url
stringlengths
58
61
repository_url
stringclasses
1 value
labels_url
stringlengths
72
75
comments_url
stringlengths
67
70
events_url
stringlengths
65
68
html_url
stringlengths
46
51
id
int64
600M
2.05B
node_id
stringlengths
18
32
number
int64
2
6.51k
title
stringlengths
1
290
user
dict
labels
listlengths
0
4
state
stringclasses
2 values
locked
bool
1 class
assignee
dict
assignees
listlengths
0
4
milestone
dict
comments
sequencelengths
0
30
created_at
unknown
updated_at
unknown
closed_at
unknown
author_association
stringclasses
3 values
active_lock_reason
float64
draft
float64
0
1
pull_request
dict
body
stringlengths
0
228k
reactions
dict
timeline_url
stringlengths
67
70
performed_via_github_app
float64
state_reason
stringclasses
3 values
is_pull_request
bool
2 classes
https://api.github.com/repos/huggingface/datasets/issues/4254
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4254/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4254/comments
https://api.github.com/repos/huggingface/datasets/issues/4254/events
https://github.com/huggingface/datasets/pull/4254
1,220,204,395
PR_kwDODunzps43Bwnj
4,254
Replace data URL in SAMSum dataset and support streaming
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
"2022-04-29T08:21:43Z"
"2022-05-06T08:38:16Z"
"2022-04-29T16:26:09Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/4254.diff", "html_url": "https://github.com/huggingface/datasets/pull/4254", "merged_at": "2022-04-29T16:26:08Z", "patch_url": "https://github.com/huggingface/datasets/pull/4254.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4254" }
This PR replaces data URL in SAMSum dataset: - original host (arxiv.org) does not allow HTTP Range requests - we have hosted the data on the Hub (license: CC BY-NC-ND 4.0) Moreover, it implements support for streaming. Fix #4146. Related to: #4236. CC: @severo
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/4254/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4254/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/64
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/64/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/64/comments
https://api.github.com/repos/huggingface/datasets/issues/64/events
https://github.com/huggingface/datasets/pull/64
614,737,057
MDExOlB1bGxSZXF1ZXN0NDE1MjMwMjYy
64
[Datasets] Make master ready for datasets adding
{ "avatar_url": "https://avatars.githubusercontent.com/u/23423619?v=4", "events_url": "https://api.github.com/users/patrickvonplaten/events{/privacy}", "followers_url": "https://api.github.com/users/patrickvonplaten/followers", "following_url": "https://api.github.com/users/patrickvonplaten/following{/other_user}", "gists_url": "https://api.github.com/users/patrickvonplaten/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/patrickvonplaten", "id": 23423619, "login": "patrickvonplaten", "node_id": "MDQ6VXNlcjIzNDIzNjE5", "organizations_url": "https://api.github.com/users/patrickvonplaten/orgs", "received_events_url": "https://api.github.com/users/patrickvonplaten/received_events", "repos_url": "https://api.github.com/users/patrickvonplaten/repos", "site_admin": false, "starred_url": "https://api.github.com/users/patrickvonplaten/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/patrickvonplaten/subscriptions", "type": "User", "url": "https://api.github.com/users/patrickvonplaten" }
[]
closed
false
null
[]
null
[]
"2020-05-08T13:17:00Z"
"2020-05-08T13:17:31Z"
"2020-05-08T13:17:30Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/64.diff", "html_url": "https://github.com/huggingface/datasets/pull/64", "merged_at": "2020-05-08T13:17:30Z", "patch_url": "https://github.com/huggingface/datasets/pull/64.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/64" }
Add all relevant files so that datasets can now be added on master
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/64/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/64/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/1927
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1927/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1927/comments
https://api.github.com/repos/huggingface/datasets/issues/1927/events
https://github.com/huggingface/datasets/pull/1927
813,768,935
MDExOlB1bGxSZXF1ZXN0NTc3ODYxODM5
1,927
Update dataset card of wino_bias
{ "avatar_url": "https://avatars.githubusercontent.com/u/22306304?v=4", "events_url": "https://api.github.com/users/JieyuZhao/events{/privacy}", "followers_url": "https://api.github.com/users/JieyuZhao/followers", "following_url": "https://api.github.com/users/JieyuZhao/following{/other_user}", "gists_url": "https://api.github.com/users/JieyuZhao/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/JieyuZhao", "id": 22306304, "login": "JieyuZhao", "node_id": "MDQ6VXNlcjIyMzA2MzA0", "organizations_url": "https://api.github.com/users/JieyuZhao/orgs", "received_events_url": "https://api.github.com/users/JieyuZhao/received_events", "repos_url": "https://api.github.com/users/JieyuZhao/repos", "site_admin": false, "starred_url": "https://api.github.com/users/JieyuZhao/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/JieyuZhao/subscriptions", "type": "User", "url": "https://api.github.com/users/JieyuZhao" }
[ { "color": "0e8a16", "default": false, "description": "Contribution to a dataset script", "id": 4564477500, "name": "dataset contribution", "node_id": "LA_kwDODunzps8AAAABEBBmPA", "url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20contribution" } ]
closed
false
null
[]
null
[ "Thanks @JieyuZhao.\r\n\r\nI think this PR was superseded by your other PRs:\r\n- #1930\r\n- #2152 \r\n\r\nI'm closing this." ]
"2021-02-22T18:51:34Z"
"2022-09-23T13:35:09Z"
"2022-09-23T13:35:08Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/1927.diff", "html_url": "https://github.com/huggingface/datasets/pull/1927", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/1927.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/1927" }
Updated the info for the wino_bias dataset.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1927/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1927/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/670
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/670/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/670/comments
https://api.github.com/repos/huggingface/datasets/issues/670/events
https://github.com/huggingface/datasets/pull/670
709,061,231
MDExOlB1bGxSZXF1ZXN0NDkzMTc4OTQw
670
Fix SQuAD metric kwargs description
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
[]
closed
false
null
[]
null
[]
"2020-09-25T16:08:57Z"
"2020-09-29T15:57:39Z"
"2020-09-29T15:57:38Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/670.diff", "html_url": "https://github.com/huggingface/datasets/pull/670", "merged_at": "2020-09-29T15:57:37Z", "patch_url": "https://github.com/huggingface/datasets/pull/670.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/670" }
The `answer_start` field was missing in the kwargs docstring. This should fix #657 FYI another fix was proposed by @tshrjn in #658 and suggests to remove this field. However IMO `answer_start` is useful to match the squad dataset format for consistency, even though it is not used in the metric computation. I think it's better to keep it this way, so that you can just give references=squad["answers"] to .compute(). Let me know what sounds the best for you
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/670/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/670/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/127
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/127/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/127/comments
https://api.github.com/repos/huggingface/datasets/issues/127/events
https://github.com/huggingface/datasets/pull/127
618,909,042
MDExOlB1bGxSZXF1ZXN0NDE4NTQ1MDcy
127
Update Overview.ipynb
{ "avatar_url": "https://avatars.githubusercontent.com/u/23423619?v=4", "events_url": "https://api.github.com/users/patrickvonplaten/events{/privacy}", "followers_url": "https://api.github.com/users/patrickvonplaten/followers", "following_url": "https://api.github.com/users/patrickvonplaten/following{/other_user}", "gists_url": "https://api.github.com/users/patrickvonplaten/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/patrickvonplaten", "id": 23423619, "login": "patrickvonplaten", "node_id": "MDQ6VXNlcjIzNDIzNjE5", "organizations_url": "https://api.github.com/users/patrickvonplaten/orgs", "received_events_url": "https://api.github.com/users/patrickvonplaten/received_events", "repos_url": "https://api.github.com/users/patrickvonplaten/repos", "site_admin": false, "starred_url": "https://api.github.com/users/patrickvonplaten/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/patrickvonplaten/subscriptions", "type": "User", "url": "https://api.github.com/users/patrickvonplaten" }
[]
closed
false
null
[]
null
[]
"2020-05-15T11:46:48Z"
"2020-05-15T11:47:27Z"
"2020-05-15T11:47:25Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/127.diff", "html_url": "https://github.com/huggingface/datasets/pull/127", "merged_at": "2020-05-15T11:47:25Z", "patch_url": "https://github.com/huggingface/datasets/pull/127.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/127" }
update notebook
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/127/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/127/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/2902
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2902/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2902/comments
https://api.github.com/repos/huggingface/datasets/issues/2902/events
https://github.com/huggingface/datasets/issues/2902
995,254,216
MDU6SXNzdWU5OTUyNTQyMTY=
2,902
Add WIT Dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/32437151?v=4", "events_url": "https://api.github.com/users/nateraw/events{/privacy}", "followers_url": "https://api.github.com/users/nateraw/followers", "following_url": "https://api.github.com/users/nateraw/following{/other_user}", "gists_url": "https://api.github.com/users/nateraw/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/nateraw", "id": 32437151, "login": "nateraw", "node_id": "MDQ6VXNlcjMyNDM3MTUx", "organizations_url": "https://api.github.com/users/nateraw/orgs", "received_events_url": "https://api.github.com/users/nateraw/received_events", "repos_url": "https://api.github.com/users/nateraw/repos", "site_admin": false, "starred_url": "https://api.github.com/users/nateraw/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/nateraw/subscriptions", "type": "User", "url": "https://api.github.com/users/nateraw" }
[ { "color": "e99695", "default": false, "description": "Requesting to add a new dataset", "id": 2067376369, "name": "dataset request", "node_id": "MDU6TGFiZWwyMDY3Mzc2MzY5", "url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20request" } ]
closed
false
null
[]
null
[ "@hassiahk is working on it #2810 ", "WikiMedia is now hosting the pixel values directly which should make it a lot easier!\r\nThe files can be found here:\r\nhttps://techblog.wikimedia.org/2021/09/09/the-wikipedia-image-caption-matching-challenge-and-a-huge-release-of-image-data-for-research/\r\nhttps://analytics.wikimedia.org/published/datasets/one-off/caption_competition/training/image_pixels/", "> @hassiahk is working on it #2810\r\n\r\nThank you @bhavitvyamalik! Added this issue so we could track progress 😄 . Just linked the PR as well for visibility. ", "Hey folks, we are now hosting the merged pixel values + embeddings + metadata ourselves. I gave it a try - [nateraw/wit](https://huggingface.co/datasets/nateraw/wit)\r\n\r\n**⚠️ - Make sure you add `streaming=True` unless you're prepared to download 400GB of data!**\r\n\r\n```python\r\nfrom datasets import load_dataset\r\n\r\nds = load_dataset('nateraw/wit', streaming=True)\r\nexample = next(iter(ds))\r\n```\r\n\r\n```python\r\n>>> example = next(iter(ds['train']))\r\n>>> example.keys()\r\ndict_keys(['b64_bytes', 'original_width', 'image_url', 'wit_features', 'original_height', 'metadata_url', 'mime_type', 'caption_attribution_description', 'embedding'])\r\n>>> example['wit_features'].keys()\r\ndict_keys(['hierarchical_section_title', 'language', 'attribution_passes_lang_id', 'context_section_description', 'is_main_image', 'page_title', 'caption_title_and_reference_description', 'caption_alt_text_description', 'caption_reference_description', 'page_url', 'context_page_description', 'section_title', 'page_changed_recently'])\r\n```", "Hi! `datasets` now hosts two versions of the WIT dataset:\r\n* [`google/wit`](https://huggingface.co/datasets/google/wit): Google's version with the image URLs\r\n* [`wikimedia/wit_base`](https://huggingface.co/datasets/wikimedia/wit_base): Wikimedia's version with the images + ResNet embeddings, but with less data than Google's version" ]
"2021-09-13T19:38:49Z"
"2022-06-01T17:28:40Z"
"2022-06-01T17:28:40Z"
CONTRIBUTOR
null
null
null
## Adding a Dataset - **Name:** *WIT* - **Description:** *Wikipedia-based Image Text Dataset* - **Paper:** *[WIT: Wikipedia-based Image Text Dataset for Multimodal Multilingual Machine Learning ](https://arxiv.org/abs/2103.01913)* - **Data:** *https://github.com/google-research-datasets/wit* - **Motivation:** (excerpt from their Github README.md) > - The largest multimodal dataset (publicly available at the time of this writing) by the number of image-text examples. > - A massively multilingual dataset (first of its kind) with coverage for over 100+ languages. > - A collection of diverse set of concepts and real world entities. > - Brings forth challenging real-world test sets. Instructions to add a new dataset can be found [here](https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md).
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2902/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2902/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/2455
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2455/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2455/comments
https://api.github.com/repos/huggingface/datasets/issues/2455/events
https://github.com/huggingface/datasets/pull/2455
914,177,468
MDExOlB1bGxSZXF1ZXN0NjY0MTEzNjg2
2,455
Update version in xor_tydi_qa.py
{ "avatar_url": "https://avatars.githubusercontent.com/u/31893406?v=4", "events_url": "https://api.github.com/users/cccntu/events{/privacy}", "followers_url": "https://api.github.com/users/cccntu/followers", "following_url": "https://api.github.com/users/cccntu/following{/other_user}", "gists_url": "https://api.github.com/users/cccntu/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/cccntu", "id": 31893406, "login": "cccntu", "node_id": "MDQ6VXNlcjMxODkzNDA2", "organizations_url": "https://api.github.com/users/cccntu/orgs", "received_events_url": "https://api.github.com/users/cccntu/received_events", "repos_url": "https://api.github.com/users/cccntu/repos", "site_admin": false, "starred_url": "https://api.github.com/users/cccntu/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/cccntu/subscriptions", "type": "User", "url": "https://api.github.com/users/cccntu" }
[]
closed
false
null
[]
null
[ "Hi ! Thanks for updating the version\r\n\r\n> Should I revert to the old dummy/1.0.0 or delete it and keep only dummy/1.1.0?\r\n\r\nFeel free to delete the old dummy data files\r\n" ]
"2021-06-08T02:23:45Z"
"2021-06-14T15:35:25Z"
"2021-06-14T15:35:25Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/2455.diff", "html_url": "https://github.com/huggingface/datasets/pull/2455", "merged_at": "2021-06-14T15:35:25Z", "patch_url": "https://github.com/huggingface/datasets/pull/2455.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/2455" }
Fix #2449 @lhoestq Should I revert to the old `dummy/1.0.0` or delete it and keep only `dummy/1.1.0`?
