.adapter_controller.meta_down_sampler.weight_generator.0.weight', 'decoder.block.5.layer.2.adapter_controller.meta_down_sampler.weight_generator.0.bias', 'decoder.block.5.layer.2.adapter_controller.meta_down_sampler.weight_generator.1.weight', 'decoder.block.5.layer.2.adapter_controller.meta_down_sampler.weight_generator.1.bias', 'decoder.block.5.layer.2.adapter_controller.meta_down_sampler.bias_generator.0.weight', 'decoder.block.5.layer.2.adapter_controller.meta_down_sampler.bias_generator.0.bias', 'decoder.block.5.layer.2.adapter_controller.meta_down_sampler.bias_generator.1.weight', 'decoder.block.5.layer.2.adapter_controller.meta_down_sampler.bias_generator.1.bias', 'decoder.block.5.layer.2.adapter_controller.post_layer_norm.weight', 'decoder.block.5.layer.2.adapter_controller.post_layer_norm.bias']\r\nYou should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\r\ncahce dir /idiap/temp/rkarimi/cache_home_1/datasets\r\ncahce dir /idiap/temp/rkarimi/cache_home_1/datasets\r\n12/12/2020 15:38:44 - INFO - filelock - Lock 140079090376272 acquired on /idiap/home/rkarimi/.cache/huggingface/datasets/4c7b1146606607c193d1ef601d8d0c134521b2ac59f61ee98c09119be925ee16.7ad892de9d7f1b4f9dfc598ef31e4a398a7224176bc9a3110e0e2075ff943e8f.py.lock\r\n12/12/2020 15:38:44 - INFO - filelock - Lock 140079090376272 released on /idiap/home/rkarimi/.cache/huggingface/datasets/4c7b1146606607c193d1ef601d8d0c134521b2ac59f61ee98c09119be925ee16.7ad892de9d7f1b4f9dfc598ef31e4a398a7224176bc9a3110e0e2075ff943e8f.py.lock\r\nUsing custom data configuration default\r\n12/12/2020 15:38:44 - INFO - filelock - Lock 140082549312272 acquired on /idiap/temp/rkarimi/cache_home_1/datasets/_idiap_temp_rkarimi_cache_home_1_datasets_boolq_default_0.1.0_1fcfdc6f36dc89a2245ffbbd5248ab33890594b50396731ebc78411bdd2ca534.lock\r\n12/12/2020 15:38:44 - INFO - filelock - Lock 140082549312272 released on /idiap/temp/rkarimi/cache_home_1/datasets/_idiap_temp_rkarimi_cache_home_1_datasets_boolq_default_0.1.0_1fcfdc6f36dc89a2245ffbbd5248ab33890594b50396731ebc78411bdd2ca534.lock\r\n12/12/2020 15:38:44 - INFO - filelock - Lock 140082549365648 acquired on /idiap/temp/rkarimi/cache_home_1/datasets/_idiap_temp_rkarimi_cache_home_1_datasets_boolq_default_0.1.0_1fcfdc6f36dc89a2245ffbbd5248ab33890594b50396731ebc78411bdd2ca534.lock\r\nReusing dataset boolq (/idiap/temp/rkarimi/cache_home_1/datasets/boolq/default/0.1.0/1fcfdc6f36dc89a2245ffbbd5248ab33890594b50396731ebc78411bdd2ca534)\r\n12/12/2020 15:38:44 - INFO - filelock - Lock 140082549365648 released on /idiap/temp/rkarimi/cache_home_1/datasets/_idiap_temp_rkarimi_cache_home_1_datasets_boolq_default_0.1.0_1fcfdc6f36dc89a2245ffbbd5248ab33890594b50396731ebc78411bdd2ca534.lock\r\nLoading cached processed dataset at /idiap/temp/rkarimi/cache_home_1/datasets/boolq/default/0.1.0/1fcfdc6f36dc89a2245ffbbd5248ab33890594b50396731ebc78411bdd2ca534/cache-6810ece2a440c3be.arrow\r\ncahce dir /idiap/temp/rkarimi/cache_home_1/datasets\r\ncahce dir /idiap/temp/rkarimi/cache_home_1/datasets\r\n12/12/2020 15:38:45 - INFO - filelock - Lock 140082549560848 acquired on /idiap/home/rkarimi/.cache/huggingface/datasets/4c7b1146606607c193d1ef601d8d0c134521b2ac59f61ee98c09119be925ee16.7ad892de9d7f1b4f9dfc598ef31e4a398a7224176bc9a3110e0e2075ff943e8f.py.lock\r\n12/12/2020 15:38:45 - INFO - filelock - Lock 140082549560848 released on /idiap/home/rkarimi/.cache/huggingface/datasets/4c7b1146606607c193d1ef601d8d0c134521b2ac59f61ee98c09119be925ee16.7ad892de9d7f1b4f9dfc598ef31e4a398a7224176bc9a3110e0e2075ff943e8f.py.lock\r\nUsing custom data configuration default\r\n12/12/2020 15:38:45 - INFO - filelock - Lock 140082549560848 acquired on /idiap/temp/rkarimi/cache_home_1/datasets/_idiap_temp_rkarimi_cache_home_1_datasets_boolq_default_0.1.0_1fcfdc6f36dc89a2245ffbbd5248ab33890594b50396731ebc78411bdd2ca534.lock\r\n12/12/2020 15:38:45 - INFO - filelock - Lock 140082549560848 released on /idiap/temp/rkarimi/cache_home_1/datasets/_idiap_temp_rkarimi_cache_home_1_datasets_boolq_default_0.1.0_1fcfdc6f36dc89a2245ffbbd5248ab33890594b50396731ebc78411bdd2ca534.lock\r\n12/12/2020 15:38:45 - INFO - filelock - Lock 140082549365200 acquired on /idiap/temp/rkarimi/cache_home_1/datasets/_idiap_temp_rkarimi_cache_home_1_datasets_boolq_default_0.1.0_1fcfdc6f36dc89a2245ffbbd5248ab33890594b50396731ebc78411bdd2ca534.lock\r\nReusing dataset boolq (/idiap/temp/rkarimi/cache_home_1/datasets/boolq/default/0.1.0/1fcfdc6f36dc89a2245ffbbd5248ab33890594b50396731ebc78411bdd2ca534)\r\n12/12/2020 15:38:45 - INFO - filelock - Lock 140082549365200 released on /idiap/temp/rkarimi/cache_home_1/datasets/_idiap_temp_rkarimi_cache_home_1_datasets_boolq_default_0.1.0_1fcfdc6f36dc89a2245ffbbd5248ab33890594b50396731ebc78411bdd2ca534.lock\r\nLoading cached processed dataset at /idiap/temp/rkarimi/cache_home_1/datasets/boolq/default/0.1.0/1fcfdc6f36dc89a2245ffbbd5248ab33890594b50396731ebc78411bdd2ca534/cache-9a2822394a3a4e34.arrow\r\n12/12/2020 15:38:45 - INFO - seq2seq.metrics.metrics - selected metric <function build_compute_metrics_fn.<locals>.classification_metrics at 0x7f66b464cc20> for task boolq\r\n12/12/2020 15:38:45 - INFO - seq2seq.trainers.trainer - ***** Running training *****\r\n12/12/2020 15:38:45 - INFO - seq2seq.trainers.trainer - Num examples = 10\r\n12/12/2020 15:38:45 - INFO - seq2seq.trainers.trainer - Num Epochs = 2\r\n12/12/2020 15:38:45 - INFO - seq2seq.trainers.trainer - Instantaneous batch size per device = 64\r\n12/12/2020 15:38:45 - INFO - seq2seq.trainers.trainer - Total train batch size (w. parallel, distributed & accumulation) = 64\r\n12/12/2020 15:38:45 - INFO - seq2seq.trainers.trainer - Gradient Accumulation steps = 1\r\n12/12/2020 15:38:45 - INFO - seq2seq.trainers.trainer - Total optimization steps = 2\r\n{'loss': 529.79443359375, 'learning_rate': 2e-05, 'epoch': 1.0} \r\n100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 2.37it/s]12/12/2020 15:38:46 - INFO - seq2seq.trainers.trainer - \r\n\r\nTraining completed. Do not forget to share your model on huggingface.co/models =)\r\n\r\n\r\n{'epoch': 2.0} \r\n100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 2.43it/s]\r\n12/12/2020 15:38:46 - INFO - seq2seq.trainers.trainer - Saving model checkpoint to outputs/test\r\ncahce dir /idiap/temp/rkarimi/cache_home_1/datasets\r\ncahce dir /idiap/temp/rkarimi/cache_home_1/datasets\r\n12/12/2020 15:38:59 - INFO - filelock - Lock 140079084929680 acquired on /idiap/home/rkarimi/.cache/huggingface/datasets/4c7b1146606607c193d1ef601d8d0c134521b2ac59f61ee98c09119be925ee16.7ad892de9d7f1b4f9dfc598ef31e4a398a7224176bc9a3110e0e2075ff943e8f.py.lock\r\n12/12/2020 15:38:59 - INFO - filelock - Lock 140079084929680 released on /idiap/home/rkarimi/.cache/huggingface/datasets/4c7b1146606607c193d1ef601d8d0c134521b2ac59f61ee98c09119be925ee16.7ad892de9d7f1b4f9dfc598ef31e4a398a7224176bc9a3110e0e2075ff943e8f.py.lock\r\nUsing custom data configuration default\r\n12/12/2020 15:38:59 - INFO - filelock - Lock 140079084929360 acquired on /idiap/temp/rkarimi/cache_home_1/datasets/_idiap_temp_rkarimi_cache_home_1_datasets_boolq_default_0.1.0_1fcfdc6f36dc89a2245ffbbd5248ab33890594b50396731ebc78411bdd2ca534.lock\r\n12/12/2020 15:38:59 - INFO - filelock - Lock 140079084929360 released on /idiap/temp/rkarimi/cache_home_1/datasets/_idiap_temp_rkarimi_cache_home_1_datasets_boolq_default_0.1.0_1fcfdc6f36dc89a2245ffbbd5248ab33890594b50396731ebc78411bdd2ca534.lock\r\n12/12/2020 15:38:59 - INFO - filelock - Lock 140079085355216 acquired on /idiap/temp/rkarimi/cache_home_1/datasets/_idiap_temp_rkarimi_cache_home_1_datasets_boolq_default_0.1.0_1fcfdc6f36dc89a2245ffbbd5248ab33890594b50396731ebc78411bdd2ca534.lock\r\nReusing dataset boolq (/idiap/temp/rkarimi/cache_home_1/datasets/boolq/default/0.1.0/1fcfdc6f36dc89a2245ffbbd5248ab33890594b50396731ebc78411bdd2ca534)\r\n12/12/2020 15:38:59 - INFO - filelock - Lock 140079085355216 released on /idiap/temp/rkarimi/cache_home_1/datasets/_idiap_temp_rkarimi_cache_home_1_datasets_boolq_default_0.1.0_1fcfdc6f36dc89a2245ffbbd5248ab33890594b50396731ebc78411bdd2ca534.lock\r\nLoading cached processed dataset at /idiap/temp/rkarimi/cache_home_1/datasets/boolq/default/0.1.0/1fcfdc6f36dc89a2245ffbbd5248ab33890594b50396731ebc78411bdd2ca534/cache-164dd1d57e9fa69a.arrow\r\n12/12/2020 15:38:59 - INFO - seq2seq.metrics.metrics - selected metric <function build_compute_metrics_fn.<locals>.classification_metrics at 0x7f66b40c67a0> for task boolq\r\n12/12/2020 15:38:59 - INFO - seq2seq.trainers.trainer - ***** Running training *****\r\n12/12/2020 15:38:59 - INFO - seq2seq.trainers.trainer - Num examples = 1\r\n12/12/2020 15:38:59 - INFO - seq2seq.trainers.trainer - Num Epochs = 2\r\n12/12/2020 15:38:59 - INFO - seq2seq.trainers.trainer - Instantaneous batch size per device = 64\r\n12/12/2020 15:38:59 - INFO - seq2seq.trainers.trainer - Total train batch size (w. parallel, distributed & accumulation) = 64\r\n12/12/2020 15:38:59 - INFO - seq2seq.trainers.trainer - Gradient Accumulation steps = 1\r\n12/12/2020 15:38:59 - INFO - seq2seq.trainers.trainer - Total optimization steps = 2\r\n12/12/2020 15:38:59 - INFO - seq2seq.trainers.trainer - Continuing training from checkpoint, will skip to saved global_step\r\n12/12/2020 15:38:59 - INFO - seq2seq.trainers.trainer - Continuing training from epoch 2\r\n12/12/2020 15:38:59 - INFO - seq2seq.trainers.trainer - Continuing training from global step 2\r\n12/12/2020 15:38:59 - INFO - seq2seq.trainers.trainer - Will skip the first 0 steps in the first epoch\r\n 0%| | 0/2 [00:00<?, ?it/s]12/12/2020 15:38:59 - INFO - seq2seq.trainers.trainer - \r\n\r\nTraining completed. Do not forget to share your model on huggingface.co/models =)\r\n\r\n\r\n{'epoch': 2.0} \r\n 0%| | 0/2 [00:00<?, ?it/s]\r\n12/12/2020 15:38:59 - INFO - seq2seq.trainers.trainer - Saving model checkpoint to outputs/finetune-adapter/test-n-1-lr-1e-02-e-20/boolq\r\n12/12/2020 15:39:07 - INFO - seq2seq.utils.utils - using task specific params for boolq: {'max_length': 3}\r\n12/12/2020 15:39:07 - INFO - seq2seq.trainers.trainer - ***** Running Evaluation *****\r\n12/12/2020 15:39:07 - INFO - seq2seq.trainers.trainer - Num examples = 3269\r\n12/12/2020 15:39:07 - INFO - seq2seq.trainers.trainer - Batch size = 64\r\n100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 52/52 [00:12<00:00, 4.86it/s][libprotobuf FATAL /sentencepiece/src/../third_party/protobuf-lite/google/protobuf/repeated_field.h:1505] CHECK failed: (index) >= (0): \r\nterminate called after throwing an instance of 'google::protobuf::FatalException'\r\n what(): CHECK failed: (index) >= (0): \r\nAborted\r\n```\r\n\r\n\r\n\r\n", "solved see https://github.com/huggingface/transformers/issues/9079?_pjax=%23js-repo-pjax-container ", "Hii please follow me" ]
"2020-12-08T09:44:15Z"
"2020-12-12T19:36:22Z"
"2020-12-12T16:22:36Z"
CONTRIBUTOR
null
null
null
Hi I am getting this error when evaluating on wmt16-ro-en using finetune_trainer.py of huggingface repo. thank for your help {'epoch': 20.0} 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 20/20 [00:16<00:00, 1.22it/s] 12/08/2020 10:41:19 - INFO - seq2seq.trainers.trainer - Saving model checkpoint to outputs/experiment/joint/finetune/lr-2e-5 12/08/2020 10:41:24 - INFO - __main__ - {'wmt16-en-ro': Dataset(features: {'src_texts': Value(dtype='string', id=None), 'task': Value(dtype='string', id=None), 'tgt_texts': Value(dtype='string', id=None)}, num_rows: 1998), 'qnli': Dataset(features: {'src_texts': Value(dtype='string', id=None), 'task': Value(dtype='string', id=None), 'tgt_texts': Value(dtype='string', id=None)}, num_rows: 5462), 'scitail': Dataset(features: {'src_texts': Value(dtype='string', id=None), 'task': Value(dtype='string', id=None), 'tgt_texts': Value(dtype='string', id=None)}, num_rows: 1303)} 12/08/2020 10:41:24 - INFO - __main__ - *** Evaluate *** 12/08/2020 10:41:24 - INFO - seq2seq.utils.utils - using task specific params for wmt16-en-ro: {'max_length': 300, 'num_beams': 4} 12/08/2020 10:41:24 - INFO - seq2seq.trainers.trainer - ***** Running Evaluation ***** 12/08/2020 10:41:24 - INFO - seq2seq.trainers.trainer - Num examples = 1998 12/08/2020 10:41:24 - INFO - seq2seq.trainers.trainer - Batch size = 64 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 32/32 [00:37<00:00, 1.19s/it][libprotobuf FATAL /sentencepiece/src/../third_party/protobuf-lite/google/protobuf/repeated_field.h:1505] CHECK failed: (index) >= (0): terminate called after throwing an instance of 'google::protobuf::FatalException' what(): CHECK failed: (index) >= (0): Aborted
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1286/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1286/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/1409
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1409/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1409/comments
https://api.github.com/repos/huggingface/datasets/issues/1409/events
https://github.com/huggingface/datasets/pull/1409
760,593,932
MDExOlB1bGxSZXF1ZXN0NTM1Mzk5OTI1
1,409
Adding the ASSIN dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/5097052?v=4", "events_url": "https://api.github.com/users/jonatasgrosman/events{/privacy}", "followers_url": "https://api.github.com/users/jonatasgrosman/followers", "following_url": "https://api.github.com/users/jonatasgrosman/following{/other_user}", "gists_url": "https://api.github.com/users/jonatasgrosman/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jonatasgrosman", "id": 5097052, "login": "jonatasgrosman", "node_id": "MDQ6VXNlcjUwOTcwNTI=", "organizations_url": "https://api.github.com/users/jonatasgrosman/orgs", "received_events_url": "https://api.github.com/users/jonatasgrosman/received_events", "repos_url": "https://api.github.com/users/jonatasgrosman/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jonatasgrosman/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jonatasgrosman/subscriptions", "type": "User", "url": "https://api.github.com/users/jonatasgrosman" }
[]
closed
false
null
[]
null
[ "I wrongly commited data from another branch in this PR, I'll close this a reopen another PR with the fixed branch" ]
"2020-12-09T19:07:00Z"
"2020-12-09T19:18:12Z"
"2020-12-09T19:15:52Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/1409.diff", "html_url": "https://github.com/huggingface/datasets/pull/1409", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/1409.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/1409" }
Adding the ASSIN dataset, a Portuguese language dataset for Natural Language Inference and Semantic Similarity Scoring