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2455/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2455/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/2450
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2450/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2450/comments
https://api.github.com/repos/huggingface/datasets/issues/2450/events
https://github.com/huggingface/datasets/issues/2450
912,890,291
MDU6SXNzdWU5MTI4OTAyOTE=
2,450
BLUE file not found
{ "avatar_url": "https://avatars.githubusercontent.com/u/3822565?v=4", "events_url": "https://api.github.com/users/mirfan899/events{/privacy}", "followers_url": "https://api.github.com/users/mirfan899/followers", "following_url": "https://api.github.com/users/mirfan899/following{/other_user}", "gists_url": "https://api.github.com/users/mirfan899/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mirfan899", "id": 3822565, "login": "mirfan899", "node_id": "MDQ6VXNlcjM4MjI1NjU=", "organizations_url": "https://api.github.com/users/mirfan899/orgs", "received_events_url": "https://api.github.com/users/mirfan899/received_events", "repos_url": "https://api.github.com/users/mirfan899/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mirfan899/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mirfan899/subscriptions", "type": "User", "url": "https://api.github.com/users/mirfan899" }
[]
closed
false
null
[]
null
[ "Hi ! The `blue` metric doesn't exist, but the `bleu` metric does.\r\nYou can get the full list of metrics [here](https://github.com/huggingface/datasets/tree/master/metrics) or by running\r\n```python\r\nfrom datasets import list_metrics\r\n\r\nprint(list_metrics())\r\n```", "Ah, my mistake. Thanks for correcting" ]
"2021-06-06T17:01:54Z"
"2021-06-07T10:46:15Z"
"2021-06-07T10:46:15Z"
NONE
null
null
null
Hi, I'm having the following issue when I try to load the `blue` metric. ```shell import datasets metric = datasets.load_metric('blue') Traceback (most recent call last): File "/home/irfan/environments/Perplexity_Transformers/lib/python3.6/site-packages/datasets/load.py", line 320, in prepare_module local_path = cached_path(file_path, download_config=download_config) File "/home/irfan/environments/Perplexity_Transformers/lib/python3.6/site-packages/datasets/utils/file_utils.py", line 291, in cached_path use_auth_token=download_config.use_auth_token, File "/home/irfan/environments/Perplexity_Transformers/lib/python3.6/site-packages/datasets/utils/file_utils.py", line 621, in get_from_cache raise FileNotFoundError("Couldn't find file at {}".format(url)) FileNotFoundError: Couldn't find file at https://raw.githubusercontent.com/huggingface/datasets/1.7.0/metrics/blue/blue.py During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/home/irfan/environments/Perplexity_Transformers/lib/python3.6/site-packages/datasets/load.py", line 332, in prepare_module local_path = cached_path(file_path, download_config=download_config) File "/home/irfan/environments/Perplexity_Transformers/lib/python3.6/site-packages/datasets/utils/file_utils.py", line 291, in cached_path use_auth_token=download_config.use_auth_token, File "/home/irfan/environments/Perplexity_Transformers/lib/python3.6/site-packages/datasets/utils/file_utils.py", line 621, in get_from_cache raise FileNotFoundError("Couldn't find file at {}".format(url)) FileNotFoundError: Couldn't find file at https://raw.githubusercontent.com/huggingface/datasets/master/metrics/blue/blue.py During handling of the above exception, another exception occurred: Traceback (most recent call last): File "<input>", line 1, in <module> File "/home/irfan/environments/Perplexity_Transformers/lib/python3.6/site-packages/datasets/load.py", line 605, in load_metric dataset=False, File "/home/irfan/environments/Perplexity_Transformers/lib/python3.6/site-packages/datasets/load.py", line 343, in prepare_module combined_path, github_file_path FileNotFoundError: Couldn't find file locally at blue/blue.py, or remotely at https://raw.githubusercontent.com/huggingface/datasets/1.7.0/metrics/blue/blue.py. The file is also not present on the master branch on github. ``` Here is dataset installed version info ```shell pip freeze | grep datasets datasets==1.7.0 ```
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2450/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2450/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/1157
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1157/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1157/comments
https://api.github.com/repos/huggingface/datasets/issues/1157/events
https://github.com/huggingface/datasets/pull/1157
757,657,888
MDExOlB1bGxSZXF1ZXN0NTMzMDAwNDQy
1,157
Add dataset XhosaNavy English -Xhosa
{ "avatar_url": "https://avatars.githubusercontent.com/u/6419011?v=4", "events_url": "https://api.github.com/users/spatil6/events{/privacy}", "followers_url": "https://api.github.com/users/spatil6/followers", "following_url": "https://api.github.com/users/spatil6/following{/other_user}", "gists_url": "https://api.github.com/users/spatil6/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/spatil6", "id": 6419011, "login": "spatil6", "node_id": "MDQ6VXNlcjY0MTkwMTE=", "organizations_url": "https://api.github.com/users/spatil6/orgs", "received_events_url": "https://api.github.com/users/spatil6/received_events", "repos_url": "https://api.github.com/users/spatil6/repos", "site_admin": false, "starred_url": "https://api.github.com/users/spatil6/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/spatil6/subscriptions", "type": "User", "url": "https://api.github.com/users/spatil6" }
[]
closed
false
null
[]
null
[]
"2020-12-05T11:19:54Z"
"2020-12-07T09:11:33Z"
"2020-12-07T09:11:33Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/1157.diff", "html_url": "https://github.com/huggingface/datasets/pull/1157", "merged_at": "2020-12-07T09:11:33Z", "patch_url": "https://github.com/huggingface/datasets/pull/1157.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/1157" }
Add dataset XhosaNavy English -Xhosa More info : http://opus.nlpl.eu/XhosaNavy.php
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1157/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1157/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/5534
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5534/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5534/comments
https://api.github.com/repos/huggingface/datasets/issues/5534/events
https://github.com/huggingface/datasets/issues/5534
1,586,177,862
I_kwDODunzps5eiydG
5,534
map() breaks at certain dataset size when using Array3D
{ "avatar_url": "https://avatars.githubusercontent.com/u/3375489?v=4", "events_url": "https://api.github.com/users/ArneBinder/events{/privacy}", "followers_url": "https://api.github.com/users/ArneBinder/followers", "following_url": "https://api.github.com/users/ArneBinder/following{/other_user}", "gists_url": "https://api.github.com/users/ArneBinder/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/ArneBinder", "id": 3375489, "login": "ArneBinder", "node_id": "MDQ6VXNlcjMzNzU0ODk=", "organizations_url": "https://api.github.com/users/ArneBinder/orgs", "received_events_url": "https://api.github.com/users/ArneBinder/received_events", "repos_url": "https://api.github.com/users/ArneBinder/repos", "site_admin": false, "starred_url": "https://api.github.com/users/ArneBinder/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ArneBinder/subscriptions", "type": "User", "url": "https://api.github.com/users/ArneBinder" }
[]
open
false
null
[]
null
[ "Hi! This code works for me locally or in Colab. What's the output of `python -c \"import pyarrow as pa; print(pa.__version__)\"` when you run it inside your environment?", "Thanks for looking into this!\r\nThe output of `python -c \"import pyarrow as pa; print(pa.__version__)\"` is:\r\n```\r\n11.0.0\r\n```\r\n\r\nI did the following to setup the environment:\r\n```\r\nconda create -n datasets_debug python=3.9\r\nconda activate datasets_debug\r\npip install datasets==2.9.0\r\n```\r\n\r\nI just tested this on another machine (Ubuntu 18.04.6 LTS) with the same result as mentioned in the issue description.\r\n" ]
"2023-02-15T16:34:25Z"
"2023-03-03T16:31:33Z"
null
NONE
null
null
null
### Describe the bug `map()` magically breaks when using a `Array3D` feature and mapping it. I created a very simple dummy dataset (see below). When filtering it down to 95 elements I can apply map, but it breaks when filtering it down to just 96 entries with the following exception: ``` Traceback (most recent call last): File "/home/arbi01/miniconda3/envs/tmp9/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 3255, in _map_single writer.finalize() # close_stream=bool(buf_writer is None)) # We only close if we are writing in a file File "/home/arbi01/miniconda3/envs/tmp9/lib/python3.9/site-packages/datasets/arrow_writer.py", line 581, in finalize self.write_examples_on_file() File "/home/arbi01/miniconda3/envs/tmp9/lib/python3.9/site-packages/datasets/arrow_writer.py", line 440, in write_examples_on_file batch_examples[col] = array_concat(arrays) File "/home/arbi01/miniconda3/envs/tmp9/lib/python3.9/site-packages/datasets/table.py", line 1931, in array_concat return _concat_arrays(arrays) File "/home/arbi01/miniconda3/envs/tmp9/lib/python3.9/site-packages/datasets/table.py", line 1901, in _concat_arrays return array_type.wrap_array(_concat_arrays([array.storage for array in arrays])) File "/home/arbi01/miniconda3/envs/tmp9/lib/python3.9/site-packages/datasets/table.py", line 1922, in _concat_arrays _concat_arrays([array.values for array in arrays]), File "/home/arbi01/miniconda3/envs/tmp9/lib/python3.9/site-packages/datasets/table.py", line 1922, in _concat_arrays _concat_arrays([array.values for array in arrays]), File "/home/arbi01/miniconda3/envs/tmp9/lib/python3.9/site-packages/datasets/table.py", line 1920, in _concat_arrays return pa.ListArray.from_arrays( File "pyarrow/array.pxi", line 1997, in pyarrow.lib.ListArray.from_arrays File "pyarrow/array.pxi", line 1527, in pyarrow.lib.Array.validate File "pyarrow/error.pxi", line 100, in pyarrow.lib.check_status pyarrow.lib.ArrowInvalid: Negative offsets in list array During handling of the above exception, another exception occurred: Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/home/arbi01/miniconda3/envs/tmp9/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 2815, in map return self._map_single( File "/home/arbi01/miniconda3/envs/tmp9/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 546, in wrapper out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs) File "/home/arbi01/miniconda3/envs/tmp9/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 513, in wrapper out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs) File "/home/arbi01/miniconda3/envs/tmp9/lib/python3.9/site-packages/datasets/fingerprint.py", line 480, in wrapper out = func(self, *args, **kwargs) File "/home/arbi01/miniconda3/envs/tmp9/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 3259, in _map_single writer.finalize() File "/home/arbi01/miniconda3/envs/tmp9/lib/python3.9/site-packages/datasets/arrow_writer.py", line 581, in finalize self.write_examples_on_file() File "/home/arbi01/miniconda3/envs/tmp9/lib/python3.9/site-packages/datasets/arrow_writer.py", line 440, in write_examples_on_file batch_examples[col] = array_concat(arrays) File "/home/arbi01/miniconda3/envs/tmp9/lib/python3.9/site-packages/datasets/table.py", line 1931, in array_concat return _concat_arrays(arrays) File "/home/arbi01/miniconda3/envs/tmp9/lib/python3.9/site-packages/datasets/table.py", line 1901, in _concat_arrays return array_type.wrap_array(_concat_arrays([array.storage for array in arrays])) File "/home/arbi01/miniconda3/envs/tmp9/lib/python3.9/site-packages/datasets/table.py", line 1922, in _concat_arrays _concat_arrays([array.values for array in arrays]), File "/home/arbi01/miniconda3/envs/tmp9/lib/python3.9/site-packages/datasets/table.py", line 1922, in _concat_arrays _concat_arrays([array.values for array in arrays]), File "/home/arbi01/miniconda3/envs/tmp9/lib/python3.9/site-packages/datasets/table.py", line 1920, in _concat_arrays return pa.ListArray.from_arrays( File "pyarrow/array.pxi", line 1997, in pyarrow.lib.ListArray.from_arrays File "pyarrow/array.pxi", line 1527, in pyarrow.lib.Array.validate File "pyarrow/error.pxi", line 100, in pyarrow.lib.check_status pyarrow.lib.ArrowInvalid: Negative offsets in list array ``` ### Steps to reproduce the bug 1. put following dataset loading script into: debug/debug.py ```python import datasets import numpy as np class DEBUG(datasets.GeneratorBasedBuilder): """DEBUG dataset.""" def _info(self): return datasets.DatasetInfo( features=datasets.Features( { "id": datasets.Value("uint8"), "img_data": datasets.Array3D(shape=(3, 224, 224), dtype="uint8"), }, ), supervised_keys=None, ) def _split_generators(self, dl_manager): return [datasets.SplitGenerator(name=datasets.Split.TRAIN)] def _generate_examples(self): for i in range(149): image_np = np.zeros(shape=(3, 224, 224), dtype=np.int8).tolist() yield f"id_{i}", {"id": i, "img_data": image_np} ``` 2. try the following code: ```python import datasets def add_dummy_col(ex): ex["dummy"] = "test" return ex ds = datasets.load_dataset(path="debug", split="train") # works ds_filtered_works = ds.filter(lambda example: example["id"] < 95) print(f"filtered result size: {len(ds_filtered_works)}") # output: # filtered result size: 95 ds_mapped_works = ds_filtered_works.map(add_dummy_col) # fails ds_filtered_error = ds.filter(lambda example: example["id"] < 96) print(f"filtered result size: {len(ds_filtered_error)}") # output: # filtered result size: 96 ds_mapped_error = ds_filtered_error.map(add_dummy_col) ``` ### Expected behavior The example code does not fail. ### Environment info Python 3.9.16 (main, Jan 11 2023, 16:05:54); [GCC 11.2.0] :: Anaconda, Inc. on linux datasets 2.9.0
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5534/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5534/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/3582
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3582/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3582/comments
https://api.github.com/repos/huggingface/datasets/issues/3582/events
https://github.com/huggingface/datasets/issues/3582
1,104,877,303
I_kwDODunzps5B2xb3
3,582
conll 2003 dataset source url is no longer valid
{ "avatar_url": "https://avatars.githubusercontent.com/u/303900?v=4", "events_url": "https://api.github.com/users/rcanand/events{/privacy}", "followers_url": "https://api.github.com/users/rcanand/followers", "following_url": "https://api.github.com/users/rcanand/following{/other_user}", "gists_url": "https://api.github.com/users/rcanand/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/rcanand", "id": 303900, "login": "rcanand", "node_id": "MDQ6VXNlcjMwMzkwMA==", "organizations_url": "https://api.github.com/users/rcanand/orgs", "received_events_url": "https://api.github.com/users/rcanand/received_events", "repos_url": "https://api.github.com/users/rcanand/repos", "site_admin": false, "starred_url": "https://api.github.com/users/rcanand/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/rcanand/subscriptions", "type": "User", "url": "https://api.github.com/users/rcanand" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" }, { "color": "2edb81", "default": false, "description": "A bug in a dataset script provided in the library", "id": 2067388877, "name": "dataset bug", "node_id": "MDU6TGFiZWwyMDY3Mzg4ODc3", "url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20bug" } ]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" } ]
null
[ "I came to open the same issue.", "Thanks for reporting !\r\n\r\nI pushed a temporary fix on `master` that uses an URL from a previous commit to access the dataset for now, until we have a better solution", "I changed the URL again to use another host, the fix is available on `master` and we'll probably do a new release of `datasets` tomorrow.\r\n\r\nIn the meantime, feel free to do `load_dataset(..., revision=\"master\")` to use the fixed script", "We just released a new version of `datasets` with a working URL. Feel free to update `datasets` and try again :)", "Hello! Unfortunately, this URL does not work for me. \r\nCould you please tell me how I can solve the problem?\r\n\r\n`>>> from datasets import load_dataset\r\n>>> dataset = load_dataset(\"conll2003\")\r\nDownloading and preparing dataset conll2003/conll2003 (download: 4.63 MiB, generated: 9.78 MiB, post-processed: Unknown size, total: 14.41 MiB) to /home/dafedo/.cache/huggingface/datasets/conll2003/conll2003/1.0.0/40e7cb6bcc374f7c349c83acd1e9352a4f09474eb691f64f364ee62eb65d0ca6...\r\nTraceback (most recent call last):\r\n File \"<stdin>\", line 1, in <module>\r\n File \"/home/dafedo/efficient-task-transfer/venv/lib/python3.8/site-packages/datasets/load.py\", line 745, in load_dataset\r\n builder_instance.download_and_prepare(\r\n File \"/home/dafedo/efficient-task-transfer/venv/lib/python3.8/site-packages/datasets/builder.py\", line 574, in download_and_prepare\r\n self._download_and_prepare(\r\n File \"/home/dafedo/efficient-task-transfer/venv/lib/python3.8/site-packages/datasets/builder.py\", line 630, in _download_and_prepare\r\n split_generators = self._split_generators(dl_manager, **split_generators_kwargs)\r\n File \"/home/dafedo/.cache/huggingface/modules/datasets_modules/datasets/conll2003/40e7cb6bcc374f7c349c83acd1e9352a4f09474eb691f64f364ee62eb65d0ca6/conll2003.py\", line 196, in _split_generators\r\n downloaded_files = dl_manager.download_and_extract(urls_to_download)\r\n File \"/home/dafedo/efficient-task-transfer/venv/lib/python3.8/site-packages/datasets/utils/download_manager.py\", line 287, in download_and_extract\r\n return self.extract(self.download(url_or_urls))\r\n File \"/home/dafedo/efficient-task-transfer/venv/lib/python3.8/site-packages/datasets/utils/download_manager.py\", line 195, in download\r\n downloaded_path_or_paths = map_nested(\r\n File \"/home/dafedo/efficient-task-transfer/venv/lib/python3.8/site-packages/datasets/utils/py_utils.py\", line 203, in map_nested\r\n mapped = [\r\n File \"/home/dafedo/efficient-task-transfer/venv/lib/python3.8/site-packages/datasets/utils/py_utils.py\", line 204, in <listcomp>\r\n _single_map_nested((function, obj, types, None, True)) for obj in tqdm(iterable, disable=disable_tqdm)\r\n File \"/home/dafedo/efficient-task-transfer/venv/lib/python3.8/site-packages/datasets/utils/py_utils.py\", line 142, in _single_map_nested\r\n return function(data_struct)\r\n File \"/home/dafedo/efficient-task-transfer/venv/lib/python3.8/site-packages/datasets/utils/download_manager.py\", line 218, in _download\r\n return cached_path(url_or_filename, download_config=download_config)\r\n File \"/home/dafedo/efficient-task-transfer/venv/lib/python3.8/site-packages/datasets/utils/file_utils.py\", line 281, in cached_path\r\n output_path = get_from_cache(\r\n File \"/home/dafedo/efficient-task-transfer/venv/lib/python3.8/site-packages/datasets/utils/file_utils.py\", line 621, in get_from_cache\r\n raise FileNotFoundError(\"Couldn't find file at {}\".format(url))\r\nFileNotFoundError: Couldn't find file at https://github.com/davidsbatista/NER-datasets/raw/master/CONLL2003/train.txt\r\n`\r\n\r\nI receive the same error when I run \"itrain run_configs/conll2003.json\" from https://github.com/adapter-hub/efficient-task-transfer\r\n\r\nThank you very much in advance!\r\n\r\nRegards, \r\nDaria\r\n", "Can you try updating `datasets` and try again ?\r\n```\r\npip install -U datasets\r\n```", "@lhoestq Thank you very much for your answer! \r\n\r\nIt works this way, but for my research I need datasets==1.6.3 or closest to it because otherwise the other package would not work as it is built on this version.\r\nDo you have any other suggestion? I would really appreciate it. Maybe which version of the datasets is without hard-coded link but closest to 1.6.3\r\n", "No problem, I have solved it. \r\nThank you anyway.", "Out of curiosity, which package has the `datasets==1.6.3` requirement ?" ]
"2022-01-15T23:04:17Z"
"2022-07-20T13:06:40Z"
"2022-01-21T16:57:32Z"
NONE
null
null
null
## Describe the bug Loading `conll2003` dataset fails because it was removed (just yesterday 1/14/2022) from the location it is looking for. ## Steps to reproduce the bug ```python from datasets import load_dataset load_dataset("conll2003") ``` ## Expected results The dataset should load. ## Actual results It is looking for the dataset at `https://github.com/davidsbatista/NER-datasets/raw/master/CONLL2003/train.txt` but it was removed from there yesterday (see [commit](https://github.com/davidsbatista/NER-datasets/commit/9d8f45cc7331569af8eb3422bbe1c97cbebd5690) that removed the file and related [issue](https://github.com/davidsbatista/NER-datasets/issues/8)). - We should replace this with an alternate valid location. - this is being referenced in the huggingface course chapter 7 [colab notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/master/course/chapter7/section2_pt.ipynb), which is also broken. ```python FileNotFoundError Traceback (most recent call last) <ipython-input-4-27c956bec93c> in <module>() 1 from datasets import load_dataset 2 ----> 3 raw_datasets = load_dataset("conll2003") 11 frames /usr/local/lib/python3.7/dist-packages/datasets/utils/file_utils.py in get_from_cache(url, cache_dir, force_download, proxies, etag_timeout, resume_download, user_agent, local_files_only, use_etag, max_retries, use_auth_token, ignore_url_params) 610 ) 611 elif response is not None and response.status_code == 404: --> 612 raise FileNotFoundError(f"Couldn't find file at {url}") 613 _raise_if_offline_mode_is_enabled(f"Tried to reach {url}") 614 if head_error is not None: FileNotFoundError: Couldn't find file at https://github.com/davidsbatista/NER-datasets/raw/master/CONLL2003/train.txt ``` ## Environment info <!-- You can run the command `datasets-cli env` and copy-and-paste its output below. --> - `datasets` version: - Platform: - Python version: - PyArrow version:
{ "+1": 0, "-1": 0, "confused": 5, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 5, "url": "https://api.github.com/repos/huggingface/datasets/issues/3582/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3582/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/2916
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2916/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2916/comments
https://api.github.com/repos/huggingface/datasets/issues/2916/events
https://github.com/huggingface/datasets/pull/2916
997,003,661
PR_kwDODunzps4rx5ua
2,916
Add OpenAI's pass@k code evaluation metric
{ "avatar_url": "https://avatars.githubusercontent.com/u/8264887?v=4", "events_url": "https://api.github.com/users/lvwerra/events{/privacy}", "followers_url": "https://api.github.com/users/lvwerra/followers", "following_url": "https://api.github.com/users/lvwerra/following{/other_user}", "gists_url": "https://api.github.com/users/lvwerra/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lvwerra", "id": 8264887, "login": "lvwerra", "node_id": "MDQ6VXNlcjgyNjQ4ODc=", "organizations_url": "https://api.github.com/users/lvwerra/orgs", "received_events_url": "https://api.github.com/users/lvwerra/received_events", "repos_url": "https://api.github.com/users/lvwerra/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lvwerra/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lvwerra/subscriptions", "type": "User", "url": "https://api.github.com/users/lvwerra" }
[]
closed
false
null
[]
null
[ "> The implementation makes heavy use of multiprocessing which this PR does not touch. Is this conflicting with multiprocessing natively integrated in datasets?\r\n\r\nIt should work normally, but feel free to test it.\r\nThere is some documentation about using metrics in a distributed setup that uses multiprocessing [here](https://huggingface.co/docs/datasets/loading.html?highlight=rank#distributed-setup)\r\nYou can test to spawn several processes where each process would load the metric. Then in each process you add some references/predictions to the metric. Finally you call compute() in each process and on process 0 it should return the result on all the references/predictions\r\n\r\nLet me know if you have questions or if I can help", "Is there a good way to debug the Windows tests? I suspect it is an issue with `multiprocessing`, but I can't see the error messages.", "Indeed it has an issue on windows.\r\nIn your example it's supposed to output\r\n```python\r\n{'pass@1': 0.5, 'pass@2': 1.0}\r\n```\r\nbut it gets\r\n```python\r\n{'pass@1': 0.0, 'pass@2': 0.0}\r\n```\r\n\r\nI'm not on my windows machine today so I can't take a look at it. I can dive into it early next week if you want", "> I'm not on my windows machine today so I can't take a look at it. I can dive into it early next week if you want\r\n\r\nThat would be great - unfortunately I have no access to a windows machine at the moment. I am quite sure it is an issue with in exectue.py because of multiprocessing.\r\n" ]
"2021-09-15T12:05:43Z"
"2021-11-12T14:19:51Z"
"2021-11-12T14:19:50Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/2916.diff", "html_url": "https://github.com/huggingface/datasets/pull/2916", "merged_at": "2021-11-12T14:19:50Z", "patch_url": "https://github.com/huggingface/datasets/pull/2916.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/2916" }
This PR introduces the `code_eval` metric which implements [OpenAI's code evaluation harness](https://github.com/openai/human-eval) introduced in the [Codex paper](https://arxiv.org/abs/2107.03374). It is heavily based on the original implementation and just adapts the interface to follow the `predictions`/`references` convention. The addition of this metric should enable the evaluation against the code evaluation datasets added in #2897 and #2893. A few open questions: - The implementation makes heavy use of multiprocessing which this PR does not touch. Is this conflicting with multiprocessing natively integrated in `datasets`? - This metric executes generated Python code and as such it poses dangers of executing malicious code. OpenAI addresses this issue by 1) commenting the `exec` call in the code so the user has to actively uncomment it and read the warning and 2) suggests using a sandbox environment (gVisor container). Should we add a similar safeguard? E.g. a prompt that needs to be answered when initialising the metric? Or at least a warning message? - Naming: the implementation sticks to the `predictions`/`references` naming, however, the references are not reference solutions but unittest to test the solution. While reference solutions are also available they are not used. Should the naming be adapted?