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1409/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1409/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/4172
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4172/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4172/comments
https://api.github.com/repos/huggingface/datasets/issues/4172/events
https://github.com/huggingface/datasets/pull/4172
1,204,433,160
PR_kwDODunzps42O7LW
4,172
Update assin2 dataset_infos.json
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
"2022-04-14T11:53:06Z"
"2022-04-15T14:47:42Z"
"2022-04-15T14:41:22Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/4172.diff", "html_url": "https://github.com/huggingface/datasets/pull/4172", "merged_at": "2022-04-15T14:41:22Z", "patch_url": "https://github.com/huggingface/datasets/pull/4172.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4172" }
Following comments in https://github.com/huggingface/datasets/issues/4003 we found that it was outdated and casing an error when loading the dataset
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4172/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4172/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/3338
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3338/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3338/comments
https://api.github.com/repos/huggingface/datasets/issues/3338/events
https://github.com/huggingface/datasets/pull/3338
1,066,371,235
PR_kwDODunzps4vJRFM
3,338
[WIP] Add doctests for tutorials
{ "avatar_url": "https://avatars.githubusercontent.com/u/59462357?v=4", "events_url": "https://api.github.com/users/stevhliu/events{/privacy}", "followers_url": "https://api.github.com/users/stevhliu/followers", "following_url": "https://api.github.com/users/stevhliu/following{/other_user}", "gists_url": "https://api.github.com/users/stevhliu/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/stevhliu", "id": 59462357, "login": "stevhliu", "node_id": "MDQ6VXNlcjU5NDYyMzU3", "organizations_url": "https://api.github.com/users/stevhliu/orgs", "received_events_url": "https://api.github.com/users/stevhliu/received_events", "repos_url": "https://api.github.com/users/stevhliu/repos", "site_admin": false, "starred_url": "https://api.github.com/users/stevhliu/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/stevhliu/subscriptions", "type": "User", "url": "https://api.github.com/users/stevhliu" }
[]
closed
false
null
[]
null
[ "I manage to remove the mentions of ellipsis in the code by launching the command as follows:\r\n\r\n```\r\npython -m doctest -v docs/source/load_hub.rst -o=ELLIPSIS\r\n```\r\n\r\nThe way you put your ellipsis will only work on mac, I've adapted it for linux as well with the following:\r\n\r\n```diff\r\n >>> from datasets import load_dataset_builder\r\n >>> dataset_builder = load_dataset_builder('imdb')\r\n- >>> print(dataset_builder.cache_dir) #doctest: +ELLIPSIS\r\n- /Users/.../.cache/huggingface/datasets/imdb/plain_text/1.0.0/...\r\n+ >>> print(dataset_builder.cache_dir)\r\n+ /.../.cache/huggingface/datasets/imdb/plain_text/1.0.0/...\r\n```\r\n\r\nThis passes on my machine:\r\n\r\n```\r\nTrying:\r\n print(dataset_builder.cache_dir)\r\nExpecting:\r\n /.../.cache/huggingface/datasets/imdb/plain_text/1.0.0/...\r\nok\r\n```\r\n\r\nI'm getting a last error:\r\n\r\n```py\r\nExpected:\r\n DatasetDict({\r\n train: Dataset({\r\n features: ['sentence1', 'sentence2', 'label', 'idx'],\r\n num_rows: 3668\r\n })\r\n validation: Dataset({\r\n features: ['sentence1', 'sentence2', 'label', 'idx'],\r\n num_rows: 408\r\n })\r\n test: Dataset({\r\n features: ['sentence1', 'sentence2', 'label', 'idx'],\r\n num_rows: 1725\r\n })\r\n })\r\nGot:\r\n DatasetDict({\r\n train: Dataset({\r\n features: ['idx', 'label', 'sentence1', 'sentence2'],\r\n num_rows: 3668\r\n })\r\n validation: Dataset({\r\n features: ['idx', 'label', 'sentence1', 'sentence2'],\r\n num_rows: 408\r\n })\r\n test: Dataset({\r\n features: ['idx', 'label', 'sentence1', 'sentence2'],\r\n num_rows: 1725\r\n })\r\n })\r\n```\r\n\r\nBut this is due to `doctest` looking for an exact match and the list having an unordered print order. I wish `doctest` would be a bit more flexible with that." ]
"2021-11-29T18:40:46Z"
"2023-05-05T17:18:20Z"
"2023-05-05T17:18:15Z"
MEMBER
null
1
{ "diff_url": "https://github.com/huggingface/datasets/pull/3338.diff", "html_url": "https://github.com/huggingface/datasets/pull/3338", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/3338.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/3338" }
Opening a PR as discussed with @LysandreJik for some help with doctest issues. The goal is to add doctests for each of the tutorials in the documentation to make sure the code samples work as shown. ### Issues A doctest has been added in the docstring of the `load_dataset_builder` function in `load.py` to handle variable outputs with the `ELLIPSIS` directive. When I run doctest on the `load_hub.rst` file, doctest should recognize the expected output from the docstring, and the corresponding code sample in `load_hub.rst` should pass. I am having the same issue with handling tracebacks in the `load_dataset` function. From the docstring: ``` >>> dataset_builder.cache_dir #doctest: +ELLIPSIS /Users/.../.cache/huggingface/datasets/imdb/plain_text/1.0.0/... ``` Test result: ``` Failed example: dataset_builder.cache_dir Expected: /Users/.../.cache/huggingface/datasets/imdb/plain_text/1.0.0/... Got: /Users/steven/.cache/huggingface/datasets/imdb/plain_text/1.0.0/2fdd8b9bcadd6e7055e742a706876ba43f19faee861df134affd7a3f60fc38a1 ``` I am able to get the doctest to pass by adding the doctest directives (`ELLIPSIS` and `NORMALIZE_WHITESPACE`) to the code samples in the `rst` file directly. But my understanding is that these directives should also work in the docstrings of the functions. I am running the test from the root of the directory: ``` python -m doctest -v docs/source/load_hub.rst ```
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3338/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3338/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/5482
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5482/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5482/comments
https://api.github.com/repos/huggingface/datasets/issues/5482/events
https://github.com/huggingface/datasets/issues/5482
1,560,853,137
I_kwDODunzps5dCLqR
5,482
Reload features from Parquet metadata
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" }, { "color": "BDE59C", "default": false, "description": "Issues a bit more difficult than \"Good First\" issues", "id": 3761482852, "name": "good second issue", "node_id": "LA_kwDODunzps7gM6xk", "url": "https://api.github.com/repos/huggingface/datasets/labels/good%20second%20issue" } ]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/6368040?v=4", "events_url": "https://api.github.com/users/MFreidank/events{/privacy}", "followers_url": "https://api.github.com/users/MFreidank/followers", "following_url": "https://api.github.com/users/MFreidank/following{/other_user}", "gists_url": "https://api.github.com/users/MFreidank/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/MFreidank", "id": 6368040, "login": "MFreidank", "node_id": "MDQ6VXNlcjYzNjgwNDA=", "organizations_url": "https://api.github.com/users/MFreidank/orgs", "received_events_url": "https://api.github.com/users/MFreidank/received_events", "repos_url": "https://api.github.com/users/MFreidank/repos", "site_admin": false, "starred_url": "https://api.github.com/users/MFreidank/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/MFreidank/subscriptions", "type": "User", "url": "https://api.github.com/users/MFreidank" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/6368040?v=4", "events_url": "https://api.github.com/users/MFreidank/events{/privacy}", "followers_url": "https://api.github.com/users/MFreidank/followers", "following_url": "https://api.github.com/users/MFreidank/following{/other_user}", "gists_url": "https://api.github.com/users/MFreidank/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/MFreidank", "id": 6368040, "login": "MFreidank", "node_id": "MDQ6VXNlcjYzNjgwNDA=", "organizations_url": "https://api.github.com/users/MFreidank/orgs", "received_events_url": "https://api.github.com/users/MFreidank/received_events", "repos_url": "https://api.github.com/users/MFreidank/repos", "site_admin": false, "starred_url": "https://api.github.com/users/MFreidank/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/MFreidank/subscriptions", "type": "User", "url": "https://api.github.com/users/MFreidank" } ]
null
[ "I'd be happy to have a look, if nobody else has started working on this yet @lhoestq. \r\n\r\nIt seems to me that for the `arrow` format features are currently attached as metadata [in `datasets.arrow_writer`](https://github.com/huggingface/datasets/blob/5f810b7011a8a4ab077a1847c024d2d9e267b065/src/datasets/arrow_writer.py#L412) and retrieved from the metadata at `load_dataset` time using [`datasets.features.features.from_arrow_schema`](https://github.com/huggingface/datasets/blob/5f810b7011a8a4ab077a1847c024d2d9e267b065/src/datasets/features/features.py#L1602). \r\n\r\nThis will need to be replicated for `parquet` via calls to [this api](https://arrow.apache.org/docs/python/generated/pyarrow.parquet.write_metadata.html) from `io.parquet.ParquetWriter` and `io.parquet.ParquetReader` [respectively](https://github.com/huggingface/datasets/blob/5f810b7011a8a4ab077a1847c024d2d9e267b065/src/datasets/io/parquet.py#L104).\r\n\r\nAny other important considerations?\r\n", "Thanks @MFreidank ! That's correct :)\r\n\r\nReading the metadata to infer the features can be ideally done in the `parquet.py` file in `packaged_builder` when a parquet file is read. You can cast the arrow table to the schema you get from the features.arrow_schema", "#self-assign" ]
"2023-01-28T13:12:31Z"
"2023-02-12T15:57:02Z"
"2023-02-12T15:57:02Z"
MEMBER
null
null
null
The idea would be to allow this : ```python ds.to_parquet("my_dataset/ds.parquet") reloaded = load_dataset("my_dataset") assert ds.features == reloaded.features ``` And it should also work with Image and Audio types (right now they're reloaded as a dict type) This can be implemented by storing and reading the feature types in the parquet metadata, as we do for arrow files.
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/5482/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5482/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/1045
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1045/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1045/comments
https://api.github.com/repos/huggingface/datasets/issues/1045/events
https://github.com/huggingface/datasets/pull/1045
756,120,760
MDExOlB1bGxSZXF1ZXN0NTMxNzE2NzIy
1,045
Add xitsonga ner corpus
{ "avatar_url": "https://avatars.githubusercontent.com/u/7923902?v=4", "events_url": "https://api.github.com/users/yvonnegitau/events{/privacy}", "followers_url": "https://api.github.com/users/yvonnegitau/followers", "following_url": "https://api.github.com/users/yvonnegitau/following{/other_user}", "gists_url": "https://api.github.com/users/yvonnegitau/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/yvonnegitau", "id": 7923902, "login": "yvonnegitau", "node_id": "MDQ6VXNlcjc5MjM5MDI=", "organizations_url": "https://api.github.com/users/yvonnegitau/orgs", "received_events_url": "https://api.github.com/users/yvonnegitau/received_events", "repos_url": "https://api.github.com/users/yvonnegitau/repos", "site_admin": false, "starred_url": "https://api.github.com/users/yvonnegitau/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/yvonnegitau/subscriptions", "type": "User", "url": "https://api.github.com/users/yvonnegitau" }
[]
closed
false
null
[]
null
[ "Look like this PR includes changes to many other files than the ones related to xitsonga NER.\r\nCould you create another branch and another PR please ?" ]
"2020-12-03T11:40:48Z"
"2020-12-03T17:20:03Z"
"2020-12-03T17:19:32Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/1045.diff", "html_url": "https://github.com/huggingface/datasets/pull/1045", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/1045.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/1045" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1045/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1045/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/1387
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1387/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1387/comments
https://api.github.com/repos/huggingface/datasets/issues/1387/events
https://github.com/huggingface/datasets/pull/1387
760,368,355
MDExOlB1bGxSZXF1ZXN0NTM1MjExODQ1
1,387
Add LIAR dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/1206395?v=4", "events_url": "https://api.github.com/users/hugoabonizio/events{/privacy}", "followers_url": "https://api.github.com/users/hugoabonizio/followers", "following_url": "https://api.github.com/users/hugoabonizio/following{/other_user}", "gists_url": "https://api.github.com/users/hugoabonizio/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/hugoabonizio", "id": 1206395, "login": "hugoabonizio", "node_id": "MDQ6VXNlcjEyMDYzOTU=", "organizations_url": "https://api.github.com/users/hugoabonizio/orgs", "received_events_url": "https://api.github.com/users/hugoabonizio/received_events", "repos_url": "https://api.github.com/users/hugoabonizio/repos", "site_admin": false, "starred_url": "https://api.github.com/users/hugoabonizio/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/hugoabonizio/subscriptions", "type": "User", "url": "https://api.github.com/users/hugoabonizio" }
[]
closed
false
null
[]
null
[ "@lhoestq done! The failing testes don't seem to be related, it seems to be a connection issue, if I understand it correctly.", "merging since the CI is fixed on master" ]
"2020-12-09T14:16:55Z"
"2020-12-14T18:06:43Z"
"2020-12-14T16:23:59Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/1387.diff", "html_url": "https://github.com/huggingface/datasets/pull/1387", "merged_at": "2020-12-14T16:23:59Z", "patch_url": "https://github.com/huggingface/datasets/pull/1387.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/1387" }
Add LIAR dataset from [“Liar, Liar Pants on Fire”: A New Benchmark Dataset for Fake News Detection](https://www.aclweb.org/anthology/P17-2067/).