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 1, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/2916/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2916/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/5008
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5008/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5008/comments
https://api.github.com/repos/huggingface/datasets/issues/5008/events
https://github.com/huggingface/datasets/pull/5008
1,381,090,903
PR_kwDODunzps4_XAc5
5,008
Re-apply input columns change
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
"2022-09-21T15:09:01Z"
"2022-09-22T13:57:36Z"
"2022-09-22T13:55:23Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5008.diff", "html_url": "https://github.com/huggingface/datasets/pull/5008", "merged_at": "2022-09-22T13:55:23Z", "patch_url": "https://github.com/huggingface/datasets/pull/5008.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5008" }
Fixes the `filter` + `input_columns` combination, which is used in the `transformers` examples for instance. Revert #5006 (which in turn reverts #4971) Fix https://github.com/huggingface/datasets/issues/4858
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5008/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5008/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/1759
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1759/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1759/comments
https://api.github.com/repos/huggingface/datasets/issues/1759/events
https://github.com/huggingface/datasets/issues/1759
790,992,226
MDU6SXNzdWU3OTA5OTIyMjY=
1,759
wikipedia dataset incomplete
{ "avatar_url": "https://avatars.githubusercontent.com/u/19912393?v=4", "events_url": "https://api.github.com/users/ChrisDelClea/events{/privacy}", "followers_url": "https://api.github.com/users/ChrisDelClea/followers", "following_url": "https://api.github.com/users/ChrisDelClea/following{/other_user}", "gists_url": "https://api.github.com/users/ChrisDelClea/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/ChrisDelClea", "id": 19912393, "login": "ChrisDelClea", "node_id": "MDQ6VXNlcjE5OTEyMzkz", "organizations_url": "https://api.github.com/users/ChrisDelClea/orgs", "received_events_url": "https://api.github.com/users/ChrisDelClea/received_events", "repos_url": "https://api.github.com/users/ChrisDelClea/repos", "site_admin": false, "starred_url": "https://api.github.com/users/ChrisDelClea/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ChrisDelClea/subscriptions", "type": "User", "url": "https://api.github.com/users/ChrisDelClea" }
[]
closed
false
null
[]
null
[ "Hi !\r\nFrom what pickle file fo you get this ?\r\nI guess you mean the dataset loaded using `load_dataset` ?", "yes sorry, I used the `load_dataset`function and saved the data to a pickle file so I don't always have to reload it and are able to work offline. ", "The wikipedia articles are processed using the `mwparserfromhell` library. Even if it works well in most cases, such issues can happen unfortunately. You can find the repo here: https://github.com/earwig/mwparserfromhell\r\n\r\nThere also exist other datasets based on wikipedia that were processed differently (and are often cleaner) such as `wiki40b`.\r\n\r\n", "ok great. Thank you, @lhoestq. " ]
"2021-01-21T11:47:15Z"
"2021-01-21T17:22:11Z"
"2021-01-21T17:21:06Z"
NONE
null
null
null
Hey guys, I am using the https://github.com/huggingface/datasets/tree/master/datasets/wikipedia dataset. Unfortunately, I found out that there is an incompleteness for the German dataset. For reasons unknown to me, the number of inhabitants has been removed from many pages: Thorey-sur-Ouche has 128 inhabitants according to the webpage (https://de.wikipedia.org/wiki/Thorey-sur-Ouche). The pickle file however shows: französische Gemeinde mit Einwohnern (Stand). Is it possible to fix this? Best regards Chris
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1759/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1759/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/2424
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2424/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2424/comments
https://api.github.com/repos/huggingface/datasets/issues/2424/events
https://github.com/huggingface/datasets/issues/2424
906,193,679
MDU6SXNzdWU5MDYxOTM2Nzk=
2,424
load_from_disk and save_to_disk are not compatible with each other
{ "avatar_url": "https://avatars.githubusercontent.com/u/7584674?v=4", "events_url": "https://api.github.com/users/roholazandie/events{/privacy}", "followers_url": "https://api.github.com/users/roholazandie/followers", "following_url": "https://api.github.com/users/roholazandie/following{/other_user}", "gists_url": "https://api.github.com/users/roholazandie/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/roholazandie", "id": 7584674, "login": "roholazandie", "node_id": "MDQ6VXNlcjc1ODQ2NzQ=", "organizations_url": "https://api.github.com/users/roholazandie/orgs", "received_events_url": "https://api.github.com/users/roholazandie/received_events", "repos_url": "https://api.github.com/users/roholazandie/repos", "site_admin": false, "starred_url": "https://api.github.com/users/roholazandie/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/roholazandie/subscriptions", "type": "User", "url": "https://api.github.com/users/roholazandie" }
[]
closed
false
null
[]
null
[ "Hi,\r\n\r\n`load_dataset` returns an instance of `DatasetDict` if `split` is not specified, so instead of `Dataset.load_from_disk`, use `DatasetDict.load_from_disk` to load the dataset from disk.", "Thanks it worked!", "Though I see a stream of issues open by people lost between datasets and datasets dicts so maybe there is here something that could be better in terms of UX. Could be better error handling or something else smarter to even avoid said errors but maybe we should think about this. Reopening to use this issue as a discussion place but feel free to open a new open if you prefer @lhoestq @albertvillanova ", "We should probably improve the error message indeed.\r\n\r\nAlso note that there exists a function `load_from_disk` that can load a Dataset or a DatasetDict. Under the hood it calls either `Dataset.load_from_disk` or `DatasetDict.load_from_disk`:\r\n\r\n\r\n```python\r\nfrom datasets import load_from_disk\r\n\r\ndataset_dict = load_from_disk(\"path/to/dataset/dict\")\r\nsingle_dataset = load_from_disk(\"path/to/single/dataset\")\r\n```", "I just opened #2437 to improve the error message", "Superseded by #2462 " ]
"2021-05-28T23:07:10Z"
"2021-06-08T19:22:32Z"
"2021-06-08T19:22:32Z"
NONE
null
null
null
## Describe the bug load_from_disk and save_to_disk are not compatible. When I use save_to_disk to save a dataset to disk it works perfectly but given the same directory load_from_disk throws an error that it can't find state.json. looks like the load_from_disk only works on one split ## Steps to reproduce the bug ```python from datasets import load_dataset dataset = load_dataset("art") dataset.save_to_disk("mydir") d = Dataset.load_from_disk("mydir") ``` ## Expected results It is expected that these two functions be the reverse of each other without more manipulation ## Actual results FileNotFoundError: [Errno 2] No such file or directory: 'mydir/art/state.json' ## Environment info - `datasets` version: 1.6.2 - Platform: Linux-5.4.0-73-generic-x86_64-with-Ubuntu-18.04-bionic - Python version: 3.7.10 - PyTorch version (GPU?): 1.8.1+cu102 (True) - Tensorflow version (GPU?): not installed (NA) - Using GPU in script?: <fill in> - Using distributed or parallel set-up in script?: <fill in>
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/2424/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2424/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/2626
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2626/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2626/comments
https://api.github.com/repos/huggingface/datasets/issues/2626/events
https://github.com/huggingface/datasets/pull/2626
941,497,830
MDExOlB1bGxSZXF1ZXN0Njg3MzY4OTMz
2,626
Use correct logger in metrics.py
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko" }
[]
closed
false
null
[]
{ "closed_at": "2021-07-21T15:36:49Z", "closed_issues": 29, "created_at": "2021-06-08T18:48:33Z", "creator": { "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }, "description": "Next minor release", "due_on": "2021-08-05T07:00:00Z", "html_url": "https://github.com/huggingface/datasets/milestone/6", "id": 6836458, "labels_url": "https://api.github.com/repos/huggingface/datasets/milestones/6/labels", "node_id": "MDk6TWlsZXN0b25lNjgzNjQ1OA==", "number": 6, "open_issues": 0, "state": "closed", "title": "1.10", "updated_at": "2021-07-21T15:36:49Z", "url": "https://api.github.com/repos/huggingface/datasets/milestones/6" }
[]
"2021-07-11T17:22:30Z"
"2021-07-12T14:08:54Z"
"2021-07-12T05:54:29Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/2626.diff", "html_url": "https://github.com/huggingface/datasets/pull/2626", "merged_at": "2021-07-12T05:54:29Z", "patch_url": "https://github.com/huggingface/datasets/pull/2626.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/2626" }
Fixes #2624
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2626/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2626/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/3841
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3841/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3841/comments
https://api.github.com/repos/huggingface/datasets/issues/3841/events
https://github.com/huggingface/datasets/issues/3841
1,161,203,842
I_kwDODunzps5FNpCC
3,841
Pyright reportPrivateImportUsage when `from datasets import load_dataset`
{ "avatar_url": "https://avatars.githubusercontent.com/u/12573521?v=4", "events_url": "https://api.github.com/users/lkhphuc/events{/privacy}", "followers_url": "https://api.github.com/users/lkhphuc/followers", "following_url": "https://api.github.com/users/lkhphuc/following{/other_user}", "gists_url": "https://api.github.com/users/lkhphuc/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lkhphuc", "id": 12573521, "login": "lkhphuc", "node_id": "MDQ6VXNlcjEyNTczNTIx", "organizations_url": "https://api.github.com/users/lkhphuc/orgs", "received_events_url": "https://api.github.com/users/lkhphuc/received_events", "repos_url": "https://api.github.com/users/lkhphuc/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lkhphuc/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lkhphuc/subscriptions", "type": "User", "url": "https://api.github.com/users/lkhphuc" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
null
[]
null
[ "Hi! \r\n\r\nThis issue stems from `datasets` having `py.typed` defined (see https://github.com/microsoft/pyright/discussions/3764#discussioncomment-3282142) - to avoid it, we would either have to remove `py.typed` (added to be compliant with PEP-561) or export the names with `__all__`/`from .submodule import name as name`.\r\n\r\nTransformers is fine as it no longer has `py.typed` (removed in https://github.com/huggingface/transformers/pull/18485)\r\n\r\nWDYT @lhoestq @albertvillanova @polinaeterna \r\n\r\n@sgugger's point makes sense - we should either be \"properly typed\" (have py.typed + mypy tests) or drop `py.typed` as Transformers did (I like this option better).\r\n\r\n(cc @Wauplin since `huggingface_hub` has the same issue.)", "I'm fine with dropping it, but autotrain people won't be happy @SBrandeis ", "> (cc @Wauplin since huggingface_hub has the same issue.)\r\n\r\nHmm maybe we have the same issue but I haven't been able to reproduce something similar to `\"load_dataset\" is not exported from module \"datasets\"` message (using VSCode+Pylance -that is powered by Pyright). `huggingface_hub` contains a `py.typed` file but the package itself is actually typed. We are running `mypy` in our CI tests since ~3 months and so far it seems to be ok. But happy to change if it causes some issues with linters.\r\n\r\nAlso the top-level [`__init__.py`](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/__init__.py) is quite different in `hfh` than `datasets` (at first glance). We have a section at the bottom to import all high level methods/classes in a `if TYPE_CHECKING` block.", "@Wauplin I only get the error if I use Pyright's CLI tool or the Pyright extension (not sure why, but Pylance also doesn't report this issue on my machine)\r\n\r\n> Also the top-level [`__init__.py`](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/__init__.py) is quite different in `hfh` than `datasets` (at first glance). We have a section at the bottom to import all high level methods/classes in a `if TYPE_CHECKING` block.\r\n\r\nI tried to fix the issue with `TYPE_CHECKING`, but it still fails if `py.typed` is present.", "@mariosasko thank for the tip. I have been able to reproduce the issue as well. I would be up for including a (huge) static `__all__` variable in the `__init__.py` (since the file is already generated automatically in `hfh`) but honestly I don't think it's worth the hassle. \r\n\r\nI'll delete the `py.typed` file in `huggingface_hub` to be consistent between HF libraries. I opened a PR here: https://github.com/huggingface/huggingface_hub/pull/1329", "I am getting this error in google colab today:\r\n\r\n![image](https://user-images.githubusercontent.com/3464445/219883967-c7193a23-0388-4ba3-b00c-a53883fb6512.png)\r\n\r\nThe code runs just fine too." ]
"2022-03-07T10:24:04Z"
"2023-02-18T19:14:03Z"
"2023-02-13T13:48:41Z"
CONTRIBUTOR
null
null
null
## Describe the bug Pyright complains about module not exported. ## Steps to reproduce the bug Use an editor/IDE with Pyright Language server with default configuration: ```python from datasets import load_dataset ``` ## Expected results No complain from Pyright ## Actual results Pyright complain below: ``` `load_dataset` is not exported from module "datasets" Import from "datasets.load" instead [reportPrivateImportUsage] ``` Importing from `datasets.load` does indeed solves the problem but I believe importing directly from top level `datasets` is the intended usage per the documentation. ## Environment info - `datasets` version: 1.18.3 - Platform: macOS-12.2.1-arm64-arm-64bit - Python version: 3.9.10 - PyArrow version: 7.0.0
{ "+1": 3, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 3, "url": "https://api.github.com/repos/huggingface/datasets/issues/3841/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3841/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/3280
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3280/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3280/comments
https://api.github.com/repos/huggingface/datasets/issues/3280/events
https://github.com/huggingface/datasets/pull/3280
1,054,766,828
PR_kwDODunzps4ulgye
3,280
Fix bookcorpusopen RAM usage
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
[]
closed
false
null
[]
null
[]
"2021-11-16T11:27:52Z"
"2021-11-17T15:53:28Z"
"2021-11-16T13:34:30Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/3280.diff", "html_url": "https://github.com/huggingface/datasets/pull/3280", "merged_at": "2021-11-16T13:34:30Z", "patch_url": "https://github.com/huggingface/datasets/pull/3280.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/3280" }
Each document is a full book, so the default arrow writer batch size of 10,000 is too big, and it can fill up RAM quickly before flushing the first batch on disk. I changed its batch size to 256 to use maximum 100MB of memory Fix #3167.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3280/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3280/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/3326
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3326/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3326/comments
https://api.github.com/repos/huggingface/datasets/issues/3326/events
https://github.com/huggingface/datasets/pull/3326
1,064,664,479
PR_kwDODunzps4vEaYG
3,326
Fix import `datasets` on python 3.10
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
[]
closed
false
null
[]
null
[]
"2021-11-26T16:10:00Z"
"2021-11-26T16:31:23Z"
"2021-11-26T16:31:23Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/3326.diff", "html_url": "https://github.com/huggingface/datasets/pull/3326", "merged_at": "2021-11-26T16:31:23Z", "patch_url": "https://github.com/huggingface/datasets/pull/3326.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/3326" }
In python 3.10 it's no longer possible to use `functools.wraps` on a method decorated with `classmethod`. To fix this I inverted the order of the `inject_arrow_table_documentation` and `classmethod` decorators Fix #3324
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/3326/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3326/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/4540
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4540/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4540/comments
https://api.github.com/repos/huggingface/datasets/issues/4540/events
https://github.com/huggingface/datasets/issues/4540
1,280,142,942
I_kwDODunzps5MTW5e
4,540
Avoid splitting by` .py` for the file.
{ "avatar_url": "https://avatars.githubusercontent.com/u/18573157?v=4", "events_url": "https://api.github.com/users/espoirMur/events{/privacy}", "followers_url": "https://api.github.com/users/espoirMur/followers", "following_url": "https://api.github.com/users/espoirMur/following{/other_user}", "gists_url": "https://api.github.com/users/espoirMur/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/espoirMur", "id": 18573157, "login": "espoirMur", "node_id": "MDQ6VXNlcjE4NTczMTU3", "organizations_url": "https://api.github.com/users/espoirMur/orgs", "received_events_url": "https://api.github.com/users/espoirMur/received_events", "repos_url": "https://api.github.com/users/espoirMur/repos", "site_admin": false, "starred_url": "https://api.github.com/users/espoirMur/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/espoirMur/subscriptions", "type": "User", "url": "https://api.github.com/users/espoirMur" }
[ { "color": "7057ff", "default": true, "description": "Good for newcomers", "id": 1935892877, "name": "good first issue", "node_id": "MDU6TGFiZWwxOTM1ODkyODc3", "url": "https://api.github.com/repos/huggingface/datasets/labels/good%20first%20issue" } ]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/20517962?v=4", "events_url": "https://api.github.com/users/VijayKalmath/events{/privacy}", "followers_url": "https://api.github.com/users/VijayKalmath/followers", "following_url": "https://api.github.com/users/VijayKalmath/following{/other_user}", "gists_url": "https://api.github.com/users/VijayKalmath/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/VijayKalmath", "id": 20517962, "login": "VijayKalmath", "node_id": "MDQ6VXNlcjIwNTE3OTYy", "organizations_url": "https://api.github.com/users/VijayKalmath/orgs", "received_events_url": "https://api.github.com/users/VijayKalmath/received_events", "repos_url": "https://api.github.com/users/VijayKalmath/repos", "site_admin": false, "starred_url": "https://api.github.com/users/VijayKalmath/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/VijayKalmath/subscriptions", "type": "User", "url": "https://api.github.com/users/VijayKalmath" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/20517962?v=4", "events_url": "https://api.github.com/users/VijayKalmath/events{/privacy}", "followers_url": "https://api.github.com/users/VijayKalmath/followers", "following_url": "https://api.github.com/users/VijayKalmath/following{/other_user}", "gists_url": "https://api.github.com/users/VijayKalmath/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/VijayKalmath", "id": 20517962, "login": "VijayKalmath", "node_id": "MDQ6VXNlcjIwNTE3OTYy", "organizations_url": "https://api.github.com/users/VijayKalmath/orgs", "received_events_url": "https://api.github.com/users/VijayKalmath/received_events", "repos_url": "https://api.github.com/users/VijayKalmath/repos", "site_admin": false, "starred_url": "https://api.github.com/users/VijayKalmath/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/VijayKalmath/subscriptions", "type": "User", "url": "https://api.github.com/users/VijayKalmath" } ]
null
[ "Hi @espoirMur, thanks for reporting.\r\n\r\nYou are right: that code line could be improved and made more generically valid.\r\n\r\nOn the other hand, I would suggest using `os.path.splitext` instead.\r\n\r\nAre you willing to open a PR? :)", "I will have a look.. \r\n\r\nThis weekend .. ", "@albertvillanova , Can you have a look at #4590. \r\n\r\nThanks ", "#self-assign" ]
"2022-06-22T13:26:55Z"
"2022-07-07T13:17:44Z"
"2022-07-07T13:17:44Z"
NONE
null
null
null
https://github.com/huggingface/datasets/blob/90b3a98065556fc66380cafd780af9b1814b9426/src/datasets/load.py#L272 Hello, Thanks you for this library . I was using it and I had one edge case. my home folder name ends with `.py` it is `/home/espoir.py` so anytime I am running the code to load a local module this code here it is failing because after splitting it is trying to save the code to my home directory. Step to reproduce. - If you have a home folder which ends with `.py` - load a module with a local folder `qa_dataset = load_dataset("src/data/build_qa_dataset.py")` it is failed A possible workaround would be to use pathlib at the mentioned line ` meta_path = Path(importable_local_file).parent.joinpath("metadata.json")` this can alivate the issue . Let me what are your thought on this and I can try to fix it by A PR.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4540/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4540/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/3392
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3392/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3392/comments
https://api.github.com/repos/huggingface/datasets/issues/3392/events
https://github.com/huggingface/datasets/issues/3392
1,073,073,408
I_kwDODunzps4_9c0A
3,392
Dataset viewer issue for `dansbecker/hackernews_hiring_posts`
{ "avatar_url": "https://avatars.githubusercontent.com/u/1676121?v=4", "events_url": "https://api.github.com/users/severo/events{/privacy}", "followers_url": "https://api.github.com/users/severo/followers", "following_url": "https://api.github.com/users/severo/following{/other_user}", "gists_url": "https://api.github.com/users/severo/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/severo", "id": 1676121, "login": "severo", "node_id": "MDQ6VXNlcjE2NzYxMjE=", "organizations_url": "https://api.github.com/users/severo/orgs", "received_events_url": "https://api.github.com/users/severo/received_events", "repos_url": "https://api.github.com/users/severo/repos", "site_admin": false, "starred_url": "https://api.github.com/users/severo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/severo/subscriptions", "type": "User", "url": "https://api.github.com/users/severo" }
[ { "color": "E5583E", "default": false, "description": "Related to the dataset viewer on huggingface.co", "id": 3470211881, "name": "dataset-viewer", "node_id": "LA_kwDODunzps7O1zsp", "url": "https://api.github.com/repos/huggingface/datasets/labels/dataset-viewer" } ]
closed
false
null
[]
null
[ "This issue was fixed by me calling `all_datasets.push_to_hub(\"hackernews_hiring_posts\")`.\r\n\r\nThe previous problems were from calling `all_datasets.save_to_disk` and then pushing with `my_repo.git_add` and `my_repo.push_to_hub`.\r\n" ]
"2021-12-07T08:41:01Z"
"2021-12-07T14:04:28Z"
"2021-12-07T14:04:28Z"
CONTRIBUTOR
null
null
null
## Dataset viewer issue for `dansbecker/hackernews_hiring_posts` **Link:** https://huggingface.co/datasets/dansbecker/hackernews_hiring_posts *short description of the issue* Dataset preview not showing for uploaded DatasetDict. See https://discuss.huggingface.co/t/dataset-preview-not-showing-for-uploaded-datasetdict/12603 Am I the one who added this dataset ? No -> @dansbecker
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3392/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3392/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/5853
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5853/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5853/comments
https://api.github.com/repos/huggingface/datasets/issues/5853/events
https://github.com/huggingface/datasets/pull/5853
1,708,092,786
PR_kwDODunzps5QaZLP
5,853
[docs] Redirects, migrated from nginx
{ "avatar_url": "https://avatars.githubusercontent.com/u/326577?v=4", "events_url": "https://api.github.com/users/julien-c/events{/privacy}", "followers_url": "https://api.github.com/users/julien-c/followers", "following_url": "https://api.github.com/users/julien-c/following{/other_user}", "gists_url": "https://api.github.com/users/julien-c/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/julien-c", "id": 326577, "login": "julien-c", "node_id": "MDQ6VXNlcjMyNjU3Nw==", "organizations_url": "https://api.github.com/users/julien-c/orgs", "received_events_url": "https://api.github.com/users/julien-c/received_events", "repos_url": "https://api.github.com/users/julien-c/repos", "site_admin": false, "starred_url": "https://api.github.com/users/julien-c/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/julien-c/subscriptions", "type": "User", "url": "https://api.github.com/users/julien-c" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "@mishig25 note that it's not exactly the same behavior as in nginx as here it interacts a bit with the `version` and the `language`\r\n\r\nShould be close enough, though.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007212 / 0.011353 (-0.004141) | 0.005125 / 0.011008 (-0.005883) | 0.098460 / 0.038508 (0.059952) | 0.034040 / 0.023109 (0.010931) | 0.320203 / 0.275898 (0.044305) | 0.357787 / 0.323480 (0.034307) | 0.006000 / 0.007986 (-0.001986) | 0.005644 / 0.004328 (0.001316) | 0.072654 / 0.004250 (0.068403) | 0.049393 / 0.037052 (0.012341) | 0.345686 / 0.258489 (0.087196) | 0.362345 / 0.293841 (0.068504) | 0.036597 / 0.128546 (-0.091949) | 0.012303 / 0.075646 (-0.063343) | 0.334374 / 0.419271 (-0.084897) | 0.062010 / 0.043533 (0.018477) | 0.312547 / 0.255139 (0.057408) | 0.336021 / 0.283200 (0.052821) | 0.112304 / 0.141683 (-0.029378) | 1.446706 / 1.452155 (-0.005449) | 1.523256 / 1.492716 (0.030540) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.217658 / 0.018006 (0.199652) | 0.449208 / 0.000490 (0.448718) | 0.002878 / 0.000200 (0.002679) | 0.000091 / 0.000054 (0.000036) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025735 / 0.037411 (-0.011676) | 0.105876 / 0.014526 (0.091350) | 0.114887 / 0.176557 (-0.061669) | 0.170984 / 0.737135 (-0.566152) | 0.121420 / 0.296338 (-0.174918) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.419670 / 0.215209 (0.204461) | 4.189453 / 2.077655 (2.111798) | 1.938236 / 1.504120 (0.434116) | 1.769747 / 1.541195 (0.228553) | 1.910919 / 1.468490 (0.442429) | 0.705046 / 4.584777 (-3.879730) | 3.783774 / 3.745712 (0.038062) | 2.096504 / 5.269862 (-3.173358) | 1.339265 / 4.565676 (-3.226412) | 0.086670 / 0.424275 (-0.337605) | 0.012243 / 0.007607 (0.004636) | 0.524701 / 0.226044 (0.298657) | 5.240689 / 2.268929 (2.971760) | 2.473622 / 55.444624 (-52.971003) | 2.170568 / 6.876477 (-4.705909) | 2.289653 / 2.142072 (0.147581) | 0.848913 / 4.805227 (-3.956314) | 0.168332 / 6.500664 (-6.332332) | 0.064926 / 0.075469 (-0.010543) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.193614 / 1.841788 (-0.648173) | 14.920403 / 8.074308 (6.846095) | 14.475059 / 10.191392 (4.283667) | 0.164458 / 0.680424 (-0.515966) | 0.017613 / 0.534201 (-0.516588) | 0.426311 / 0.579283 (-0.152972) | 0.431478 / 0.434364 (-0.002886) | 0.520280 / 0.540337 (-0.020057) | 0.627738 / 1.386936 (-0.759198) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007458 / 0.011353 (-0.003895) | 0.005363 / 0.011008 (-0.005645) | 0.076713 / 0.038508 (0.038205) | 0.034189 / 0.023109 (0.011079) | 0.359938 / 0.275898 (0.084040) | 0.395532 / 0.323480 (0.072052) | 0.005977 / 0.007986 (-0.002008) | 0.004263 / 0.004328 (-0.000065) | 0.075971 / 0.004250 (0.071721) | 0.051924 / 0.037052 (0.014871) | 0.362818 / 0.258489 (0.104329) | 0.409897 / 0.293841 (0.116056) | 0.035494 / 0.128546 (-0.093053) | 0.012399 / 0.075646 (-0.063247) | 0.088335 / 0.419271 (-0.330937) | 0.047968 / 0.043533 (0.004435) | 0.355744 / 0.255139 (0.100606) | 0.376339 / 0.283200 (0.093139) | 0.104542 / 0.141683 (-0.037141) | 1.464826 / 1.452155 (0.012672) | 1.600665 / 1.492716 (0.107948) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.220841 / 0.018006 (0.202834) | 0.446444 / 0.000490 (0.445954) | 0.000392 / 0.000200 (0.000192) | 0.000057 / 0.000054 (0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029402 / 0.037411 (-0.008009) | 0.116511 / 0.014526 (0.101986) | 0.122959 / 0.176557 (-0.053598) | 0.171674 / 0.737135 (-0.565462) | 0.129871 / 0.296338 (-0.166468) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.450411 / 0.215209 (0.235202) | 4.471859 / 2.077655 (2.394205) | 2.229439 / 1.504120 (0.725319) | 2.053308 / 1.541195 (0.512114) | 2.142476 / 1.468490 (0.673986) | 0.708299 / 4.584777 (-3.876478) | 3.797830 / 3.745712 (0.052118) | 2.142509 / 5.269862 (-3.127352) | 1.333357 / 4.565676 (-3.232320) | 0.086837 / 0.424275 (-0.337439) | 0.012102 / 0.007607 (0.004495) | 0.548428 / 0.226044 (0.322384) | 5.490611 / 2.268929 (3.221682) | 2.713882 / 55.444624 (-52.730742) | 2.399638 / 6.876477 (-4.476839) | 2.481549 / 2.142072 (0.339477) | 0.839812 / 4.805227 (-3.965415) | 0.168890 / 6.500664 (-6.331774) | 0.065564 / 0.075469 (-0.009906) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.275507 / 1.841788 (-0.566281) | 14.896343 / 8.074308 (6.822035) | 13.159701 / 10.191392 (2.968309) | 0.172065 / 0.680424 (-0.508359) | 0.017507 / 0.534201 (-0.516694) | 0.420031 / 0.579283 (-0.159252) | 0.438835 / 0.434364 (0.004471) | 0.490597 / 0.540337 (-0.049741) | 0.583952 / 1.386936 (-0.802984) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#48c9755d0ae9abe4c4d6cd8c1ce76eff849f0e5c \"CML watermark\")\n" ]
"2023-05-12T19:19:27Z"
"2023-05-15T10:37:19Z"
"2023-05-15T10:30:14Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5853.diff", "html_url": "https://github.com/huggingface/datasets/pull/5853", "merged_at": "2023-05-15T10:30:14Z", "patch_url": "https://github.com/huggingface/datasets/pull/5853.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5853" }
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5853/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5853/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/972
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/972/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/972/comments
https://api.github.com/repos/huggingface/datasets/issues/972/events
https://github.com/huggingface/datasets/pull/972
754,787,314
MDExOlB1bGxSZXF1ZXN0NTMwNjI0NTI3
972
Add Children's Book Test (CBT) dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/7353373?v=4", "events_url": "https://api.github.com/users/thomwolf/events{/privacy}", "followers_url": "https://api.github.com/users/thomwolf/followers", "following_url": "https://api.github.com/users/thomwolf/following{/other_user}", "gists_url": "https://api.github.com/users/thomwolf/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/thomwolf", "id": 7353373, "login": "thomwolf", "node_id": "MDQ6VXNlcjczNTMzNzM=", "organizations_url": "https://api.github.com/users/thomwolf/orgs", "received_events_url": "https://api.github.com/users/thomwolf/received_events", "repos_url": "https://api.github.com/users/thomwolf/repos", "site_admin": false, "starred_url": "https://api.github.com/users/thomwolf/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/thomwolf/subscriptions", "type": "User", "url": "https://api.github.com/users/thomwolf" }
[]
closed
false
null
[]
null
[ "Hi @lhoestq,\r\n\r\nI guess this PR can be closed since we merged #2044?\r\n\r\nI have used the same link for the homepage, as it is where the dataset is provided, hope that is okay?", "Closing in favor of #2044, thanks again :)\r\n\r\n> I have used the same link for the homepage, as it is where the dataset is provided, hope that is okay?\r\n\r\nYea it's ok actually, at that time I thought there was another homepage for this dataset" ]
"2020-12-01T22:53:26Z"
"2021-03-19T11:30:03Z"
"2021-03-19T11:30:03Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/972.diff", "html_url": "https://github.com/huggingface/datasets/pull/972", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/972.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/972" }
Add the Children's Book Test (CBT) from Facebook (Hill et al. 2016). Sentence completion given a few sentences as context from a children's book.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/972/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/972/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6293
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6293/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6293/comments
https://api.github.com/repos/huggingface/datasets/issues/6293/events
https://github.com/huggingface/datasets/issues/6293
1,937,238,047
I_kwDODunzps5zd-gf
6,293
Choose columns to stream parquet data in streaming mode
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
null
[]
null
[]
"2023-10-11T08:59:36Z"
"2023-10-11T16:21:38Z"
"2023-10-11T16:21:38Z"
MEMBER
null
null
null
Currently passing columns= to load_dataset in streaming mode fails ``` Tried to load parquet data with columns '['link']' with mismatching features '{'caption': Value(dtype='string', id=None), 'image': {'bytes': Value(dtype='binary', id=None), 'path': Value(dtype='null', id=None)}, 'link': Value(dtype='string', id=None), 'message_id': Value(dtype='string', id=None), 'timestamp': Value(dtype='string', id=None)}' ``` similar to https://github.com/huggingface/datasets/issues/6039 reported at https://huggingface.co/datasets/laion/dalle-3-dataset/discussions/3#65259a09617407d4520f4ad9
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6293/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6293/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/5429
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5429/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5429/comments
https://api.github.com/repos/huggingface/datasets/issues/5429/events
https://github.com/huggingface/datasets/pull/5429
1,535,192,687
PR_kwDODunzps5HeuyT
5,429
Fix CI by temporarily pinning apache-beam < 2.44.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
"2023-01-16T16:20:09Z"
"2023-01-16T16:51:42Z"
"2023-01-16T16:49:03Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5429.diff", "html_url": "https://github.com/huggingface/datasets/pull/5429", "merged_at": "2023-01-16T16:49:03Z", "patch_url": "https://github.com/huggingface/datasets/pull/5429.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5429" }