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1387/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1387/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/4851
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4851/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4851/comments
https://api.github.com/repos/huggingface/datasets/issues/4851/events
https://github.com/huggingface/datasets/pull/4851
1,339,085,917
PR_kwDODunzps49L6ee
4,851
Fix license tag and Source Data section in billsum dataset card
{ "avatar_url": "https://avatars.githubusercontent.com/u/8100?v=4", "events_url": "https://api.github.com/users/kashif/events{/privacy}", "followers_url": "https://api.github.com/users/kashif/followers", "following_url": "https://api.github.com/users/kashif/following{/other_user}", "gists_url": "https://api.github.com/users/kashif/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/kashif", "id": 8100, "login": "kashif", "node_id": "MDQ6VXNlcjgxMDA=", "organizations_url": "https://api.github.com/users/kashif/orgs", "received_events_url": "https://api.github.com/users/kashif/received_events", "repos_url": "https://api.github.com/users/kashif/repos", "site_admin": false, "starred_url": "https://api.github.com/users/kashif/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/kashif/subscriptions", "type": "User", "url": "https://api.github.com/users/kashif" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "thanks @albertvillanova done thank you!" ]
"2022-08-15T14:37:00Z"
"2022-08-22T13:56:24Z"
"2022-08-22T13:40:59Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/4851.diff", "html_url": "https://github.com/huggingface/datasets/pull/4851", "merged_at": "2022-08-22T13:40:59Z", "patch_url": "https://github.com/huggingface/datasets/pull/4851.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4851" }
Fixed the data source and license fields
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4851/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4851/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/4427
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4427/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4427/comments
https://api.github.com/repos/huggingface/datasets/issues/4427/events
https://github.com/huggingface/datasets/pull/4427
1,253,959,313
PR_kwDODunzps44vyGg
4,427
Add HF.co for PRs/Issues for specific datasets
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
"2022-05-31T14:31:21Z"
"2022-06-01T12:37:42Z"
"2022-06-01T12:29:02Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/4427.diff", "html_url": "https://github.com/huggingface/datasets/pull/4427", "merged_at": "2022-06-01T12:29:02Z", "patch_url": "https://github.com/huggingface/datasets/pull/4427.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4427" }
As in https://github.com/huggingface/transformers/pull/17485, issues and PR for datasets under a namespace have to be on the HF Hub
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4427/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4427/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/2553
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2553/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2553/comments
https://api.github.com/repos/huggingface/datasets/issues/2553/events
https://github.com/huggingface/datasets/issues/2553
931,365,926
MDU6SXNzdWU5MzEzNjU5MjY=
2,553
load_dataset("web_nlg") NonMatchingChecksumError
{ "avatar_url": "https://avatars.githubusercontent.com/u/33730312?v=4", "events_url": "https://api.github.com/users/alxthm/events{/privacy}", "followers_url": "https://api.github.com/users/alxthm/followers", "following_url": "https://api.github.com/users/alxthm/following{/other_user}", "gists_url": "https://api.github.com/users/alxthm/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/alxthm", "id": 33730312, "login": "alxthm", "node_id": "MDQ6VXNlcjMzNzMwMzEy", "organizations_url": "https://api.github.com/users/alxthm/orgs", "received_events_url": "https://api.github.com/users/alxthm/received_events", "repos_url": "https://api.github.com/users/alxthm/repos", "site_admin": false, "starred_url": "https://api.github.com/users/alxthm/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/alxthm/subscriptions", "type": "User", "url": "https://api.github.com/users/alxthm" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" } ]
null
[ "Hi ! Thanks for reporting. This is due to the WebNLG repository that got updated today.\r\nI just pushed a fix at #2558 - this shouldn't happen anymore in the future.", "This is fixed on `master` now :)\r\nWe'll do a new release soon !" ]
"2021-06-28T09:26:46Z"
"2021-06-28T17:23:39Z"
"2021-06-28T17:23:16Z"
NONE
null
null
null
Hi! It seems the WebNLG dataset gives a NonMatchingChecksumError. ## Steps to reproduce the bug ```python from datasets import load_dataset dataset = load_dataset('web_nlg', name="release_v3.0_en", split="dev") ``` Gives ``` NonMatchingChecksumError: Checksums didn't match for dataset source files: ['https://gitlab.com/shimorina/webnlg-dataset/-/archive/master/webnlg-dataset-master.zip'] ``` ## Environment info - `datasets` version: 1.8.0 - Platform: macOS-11.3.1-x86_64-i386-64bit - Python version: 3.9.4 - PyArrow version: 3.0.0 Also tested on Linux, with python 3.6.8
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2553/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2553/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/4522
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4522/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4522/comments
https://api.github.com/repos/huggingface/datasets/issues/4522/events
https://github.com/huggingface/datasets/issues/4522
1,274,929,328
I_kwDODunzps5L_eCw
4,522
Try to reduce the number of datasets that require manual download
{ "avatar_url": "https://avatars.githubusercontent.com/u/1676121?v=4", "events_url": "https://api.github.com/users/severo/events{/privacy}", "followers_url": "https://api.github.com/users/severo/followers", "following_url": "https://api.github.com/users/severo/following{/other_user}", "gists_url": "https://api.github.com/users/severo/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/severo", "id": 1676121, "login": "severo", "node_id": "MDQ6VXNlcjE2NzYxMjE=", "organizations_url": "https://api.github.com/users/severo/orgs", "received_events_url": "https://api.github.com/users/severo/received_events", "repos_url": "https://api.github.com/users/severo/repos", "site_admin": false, "starred_url": "https://api.github.com/users/severo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/severo/subscriptions", "type": "User", "url": "https://api.github.com/users/severo" }
[]
open
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko" } ]
null
[]
"2022-06-17T11:42:03Z"
"2022-06-17T11:52:48Z"
null
CONTRIBUTOR
null
null
null
> Currently, 41 canonical datasets require manual download. I checked their scripts and I'm pretty sure this number can be reduced to ≈ 30 by not relying on bash scripts to download data, hosting data directly on the Hub when the license permits, etc. Then, we will mostly be left with datasets with restricted access, which we can ignore from https://github.com/huggingface/datasets-server/issues/12#issuecomment-1026920432
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4522/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4522/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/5678
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5678/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5678/comments
https://api.github.com/repos/huggingface/datasets/issues/5678/events
https://github.com/huggingface/datasets/issues/5678
1,645,018,359
I_kwDODunzps5iDPz3
5,678
Add support to create a Dataset from spark dataframe
{ "avatar_url": "https://avatars.githubusercontent.com/u/38018689?v=4", "events_url": "https://api.github.com/users/lu-wang-dl/events{/privacy}", "followers_url": "https://api.github.com/users/lu-wang-dl/followers", "following_url": "https://api.github.com/users/lu-wang-dl/following{/other_user}", "gists_url": "https://api.github.com/users/lu-wang-dl/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lu-wang-dl", "id": 38018689, "login": "lu-wang-dl", "node_id": "MDQ6VXNlcjM4MDE4Njg5", "organizations_url": "https://api.github.com/users/lu-wang-dl/orgs", "received_events_url": "https://api.github.com/users/lu-wang-dl/received_events", "repos_url": "https://api.github.com/users/lu-wang-dl/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lu-wang-dl/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lu-wang-dl/subscriptions", "type": "User", "url": "https://api.github.com/users/lu-wang-dl" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
closed
false
null
[]
null
[ "if i read spark Dataframe , got an error on multi-node Spark cluster.\r\nDid the Api (Dataset.from_spark) support Spark cluster, read dataframe and save_to_disk?\r\n\r\nError: \r\n_pickle.PicklingError: Could not serialize object: RuntimeError: It appears that you are attempting to reference SparkContext from a broadcast variable, action, or transforma\r\ntion. SparkContext can only be used on the driver, not in code that it run on workers. For more information, see SPARK-5063.\r\n23/06/16 21:17:20 WARN ExecutorPodsWatchSnapshotSource: Kubernetes client has been closed (this is expected if the application is shutting down.)\r\n\r\n", "How to perform predictions on Dataset object in Spark with multi-node cluster parallelism?", "Addressed in #5701" ]
"2023-03-29T04:36:28Z"
"2023-07-21T14:15:38Z"
"2023-07-21T14:15:38Z"
NONE
null
null
null
### Feature request Add a new API `Dataset.from_spark` to create a Dataset from Spark DataFrame. ### Motivation Spark is a distributed computing framework that can handle large datasets. By supporting loading Spark DataFrames directly into Hugging Face Datasets, we enable take the advantages of spark to processing the data in parallel. By providing a seamless integration between these two frameworks, we make it easier for data scientists and developers to work with both Spark and Hugging Face in the same workflow. ### Your contribution We can discuss about the ideas and I can help preparing a PR for this feature.
{ "+1": 2, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 2, "url": "https://api.github.com/repos/huggingface/datasets/issues/5678/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5678/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6212
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6212/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6212/comments
https://api.github.com/repos/huggingface/datasets/issues/6212/events
https://github.com/huggingface/datasets/issues/6212
1,880,399,516
I_kwDODunzps5wFJ6c
6,212
Tilde (~) is not supported for data_files
{ "avatar_url": "https://avatars.githubusercontent.com/u/128361578?v=4", "events_url": "https://api.github.com/users/exs-avianello/events{/privacy}", "followers_url": "https://api.github.com/users/exs-avianello/followers", "following_url": "https://api.github.com/users/exs-avianello/following{/other_user}", "gists_url": "https://api.github.com/users/exs-avianello/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/exs-avianello", "id": 128361578, "login": "exs-avianello", "node_id": "U_kgDOB6akag", "organizations_url": "https://api.github.com/users/exs-avianello/orgs", "received_events_url": "https://api.github.com/users/exs-avianello/received_events", "repos_url": "https://api.github.com/users/exs-avianello/repos", "site_admin": false, "starred_url": "https://api.github.com/users/exs-avianello/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/exs-avianello/subscriptions", "type": "User", "url": "https://api.github.com/users/exs-avianello" }
[]
open
false
null
[]
null
[ "Hi @exs-avianello, is it really needed? Note you can alternatively use `pathlib.Path` among others as it follows:\r\n\r\n```python\r\nimport datasets\r\nfrom pathlib import Path\r\n\r\n# save a parquet file at ~/path/to/data.parquet\r\n\r\ndata_files = Path.home() / \"path/to/data.parquet\"\r\ndataset = datasets.load_dataset(\"parquet\", data_files=data_files)\r\n```", "Hi @alvarobartt ! \r\n\r\nThis is definitely just a \"nice to have\" and I am personally more than happy to just use absolute paths client-side. I just wanted to flag it up in case it can help improve the package even more 🙌 It might not be immediately obvious from the stack trace that the error is triggered by the `~` in the path" ]
"2023-09-04T14:23:49Z"
"2023-09-05T08:28:39Z"
null
NONE
null
null
null
### Describe the bug Attempting to `load_dataset` from a path starting with `~` (as a shorthand for the user's home directory) seems not to be fully working - at least as far as the `parquet` dataset builder is concerned. (the same file can be loaded correctly if providing its absolute path instead) I think that this is very similar to https://github.com/huggingface/datasets/issues/5757, but for `data_files` rather than `data_dir` ### Steps to reproduce the bug ```python import datasets # save a parquet file at ~/path/to/data.parquet data_files = "~/path/to/data.parquet" dataset = datasets.load_dataset("parquet", data_files=data_files) ``` ``` Downloading data files: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 12671.61it/s] Extracting data files: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 22671.91it/s] Generating train split: 0 examples [00:00, ? examples/s] Traceback (most recent call last): File ".venv/lib/python3.11/site-packages/datasets/builder.py", line 1949, in _prepare_split_single num_examples, num_bytes = writer.finalize() ^^^^^^^^^^^^^^^^^ File ".venv/lib/python3.11/site-packages/datasets/arrow_writer.py", line 598, in finalize raise SchemaInferenceError("Please pass `features` or at least one example when writing data") datasets.arrow_writer.SchemaInferenceError: Please pass `features` or at least one example when writing data The above exception was the direct cause of the following exception: Traceback (most recent call last): File ".venv/lib/python3.11/site-packages/datasets/load.py", line 2133, in load_dataset builder_instance.download_and_prepare( File ".venv/lib/python3.11/site-packages/datasets/builder.py", line 954, in download_and_prepare self._download_and_prepare( File ".venv/lib/python3.11/site-packages/datasets/builder.py", line 1049, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File ".venv/lib/python3.11/site-packages/datasets/builder.py", line 1813, in _prepare_split for job_id, done, content in self._prepare_split_single( File ".venv/lib/python3.11/site-packages/datasets/builder.py", line 1958, in _prepare_split_single raise DatasetGenerationError("An error occurred while generating the dataset") from e datasets.builder.DatasetGenerationError: An error occurred while generating the dataset ``` ### Expected behavior Can use `~` shorthand in paths when loading local (parquet) datasets. ### Environment info `datasets 2.14.3`
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6212/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6212/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/1040
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1040/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1040/comments
https://api.github.com/repos/huggingface/datasets/issues/1040/events
https://github.com/huggingface/datasets/pull/1040
756,050,387
MDExOlB1bGxSZXF1ZXN0NTMxNjU4MTU3
1,040
Add UN Universal Declaration of Human Rights (UDHR)
{ "avatar_url": "https://avatars.githubusercontent.com/u/9353833?v=4", "events_url": "https://api.github.com/users/joeddav/events{/privacy}", "followers_url": "https://api.github.com/users/joeddav/followers", "following_url": "https://api.github.com/users/joeddav/following{/other_user}", "gists_url": "https://api.github.com/users/joeddav/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/joeddav", "id": 9353833, "login": "joeddav", "node_id": "MDQ6VXNlcjkzNTM4MzM=", "organizations_url": "https://api.github.com/users/joeddav/orgs", "received_events_url": "https://api.github.com/users/joeddav/received_events", "repos_url": "https://api.github.com/users/joeddav/repos", "site_admin": false, "starred_url": "https://api.github.com/users/joeddav/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/joeddav/subscriptions", "type": "User", "url": "https://api.github.com/users/joeddav" }
[]
closed
false
null
[]
null
[]
"2020-12-03T10:04:58Z"
"2020-12-03T19:20:15Z"
"2020-12-03T19:20:11Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/1040.diff", "html_url": "https://github.com/huggingface/datasets/pull/1040", "merged_at": "2020-12-03T19:20:11Z", "patch_url": "https://github.com/huggingface/datasets/pull/1040.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/1040" }