Temporarily pin apache-beam < 2.44.0 Fix #5426.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5429/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5429/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/3420
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3420/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3420/comments
https://api.github.com/repos/huggingface/datasets/issues/3420/events
https://github.com/huggingface/datasets/pull/3420
1,077,913,468
PR_kwDODunzps4vukyD
3,420
Add eli5_category dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/40377373?v=4", "events_url": "https://api.github.com/users/jingshenSN2/events{/privacy}", "followers_url": "https://api.github.com/users/jingshenSN2/followers", "following_url": "https://api.github.com/users/jingshenSN2/following{/other_user}", "gists_url": "https://api.github.com/users/jingshenSN2/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jingshenSN2", "id": 40377373, "login": "jingshenSN2", "node_id": "MDQ6VXNlcjQwMzc3Mzcz", "organizations_url": "https://api.github.com/users/jingshenSN2/orgs", "received_events_url": "https://api.github.com/users/jingshenSN2/received_events", "repos_url": "https://api.github.com/users/jingshenSN2/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jingshenSN2/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jingshenSN2/subscriptions", "type": "User", "url": "https://api.github.com/users/jingshenSN2" }
[]
closed
false
null
[]
null
[ "> Thanks a lot for adding this dataset ! Good job with the dataset card and the dataset scripts - they're really good :)\r\n> \r\n> I just added minor changes\r\n\r\nThanks for fixing typos!" ]
"2021-12-12T21:30:45Z"
"2021-12-14T17:53:03Z"
"2021-12-14T17:53:02Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/3420.diff", "html_url": "https://github.com/huggingface/datasets/pull/3420", "merged_at": "2021-12-14T17:53:02Z", "patch_url": "https://github.com/huggingface/datasets/pull/3420.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/3420" }
This pull request adds a categorized Long-form question answering dataset `ELI5_Category`. It's a new variant of the [ELI5](https://huggingface.co/datasets/eli5) dataset that uses the Reddit tags to alleviate the training/validation overlapping in the origin ELI5 dataset. A [report](https://celeritasml.netlify.app/posts/2021-12-01-eli5c/)(Section 2) on this dataset.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3420/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3420/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/3962
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3962/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3962/comments
https://api.github.com/repos/huggingface/datasets/issues/3962/events
https://github.com/huggingface/datasets/pull/3962
1,173,482,291
PR_kwDODunzps40psq2
3,962
Fix flatten of Sequence feature type
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
"2022-03-18T11:27:42Z"
"2022-03-21T14:40:47Z"
"2022-03-21T14:36:12Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/3962.diff", "html_url": "https://github.com/huggingface/datasets/pull/3962", "merged_at": "2022-03-21T14:36:12Z", "patch_url": "https://github.com/huggingface/datasets/pull/3962.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/3962" }
The `Sequence` features type is not correctly flattened if it contains a dictionary. This PR fixes this, and I added a test case for this. Close https://github.com/huggingface/datasets/issues/3795
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3962/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3962/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/4352
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4352/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4352/comments
https://api.github.com/repos/huggingface/datasets/issues/4352/events
https://github.com/huggingface/datasets/issues/4352
1,236,086,170
I_kwDODunzps5JrS2a
4,352
When using `dataset.map()` if passed `Features` types do not match what is returned from the mapped function, execution does not except in an obvious way
{ "avatar_url": "https://avatars.githubusercontent.com/u/99206017?v=4", "events_url": "https://api.github.com/users/plamb-viso/events{/privacy}", "followers_url": "https://api.github.com/users/plamb-viso/followers", "following_url": "https://api.github.com/users/plamb-viso/following{/other_user}", "gists_url": "https://api.github.com/users/plamb-viso/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/plamb-viso", "id": 99206017, "login": "plamb-viso", "node_id": "U_kgDOBenDgQ", "organizations_url": "https://api.github.com/users/plamb-viso/orgs", "received_events_url": "https://api.github.com/users/plamb-viso/received_events", "repos_url": "https://api.github.com/users/plamb-viso/repos", "site_admin": false, "starred_url": "https://api.github.com/users/plamb-viso/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/plamb-viso/subscriptions", "type": "User", "url": "https://api.github.com/users/plamb-viso" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
open
false
null
[]
null
[ "Hi ! Thanks for reporting :) `datasets` usually returns a `pa.lib.ArrowInvalid` error if the feature types don't match.\r\n\r\nIt would be awesome if we had a way to reproduce the `OverflowError` in this case, to better understand what happened and be able to provide the best error message" ]
"2022-05-14T17:55:15Z"
"2022-05-16T15:09:17Z"
null
NONE
null
null
null
## Describe the bug Recently I was trying to using `.map()` to preprocess a dataset. I defined the expected Features and passed them into `.map()` like `dataset.map(preprocess_data, features=features)`. My expected `Features` keys matched what came out of `preprocess_data`, but the types i had defined for them did not match the types that came back. Because of this, i ended up in tracebacks deep inside arrow_dataset.py and arrow_writer.py with exceptions that [did not make clear what the problem was](https://github.com/huggingface/datasets/issues/4349). In short i ended up with overflows and the OS killing processes when Arrow was attempting to write. It wasn't until I dug into `def write_batch` and the loop that loops over cols that I figured out what was going on. It seems like `.map()` could set a boolean that it's checked that for at least 1 instance from the dataset, the returned data's types match the types provided by the `features` param and error out with a clear exception if they don't. This would make the cause of the issue much more understandable and save people time. This could be construed as a feature but it feels more like a bug to me. ## Steps to reproduce the bug I don't have explicit code to repro the bug, but ill show an example Code prior to the fix: ```python def preprocess(examples): # returns an encoded data dict with keys that match the features, but the types do not match ... def get_encoded_data(data): dataset = Dataset.from_pandas(data) unique_labels = data['audit_type'].unique().tolist() features = Features({ 'image': Array3D(dtype="uint8", shape=(3, 224, 224))), 'input_ids': Sequence(feature=Value(dtype='int64'))), 'attention_mask': Sequence(Value(dtype='int64'))), 'token_type_ids': Sequence(Value(dtype='int64'))), 'bbox': Array2D(dtype="int64", shape=(512, 4))), 'label': ClassLabel(num_classes=len(unique_labels), names=unique_labels), }) encoded_dataset = dataset.map(preprocess_data, features=features, remove_columns=dataset.column_names) ``` The Features set that fixed it: ```python features = Features({ 'image': Sequence(Array3D(dtype="uint8", shape=(3, 224, 224))), 'input_ids': Sequence(Sequence(feature=Value(dtype='int64'))), 'attention_mask': Sequence(Sequence(Value(dtype='int64'))), 'token_type_ids': Sequence(Sequence(Value(dtype='int64'))), 'bbox': Sequence(Array2D(dtype="int64", shape=(512, 4))), 'label': ClassLabel(num_classes=len(unique_labels), names=unique_labels), }) ``` The difference between my original code (which was based on documentation) and the working code is the addition of the `Sequence(...)` to 4/5 features as I am working with paginated data and the doc examples are not. ## Expected results Dataset.map() attempts to validate the data types for each Feature on the first iteration and errors out if they are not validated. ## Actual results Specify the actual results or traceback. Based on the value of `writer_batch_size`, execution errors out when Arrow attempts to write because the types do not match, though its error messages dont make this obvious Example errors: ``` OverflowError: There was an overflow with type <class 'list'>. Try to reduce writer_batch_size to have batches smaller than 2GB. (offset overflow while concatenating arrays) ``` ``` zsh: killed python doc_classification.py UserWarning: resource_tracker: There appear to be 1 leaked semaphore objects to clean up at shutdown ``` ## Environment info <!-- You can run the command `datasets-cli env` and copy-and-paste its output below. --> datasets version: 2.1.0 Platform: macOS-12.2.1-arm64-arm-64bit Python version: 3.9.12 PyArrow version: 6.0.1 Pandas version: 1.4.2
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/4352/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4352/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/3090
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3090/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3090/comments
https://api.github.com/repos/huggingface/datasets/issues/3090/events
https://github.com/huggingface/datasets/pull/3090
1,027,100,371
PR_kwDODunzps4tPEtH
3,090
Update BibTeX entry
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[]
closed
false
null
[]
null
[]
"2021-10-15T05:39:27Z"
"2021-10-15T07:35:57Z"
"2021-10-15T07:35:57Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/3090.diff", "html_url": "https://github.com/huggingface/datasets/pull/3090", "merged_at": "2021-10-15T07:35:57Z", "patch_url": "https://github.com/huggingface/datasets/pull/3090.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/3090" }
Update BibTeX entry.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3090/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3090/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/5487
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5487/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5487/comments
https://api.github.com/repos/huggingface/datasets/issues/5487/events
https://github.com/huggingface/datasets/issues/5487
1,564,480,121
I_kwDODunzps5dQBJ5
5,487
Incorrect filepath for dill module
{ "avatar_url": "https://avatars.githubusercontent.com/u/35349273?v=4", "events_url": "https://api.github.com/users/avivbrokman/events{/privacy}", "followers_url": "https://api.github.com/users/avivbrokman/followers", "following_url": "https://api.github.com/users/avivbrokman/following{/other_user}", "gists_url": "https://api.github.com/users/avivbrokman/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/avivbrokman", "id": 35349273, "login": "avivbrokman", "node_id": "MDQ6VXNlcjM1MzQ5Mjcz", "organizations_url": "https://api.github.com/users/avivbrokman/orgs", "received_events_url": "https://api.github.com/users/avivbrokman/received_events", "repos_url": "https://api.github.com/users/avivbrokman/repos", "site_admin": false, "starred_url": "https://api.github.com/users/avivbrokman/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/avivbrokman/subscriptions", "type": "User", "url": "https://api.github.com/users/avivbrokman" }
[]
closed
false
null
[]
null
[ "Hi! The correct path is still `dill._dill.XXXX` in the latest release. What do you get when you run `python -c \"import dill; print(dill.__version__)\"` in your environment?", "`0.3.6` I feel like that's bad news, because it's probably not the issue.\r\n\r\nMy mistake, about the wrong path guess. I think I didn't notice that the first `dill` in the path isn't supposed to be included in the path specification in python.\r\n<img width=\"146\" alt=\"Screen Shot 2023-01-31 at 12 58 32 PM\" src=\"https://user-images.githubusercontent.com/35349273/215844209-74af6a8f-9bff-4c75-9495-44c658c8e9f7.png\">\r\n", "Hi, @avivbrokman, this issue you report appeared only with old versions of dill. See:\r\n- #288\r\n\r\nAre you sure you are in the right Python environment?\r\n- Please note that Jupyter (where I guess you get the error) may have multiple execution backends (IPython kernels) that might be different from the Python environment your are using to get the dill version\r\n - Have you run `import dill; print(dill.__version__)` in the same Jupyter/IPython that you were using when you got the error while executing `import datasets`?", "I'm using spyder, and I am still getting `0.3.6` for `dill`, so unfortunately #288 isn't applicable, I think. However, I found something odd that I believe is a clue: \r\n\r\n```\r\nimport inspect\r\nimport dill\r\n\r\ninspect.getfile(dill)\r\n>>> '/Users/avivbrokman/opt/anaconda3/lib/python3.9/site-packages/dill/__init__.py'\r\n```\r\n\r\nI checked out the directory, and there is no `dill` subdirectory within '/Users/avivbrokman/opt/anaconda3/lib/python3.9/site-packages/dill`, as there should be. Rather, `_dill.py` is in '/Users/avivbrokman/opt/anaconda3/lib/python3.9/site-packages/dill` itself. \r\n\r\n If I run `pip install dill` or `pip install --upgrade dill`, I get the message `Requirement already satisfied: dill in ./opt/anaconda3/lib/python3.9/site-packages (0.3.6)`. If I run `conda upgrade dill`, I get the message `Solving environment: failed with repodata from current_repodata.json, will retry with next repodata source.` a couple of times, followed by\r\n\r\n```\r\nSolving environment: failed\r\nSolving environment: / \r\nFound conflicts! Looking for incompatible packages.\r\n```\r\n\r\nAnd then terminal proceeds to list conflicts between different packages I have.\r\n\r\nThis is all very strange to me because I recently uninstalled and reinstalled `anaconda`.\r\n", "As I said above, I guess this is not a problem with `datasets`. I think you have different Python environments: one with the new dill version (the one you get while using pip) and other with the old dill version (the one where you get the AttributeError).\r\n\r\nYou should update `dill` in the Python environment you are using within spyder.\r\n\r\nPlease note that the `_dill` module is present in the `dill` package since their 2.8.0 version." ]
"2023-01-31T15:01:08Z"
"2023-02-24T16:18:36Z"
"2023-02-24T16:18:36Z"
NONE
null
null
null
### Describe the bug I installed the `datasets` package and when I try to `import` it, I get the following error: ``` Traceback (most recent call last): File "/var/folders/jt/zw5g74ln6tqfdzsl8tx378j00000gn/T/ipykernel_3805/3458380017.py", line 1, in <module> import datasets File "/Users/avivbrokman/opt/anaconda3/lib/python3.9/site-packages/datasets/__init__.py", line 43, in <module> from .arrow_dataset import Dataset File "/Users/avivbrokman/opt/anaconda3/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 66, in <module> from .arrow_writer import ArrowWriter, OptimizedTypedSequence File "/Users/avivbrokman/opt/anaconda3/lib/python3.9/site-packages/datasets/arrow_writer.py", line 27, in <module> from .features import Features, Image, Value File "/Users/avivbrokman/opt/anaconda3/lib/python3.9/site-packages/datasets/features/__init__.py", line 17, in <module> from .audio import Audio File "/Users/avivbrokman/opt/anaconda3/lib/python3.9/site-packages/datasets/features/audio.py", line 12, in <module> from ..download.streaming_download_manager import xopen File "/Users/avivbrokman/opt/anaconda3/lib/python3.9/site-packages/datasets/download/__init__.py", line 9, in <module> from .download_manager import DownloadManager, DownloadMode File "/Users/avivbrokman/opt/anaconda3/lib/python3.9/site-packages/datasets/download/download_manager.py", line 36, in <module> from ..utils.py_utils import NestedDataStructure, map_nested, size_str File "/Users/avivbrokman/opt/anaconda3/lib/python3.9/site-packages/datasets/utils/py_utils.py", line 602, in <module> class Pickler(dill.Pickler): File "/Users/avivbrokman/opt/anaconda3/lib/python3.9/site-packages/datasets/utils/py_utils.py", line 605, in Pickler dispatch = dill._dill.MetaCatchingDict(dill.Pickler.dispatch.copy()) AttributeError: module 'dill' has no attribute '_dill' ``` Looking at the github source code for dill, it appears that `datasets` has a bug or is not compatible with the latest `dill`. Specifically, rather than `dill._dill.XXXX` it should be `dill.dill._dill.XXXX`. But given the popularity of `datasets` I feel confused about me being the first person to have this issue, so it makes me wonder if I'm misdiagnosing the issue. ### Steps to reproduce the bug Install `dill` and `datasets` packages and then `import datasets` ### Expected behavior I expect `datasets` to import. ### Environment info - `datasets` version: 2.9.0 - Platform: macOS-10.16-x86_64-i386-64bit - Python version: 3.9.13 - PyArrow version: 11.0.0 - Pandas version: 1.4.4
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5487/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5487/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6025
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6025/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6025/comments
https://api.github.com/repos/huggingface/datasets/issues/6025/events
https://github.com/huggingface/datasets/issues/6025
1,801,852,601
I_kwDODunzps5rZha5
6,025
Using a dataset for a use other than it was intended for.
{ "avatar_url": "https://avatars.githubusercontent.com/u/17240858?v=4", "events_url": "https://api.github.com/users/surya-narayanan/events{/privacy}", "followers_url": "https://api.github.com/users/surya-narayanan/followers", "following_url": "https://api.github.com/users/surya-narayanan/following{/other_user}", "gists_url": "https://api.github.com/users/surya-narayanan/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/surya-narayanan", "id": 17240858, "login": "surya-narayanan", "node_id": "MDQ6VXNlcjE3MjQwODU4", "organizations_url": "https://api.github.com/users/surya-narayanan/orgs", "received_events_url": "https://api.github.com/users/surya-narayanan/received_events", "repos_url": "https://api.github.com/users/surya-narayanan/repos", "site_admin": false, "starred_url": "https://api.github.com/users/surya-narayanan/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/surya-narayanan/subscriptions", "type": "User", "url": "https://api.github.com/users/surya-narayanan" }
[]
closed
false
null
[]
null
[ "I've opened a PR with a fix. In the meantime, you can avoid the error by deleting `task_templates` with `dataset.info.task_templates = None` before the `interleave_datasets` call.\r\n` " ]
"2023-07-12T22:33:17Z"
"2023-07-13T13:57:36Z"
"2023-07-13T13:57:36Z"
NONE
null
null
null
### Describe the bug Hi, I want to use the rotten tomatoes dataset but for a task other than classification, but when I interleave the dataset, it throws ```'ValueError: Column label is not present in features.'```. It seems that the label_col must be there in the dataset for some reason? Here is the full stacktrace ``` File "/home/suryahari/Vornoi/tryage-handoff-other-datasets.py", line 276, in create_dataloaders dataset = interleave_datasets(dsfold, stopping_strategy="all_exhausted") File "/home/suryahari/miniconda3/envs/vornoi/lib/python3.10/site-packages/datasets/combine.py", line 134, in interleave_datasets return _interleave_iterable_datasets( File "/home/suryahari/miniconda3/envs/vornoi/lib/python3.10/site-packages/datasets/iterable_dataset.py", line 1833, in _interleave_iterable_datasets info = DatasetInfo.from_merge([d.info for d in datasets]) File "/home/suryahari/miniconda3/envs/vornoi/lib/python3.10/site-packages/datasets/info.py", line 275, in from_merge dataset_infos = [dset_info.copy() for dset_info in dataset_infos if dset_info is not None] File "/home/suryahari/miniconda3/envs/vornoi/lib/python3.10/site-packages/datasets/info.py", line 275, in <listcomp> dataset_infos = [dset_info.copy() for dset_info in dataset_infos if dset_info is not None] File "/home/suryahari/miniconda3/envs/vornoi/lib/python3.10/site-packages/datasets/info.py", line 378, in copy return self.__class__(**{k: copy.deepcopy(v) for k, v in self.__dict__.items()}) File "<string>", line 20, in __init__ File "/home/suryahari/miniconda3/envs/vornoi/lib/python3.10/site-packages/datasets/info.py", line 208, in __post_init__ self.task_templates = [ File "/home/suryahari/miniconda3/envs/vornoi/lib/python3.10/site-packages/datasets/info.py", line 209, in <listcomp> template.align_with_features(self.features) for template in (self.task_templates) File "/home/suryahari/miniconda3/envs/vornoi/lib/python3.10/site-packages/datasets/tasks/text_classification.py", line 20, in align_with_features raise ValueError(f"Column {self.label_column} is not present in features.") ValueError: Column label is not present in features. ``` ### Steps to reproduce the bug Delete the column `labels` from the `rotten_tomatoes` dataset. Try to interleave it with other datasets. ### Expected behavior Should let me use the dataset with just the `text` field ### Environment info latest datasets library? I don't think this was an issue in earlier versions.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6025/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6025/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/4836
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4836/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4836/comments
https://api.github.com/repos/huggingface/datasets/issues/4836/events
https://github.com/huggingface/datasets/issues/4836
1,337,067,632
I_kwDODunzps5Psghw
4,836
Is it possible to pass multiple links to a split in load script?
{ "avatar_url": "https://avatars.githubusercontent.com/u/43045767?v=4", "events_url": "https://api.github.com/users/sadrasabouri/events{/privacy}", "followers_url": "https://api.github.com/users/sadrasabouri/followers", "following_url": "https://api.github.com/users/sadrasabouri/following{/other_user}", "gists_url": "https://api.github.com/users/sadrasabouri/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/sadrasabouri", "id": 43045767, "login": "sadrasabouri", "node_id": "MDQ6VXNlcjQzMDQ1NzY3", "organizations_url": "https://api.github.com/users/sadrasabouri/orgs", "received_events_url": "https://api.github.com/users/sadrasabouri/received_events", "repos_url": "https://api.github.com/users/sadrasabouri/repos", "site_admin": false, "starred_url": "https://api.github.com/users/sadrasabouri/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sadrasabouri/subscriptions", "type": "User", "url": "https://api.github.com/users/sadrasabouri" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
[]
null
[]
"2022-08-12T11:06:11Z"
"2022-08-12T11:06:11Z"
null
NONE
null
null
null
**Is your feature request related to a problem? Please describe.** I wanted to use a python loading script in hugging face datasets that use different sources of text (it's somehow a compilation of multiple datasets + my own dataset) based on how `load_dataset` [works](https://huggingface.co/docs/datasets/loading) I assumed I could do something like bellow in my loading script: ```python ... _URL = "MY_DATASET_URL/resolve/main/data/" _URLS = { "train": [ "FIRST_URL_TO.txt", _URL + "train-00000-of-00001-676bfebbc8742592.parquet" ] } ... ``` but when loading the dataset it raises the following error: ```python File ~/.local/lib/python3.8/site-packages/datasets/builder.py:704, in DatasetBuilder.download_and_prepare(self, download_config, download_mode, ignore_verifications, try_from_hf_gcs, dl_manager, base_path, use_auth_token, **download_and_prepare_kwargs) 702 logger.warning("HF google storage unreachable. Downloading and preparing it from source") 703 if not downloaded_from_gcs: --> 704 self._download_and_prepare( 705 dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs ... 668 if isinstance(a, str): 669 # Force-cast str subclasses to str (issue #21127) 670 parts.append(str(a)) TypeError: expected str, bytes or os.PathLike object, not list ``` **Describe the solution you'd like** I believe since it's possible for `load_dataset` to get list of URLs instead of just a URL for `train` split it can be possible here too. **Describe alternatives you've considered** An alternative solution would be to download all needed datasets locally and `push_to_hub` them all, but since the datasets I'm talking about are huge it's not among my options. **Additional context** I think loading `text` beside the `parquet` is completely a different issue but I believe I can figure it out by proposing a config for my dataset to load each entry of `_URLS['train']` separately either by `load_dataset("text", ...` or `load_dataset("parquet", ...`.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4836/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4836/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/3732
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3732/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3732/comments
https://api.github.com/repos/huggingface/datasets/issues/3732/events
https://github.com/huggingface/datasets/pull/3732
1,140,004,022
PR_kwDODunzps4y7PTU
3,732
Support streaming in size estimation function in `push_to_hub`
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko" }
[]
closed
false
null
[]
null
[ "would this allow to include the size in the dataset info without downloading the files? related to https://github.com/huggingface/datasets/pull/3670", "@severo I don't think so. We could use this to get `info.download_checksums[\"num_bytes\"]`, but we must process the files to get the rest of the size info. " ]
"2022-02-16T13:10:48Z"
"2022-02-21T18:18:45Z"
"2022-02-21T18:18:44Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/3732.diff", "html_url": "https://github.com/huggingface/datasets/pull/3732", "merged_at": "2022-02-21T18:18:44Z", "patch_url": "https://github.com/huggingface/datasets/pull/3732.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/3732" }
This PR adds the streamable version of `os.path.getsize` (`fsspec` can return `None`, so we fall back to `fs.open` to make it more robust) to account for possible streamable paths in the nested `extra_nbytes_visitor` function inside `push_to_hub`.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3732/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3732/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/900
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/900/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/900/comments
https://api.github.com/repos/huggingface/datasets/issues/900/events
https://github.com/huggingface/datasets/issues/900
752,214,066
MDU6SXNzdWU3NTIyMTQwNjY=
900
datasets.load_dataset() custom chaching directory bug
{ "avatar_url": "https://avatars.githubusercontent.com/u/44585792?v=4", "events_url": "https://api.github.com/users/SapirWeissbuch/events{/privacy}", "followers_url": "https://api.github.com/users/SapirWeissbuch/followers", "following_url": "https://api.github.com/users/SapirWeissbuch/following{/other_user}", "gists_url": "https://api.github.com/users/SapirWeissbuch/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/SapirWeissbuch", "id": 44585792, "login": "SapirWeissbuch", "node_id": "MDQ6VXNlcjQ0NTg1Nzky", "organizations_url": "https://api.github.com/users/SapirWeissbuch/orgs", "received_events_url": "https://api.github.com/users/SapirWeissbuch/received_events", "repos_url": "https://api.github.com/users/SapirWeissbuch/repos", "site_admin": false, "starred_url": "https://api.github.com/users/SapirWeissbuch/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SapirWeissbuch/subscriptions", "type": "User", "url": "https://api.github.com/users/SapirWeissbuch" }
[]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" } ]
null
[ "Thanks for reporting ! I'm looking into it." ]
"2020-11-27T12:18:53Z"
"2020-11-29T22:48:53Z"
"2020-11-29T22:48:53Z"
NONE
null
null
null
Hello, I'm having issue with loading a dataset with a custom `cache_dir`. Despite specifying the output dir, it is still downloaded to `~/.cache`. ## Environment info - `datasets` version: 1.1.3 - Platform: Linux-4.19.129-aufs-1-x86_64-with-debian-10.1 - Python version: 3.7.3 ## The code I'm running: ```python import datasets from pathlib import Path validation_dataset = datasets.load_dataset("natural_questions", split="validation[:5%]", cache_dir=Path("./data")) ``` ## The output: * The dataset is downloaded to my home directory's `.cache` * A new empty directory named "`natural_questions` is created in the specified directory `.data` * `tree data` in the shell outputs: ``` data └── natural_questions └── default └── 0.0.2 3 directories, 0 files ``` The output: ``` Downloading: 8.61kB [00:00, 5.11MB/s] Downloading: 13.6kB [00:00, 7.89MB/s] Using custom data configuration default Downloading and preparing dataset natural_questions/default (download: 41.97 GiB, generated: 92.95 GiB, post-processed: Unknown size, total: 134.92 GiB) to ./data/natural_questions/default/0.0.2/867dbbaf9137c1b8 3ecb19f5eb80559e1002ea26e702c6b919cfa81a17a8c531... Downloading: 100%|██████████████████████████████████████████████████| 13.6k/13.6k [00:00<00:00, 1.51MB/s] Downloading: 7%|███▎ | 6.70G/97.4G [03:46<1:37:05, 15.6MB/s] ``` ## Expected behaviour: The dataset "Natural Questions" should be downloaded to the directory "./data"
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/900/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/900/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/852
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/852/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/852/comments
https://api.github.com/repos/huggingface/datasets/issues/852/events
https://github.com/huggingface/datasets/issues/852
743,396,240
MDU6SXNzdWU3NDMzOTYyNDA=
852
wmt cannot be downloaded
{ "avatar_url": "https://avatars.githubusercontent.com/u/6278280?v=4", "events_url": "https://api.github.com/users/rabeehk/events{/privacy}", "followers_url": "https://api.github.com/users/rabeehk/followers", "following_url": "https://api.github.com/users/rabeehk/following{/other_user}", "gists_url": "https://api.github.com/users/rabeehk/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/rabeehk", "id": 6278280, "login": "rabeehk", "node_id": "MDQ6VXNlcjYyNzgyODA=", "organizations_url": "https://api.github.com/users/rabeehk/orgs", "received_events_url": "https://api.github.com/users/rabeehk/received_events", "repos_url": "https://api.github.com/users/rabeehk/repos", "site_admin": false, "starred_url": "https://api.github.com/users/rabeehk/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/rabeehk/subscriptions", "type": "User", "url": "https://api.github.com/users/rabeehk" }
[ { "color": "e99695", "default": false, "description": "Requesting to add a new dataset", "id": 2067376369, "name": "dataset request", "node_id": "MDU6TGFiZWwyMDY3Mzc2MzY5", "url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20request" } ]
closed
false
null
[]
null
[]
"2020-11-16T01:04:41Z"
"2020-11-16T09:31:58Z"
"2020-11-16T09:31:58Z"
CONTRIBUTOR
null
null
null
Hi, I appreciate your help with the following error, thanks >>> from datasets import load_dataset >>> dataset = load_dataset("wmt16", "ro-en", split="train") Downloading and preparing dataset wmt16/ro-en (download: Unknown size, generated: Unknown size, post-processed: Unknown size, total: Unknown size) to /root/.cache/huggingface/datasets/wmt16/ro-en/1.0.0/7b2c4443a7d34c2e13df267eaa8cab4c62dd82f6b62b0d9ecc2e3a673ce17308... Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/root/anaconda3/envs/pytorch/lib/python3.6/site-packages/datasets/load.py", line 611, in load_dataset ignore_verifications=ignore_verifications, File "/root/anaconda3/envs/pytorch/lib/python3.6/site-packages/datasets/builder.py", line 476, in download_and_prepare dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs File "/root/anaconda3/envs/pytorch/lib/python3.6/site-packages/datasets/builder.py", line 531, in _download_and_prepare split_generators = self._split_generators(dl_manager, **split_generators_kwargs) File "/root/.cache/huggingface/modules/datasets_modules/datasets/wmt16/7b2c4443a7d34c2e13df267eaa8cab4c62dd82f6b62b0d9ecc2e3a673ce17308/wmt_utils.py", line 755, in _split_generators downloaded_files = dl_manager.download_and_extract(urls_to_download) File "/root/anaconda3/envs/pytorch/lib/python3.6/site-packages/datasets/utils/download_manager.py", line 254, in download_and_extract return self.extract(self.download(url_or_urls)) File "/root/anaconda3/envs/pytorch/lib/python3.6/site-packages/datasets/utils/download_manager.py", line 179, in download num_proc=download_config.num_proc, File "/root/anaconda3/envs/pytorch/lib/python3.6/site-packages/datasets/utils/py_utils.py", line 225, in map_nested _single_map_nested((function, obj, types, None, True)) for obj in tqdm(iterable, disable=disable_tqdm) File "/root/anaconda3/envs/pytorch/lib/python3.6/site-packages/datasets/utils/py_utils.py", line 225, in <listcomp> _single_map_nested((function, obj, types, None, True)) for obj in tqdm(iterable, disable=disable_tqdm) File "/root/anaconda3/envs/pytorch/lib/python3.6/site-packages/datasets/utils/py_utils.py", line 181, in _single_map_nested mapped = [_single_map_nested((function, v, types, None, True)) for v in pbar] File "/root/anaconda3/envs/pytorch/lib/python3.6/site-packages/datasets/utils/py_utils.py", line 181, in <listcomp> mapped = [_single_map_nested((function, v, types, None, True)) for v in pbar] File "/root/anaconda3/envs/pytorch/lib/python3.6/site-packages/datasets/utils/py_utils.py", line 163, in _single_map_nested return function(data_struct) File "/root/anaconda3/envs/pytorch/lib/python3.6/site-packages/datasets/utils/file_utils.py", line 308, in cached_path use_etag=download_config.use_etag, File "/root/anaconda3/envs/pytorch/lib/python3.6/site-packages/datasets/utils/file_utils.py", line 475, in get_from_cache raise ConnectionError("Couldn't reach {}".format(url)) ConnectionError: Couldn't reach http://opus.nlpl.eu/download.php?f=SETIMES/v2/tmx/en-ro.tmx.gz