Universal declaration of human rights with translations in 464 languages and dialects. - UN page: https://www.ohchr.org/EN/UDHR/Pages/UDHRIndex.aspx - Raw data source: https://unicode.org/udhr/index.html Each instance of the dataset corresponds to one translation of the document. Since there's only one instance per language (and because there are 500 languages so the dummy data would be messy), I opted to just include them all under the same single config. I wasn't able to find any kind of license so I just copied the copyright notice. I was pretty careful careful generating the language tags so they _should_ all be correct & consistent BCP-47 codes per the docs.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1040/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1040/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/1162
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1162/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1162/comments
https://api.github.com/repos/huggingface/datasets/issues/1162/events
https://github.com/huggingface/datasets/pull/1162
757,707,085
MDExOlB1bGxSZXF1ZXN0NTMzMDM1MzEw
1,162
Add Mocha dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/46804938?v=4", "events_url": "https://api.github.com/users/mattbui/events{/privacy}", "followers_url": "https://api.github.com/users/mattbui/followers", "following_url": "https://api.github.com/users/mattbui/following{/other_user}", "gists_url": "https://api.github.com/users/mattbui/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mattbui", "id": 46804938, "login": "mattbui", "node_id": "MDQ6VXNlcjQ2ODA0OTM4", "organizations_url": "https://api.github.com/users/mattbui/orgs", "received_events_url": "https://api.github.com/users/mattbui/received_events", "repos_url": "https://api.github.com/users/mattbui/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mattbui/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mattbui/subscriptions", "type": "User", "url": "https://api.github.com/users/mattbui" }
[]
closed
false
null
[]
null
[]
"2020-12-05T15:45:14Z"
"2020-12-07T10:09:39Z"
"2020-12-07T10:09:39Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/1162.diff", "html_url": "https://github.com/huggingface/datasets/pull/1162", "merged_at": "2020-12-07T10:09:39Z", "patch_url": "https://github.com/huggingface/datasets/pull/1162.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/1162" }
More information: https://allennlp.org/mocha
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1162/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1162/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/882
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/882/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/882/comments
https://api.github.com/repos/huggingface/datasets/issues/882/events
https://github.com/huggingface/datasets/pull/882
749,662,188
MDExOlB1bGxSZXF1ZXN0NTI2NDQyMjA2
882
Update README.md
{ "avatar_url": "https://avatars.githubusercontent.com/u/32997732?v=4", "events_url": "https://api.github.com/users/vaibhavad/events{/privacy}", "followers_url": "https://api.github.com/users/vaibhavad/followers", "following_url": "https://api.github.com/users/vaibhavad/following{/other_user}", "gists_url": "https://api.github.com/users/vaibhavad/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/vaibhavad", "id": 32997732, "login": "vaibhavad", "node_id": "MDQ6VXNlcjMyOTk3NzMy", "organizations_url": "https://api.github.com/users/vaibhavad/orgs", "received_events_url": "https://api.github.com/users/vaibhavad/received_events", "repos_url": "https://api.github.com/users/vaibhavad/repos", "site_admin": false, "starred_url": "https://api.github.com/users/vaibhavad/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/vaibhavad/subscriptions", "type": "User", "url": "https://api.github.com/users/vaibhavad" }
[]
closed
false
null
[]
null
[]
"2020-11-24T12:23:52Z"
"2021-01-29T10:41:07Z"
"2021-01-29T10:41:07Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/882.diff", "html_url": "https://github.com/huggingface/datasets/pull/882", "merged_at": "2021-01-29T10:41:06Z", "patch_url": "https://github.com/huggingface/datasets/pull/882.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/882" }
"no label" is "-" in the original dataset but "-1" in Huggingface distribution.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/882/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/882/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/2119
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2119/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2119/comments
https://api.github.com/repos/huggingface/datasets/issues/2119/events
https://github.com/huggingface/datasets/pull/2119
841,567,199
MDExOlB1bGxSZXF1ZXN0NjAxMjg2MjIy
2,119
copy.deepcopy os.environ instead of copy
{ "avatar_url": "https://avatars.githubusercontent.com/u/5506053?v=4", "events_url": "https://api.github.com/users/NihalHarish/events{/privacy}", "followers_url": "https://api.github.com/users/NihalHarish/followers", "following_url": "https://api.github.com/users/NihalHarish/following{/other_user}", "gists_url": "https://api.github.com/users/NihalHarish/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/NihalHarish", "id": 5506053, "login": "NihalHarish", "node_id": "MDQ6VXNlcjU1MDYwNTM=", "organizations_url": "https://api.github.com/users/NihalHarish/orgs", "received_events_url": "https://api.github.com/users/NihalHarish/received_events", "repos_url": "https://api.github.com/users/NihalHarish/repos", "site_admin": false, "starred_url": "https://api.github.com/users/NihalHarish/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/NihalHarish/subscriptions", "type": "User", "url": "https://api.github.com/users/NihalHarish" }
[]
closed
false
null
[]
null
[]
"2021-03-26T03:58:38Z"
"2021-03-26T15:13:52Z"
"2021-03-26T15:13:52Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/2119.diff", "html_url": "https://github.com/huggingface/datasets/pull/2119", "merged_at": "2021-03-26T15:13:52Z", "patch_url": "https://github.com/huggingface/datasets/pull/2119.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/2119" }
Fixes: https://github.com/huggingface/datasets/issues/2115 - bug fix: using envrion.copy() returns a dict. - using deepcopy(environ) returns an `_environ` object - Changing the datatype of the _environ object can break code, if subsequent libraries perform operations using apis exclusive to the environ object, like `environ.getenv()` for example. Testing: Tested the change on my terminal: ``` >>> import os >>> x = deepcopy(os.environ) >>> y = os.environ >>> x is y False >>> isinstance(x, type(os.environ)) True >>> z = os.environ.copy() >>> isinstance(z, type(os.environ)) False >>> isinstance(z, dict) True ```
{ "+1": 2, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 2, "url": "https://api.github.com/repos/huggingface/datasets/issues/2119/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2119/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6423
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6423/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6423/comments
https://api.github.com/repos/huggingface/datasets/issues/6423/events
https://github.com/huggingface/datasets/pull/6423
1,994,946,847
PR_kwDODunzps5fhzD6
6,423
Fix conda release by adding pyarrow-hotfix dependency
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004476 / 0.011353 (-0.006877) | 0.002691 / 0.011008 (-0.008317) | 0.061400 / 0.038508 (0.022892) | 0.030096 / 0.023109 (0.006986) | 0.279868 / 0.275898 (0.003970) | 0.310320 / 0.323480 (-0.013159) | 0.003873 / 0.007986 (-0.004112) | 0.002394 / 0.004328 (-0.001935) | 0.048307 / 0.004250 (0.044056) | 0.043326 / 0.037052 (0.006273) | 0.288256 / 0.258489 (0.029767) | 0.311449 / 0.293841 (0.017609) | 0.022970 / 0.128546 (-0.105576) | 0.006714 / 0.075646 (-0.068932) | 0.201656 / 0.419271 (-0.217615) | 0.052811 / 0.043533 (0.009278) | 0.285123 / 0.255139 (0.029984) | 0.301495 / 0.283200 (0.018295) | 0.017531 / 0.141683 (-0.124152) | 1.097660 / 1.452155 (-0.354494) | 1.161986 / 1.492716 (-0.330731) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.089223 / 0.018006 (0.071217) | 0.297815 / 0.000490 (0.297326) | 0.000205 / 0.000200 (0.000005) | 0.000042 / 0.000054 (-0.000013) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018679 / 0.037411 (-0.018732) | 0.062742 / 0.014526 (0.048216) | 0.072869 / 0.176557 (-0.103687) | 0.120730 / 0.737135 (-0.616406) | 0.074526 / 0.296338 (-0.221813) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.299977 / 0.215209 (0.084768) | 2.921029 / 2.077655 (0.843375) | 1.632283 / 1.504120 (0.128163) | 1.508008 / 1.541195 (-0.033187) | 1.513967 / 1.468490 (0.045477) | 0.403056 / 4.584777 (-4.181721) | 2.340011 / 3.745712 (-1.405701) | 2.552319 / 5.269862 (-2.717543) | 1.549741 / 4.565676 (-3.015935) | 0.046303 / 0.424275 (-0.377972) | 0.004768 / 0.007607 (-0.002839) | 0.356921 / 0.226044 (0.130877) | 3.506410 / 2.268929 (1.237482) | 1.975394 / 55.444624 (-53.469230) | 1.688683 / 6.876477 (-5.187794) | 1.715502 / 2.142072 (-0.426571) | 0.471016 / 4.805227 (-4.334212) | 0.099552 / 6.500664 (-6.401112) | 0.042095 / 0.075469 (-0.033374) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.955784 / 1.841788 (-0.886004) | 11.191802 / 8.074308 (3.117494) | 10.127818 / 10.191392 (-0.063574) | 0.141225 / 0.680424 (-0.539199) | 0.014486 / 0.534201 (-0.519715) | 0.267204 / 0.579283 (-0.312079) | 0.289108 / 0.434364 (-0.145256) | 0.309458 / 0.540337 (-0.230880) | 0.422802 / 1.386936 (-0.964134) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004797 / 0.011353 (-0.006556) | 0.002907 / 0.011008 (-0.008101) | 0.047666 / 0.038508 (0.009158) | 0.051183 / 0.023109 (0.028074) | 0.266315 / 0.275898 (-0.009583) | 0.286429 / 0.323480 (-0.037051) | 0.003954 / 0.007986 (-0.004031) | 0.002041 / 0.004328 (-0.002288) | 0.047652 / 0.004250 (0.043401) | 0.038211 / 0.037052 (0.001158) | 0.272210 / 0.258489 (0.013721) | 0.299425 / 0.293841 (0.005584) | 0.024266 / 0.128546 (-0.104280) | 0.006747 / 0.075646 (-0.068900) | 0.052959 / 0.419271 (-0.366312) | 0.032094 / 0.043533 (-0.011439) | 0.265677 / 0.255139 (0.010538) | 0.285373 / 0.283200 (0.002174) | 0.017577 / 0.141683 (-0.124106) | 1.114514 / 1.452155 (-0.337640) | 1.212970 / 1.492716 (-0.279746) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.088347 / 0.018006 (0.070341) | 0.296678 / 0.000490 (0.296188) | 0.000209 / 0.000200 (0.000009) | 0.000044 / 0.000054 (-0.000010) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.021159 / 0.037411 (-0.016253) | 0.069886 / 0.014526 (0.055360) | 0.079832 / 0.176557 (-0.096725) | 0.115512 / 0.737135 (-0.621623) | 0.081600 / 0.296338 (-0.214739) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.292659 / 0.215209 (0.077450) | 2.872556 / 2.077655 (0.794901) | 1.573017 / 1.504120 (0.068897) | 1.445122 / 1.541195 (-0.096072) | 1.485584 / 1.468490 (0.017094) | 0.388638 / 4.584777 (-4.196139) | 2.434847 / 3.745712 (-1.310865) | 2.518167 / 5.269862 (-2.751695) | 1.503000 / 4.565676 (-3.062676) | 0.045123 / 0.424275 (-0.379153) | 0.004778 / 0.007607 (-0.002829) | 0.347955 / 0.226044 (0.121910) | 3.384819 / 2.268929 (1.115891) | 1.920185 / 55.444624 (-53.524439) | 1.646910 / 6.876477 (-5.229567) | 1.638092 / 2.142072 (-0.503980) | 0.450535 / 4.805227 (-4.354692) | 0.095301 / 6.500664 (-6.405363) | 0.040275 / 0.075469 (-0.035194) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.956088 / 1.841788 (-0.885700) | 11.776642 / 8.074308 (3.702334) | 10.651063 / 10.191392 (0.459671) | 0.127079 / 0.680424 (-0.553345) | 0.015080 / 0.534201 (-0.519121) | 0.273737 / 0.579283 (-0.305546) | 0.271434 / 0.434364 (-0.162929) | 0.308448 / 0.540337 (-0.231889) | 0.412467 / 1.386936 (-0.974469) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#af014830363401a0166a2b8435ca2f863cb468d4 \"CML watermark\")\n", "Once this PR is merged, we should upload the missing version to conda.\r\n\r\n@lhoestq you did this in the past. If you tell me your approach (I see a tag called `VERSION`...), I could do it myself.", "Maybe open a PR against the 2.14 branch and update `release-conda.yml` like this ?\r\n\r\n```diff\r\n- on:\r\n- push:\r\n- tags:\r\n- - \"[0-9]+.[0-9]+.[0-9]+*\"\r\n+ on: push\r\n```\r\n\r\nand then set it back to normal after the release is done", "After having cherry-picked the commit in this PR, I have released the conda package. See: \r\n- https://github.com/huggingface/datasets/actions/runs/6880182419/job/18713812449\r\n- https://anaconda.org/HuggingFace/datasets/files?version=2.14.7\r\n\r\nI am merging this PR.\r\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004993 / 0.011353 (-0.006360) | 0.002964 / 0.011008 (-0.008044) | 0.062588 / 0.038508 (0.024080) | 0.030794 / 0.023109 (0.007685) | 0.234856 / 0.275898 (-0.041042) | 0.264807 / 0.323480 (-0.058673) | 0.003139 / 0.007986 (-0.004847) | 0.002498 / 0.004328 (-0.001831) | 0.048058 / 0.004250 (0.043807) | 0.048349 / 0.037052 (0.011296) | 0.238210 / 0.258489 (-0.020279) | 0.278144 / 0.293841 (-0.015697) | 0.023219 / 0.128546 (-0.105327) | 0.007296 / 0.075646 (-0.068351) | 0.203263 / 0.419271 (-0.216008) | 0.058844 / 0.043533 (0.015311) | 0.246330 / 0.255139 (-0.008809) | 0.264550 / 0.283200 (-0.018649) | 0.018580 / 0.141683 (-0.123103) | 1.084163 / 1.452155 (-0.367992) | 1.154891 / 1.492716 (-0.337825) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.092393 / 0.018006 (0.074387) | 0.300545 / 0.000490 (0.300055) | 0.000203 / 0.000200 (0.000003) | 0.000047 / 0.000054 (-0.000008) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018648 / 0.037411 (-0.018763) | 0.063151 / 0.014526 (0.048625) | 0.074206 / 0.176557 (-0.102350) | 0.120929 / 0.737135 (-0.616207) | 0.075970 / 0.296338 (-0.220368) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.278489 / 0.215209 (0.063279) | 2.664804 / 2.077655 (0.587150) | 1.433040 / 1.504120 (-0.071080) | 1.321416 / 1.541195 (-0.219779) | 1.320964 / 1.468490 (-0.147526) | 0.401289 / 4.584777 (-4.183488) | 2.365310 / 3.745712 (-1.380402) | 2.635798 / 5.269862 (-2.634063) | 1.584384 / 4.565676 (-2.981293) | 0.045675 / 0.424275 (-0.378600) | 0.004854 / 0.007607 (-0.002753) | 0.337592 / 0.226044 (0.111548) | 3.330462 / 2.268929 (1.061534) | 1.794507 / 55.444624 (-53.650117) | 1.531284 / 6.876477 (-5.345193) | 1.507165 / 2.142072 (-0.634908) | 0.478622 / 4.805227 (-4.326606) | 0.099105 / 6.500664 (-6.401560) | 0.041575 / 0.075469 (-0.033894) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.941790 / 1.841788 (-0.899997) | 11.609871 / 8.074308 (3.535563) | 10.770869 / 10.191392 (0.579477) | 0.138931 / 0.680424 (-0.541493) | 0.014406 / 0.534201 (-0.519795) | 0.269681 / 0.579283 (-0.309602) | 0.260556 / 0.434364 (-0.173808) | 0.308244 / 0.540337 (-0.232093) | 0.428867 / 1.386936 (-0.958069) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004803 / 0.011353 (-0.006550) | 0.003263 / 0.011008 (-0.007745) | 0.049143 / 0.038508 (0.010635) | 0.052033 / 0.023109 (0.028924) | 0.267815 / 0.275898 (-0.008083) | 0.288733 / 0.323480 (-0.034747) | 0.004159 / 0.007986 (-0.003826) | 0.002407 / 0.004328 (-0.001921) | 0.048978 / 0.004250 (0.044728) | 0.038994 / 0.037052 (0.001942) | 0.264028 / 0.258489 (0.005539) | 0.303930 / 0.293841 (0.010090) | 0.024283 / 0.128546 (-0.104263) | 0.007201 / 0.075646 (-0.068446) | 0.053810 / 0.419271 (-0.365461) | 0.032611 / 0.043533 (-0.010922) | 0.266730 / 0.255139 (0.011591) | 0.281564 / 0.283200 (-0.001635) | 0.018720 / 0.141683 (-0.122963) | 1.140676 / 1.452155 (-0.311479) | 1.206604 / 1.492716 (-0.286113) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.109390 / 0.018006 (0.091384) | 0.313783 / 0.000490 (0.313294) | 0.000228 / 0.000200 (0.000028) | 0.000050 / 0.000054 (-0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.021228 / 0.037411 (-0.016183) | 0.070505 / 0.014526 (0.055979) | 0.081961 / 0.176557 (-0.094595) | 0.119943 / 0.737135 (-0.617193) | 0.083582 / 0.296338 (-0.212757) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.295702 / 0.215209 (0.080493) | 2.886865 / 2.077655 (0.809210) | 1.583206 / 1.504120 (0.079086) | 1.451129 / 1.541195 (-0.090065) | 1.486253 / 1.468490 (0.017763) | 0.403207 / 4.584777 (-4.181570) | 2.408889 / 3.745712 (-1.336824) | 2.578480 / 5.269862 (-2.691381) | 1.533066 / 4.565676 (-3.032610) | 0.046075 / 0.424275 (-0.378200) | 0.004877 / 0.007607 (-0.002730) | 0.345995 / 0.226044 (0.119950) | 3.377039 / 2.268929 (1.108110) | 1.944614 / 55.444624 (-53.500010) | 1.677691 / 6.876477 (-5.198786) | 1.672828 / 2.142072 (-0.469244) | 0.468426 / 4.805227 (-4.336802) | 0.097290 / 6.500664 (-6.403374) | 0.040695 / 0.075469 (-0.034774) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.965778 / 1.841788 (-0.876010) | 12.092639 / 8.074308 (4.018331) | 11.210968 / 10.191392 (1.019576) | 0.131212 / 0.680424 (-0.549212) | 0.015865 / 0.534201 (-0.518336) | 0.285702 / 0.579283 (-0.293581) | 0.278319 / 0.434364 (-0.156045) | 0.336063 / 0.540337 (-0.204275) | 0.426265 / 1.386936 (-0.960671) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#d122b3ddc67705cc2b622bcbd79de9ff943a5742 \"CML watermark\")\n" ]
"2023-11-15T14:57:12Z"
"2023-11-15T17:15:33Z"
"2023-11-15T17:09:24Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6423.diff", "html_url": "https://github.com/huggingface/datasets/pull/6423", "merged_at": "2023-11-15T17:09:24Z", "patch_url": "https://github.com/huggingface/datasets/pull/6423.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6423" }
Fix conda release by adding pyarrow-hotfix dependency. Note that conda release failed in latest 2.14.7 release: https://github.com/huggingface/datasets/actions/runs/6874667214/job/18696761723 ``` Traceback (most recent call last): File "/usr/share/miniconda/envs/build-datasets/conda-bld/datasets_1700036460222/test_tmp/run_test.py", line 2, in <module> import datasets File "/usr/share/miniconda/envs/build-datasets/conda-bld/datasets_1700036460222/_test_env_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold/lib/python3.12/site-packages/datasets/__init__.py", line 22, in <module> from .arrow_dataset import Dataset File "/usr/share/miniconda/envs/build-datasets/conda-bld/datasets_1700036460222/_test_env_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold/lib/python3.12/site-packages/datasets/arrow_dataset.py", line 67, in <module> from .arrow_writer import ArrowWriter, OptimizedTypedSequence File "/usr/share/miniconda/envs/build-datasets/conda-bld/datasets_1700036460222/_test_env_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold/lib/python3.12/site-packages/datasets/arrow_writer.py", line 27, in <module> from .features import Features, Image, Value File "/usr/share/miniconda/envs/build-datasets/conda-bld/datasets_1700036460222/_test_env_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold/lib/python3.12/site-packages/datasets/features/__init__.py", line 18, in <module> from .features import Array2D, Array3D, Array4D, Array5D, ClassLabel, Features, Sequence, Value File "/usr/share/miniconda/envs/build-datasets/conda-bld/datasets_1700036460222/_test_env_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold_placehold/lib/python3.12/site-packages/datasets/features/features.py", line 34, in <module> import pyarrow_hotfix # noqa: F401 # to fix vulnerability on pyarrow<14.0.1 ^^^^^^^^^^^^^^^^^^^^^ ModuleNotFoundError: No module named 'pyarrow_hotfix' ```
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6423/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6423/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/4177
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4177/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4177/comments
https://api.github.com/repos/huggingface/datasets/issues/4177/events
https://github.com/huggingface/datasets/pull/4177
1,207,535,920
PR_kwDODunzps42Yxca
4,177
Adding missing subsets to the `SemEval-2018 Task 1` dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/11460267?v=4", "events_url": "https://api.github.com/users/micahcarroll/events{/privacy}", "followers_url": "https://api.github.com/users/micahcarroll/followers", "following_url": "https://api.github.com/users/micahcarroll/following{/other_user}", "gists_url": "https://api.github.com/users/micahcarroll/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/micahcarroll", "id": 11460267, "login": "micahcarroll", "node_id": "MDQ6VXNlcjExNDYwMjY3", "organizations_url": "https://api.github.com/users/micahcarroll/orgs", "received_events_url": "https://api.github.com/users/micahcarroll/received_events", "repos_url": "https://api.github.com/users/micahcarroll/repos", "site_admin": false, "starred_url": "https://api.github.com/users/micahcarroll/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/micahcarroll/subscriptions", "type": "User", "url": "https://api.github.com/users/micahcarroll" }
[ { "color": "0e8a16", "default": false, "description": "Contribution to a dataset script", "id": 4564477500, "name": "dataset contribution", "node_id": "LA_kwDODunzps8AAAABEBBmPA", "url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20contribution" } ]
open
false
null
[]
null
[ "Datasets are not tracked in this repository anymore. You should move this PR to the [discussions page of this dataset](https://huggingface.co/datasets/sem_eval_2018_task_1/discussions)" ]
"2022-04-18T22:59:30Z"
"2022-10-05T10:38:16Z"
null
NONE
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/4177.diff", "html_url": "https://github.com/huggingface/datasets/pull/4177", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/4177.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4177" }
This dataset for the [1st task of SemEval-2018](https://competitions.codalab.org/competitions/17751) competition was missing all subtasks except for subtask 5. I added another two subtasks (subtask 1 and 2), which are each comprised of 12 additional data subsets: for each language in En, Es, Ar, there are 4 datasets, broken down by emotions (anger, fear, joy, sadness). ## Remaining questions I wasn't able to find any documentation about how one should make PRs to modify datasets. Because of that, I just did my best to integrate the new data into the code, and tested locally that this worked. I'm sorry if I'm not respecting your contributing guidelines – if they are documented somewhere, I'd appreciate if you could send a pointer! Not sure how `dataset_infos.json` and `dummy` should be updated. My understanding is that they were automatically generated at the time of the original dataset creation?
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4177/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4177/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/262
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/262/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/262/comments
https://api.github.com/repos/huggingface/datasets/issues/262/events
https://github.com/huggingface/datasets/pull/262
636,702,849
MDExOlB1bGxSZXF1ZXN0NDMyODI3Mzcz
262
Add new dataset ANLI Round 1
{ "avatar_url": "https://avatars.githubusercontent.com/u/11016329?v=4", "events_url": "https://api.github.com/users/easonnie/events{/privacy}", "followers_url": "https://api.github.com/users/easonnie/followers", "following_url": "https://api.github.com/users/easonnie/following{/other_user}", "gists_url": "https://api.github.com/users/easonnie/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/easonnie", "id": 11016329, "login": "easonnie", "node_id": "MDQ6VXNlcjExMDE2MzI5", "organizations_url": "https://api.github.com/users/easonnie/orgs", "received_events_url": "https://api.github.com/users/easonnie/received_events", "repos_url": "https://api.github.com/users/easonnie/repos", "site_admin": false, "starred_url": "https://api.github.com/users/easonnie/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/easonnie/subscriptions", "type": "User", "url": "https://api.github.com/users/easonnie" }
[]
closed
false
null
[]
null
[ "Hello ! Thanks for adding this one :)\r\n\r\nThis looks great, you just have to do the last steps to make the CI pass.\r\nI can see that two things are missing:\r\n1. the dummy data that is used to test that the script is working as expected\r\n2. the json file with all the infos about the dataset\r\n\r\nYou can see the steps to help you create the dummy data and generate the dataset_infos.json file right [here](https://github.com/huggingface/nlp/blob/master/CONTRIBUTING.md#how-to-add-a-dataset)" ]
"2020-06-11T04:14:57Z"
"2020-06-12T22:03:03Z"
"2020-06-12T22:03:03Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/262.diff", "html_url": "https://github.com/huggingface/datasets/pull/262", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/262.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/262" }
Adding new dataset [ANLI](https://github.com/facebookresearch/anli/). I'm not familiar with how to add new dataset. Let me know if there is any issue. I only include round 1 data here. There will be round 2, round 3 and more in the future with potentially different format. I think it will be better to separate them.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/262/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/262/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/951
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/951/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/951/comments
https://api.github.com/repos/huggingface/datasets/issues/951/events
https://github.com/huggingface/datasets/pull/951
754,349,979
MDExOlB1bGxSZXF1ZXN0NTMwMjY1MTY0
951
Prachathai67k
{ "avatar_url": "https://avatars.githubusercontent.com/u/15519308?v=4", "events_url": "https://api.github.com/users/cstorm125/events{/privacy}", "followers_url": "https://api.github.com/users/cstorm125/followers", "following_url": "https://api.github.com/users/cstorm125/following{/other_user}", "gists_url": "https://api.github.com/users/cstorm125/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/cstorm125", "id": 15519308, "login": "cstorm125", "node_id": "MDQ6VXNlcjE1NTE5MzA4", "organizations_url": "https://api.github.com/users/cstorm125/orgs", "received_events_url": "https://api.github.com/users/cstorm125/received_events", "repos_url": "https://api.github.com/users/cstorm125/repos", "site_admin": false, "starred_url": "https://api.github.com/users/cstorm125/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/cstorm125/subscriptions", "type": "User", "url": "https://api.github.com/users/cstorm125" }
[]
closed
false
null
[]
null
[ "Wrongly branching from existing branch of wisesight_sentiment. Closing and opening another one specifically for prachathai67k" ]
"2020-12-01T12:21:52Z"
"2020-12-01T12:29:53Z"
"2020-12-01T12:28:26Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/951.diff", "html_url": "https://github.com/huggingface/datasets/pull/951", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/951.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/951" }
Add `prachathai-67k`: News Article Corpus and Multi-label Text Classificdation from Prachathai.com The `prachathai-67k` dataset was scraped from the news site [Prachathai](prachathai.com). We filtered out those articles with less than 500 characters of body text, mostly images and cartoons. It contains 67,889 articles wtih 12 curated tags from August 24, 2004 to November 15, 2018. The dataset was originally scraped by [@lukkiddd](https://github.com/lukkiddd) and cleaned by [@cstorm125](https://github.com/cstorm125). Download the dataset [here](https://www.dropbox.com/s/fsxepdka4l2pr45/prachathai-67k.zip?dl=1). You can also see preliminary exploration in [exploration.ipynb](https://github.com/PyThaiNLP/prachathai-67k/blob/master/exploration.ipynb). This dataset is a part of [pyThaiNLP](https://github.com/PyThaiNLP/) Thai text [classification-benchmarks](https://github.com/PyThaiNLP/classification-benchmarks). For the benchmark, we selected the following tags with substantial volume that resemble **classifying types of articles**: * `การเมือง` - politics * `สิทธิมนุษยชน` - human_rights * `คุณภาพชีวิต` - quality_of_life * `ต่างประเทศ` - international * `สังคม` - social * `สิ่งแวดล้อม` - environment * `เศรษฐกิจ` - economics * `วัฒนธรรม` - culture * `แรงงาน` - labor * `ความมั่นคง` - national_security * `ไอซีที` - ict * `การศึกษา` - education
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/951/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/951/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/4798
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4798/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4798/comments
https://api.github.com/repos/huggingface/datasets/issues/4798/events
https://github.com/huggingface/datasets/pull/4798
1,330,699,942
PR_kwDODunzps48wVEG
4,798
Shard generator
{ "avatar_url": "https://avatars.githubusercontent.com/u/43296932?v=4", "events_url": "https://api.github.com/users/marianna13/events{/privacy}", "followers_url": "https://api.github.com/users/marianna13/followers", "following_url": "https://api.github.com/users/marianna13/following{/other_user}", "gists_url": "https://api.github.com/users/marianna13/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/marianna13", "id": 43296932, "login": "marianna13", "node_id": "MDQ6VXNlcjQzMjk2OTMy", "organizations_url": "https://api.github.com/users/marianna13/orgs", "received_events_url": "https://api.github.com/users/marianna13/received_events", "repos_url": "https://api.github.com/users/marianna13/repos", "site_admin": false, "starred_url": "https://api.github.com/users/marianna13/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/marianna13/subscriptions", "type": "User", "url": "https://api.github.com/users/marianna13" }
[]
closed
false
null
[]
null
[ "Hi, thanks!\r\n\r\n> I was using Hugging Face datasets to process some very large datasets and found that it would be quite handy to have a feature that will allow to \"split\" these large datasets into chunks with equal size\r\n\r\n`map`, the method we use for processing in `datasets`, already does that if `batched=True`. And you can control the batch size with `batch_size`.\r\n\r\n> Even better - be able to run through these chunks one by one in simple and convenient way\r\n\r\nIt's not hard to do this \"manually\" with the existing API:\r\n```python\r\nbatch_size = <BATCH_SIZE>\r\nfor i in range(len(dset) // batch_size)\r\n shard = dset[i * batch_size:(i+1) * batch_size] # a dict of lists\r\n shard = Dataset.from_dict(shard)\r\n```\r\n(should be of similar performance to your implementation)\r\n\r\nStill, I think an API like that could be useful if implemented efficiently (see [this](https://discuss.huggingface.co/t/why-is-it-so-slow-to-access-data-through-iteration-with-hugginface-dataset/20385) discussion to understand what's the issue with `select`/`__getitem__` on which your implementation relies on), which can be done with `pa.Table.to_reader` in PyArrow 8.0.0+, .\r\n\r\n@lhoestq @albertvillanova wdyt? We could use such API to efficiently iterate over the batches in `map` before processing them.", "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_4798). All of your documentation changes will be reflected on that endpoint.", "This is more efficient since it doesn't bring the data in memory:\r\n```python\r\nfor i in range(len(dset) // batch_size)\r\n start = i * batch_size\r\n end = min((i+1) * batch_size, len(dset))\r\n shard = dset.select(range(start, end))\r\n```\r\n\r\n@marianna13 can you give more details on when it would be handy to have this shard generator ?", "> This is more efficient since it doesn't bring the data in memory:\r\n> \r\n> ```python\r\n> for i in range(len(dset) // batch_size)\r\n> start = i * batch_size\r\n> end = min((i+1) * batch_size, len(dset))\r\n> shard = dset.select(range(start, end))\r\n> ```\r\n> \r\n> @marianna13 can you give more details on when it would be handy to have this shard generator ?\r\n\r\nSure! I used such generator when I needed to process a very large dataset (>1TB) in parallel, I've found out empirically that it's much more efficient to do that by processing only one part of the dataset with the shard generator. I tried to use a map with batching but it causesd oom errors, I tried to use the normal shard and here's what I came up with. So I thought it might be helpful to someone else!", "I see thanks ! `map` should work just fine even at this scale, feel free to open an issue if you'd like to discuss your OOM issue.\r\n\r\nRegarding `shard_generator`, since it is pretty straightforward to get shards I'm not sure we need that extra Dataset method", "Hi again! We've just added `_iter_batches(batch_size)` to the `Dataset` API for fast iteration over batches/chunks, so I think we can close this PR. Compared to this implementation, `_iter_batches` leverages `pa.Table.to_reader` for chunking, which makes it significantly faster." ]
"2022-08-06T09:14:06Z"
"2022-10-03T15:35:10Z"
"2022-10-03T15:35:10Z"
NONE
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/4798.diff", "html_url": "https://github.com/huggingface/datasets/pull/4798", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/4798.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4798" }
Hi everyone! I was using Hugging Face datasets to process some very large datasets and found that it would be quite handy to have a feature that will allow to "split" these large datasets into chunks with equal size. Even better - be able to run through these chunks one by one in simple and convenient way. So I decided to add the method called shard_generator() to the main Dataset class. It works similar to shard method but it returns a generator of datasets with equal size (defined by shard_size attribute). Example: ```python >>> from datasets import load_dataset >>> ds = load_dataset("rotten_tomatoes", split="validation") >>> ds Dataset({ features: ['text', 'label'], num_rows: 1066 }) >>> next(ds.shard_generator(300)) Dataset({ features: ['text', 'label'], num_rows: 300 }) ``` I hope it can be helpful to someone. Thanks!
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4798/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4798/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/1741
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1741/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1741/comments
https://api.github.com/repos/huggingface/datasets/issues/1741/events
https://github.com/huggingface/datasets/issues/1741
787,327,060
MDU6SXNzdWU3ODczMjcwNjA=
1,741
error when run fine_tuning on text_classification
{ "avatar_url": "https://avatars.githubusercontent.com/u/43234824?v=4", "events_url": "https://api.github.com/users/XiaoYang66/events{/privacy}", "followers_url": "https://api.github.com/users/XiaoYang66/followers", "following_url": "https://api.github.com/users/XiaoYang66/following{/other_user}", "gists_url": "https://api.github.com/users/XiaoYang66/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/XiaoYang66", "id": 43234824, "login": "XiaoYang66", "node_id": "MDQ6VXNlcjQzMjM0ODI0", "organizations_url": "https://api.github.com/users/XiaoYang66/orgs", "received_events_url": "https://api.github.com/users/XiaoYang66/received_events", "repos_url": "https://api.github.com/users/XiaoYang66/repos", "site_admin": false, "starred_url": "https://api.github.com/users/XiaoYang66/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/XiaoYang66/subscriptions", "type": "User", "url": "https://api.github.com/users/XiaoYang66" }
[]
closed
false
null
[]
null
[ "none" ]
"2021-01-16T02:23:19Z"
"2021-01-16T02:39:28Z"
"2021-01-16T02:39:18Z"
NONE
null
null
null
dataset:sem_eval_2014_task_1 pretrained_model:bert-base-uncased error description: when i use these resoruce to train fine_tuning a text_classification on sem_eval_2014_task_1,there always be some problem(when i use other dataset ,there exist the error too). And i followed the colab code (url:https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/text_classification.ipynb#scrollTo=TlqNaB8jIrJW). the error is like this : `File "train.py", line 69, in <module> trainer.train() File "/home/projects/anaconda3/envs/calibration/lib/python3.7/site-packages/transformers/trainer.py", line 784, in train for step, inputs in enumerate(epoch_iterator): File "/home/projects/anaconda3/envs/calibration/lib/python3.7/site-packages/torch/utils/data/dataloader.py", line 435, in __next__ data = self._next_data() File "/home/projects/anaconda3/envs/calibration/lib/python3.7/site-packages/torch/utils/data/dataloader.py", line 475, in _next_data data = self._dataset_fetcher.fetch(index) # may raise StopIteration File "/home/projects/anaconda3/envs/calibration/lib/python3.7/site-packages/torch/utils/data/_utils/fetch.py", line 44, in fetch data = [self.dataset[idx] for idx in possibly_batched_index] File "/home/projects/anaconda3/envs/calibration/lib/python3.7/site-packages/torch/utils/data/_utils/fetch.py", line 44, in <listcomp> data = [self.dataset[idx] for idx in possibly_batched_index] KeyError: 2` this is my code : ```dataset_name = 'sem_eval_2014_task_1' num_labels_size = 3 batch_size = 4 model_checkpoint = 'bert-base-uncased' number_train_epoch = 5 def tokenize(batch): return tokenizer(batch['premise'], batch['hypothesis'], truncation=True, ) def compute_metrics(pred): labels = pred.label_ids preds = pred.predictions.argmax(-1) precision, recall, f1, _ = precision_recall_fscore_support(labels, preds, average='micro') acc = accuracy_score(labels, preds) return { 'accuracy': acc, 'f1': f1, 'precision': precision, 'recall': recall } model = BertForSequenceClassification.from_pretrained(model_checkpoint, num_labels=num_labels_size) tokenizer = BertTokenizerFast.from_pretrained(model_checkpoint, use_fast=True) train_dataset = load_dataset(dataset_name, split='train') test_dataset = load_dataset(dataset_name, split='test') train_encoded_dataset = train_dataset.map(tokenize, batched=True) test_encoded_dataset = test_dataset.map(tokenize, batched=True) args = TrainingArguments( output_dir='./results', evaluation_strategy="epoch", learning_rate=2e-5, per_device_train_batch_size=batch_size, per_device_eval_batch_size=batch_size, num_train_epochs=number_train_epoch, weight_decay=0.01, do_predict=True, ) trainer = Trainer( model=model, args=args, compute_metrics=compute_metrics, train_dataset=train_encoded_dataset, eval_dataset=test_encoded_dataset, tokenizer=tokenizer ) trainer.train() trainer.evaluate()
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1741/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1741/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/216
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/216/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/216/comments
https://api.github.com/repos/huggingface/datasets/issues/216/events
https://github.com/huggingface/datasets/issues/216
626,896,890
MDU6SXNzdWU2MjY4OTY4OTA=
216
❓ How to get ROUGE-2 with the ROUGE metric ?
{ "avatar_url": "https://avatars.githubusercontent.com/u/43774355?v=4", "events_url": "https://api.github.com/users/astariul/events{/privacy}", "followers_url": "https://api.github.com/users/astariul/followers", "following_url": "https://api.github.com/users/astariul/following{/other_user}", "gists_url": "https://api.github.com/users/astariul/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/astariul", "id": 43774355, "login": "astariul", "node_id": "MDQ6VXNlcjQzNzc0MzU1", "organizations_url": "https://api.github.com/users/astariul/orgs", "received_events_url": "https://api.github.com/users/astariul/received_events", "repos_url": "https://api.github.com/users/astariul/repos", "site_admin": false, "starred_url": "https://api.github.com/users/astariul/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/astariul/subscriptions", "type": "User", "url": "https://api.github.com/users/astariul" }
[]
closed
false
null
[]
null
[ "ROUGE-1 and ROUGE-L shouldn't return the same thing. This is weird", "For the rouge2 metric you can do\r\n\r\n```python\r\nrouge = nlp.load_metric('rouge')\r\nwith open(\"pred.txt\") as p, open(\"ref.txt\") as g:\r\n for lp, lg in zip(p, g):\r\n rouge.add(lp, lg)\r\nscore = rouge.compute(rouge_types=[\"rouge2\"])\r\n```\r\n\r\nNote that I just did a PR to have both `.add` and `.add_batch` for metrics, that's why now this is `rouge.add(lp, lg)` and not `rouge.add([lp], [lg])`", "Well I just tested with the official script and both rouge1 and rougeL return exactly the same thing for the input you gave, so this is actually fine ^^\r\n\r\nI hope it helped :)" ]
"2020-05-28T23:47:32Z"
"2020-06-01T00:04:35Z"
"2020-06-01T00:04:35Z"
NONE
null
null
null
I'm trying to use ROUGE metric, but I don't know how to get the ROUGE-2 metric. --- I compute scores with : ```python import nlp rouge = nlp.load_metric('rouge') with open("pred.txt") as p, open("ref.txt") as g: for lp, lg in zip(p, g): rouge.add([lp], [lg]) score = rouge.compute() ``` then : _(print only the F-score for readability)_ ```python for k, s in score.items(): print(k, s.mid.fmeasure) ``` It gives : >rouge1 0.7915168355671788 rougeL 0.7915168355671788 --- **How can I get the ROUGE-2 score ?** Also, it's seems weird that ROUGE-1 and ROUGE-L scores are the same. Did I made a mistake ? @lhoestq
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/216/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/216/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/2395
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2395/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2395/comments
https://api.github.com/repos/huggingface/datasets/issues/2395/events
https://github.com/huggingface/datasets/pull/2395
898,762,730
MDExOlB1bGxSZXF1ZXN0NjUwNTk3NjI0
2,395
`pretty_name` for dataset in YAML tags
{ "avatar_url": "https://avatars.githubusercontent.com/u/19718818?v=4", "events_url": "https://api.github.com/users/bhavitvyamalik/events{/privacy}", "followers_url": "https://api.github.com/users/bhavitvyamalik/followers", "following_url": "https://api.github.com/users/bhavitvyamalik/following{/other_user}", "gists_url": "https://api.github.com/users/bhavitvyamalik/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/bhavitvyamalik", "id": 19718818, "login": "bhavitvyamalik", "node_id": "MDQ6VXNlcjE5NzE4ODE4", "organizations_url": "https://api.github.com/users/bhavitvyamalik/orgs", "received_events_url": "https://api.github.com/users/bhavitvyamalik/received_events", "repos_url": "https://api.github.com/users/bhavitvyamalik/repos", "site_admin": false, "starred_url": "https://api.github.com/users/bhavitvyamalik/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/bhavitvyamalik/subscriptions", "type": "User", "url": "https://api.github.com/users/bhavitvyamalik" }
[ { "color": "0e8a16", "default": false, "description": "Contribution to a dataset script", "id": 4564477500, "name": "dataset contribution", "node_id": "LA_kwDODunzps8AAAABEBBmPA", "url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20contribution" } ]
closed
false
null
[]
null
[ "Initially I removed the ` - ` since there was only one `pretty_name` per config but turns out it was breaking here in `from_yaml_string`https://github.com/huggingface/datasets/blob/74751e3f98c74d22c48c6beb1fab0c13b5dfd075/src/datasets/utils/metadata.py#L197 in `/utils/metadata.py`", "@lhoestq I guess this will also need some validation?", "Looks like the parser doesn't allow things like\r\n```\r\npretty_name:\r\n config_name1: My awesome config number 1\r\n config_name2: My amazing config number 2\r\n```\r\ntherefore you had to use `-` and consider them as a list.\r\n\r\nI would be nice to add support for this case in the validator.\r\n\r\nThere's one thing though: the DatasetMetadata object currently corresponds to the yaml tags that are flattened: the config names are just ignored, and the lists are concatenated.\r\n\r\nTherefore I think we would potentially need to instantiate several `DatasetMetadata` objects: one per config. Otherwise we would end up with a list of several pretty_name while we actually need at most 1 per config.\r\n\r\nWhat do you think @gchhablani ?", "I was thinking of returning `metada_dict` (on line 193) whenever `load_dataset_card` is called (we can pass an extra parameter to `from_readme` or `from_yaml_string` for that to happen).\r\n\r\nOne just needs config_name as key for the dictionary inside `pretty_name` dict and for single config, there would be only one value to print. We can do this for other fields as well like `size_categories`, `languages` etc. This will obviate the need to flatten the YAML tags so that don't have to instantiate several DatasetMetadata objects. What do you guys think @lhoestq @gchhablani? \r\n\r\nUpdate: I was thinking of returning the whole dictionary before flattening so that user can access whatever they want with specific configs. Let's say [this](https://pastebin.com/eJ84314f) is my `metadata_dict` before flattening (the loaded YAML string), so instead of validating it and then returning the items individually we can return it just after loading the YAML string.", "Hi @lhoestq @bhavitvyamalik \r\n\r\n@bhavitvyamalik, I'm not sure I understand your approach, can you please elaborate? The `metadata_dict` is flattened before instantiating the object, do you want to remove that? Still confused.\r\n\r\nFew things come to my mind after going through this PR. They might not be entirely relevant to the current task, but I'm just trying to think about possible cases and discuss them here.\r\n\r\n1. Instead of instantiating a new `DatasetMetadata` for each config with flattened tags, why can't we make it more flexible and validate only non-dict items? However, in that case, the types wouldn't be as strict for the class attributes. It would also not work for cases that are like `Dict[str,List[Dict[str,str]]`, but I guess that won't be needed anyway in the foreseeable future?\r\n\r\n Ideally, it would be something like - Check the metadata tag type (root), do a DFS, and find the non-dict objects (leaves), and validate them. Is this an overkill to handle the problem?\r\n2. For single-config datasets, there can be slightly different validation for `pretty_names`, than for multi-config. The user shouldn't need to provide a config name for single-config datasets, wdyt @bhavitvyamalik @lhoestq? Either way, for multi-config, the validation can use the dictionary keys in the path to that leaf node to verify `pretty_names: ... (config)` as well. This will check whether the config name is same as the key (might be unnecessary but prevents typos, so less work for the reviewer(s)). For future, however, it might be beneficial to have something like this.\r\n3. Should we have a default config name for single-config datasets? People use any string they feel like. I've seen `plain_text`, `default` and the dataset name. I've used `image` for a few datasets myself AFAIR. For smarter validation (again, a future case ;-;), it'd be easier for us to have a simple rule for naming configs in single-config datasets. Wdyt @lhoestq?", "Btw, `pretty_names` can also be used to handle this during validation :P \r\n\r\n```\r\n-# Dataset Card for [Dataset Name]\r\n+# Dataset Card for Allegro Reviews\r\n```\r\n\r\nThis is where `DatasetMetadata` and `ReadMe` should be combined. But there are very few overlaps, I guess.\r\n\r\n\n@bhavitvyamalik @lhoestq What about adding a pretty name across all configs, and then config-specific names?\n\nLike\n\n```yaml\npretty_names:\n all_configs: X (dataset_name)\n config_1: X1 (config_1_name)\n config_2: X2 (config_2_name)\n```\nThen, using the `metadata_dict`, the ReadMe header can be validated against `X`.\n\nSorry if I'm throwing too many ideas at once.", "@bhavitvyamalik\r\n\r\nNow, I think I better understand what you're saying. So you want to skip validation for the unflattened metadata and just return it? And let the validation run for the flattened version?", "Exactly! Validation is important but once the YAML tags are validated I feel we shouldn't do that again while calling `load_dataset_card`. +1 for default config name for single-config datasets.", "@bhavitvyamalik\r\nActually, I made the `ReadMe` validation similar to `DatasetMetadata` validation and the class was validating the metadata during the creation. \r\n\r\nMaybe we need to have a separate validation method instead of having it in `__post_init__`? Wdyt @lhoestq? \r\n\r\nI'm sensing too many things to look into. It'd be great to discuss these sometime. \r\n\r\nBut if this PR is urgent then @bhavitvyamalik's logic seems good to me. It doesn't need major modifications in validation.", "> Maybe we need to have a separate validation method instead of having it in __post_init__? Wdyt @lhoestq?\r\n\r\nWe can definitely have a `is_valid()` method instead of doing it in the post init.\r\n\r\n> What about adding a pretty name across all configs, and then config-specific names?\r\n\r\nLet's keep things simple to starts with. If we can allow both single-config and multi-config cases it would already be great :)\r\n\r\nfor single-config:\r\n```yaml\r\npretty_name: Allegro Reviews\r\n```\r\n\r\nfor multi-config:\r\n```yaml\r\npretty_name:\r\n mrpc: Microsoft Research Paraphrase Corpus (MRPC)\r\n sst2: Stanford Sentiment Treebank\r\n ...\r\n```\r\n\r\nTo support the multi-config case I see two options:\r\n1. Don't allow DatasetMetadata to have dictionaries but instead have separate DatasetMetadata objects per config\r\n2. allow DatasetMetadata to have dictionaries. It implies to remove the flattening step. Then we could get metadata for a specific config this way for example:\r\n```python\r\nfrom datasets import load_dataset_card\r\n\r\nglue_dataset_card = load_dataset_card(\"glue\")\r\nprint(glue_dataset_card.metadata)\r\n# DatasetMetatada object with dictionaries since there are many configs\r\nprint(glue_dataset_card.metadata.get_metadata_for_config(\"mrpc\"))\r\n# DatasetMetatada object with no dictionaries since there are only the mrpc tags\r\n```\r\n\r\nLet me know what you think or if you have other ideas.", "I think Option 2 is better.\n\nJust to clarify, will `get_metadata_for_config` also return common details, like language, say?", "> Just to clarify, will get_metadata_for_config also return common details, like language, say?\r\n\r\nYes that would be more convenient IMO. For example a dataset card like this\r\n```yaml\r\nlanguages:\r\n- en\r\npretty_name:\r\n config1: Pretty Name for Config 1\r\n config3: Pretty Name for Config 2\r\n```\r\n\r\nthen `metadat.get_metadata_for_config(\"config1\")` would return something like\r\n```python\r\nDatasetMetadata(languages=[\"en\"], pretty_name=\"Pretty Name for Config 1\")\r\n```", "@lhoestq, should we do this post-processing in `load_dataset_card` by returning unflattened dictionary from `DatasetMetadata` or send this from `DatasetMetadata`? Since there isn't much to do I feel once we have the unflattened dictionary", "Not sure I understand the difference @bhavitvyamalik , could you elaborate please ?", "I was talking about this unflattened dictionary:\r\n\r\n> I was thinking of returning the whole dictionary before flattening so that user can access whatever they want with specific configs. Let's say [this](https://pastebin.com/eJ84314f) is my metadata_dict before flattening (the loaded YAML string), so instead of validating it and then returning the items individually we can return it just after loading the YAML string.\r\n\r\nPost-processing meant extracting config-specific fields from this dictionary and then return this `languages=[\"en\"], pretty_name=\"Pretty Name for Config 1\"`", "I still don't understand what you mean by \"returning unflattened dictionary from DatasetMetadata or send this from DatasetMetadata\", sorry. Can you give an example or rephrase this ?\r\n\r\nIMO load_dataset_card can return a dataset card object with a metadata field. If the metadata isn't flat (i.e. it has several configs), you can get the flat metadata of 1 specific config with `get_metadata_for_config`. But of course if you have better ideas or suggestions, we can discuss this", "@lhoestq, I think he is saying whatever `get_metadata_for_config` is doing can be done in `load_dataset_card` by taking the unflattened `metadata_dict` as input.\r\n\r\n@bhavitvyamalik, I think it'd be better to have this \"post-processing\" in `DatasetMetadata` instead of `load_dataset_card`, as @lhoestq has shown. I'll quickly get on that.\r\n\r\n---\r\nThree things that are to be changed in `DatasetMetadata`:\r\n1. Allow Non-flat elements and their validation.\r\n2. Create a method to get metadata by config name.\r\n3. Create a `validate()` method.\r\n\r\nOnce that is done, this PR can be updated and reviewed, wdys?", "Thanks @gchhablani for the help ! Now that https://github.com/huggingface/datasets/pull/2436 is merged you can remove the `-` in the pretty_name @bhavitvyamalik :)", "Thanks @bhavitvyamalik.\r\n\r\nI think this PR was superseded by these others also made by you:\r\n- #3498\r\n- #3536\r\n\r\nI'm closing this." ]
"2021-05-22T09:24:45Z"
"2022-09-23T13:29:14Z"
"2022-09-23T13:29:13Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/2395.diff", "html_url": "https://github.com/huggingface/datasets/pull/2395", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/2395.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/2395" }
I'm updating `pretty_name` for datasets in YAML tags as discussed with @lhoestq. Here are the first 10, please let me know if they're looking good. If dataset has 1 config, I've added `pretty_name` as `config_name: full_name_of_dataset` as config names were `plain_text`, `default`, `squad` etc (not so important in this case) whereas when dataset has >1 configs, I've added `config_name: full_name_of_dataset+config_name` so as to let user know about the `config` here.
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/2395/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2395/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6363
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6363/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6363/comments
https://api.github.com/repos/huggingface/datasets/issues/6363/events
https://github.com/huggingface/datasets/issues/6363
1,968,891,277
I_kwDODunzps51WuWN
6,363
dataset.transform() hangs indefinitely while finetuning the stable diffusion XL
{ "avatar_url": "https://avatars.githubusercontent.com/u/10846405?v=4", "events_url": "https://api.github.com/users/bhosalems/events{/privacy}", "followers_url": "https://api.github.com/users/bhosalems/followers", "following_url": "https://api.github.com/users/bhosalems/following{/other_user}", "gists_url": "https://api.github.com/users/bhosalems/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/bhosalems", "id": 10846405, "login": "bhosalems", "node_id": "MDQ6VXNlcjEwODQ2NDA1", "organizations_url": "https://api.github.com/users/bhosalems/orgs", "received_events_url": "https://api.github.com/users/bhosalems/received_events", "repos_url": "https://api.github.com/users/bhosalems/repos", "site_admin": false, "starred_url": "https://api.github.com/users/bhosalems/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/bhosalems/subscriptions", "type": "User", "url": "https://api.github.com/users/bhosalems" }
[]
closed
false
null
[]
null
[ "I think the code hangs on the `accelerator.main_process_first()` context manager exit. To verify this, you can append a print statement to the end of the `accelerator.main_process_first()` block. \r\n\r\n\r\nIf the problem is in `with_transform`, it would help if you could share the error stack trace printed when you interrupt the process (while it hangs)", "@bhosalems Were you able to fix that ? I face this issue as well", "@matankley No I am not able to resolve this issue yet.", "@mariosasko yes the problem seems to be to exit from accelerator.main_process_first(). Is there any known problem?", "NCCL debug info I get below output, if it helps.\r\n```\r\n11/09/2023 13:36:44 - INFO - __main__ - Distributed environment: MULTI_GPU Backend: nccl\r\nNum processes: 2\r\nProcess index: 1\r\nLocal process index: 1\r\nDevice: cuda:1\r\n\r\nMixed precision type: fp16\r\n\r\nDetected kernel version 5.4.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.\r\n11/09/2023 13:36:44 - INFO - __main__ - Distributed environment: MULTI_GPU Backend: nccl\r\nNum processes: 2\r\nProcess index: 0\r\nLocal process index: 0\r\nDevice: cuda:0\r\n\r\nMixed precision type: fp16\r\n\r\n{'timestep_spacing', 'thresholding', 'variance_type', 'clip_sample_range', 'prediction_type', 'dynamic_thresholding_ratio', 'sample_max_value'} was not found in config. Values will be initialized to default values.\r\n{'norm_num_groups', 'force_upcast'} was not found in config. Values will be initialized to default values.\r\n{'num_attention_heads', 'projection_class_embeddings_input_dim', 'addition_embed_type_num_heads', 'mid_block_only_cross_attention', 'addition_embed_type', 'num_class_embeds', 'upcast_attention', 'cross_attention_norm', 'addition_time_embed_dim', 'time_embedding_dim', 'class_embeddings_concat', 'encoder_hid_dim', 'encoder_hid_dim_type', 'resnet_out_scale_factor', 'attention_type', 'conv_out_kernel', 'only_cross_attention', 'resnet_time_scale_shift', 'resnet_skip_time_act', 'reverse_transformer_layers_per_block', 'conv_in_kernel', 'time_cond_proj_dim', 'use_linear_projection', 'mid_block_type', 'time_embedding_act_fn', 'dropout', 'timestep_post_act', 'dual_cross_attention', 'class_embed_type', 'transformer_layers_per_block', 'time_embedding_type'} was not found in config. Values will be initialized to default values.\r\n{'num_attention_heads', 'projection_class_embeddings_input_dim', 'addition_embed_type_num_heads', 'mid_block_only_cross_attention', 'addition_embed_type', 'num_class_embeds', 'upcast_attention', 'cross_attention_norm', 'addition_time_embed_dim', 'time_embedding_dim', 'class_embeddings_concat', 'encoder_hid_dim', 'encoder_hid_dim_type', 'resnet_out_scale_factor', 'attention_type', 'conv_out_kernel', 'only_cross_attention', 'resnet_time_scale_shift', 'resnet_skip_time_act', 'reverse_transformer_layers_per_block', 'conv_in_kernel', 'time_cond_proj_dim', 'use_linear_projection', 'mid_block_type', 'time_embedding_act_fn', 'dropout', 'timestep_post_act', 'dual_cross_attention', 'class_embed_type', 'transformer_layers_per_block', 'time_embedding_type'} was not found in config. Values will be initialized to default values.\r\ndeepbull5:1311249:1311249 [0] NCCL INFO Bootstrap : Using enp194s0f0:128.205.43.171<0>\r\ndeepbull5:1311249:1311249 [0] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation\r\ndeepbull5:1311249:1311249 [0] NCCL INFO cudaDriverVersion 11070\r\nNCCL version 2.14.3+cuda11.7\r\ndeepbull5:1311250:1311250 [1] NCCL INFO cudaDriverVersion 11070\r\ndeepbull5:1311249:1311365 [0] NCCL INFO NET/IB : No device found.\r\ndeepbull5:1311249:1311365 [0] NCCL INFO NET/Socket : Using [0]enp194s0f0:128.205.43.171<0>\r\ndeepbull5:1311249:1311365 [0] NCCL INFO Using network Socket\r\ndeepbull5:1311250:1311250 [1] NCCL INFO Bootstrap : Using enp194s0f0:128.205.43.171<0>\r\ndeepbull5:1311250:1311250 [1] NCCL INFO NET/Plugin : No plugin found (libnccl-net.so), using internal implementation\r\ndeepbull5:1311250:1311366 [1] NCCL INFO NET/IB : No device found.\r\ndeepbull5:1311250:1311366 [1] NCCL INFO NET/Socket : Using [0]enp194s0f0:128.205.43.171<0>\r\ndeepbull5:1311250:1311366 [1] NCCL INFO Using network Socket\r\ndeepbull5:1311250:1311366 [1] NCCL INFO Setting affinity for GPU 1 to ff,ffff0000,00ffffff\r\ndeepbull5:1311249:1311365 [0] NCCL INFO Setting affinity for GPU 0 to ff,ffff0000,00ffffff\r\ndeepbull5:1311249:1311365 [0] NCCL INFO Channel 00/04 : 0 1\r\ndeepbull5:1311250:1311366 [1] NCCL INFO Trees [0] -1/-1/-1->1->0 [1] 0/-1/-1->1->-1 [2] -1/-1/-1->1->0 [3] 0/-1/-1->1->-1\r\ndeepbull5:1311249:1311365 [0] NCCL INFO Channel 01/04 : 0 1\r\ndeepbull5:1311249:1311365 [0] NCCL INFO Channel 02/04 : 0 1\r\ndeepbull5:1311249:1311365 [0] NCCL INFO Channel 03/04 : 0 1\r\ndeepbull5:1311249:1311365 [0] NCCL INFO Trees [0] 1/-1/-1->0->-1 [1] -1/-1/-1->0->1 [2] 1/-1/-1->0->-1 [3] -1/-1/-1->0->1\r\ndeepbull5:1311249:1311365 [0] NCCL INFO Channel 00/0 : 0[1000] -> 1[24000] via P2P/IPC\r\ndeepbull5:1311250:1311366 [1] NCCL INFO Channel 00/0 : 1[24000] -> 0[1000] via P2P/IPC\r\ndeepbull5:1311249:1311365 [0] NCCL INFO Channel 01/0 : 0[1000] -> 1[24000] via P2P/IPC\r\ndeepbull5:1311250:1311366 [1] NCCL INFO Channel 01/0 : 1[24000] -> 0[1000] via P2P/IPC\r\ndeepbull5:1311250:1311366 [1] NCCL INFO Channel 02/0 : 1[24000] -> 0[1000] via P2P/IPC\r\ndeepbull5:1311249:1311365 [0] NCCL INFO Channel 02/0 : 0[1000] -> 1[24000] via P2P/IPC\r\ndeepbull5:1311250:1311366 [1] NCCL INFO Channel 03/0 : 1[24000] -> 0[1000] via P2P/IPC\r\ndeepbull5:1311249:1311365 [0] NCCL INFO Channel 03/0 : 0[1000] -> 1[24000] via P2P/IPC\r\ndeepbull5:1311249:1311365 [0] NCCL INFO Connected all rings\r\ndeepbull5:1311249:1311365 [0] NCCL INFO Connected all trees\r\ndeepbull5:1311249:1311365 [0] NCCL INFO threadThresholds 8/8/64 | 16/8/64 | 512 | 512\r\ndeepbull5:1311249:1311365 [0] NCCL INFO 4 coll channels, 4 p2p channels, 2 p2p channels per peer\r\ndeepbull5:1311250:1311366 [1] NCCL INFO Connected all rings\r\ndeepbull5:1311250:1311366 [1] NCCL INFO Connected all trees\r\ndeepbull5:1311250:1311366 [1] NCCL INFO threadThresholds 8/8/64 | 16/8/64 | 512 | 512\r\ndeepbull5:1311250:1311366 [1] NCCL INFO 4 coll channels, 4 p2p channels, 2 p2p channels per peer\r\ndeepbull5:1311249:1311365 [0] NCCL INFO comm 0x88a84ee0 rank 0 nranks 2 cudaDev 0 busId 1000 - Init COMPLETE\r\ndeepbull5:1311250:1311366 [1] NCCL INFO comm 0x89a42f60 rank 1 nranks 2 cudaDev 1 busId 24000 - Init COMPLETE\r\n\r\n```", "Maybe @muellerzr can help as an `accelerate` maintainer.", "I don't know what the issue was, but after going through the thread here I loved the issue with https://github.com/huggingface/accelerate/issues/314#issuecomment-1565259831" ]
"2023-10-30T17:34:05Z"
"2023-11-22T00:29:21Z"
"2023-11-22T00:29:21Z"
NONE
null
null
null
### Describe the bug Multi-GPU fine-tuning the stable diffusion X by following https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/README_sdxl.md hangs indefinitely. ### Steps to reproduce the bug accelerate launch train_text_to_image_sdxl.py --pretrained_model_name_or_path=$MODEL_NAME --pretrained_vae_model_name_or_path=$VAE_NAME --dataset_name=$DATASET_NAME --enable_xformers_memory_efficient_attention --resolution=512 --center_crop --random_flip --proportion_empty_prompts=0.2 --train_batch_size=1 --gradient_accumulation_steps=4 --gradient_checkpointing --max_train_steps=10000 --use_8bit_adam --learning_rate=1e-06 --lr_scheduler="constant" --lr_warmup_steps=0 --mixed_precision="fp16" --report_to="wandb" --validation_prompt="a cute Sundar Pichai creature" --validation_epochs 5 --checkpointing_steps=5000 --output_dir="sdxl-pokemon-model" ### Expected behavior It should start the training as it does for the single GPU training. I opened the issue in diffusers **https://github.com/huggingface/diffusers/issues/5534 but it does seem to be an issue with the Pokemon dataset. I added some debug prints ``` print("==========HERE3=============") with accelerator.main_process_first(): print(accelerator.is_main_process) print("===========Here3.1===========") if args.max_train_samples is not None: dataset["train"] = dataset["train"].shuffle(seed=args.seed).select(range(args.max_train_samples)) print("===========Here3.2===========") # Set the training transforms train_dataset = dataset["train"].with_transform(preprocess_train) print("==========HERE4=============") Corresponding Output Detected kernel version 5.4.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher. 10/25/2023 21:18:04 - INFO - main - Distributed environment: MULTI_GPU Backend: nccl Num processes: 3 Process index: 1 Local process index: 1 Device: cuda:1 Mixed precision type: fp16 10/25/2023 21:18:04 - INFO - main - Distributed environment: MULTI_GPU Backend: nccl Num processes: 3 Process index: 2 Local process index: 2 Device: cuda:2 Mixed precision type: fp16 10/25/2023 21:18:04 - INFO - main - Distributed environment: MULTI_GPU Backend: nccl Num processes: 3 Process index: 0 Local process index: 0 Device: cuda:0 Mixed precision type: fp16 You are using a model of type clip_text_model to instantiate a model of type . This is not supported for all configurations of models and can yield errors. You are using a model of type clip_text_model to instantiate a model of type . This is not supported for all configurations of models and can yield errors. {‘variance_type’, ‘clip_sample_range’, ‘thresholding’, ‘dynamic_thresholding_ratio’} was not found in config. Values will be initialized to default values. {‘attention_type’, ‘reverse_transformer_layers_per_block’, ‘dropout’} was not found in config. Values will be initialized to default values. ==========HERE1============= ==========HERE1============= ==========HERE1============= ==========HERE2============= ==========HERE2============= ==========HERE2============= ==========HERE3============= True ===========Here3.1=========== ===========Here3.2=========== ==========HERE3============= ==========HERE3========= ``` ### Environment info _libgcc_mutex 0.1 conda_forge conda-forge _openmp_mutex 4.5 2_kmp_llvm conda-forge absl-py 2.0.0 pypi_0 pypi accelerate 0.24.0 pypi_0 pypi aiohttp 3.8.6 pypi_0 pypi aiosignal 1.3.1 pypi_0 pypi appdirs 1.4.4 pyh9f0ad1d_0 conda-forge async-timeout 4.0.3 pypi_0 pypi attrs 23.1.0 pypi_0 pypi bitsandbytes 0.41.1 pypi_0 pypi blas 1.0 mkl blessings 1.7 py39h06a4308_1002 brotli-python 1.0.9 py39h6a678d5_7 bzip2 1.0.8 h7b6447c_0 ca-certificates 2023.08.22 h06a4308_0 cachetools 5.3.2 pypi_0 pypi certifi 2023.7.22 py39h06a4308_0 cffi 1.15.1 py39h5eee18b_3 charset-normalizer 2.0.4 pyhd3eb1b0_0 click 8.1.7 unix_pyh707e725_0 conda-forge cryptography 41.0.3 py39hdda0065_0 cuda-cudart 11.7.99 0 nvidia cuda-cupti 11.7.101 0 nvidia cuda-libraries 11.7.1 0 nvidia cuda-nvrtc 11.7.99 0 nvidia cuda-nvtx 11.7.91 0 nvidia cuda-runtime 11.7.1 0 nvidia datasets 2.14.6 pypi_0 pypi diffusers 0.22.0.dev0 pypi_0 pypi dill 0.3.7 pypi_0 pypi docker-pycreds 0.4.0 py_0 conda-forge ffmpeg 4.3 hf484d3e_0 pytorch filelock 3.12.4 pypi_0 pypi freetype 2.12.1 h4a9f257_0 frozenlist 1.4.0 pypi_0 pypi fsspec 2023.10.0 pypi_0 pypi ftfy 6.1.1 pypi_0 pypi giflib 5.2.1 h5eee18b_3 gitdb 4.0.11 pyhd8ed1ab_0 conda-forge gitpython 3.1.40 pyhd8ed1ab_0 conda-forge gmp 6.2.1 h295c915_3 gnutls 3.6.15 he1e5248_0 google-auth 2.23.3 pypi_0 pypi google-auth-oauthlib 1.1.0 pypi_0 pypi gpustat 0.6.0 pyhd3eb1b0_1 grpcio 1.59.0 pypi_0 pypi huggingface-hub 0.17.3 pypi_0 pypi idna 3.4 py39h06a4308_0 importlib-metadata 6.8.0 pypi_0 pypi intel-openmp 2023.1.0 hdb19cb5_46305 jinja2 3.1.2 pypi_0 pypi jpeg 9e h5eee18b_1 lame 3.100 h7b6447c_0 lcms2 2.12 h3be6417_0 ld_impl_linux-64 2.38 h1181459_1 lerc 3.0 h295c915_0 libcublas 11.10.3.66 0 nvidia libcufft 10.7.2.124 h4fbf590_0 nvidia libcufile 1.8.0.34 0 nvidia libcurand 10.3.4.52 0 nvidia libcusolver 11.4.0.1 0 nvidia libcusparse 11.7.4.91 0 nvidia libdeflate 1.17 h5eee18b_1 libffi 3.4.4 h6a678d5_0 libgcc-ng 13.2.0 h807b86a_2 conda-forge libgfortran-ng 13.2.0 h69a702a_2 conda-forge libgfortran5 13.2.0 ha4646dd_2 conda-forge libiconv 1.16 h7f8727e_2 libidn2 2.3.4 h5eee18b_0 libnpp 11.7.4.75 0 nvidia libnvjpeg 11.8.0.2 0 nvidia libpng 1.6.39 h5eee18b_0 libprotobuf 3.20.3 he621ea3_0 libstdcxx-ng 13.2.0 h7e041cc_2 conda-forge libtasn1 4.19.0 h5eee18b_0 libtiff 4.5.1 h6a678d5_0 libunistring 0.9.10 h27cfd23_0 libwebp 1.3.2 h11a3e52_0 libwebp-base 1.3.2 h5eee18b_0 llvm-openmp 14.0.6 h9e868ea_0 lz4-c 1.9.4 h6a678d5_0 markdown 3.5 pypi_0 pypi markupsafe 2.1.3 pypi_0 pypi mkl 2023.1.0 h213fc3f_46343 mkl-service 2.4.0 py39h5eee18b_1 mkl_fft 1.3.8 py39h5eee18b_0 mkl_random 1.2.4 py39hdb19cb5_0 multidict 6.0.4 pypi_0 pypi multiprocess 0.70.15 pypi_0 pypi ncurses 6.4 h6a678d5_0 nettle 3.7.3 hbbd107a_1 numpy 1.26.0 py39h5f9d8c6_0 numpy-base 1.26.0 py39hb5e798b_0 nvidia-ml 7.352.0 pyhd3eb1b0_0 oauthlib 3.2.2 pypi_0 pypi openh264 2.1.1 h4ff587b_0 openjpeg 2.4.0 h3ad879b_0 openssl 3.0.11 h7f8727e_2 packaging 23.2 pypi_0 pypi pandas 2.1.1 pypi_0 pypi pathtools 0.1.2 py_1 conda-forge pillow 10.0.1 py39ha6cbd5a_0 pip 23.3 py39h06a4308_0 protobuf 4.23.4 pypi_0 pypi psutil 5.9.6 pypi_0 pypi pyarrow 13.0.0 pypi_0 pypi pyasn1 0.5.0 pypi_0 pypi pyasn1-modules 0.3.0 pypi_0 pypi pycparser 2.21 pyhd3eb1b0_0 pyopenssl 23.2.0 py39h06a4308_0 pysocks 1.7.1 py39h06a4308_0 python 3.9.18 h955ad1f_0 python-dateutil 2.8.2 pypi_0 pypi python_abi 3.9 2_cp39 conda-forge pytorch 1.13.1 py3.9_cuda11.7_cudnn8.5.0_0 pytorch pytorch-cuda 11.7 h778d358_5 pytorch pytorch-mutex 1.0 cuda pytorch pytz 2023.3.post1 pypi_0 pypi pyyaml 6.0.1 pypi_0 pypi readline 8.2 h5eee18b_0 regex 2023.10.3 pypi_0 pypi requests 2.31.0 py39h06a4308_0 requests-oauthlib 1.3.1 pypi_0 pypi rsa 4.9 pypi_0 pypi safetensors 0.4.0 pypi_0 pypi scipy 1.11.3 py39h5f9d8c6_0 sentry-sdk 1.32.0 pyhd8ed1ab_0 conda-forge setproctitle 1.1.10 py39h3811e60_1004 conda-forge setuptools 68.0.0 py39h06a4308_0 six 1.16.0 pyh6c4a22f_0 conda-forge smmap 5.0.0 pyhd8ed1ab_0 conda-forge sqlite 3.41.2 h5eee18b_0 tbb 2021.8.0 hdb19cb5_0 tensorboard 2.15.0 pypi_0 pypi tensorboard-data-server 0.7.2 pypi_0 pypi tk 8.6.12 h1ccaba5_0 tokenizers 0.14.1 pypi_0 pypi torchaudio 0.13.1 py39_cu117 pytorch torchtriton 2.1.0 py39 pytorch torchvision 0.14.1 py39_cu117 pytorch tqdm 4.66.1 pypi_0 pypi transformers 4.34.1 pypi_0 pypi typing_extensions 4.7.1 py39h06a4308_0 tzdata 2023.3 pypi_0 pypi urllib3 1.26.18 py39h06a4308_0 wandb 0.15.12 pyhd8ed1ab_0 conda-forge wcwidth 0.2.8 pypi_0 pypi werkzeug 3.0.1 pypi_0 pypi wheel 0.41.2 py39h06a4308_0 xformers 0.0.22.post7 py39_cu11.7.1_pyt1.13.1 xformers xxhash 3.4.1 pypi_0 pypi xz 5.4.2 h5eee18b_0 yaml 0.2.5 h7f98852_2 conda-forge yarl 1.9.2 pypi_0 pypi zipp 3.17.0 pypi_0 pypi zlib 1.2.13 h5eee18b_0 zstd 1.5.5 hc292b87_0
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6363/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6363/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/1702
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1702/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1702/comments
https://api.github.com/repos/huggingface/datasets/issues/1702/events
https://github.com/huggingface/datasets/pull/1702
781,383,277
MDExOlB1bGxSZXF1ZXN0NTUxMTE2NDc0
1,702
Fix importlib metdata import in py38
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
[]
closed
false
null
[]
null
[]
"2021-01-07T15:10:30Z"
"2021-01-08T10:47:15Z"
"2021-01-08T10:47:15Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/1702.diff", "html_url": "https://github.com/huggingface/datasets/pull/1702", "merged_at": "2021-01-08T10:47:14Z", "patch_url": "https://github.com/huggingface/datasets/pull/1702.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/1702" }
In Python 3.8 there's no need to install `importlib_metadata` since it already exists as `importlib.metadata` in the standard lib.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1702/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1702/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/1056
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1056/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1056/comments
https://api.github.com/repos/huggingface/datasets/issues/1056/events
https://github.com/huggingface/datasets/pull/1056
756,309,828
MDExOlB1bGxSZXF1ZXN0NTMxODc1MjA2
1,056
Add deal_or_no_dialog
{ "avatar_url": "https://avatars.githubusercontent.com/u/28675016?v=4", "events_url": "https://api.github.com/users/moussaKam/events{/privacy}", "followers_url": "https://api.github.com/users/moussaKam/followers", "following_url": "https://api.github.com/users/moussaKam/following{/other_user}", "gists_url": "https://api.github.com/users/moussaKam/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/moussaKam", "id": 28675016, "login": "moussaKam", "node_id": "MDQ6VXNlcjI4Njc1MDE2", "organizations_url": "https://api.github.com/users/moussaKam/orgs", "received_events_url": "https://api.github.com/users/moussaKam/received_events", "repos_url": "https://api.github.com/users/moussaKam/repos", "site_admin": false, "starred_url": "https://api.github.com/users/moussaKam/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/moussaKam/subscriptions", "type": "User", "url": "https://api.github.com/users/moussaKam" }
[]
closed
false
null
[]
null
[]
"2020-12-03T15:38:07Z"
"2020-12-03T18:13:45Z"
"2020-12-03T18:13:45Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/1056.diff", "html_url": "https://github.com/huggingface/datasets/pull/1056", "merged_at": "2020-12-03T18:13:45Z", "patch_url": "https://github.com/huggingface/datasets/pull/1056.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/1056" }
Add deal_or_no_dialog Dataset github: https://github.com/facebookresearch/end-to-end-negotiator Paper: [Deal or No Deal? End-to-End Learning for Negotiation Dialogues](https://arxiv.org/abs/1706.05125)
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1056/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1056/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/4149
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4149/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4149/comments
https://api.github.com/repos/huggingface/datasets/issues/4149/events
https://github.com/huggingface/datasets/issues/4149
1,201,389,221
I_kwDODunzps5Hm76l
4,149
load_dataset for winoground returning decoding error
{ "avatar_url": "https://avatars.githubusercontent.com/u/4686956?v=4", "events_url": "https://api.github.com/users/odellus/events{/privacy}", "followers_url": "https://api.github.com/users/odellus/followers", "following_url": "https://api.github.com/users/odellus/following{/other_user}", "gists_url": "https://api.github.com/users/odellus/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/odellus", "id": 4686956, "login": "odellus", "node_id": "MDQ6VXNlcjQ2ODY5NTY=", "organizations_url": "https://api.github.com/users/odellus/orgs", "received_events_url": "https://api.github.com/users/odellus/received_events", "repos_url": "https://api.github.com/users/odellus/repos", "site_admin": false, "starred_url": "https://api.github.com/users/odellus/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/odellus/subscriptions", "type": "User", "url": "https://api.github.com/users/odellus" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
null
[]
null
[ "I thought I had fixed it with this after some helpful hints from @severo\r\n```python\r\nimport datasets \r\ntoken = 'hf_XXXXX'\r\ndataset = datasets.load_dataset(\r\n 'facebook/winoground', \r\n name='facebook--winoground', \r\n split='train', \r\n streaming=True,\r\n use_auth_token=token,\r\n)\r\n```\r\nbut I found out that wasn't the case\r\n```python\r\n[x for x in dataset]\r\n...\r\nClientResponseError: 401, message='Unauthorized', url=URL('https://huggingface.co/datasets/facebook/winoground/resolve/a86a60456fbbd242e9a744199071a6bd3e7fd9de/examples.jsonl')\r\n```", "Hi ! This dataset structure (image + labels in a JSON file) is not supported yet, though we're adding support for this in in #4069 \r\n\r\nThe following structure will be supported soon:\r\n```\r\nmetadata.json\r\nimages/\r\n image0.png\r\n image1.png\r\n ...\r\n```\r\nWhere `metadata.json` is a JSON Lines file with labels or other metadata, and each line must have a \"file_name\" field with the name of the image file.\r\n\r\nFor the moment are only supported:\r\n- JSON files only\r\n- image files only\r\n\r\nSince this dataset is a mix of the two, at the moment it fails trying to read the images as JSON.\r\n\r\nTherefore to be able to load this dataset we need to wait for the new structure to be supported (very soon ^^), or add a dataset script in the repository that reads both the JSON and the images cc @TristanThrush \r\n", "We'll also investigate the issue with the streaming download manager in https://github.com/huggingface/datasets/issues/4139 ;) thanks for reporting", "Are there any updates on this?", "In the meantime, anyone can always download the images.zip and examples.jsonl files directly from huggingface.co - let me know if anyone has issues with that.", "I mirrored the files at https://huggingface.co/datasets/facebook/winoground in a folder on my local machine `winground`\r\nand when I tried\r\n```python\r\nimport datasets\r\nds = datasets.load_from_disk('./winoground')\r\n```\r\nI get the following error\r\n```python\r\n--------------------------------------------------------------------------\r\nFileNotFoundError Traceback (most recent call last)\r\nInput In [2], in <cell line: 1>()\r\n----> 1 ds = datasets.load_from_disk('./winoground')\r\n\r\nFile ~/.local/lib/python3.8/site-packages/datasets/load.py:1759, in load_from_disk(dataset_path, fs, keep_in_memory)\r\n 1757 return DatasetDict.load_from_disk(dataset_path, fs, keep_in_memory=keep_in_memory)\r\n 1758 else:\r\n-> 1759 raise FileNotFoundError(\r\n 1760 f\"Directory {dataset_path} is neither a dataset directory nor a dataset dict directory.\"\r\n 1761 )\r\n\r\nFileNotFoundError: Directory ./winoground is neither a dataset directory nor a dataset dict directory.\r\n```\r\nso still some work to be done on the backend imo.", "Note that `load_from_disk` is the function that reloads an Arrow dataset saved with `my_dataset.save_to_disk`.\r\n\r\nOnce we do support images with metadata you'll be able to use `load_dataset(\"facebook/winoground\")` directly (or `load_dataset(\"./winoground\")` of you've cloned the winoground repository locally).", "Apologies for the delay. I added a custom dataset loading script for winoground. It should work now, with an auth token:\r\n\r\n`examples = load_dataset('facebook/winoground', use_auth_token=<your auth token>)`\r\n\r\nLet me know if there are any issues", "Adding the dataset loading script definitely didn't take as long as I thought it would 😅", "killer" ]
"2022-04-12T08:16:16Z"
"2022-05-04T23:40:38Z"
"2022-05-04T23:40:38Z"
CONTRIBUTOR
null
null
null
## Describe the bug I am trying to use datasets to load winoground and I'm getting a JSON decoding error. ## Steps to reproduce the bug ```python from datasets import load_dataset token = 'hf_XXXXX' # my HF access token datasets = load_dataset('facebook/winoground', use_auth_token=token) ``` ## Expected results I downloaded images.zip and examples.jsonl manually. I was expecting to have some trouble decoding json so I didn't use jsonlines but instead was able to get a complete set of 400 examples by doing ```python import json with open('examples.jsonl', 'r') as f: examples = f.read().split('\n') # Thinking this would error if the JSON is not utf-8 encoded json_data = [json.loads(x) for x in examples] print(json_data[-1]) ``` and I see ```python {'caption_0': 'someone is overdoing it', 'caption_1': 'someone is doing it over', 'collapsed_tag': 'Relation', 'id': 399, 'image_0': 'ex_399_img_0', 'image_1': 'ex_399_img_1', 'num_main_preds': 1, 'secondary_tag': 'Morpheme-Level', 'tag': 'Scope, Preposition'} ``` so I'm not sure what's going on here honestly. The file `examples.jsonl` doesn't have non-UTF-8 encoded text. ## Actual results During the split operation after downloading, datasets encounters an error in the JSON ([trace](https://gist.github.com/odellus/e55d390ca203386bf551f38e0c63a46b) abbreviated for brevity). ``` datasets/packaged_modules/json/json.py:144 in Json._generate_tables(self, files) ... UnicodeDecodeError: 'utf-8' codec can't decode byte 0xff in position 0: invalid start byte ``` ## Environment info <!-- You can run the command `datasets-cli env` and copy-and-paste its output below. --> - `datasets` version: 1.18.4 - Platform: Linux-5.13.0-39-generic-x86_64-with-glibc2.29 - Python version: 3.8.10 - PyArrow version: 7.0.0
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4149/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4149/timeline
null
completed
false