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/852/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/852/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/5256
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5256/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5256/comments
https://api.github.com/repos/huggingface/datasets/issues/5256/events
https://github.com/huggingface/datasets/pull/5256
1,452,652,586
PR_kwDODunzps5DFDY0
5,256
fix wrong print
{ "avatar_url": "https://avatars.githubusercontent.com/u/7569098?v=4", "events_url": "https://api.github.com/users/WrRan/events{/privacy}", "followers_url": "https://api.github.com/users/WrRan/followers", "following_url": "https://api.github.com/users/WrRan/following{/other_user}", "gists_url": "https://api.github.com/users/WrRan/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/WrRan", "id": 7569098, "login": "WrRan", "node_id": "MDQ6VXNlcjc1NjkwOTg=", "organizations_url": "https://api.github.com/users/WrRan/orgs", "received_events_url": "https://api.github.com/users/WrRan/received_events", "repos_url": "https://api.github.com/users/WrRan/repos", "site_admin": false, "starred_url": "https://api.github.com/users/WrRan/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/WrRan/subscriptions", "type": "User", "url": "https://api.github.com/users/WrRan" }
[]
closed
false
null
[]
null
[]
"2022-11-17T03:54:26Z"
"2022-11-18T11:05:32Z"
"2022-11-18T11:05:32Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5256.diff", "html_url": "https://github.com/huggingface/datasets/pull/5256", "merged_at": "2022-11-18T11:05:32Z", "patch_url": "https://github.com/huggingface/datasets/pull/5256.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5256" }
print `encoded_dataset.column_names` not `dataset.column_names`
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5256/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5256/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/1657
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1657/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1657/comments
https://api.github.com/repos/huggingface/datasets/issues/1657/events
https://github.com/huggingface/datasets/pull/1657
775,647,000
MDExOlB1bGxSZXF1ZXN0NTQ2Mjg1NjU2
1,657
mac_morpho dataset: add data splits info
{ "avatar_url": "https://avatars.githubusercontent.com/u/5097052?v=4", "events_url": "https://api.github.com/users/jonatasgrosman/events{/privacy}", "followers_url": "https://api.github.com/users/jonatasgrosman/followers", "following_url": "https://api.github.com/users/jonatasgrosman/following{/other_user}", "gists_url": "https://api.github.com/users/jonatasgrosman/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jonatasgrosman", "id": 5097052, "login": "jonatasgrosman", "node_id": "MDQ6VXNlcjUwOTcwNTI=", "organizations_url": "https://api.github.com/users/jonatasgrosman/orgs", "received_events_url": "https://api.github.com/users/jonatasgrosman/received_events", "repos_url": "https://api.github.com/users/jonatasgrosman/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jonatasgrosman/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jonatasgrosman/subscriptions", "type": "User", "url": "https://api.github.com/users/jonatasgrosman" }
[]
closed
false
null
[]
null
[]
"2020-12-29T01:05:21Z"
"2020-12-30T16:51:24Z"
"2020-12-30T16:51:24Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/1657.diff", "html_url": "https://github.com/huggingface/datasets/pull/1657", "merged_at": "2020-12-30T16:51:24Z", "patch_url": "https://github.com/huggingface/datasets/pull/1657.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/1657" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1657/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1657/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/4035
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4035/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4035/comments
https://api.github.com/repos/huggingface/datasets/issues/4035/events
https://github.com/huggingface/datasets/pull/4035
1,183,067,456
PR_kwDODunzps41Iwb2
4,035
Add zero_division argument to precision and recall metrics
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[]
closed
false
null
[]
null
[]
"2022-03-28T08:19:14Z"
"2022-03-28T09:53:07Z"
"2022-03-28T09:53:06Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/4035.diff", "html_url": "https://github.com/huggingface/datasets/pull/4035", "merged_at": "2022-03-28T09:53:06Z", "patch_url": "https://github.com/huggingface/datasets/pull/4035.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4035" }
Fix #4025.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4035/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4035/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/1082
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1082/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1082/comments
https://api.github.com/repos/huggingface/datasets/issues/1082/events
https://github.com/huggingface/datasets/pull/1082
756,676,218
MDExOlB1bGxSZXF1ZXN0NTMyMTg3ODg3
1,082
Myanmar news dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/643918?v=4", "events_url": "https://api.github.com/users/mapmeld/events{/privacy}", "followers_url": "https://api.github.com/users/mapmeld/followers", "following_url": "https://api.github.com/users/mapmeld/following{/other_user}", "gists_url": "https://api.github.com/users/mapmeld/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mapmeld", "id": 643918, "login": "mapmeld", "node_id": "MDQ6VXNlcjY0MzkxOA==", "organizations_url": "https://api.github.com/users/mapmeld/orgs", "received_events_url": "https://api.github.com/users/mapmeld/received_events", "repos_url": "https://api.github.com/users/mapmeld/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mapmeld/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mapmeld/subscriptions", "type": "User", "url": "https://api.github.com/users/mapmeld" }
[]
closed
false
null
[]
null
[ "merging since the CI is fixed on master" ]
"2020-12-03T23:39:00Z"
"2020-12-04T10:13:38Z"
"2020-12-04T10:13:38Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/1082.diff", "html_url": "https://github.com/huggingface/datasets/pull/1082", "merged_at": "2020-12-04T10:13:38Z", "patch_url": "https://github.com/huggingface/datasets/pull/1082.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/1082" }
Add news topic classification dataset in Myanmar / Burmese languagess This data was collected in 2017 by Aye Hninn Khine , and published on GitHub with a GPL license https://github.com/ayehninnkhine/MyanmarNewsClassificationSystem
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1082/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1082/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6357
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6357/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6357/comments
https://api.github.com/repos/huggingface/datasets/issues/6357/events
https://github.com/huggingface/datasets/issues/6357
1,964,653,995
I_kwDODunzps51Gj2r
6,357
Allow passing a multiprocessing context to functions that support `num_proc`
{ "avatar_url": "https://avatars.githubusercontent.com/u/3905501?v=4", "events_url": "https://api.github.com/users/bryant1410/events{/privacy}", "followers_url": "https://api.github.com/users/bryant1410/followers", "following_url": "https://api.github.com/users/bryant1410/following{/other_user}", "gists_url": "https://api.github.com/users/bryant1410/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/bryant1410", "id": 3905501, "login": "bryant1410", "node_id": "MDQ6VXNlcjM5MDU1MDE=", "organizations_url": "https://api.github.com/users/bryant1410/orgs", "received_events_url": "https://api.github.com/users/bryant1410/received_events", "repos_url": "https://api.github.com/users/bryant1410/repos", "site_admin": false, "starred_url": "https://api.github.com/users/bryant1410/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/bryant1410/subscriptions", "type": "User", "url": "https://api.github.com/users/bryant1410" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
[]
null
[]
"2023-10-27T02:31:16Z"
"2023-10-27T02:31:16Z"
null
CONTRIBUTOR
null
null
null
### Feature request Allow specifying [a multiprocessing context](https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods) to functions that support `num_proc` or use multiprocessing pools. For example, the following could be done: ```python dataset = dataset.map(_func, num_proc=2, mp_context=multiprocess.get_context("spawn")) ``` Or at least the multiprocessing start method ("fork", "spawn", "fork_server" or `None`): ```python dataset = dataset.map(_func, num_proc=2, mp_start_method="spawn") ``` Another option could be passing the `pool` as an argument. ### Motivation By default, `multiprocess` (the `multiprocessing`-fork library that this repo uses) uses the "fork" start method for multiprocessing pools (for the default context). It could be changed by using `set_start_method`. However, this conditions the multiprocessing start method from all processing in a Python program that uses the default context, because [you can't call that function more than once](https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods:~:text=set_start_method()%20should%20not%20be%20used%20more%20than%20once%20in%20the%20program.). My proposal is to allow using a different multiprocessing context, not to condition the whole Python program. One reason to change the start method is that "fork" (the default) makes child processes likely deadlock if thread pools were created before (and also this is not supported by POSIX). For example, this happens when using PyTorch because OpenMP threads are used for CPU intra-op parallelism, which is enabled by default (e.g., for context see [`torch.set_num_threads`](https://pytorch.org/docs/stable/generated/torch.set_num_threads.html)). This can also be fixed by setting `torch.set_num_threads(1)` (or similarly by other methods) but this conditions the whole Python program as it can only be set once to guarantee its behavior (similarly to). There are noticeable performance differences when setting this number to 1 even when using GPU(s). Using, e.g., a "spawn" start method would solve this issue. For more context, see: * https://discuss.huggingface.co/t/dataset-map-stuck-with-torch-set-num-threads-set-to-2-or-larger/37984 * https://discuss.huggingface.co/t/using-num-proc-1-in-dataset-map-hangs/44310 ### Your contribution I'd be happy to review a PR that makes such a change. And if you really don't have the bandwidth for it, I'd consider creating one.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6357/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6357/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/490
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/490/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/490/comments
https://api.github.com/repos/huggingface/datasets/issues/490/events
https://github.com/huggingface/datasets/issues/490
676,482,242
MDU6SXNzdWU2NzY0ODIyNDI=
490
Loading preprocessed Wikipedia dataset requires apache_beam
{ "avatar_url": "https://avatars.githubusercontent.com/u/4564897?v=4", "events_url": "https://api.github.com/users/jarednielsen/events{/privacy}", "followers_url": "https://api.github.com/users/jarednielsen/followers", "following_url": "https://api.github.com/users/jarednielsen/following{/other_user}", "gists_url": "https://api.github.com/users/jarednielsen/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jarednielsen", "id": 4564897, "login": "jarednielsen", "node_id": "MDQ6VXNlcjQ1NjQ4OTc=", "organizations_url": "https://api.github.com/users/jarednielsen/orgs", "received_events_url": "https://api.github.com/users/jarednielsen/received_events", "repos_url": "https://api.github.com/users/jarednielsen/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jarednielsen/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jarednielsen/subscriptions", "type": "User", "url": "https://api.github.com/users/jarednielsen" }
[]
closed
false
null
[]
null
[]
"2020-08-10T23:46:50Z"
"2020-08-14T13:17:20Z"
"2020-08-14T13:17:20Z"
CONTRIBUTOR
null
null
null
Running `nlp.load_dataset("wikipedia", "20200501.en", split="train", dir="/tmp/wikipedia")` gives an error if apache_beam is not installed, stemming from https://github.com/huggingface/nlp/blob/38eb2413de54ee804b0be81781bd65ac4a748ced/src/nlp/builder.py#L981-L988 This succeeded without the dependency in version 0.3.0. This seems like an unnecessary dependency to process some dataset info if you're using the already-preprocessed version. Could it be removed?
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/490/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/490/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/5116
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5116/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5116/comments
https://api.github.com/repos/huggingface/datasets/issues/5116/events
https://github.com/huggingface/datasets/pull/5116
1,409,549,471
PR_kwDODunzps5A09sk
5,116
Use yaml for issue templates + revamp
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
"2022-10-14T15:53:13Z"
"2022-10-19T13:05:49Z"
"2022-10-19T13:03:22Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5116.diff", "html_url": "https://github.com/huggingface/datasets/pull/5116", "merged_at": "2022-10-19T13:03:22Z", "patch_url": "https://github.com/huggingface/datasets/pull/5116.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5116" }
Use YAML instead of markdown (more expressive) for the issue templates. In addition, update their structure/fields to be more aligned with Transformers. PS: also removes the "add_dataset" PR template, as we no longer accept such PRs.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5116/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5116/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/2861
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2861/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2861/comments
https://api.github.com/repos/huggingface/datasets/issues/2861/events
https://github.com/huggingface/datasets/pull/2861
985,081,871
MDExOlB1bGxSZXF1ZXN0NzI0NDM2OTcw
2,861
fix: 🐛 be more specific when catching exceptions
{ "avatar_url": "https://avatars.githubusercontent.com/u/1676121?v=4", "events_url": "https://api.github.com/users/severo/events{/privacy}", "followers_url": "https://api.github.com/users/severo/followers", "following_url": "https://api.github.com/users/severo/following{/other_user}", "gists_url": "https://api.github.com/users/severo/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/severo", "id": 1676121, "login": "severo", "node_id": "MDQ6VXNlcjE2NzYxMjE=", "organizations_url": "https://api.github.com/users/severo/orgs", "received_events_url": "https://api.github.com/users/severo/received_events", "repos_url": "https://api.github.com/users/severo/repos", "site_admin": false, "starred_url": "https://api.github.com/users/severo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/severo/subscriptions", "type": "User", "url": "https://api.github.com/users/severo" }
[]
closed
false
null
[]
null
[ "To give more context: after our discussion, if I understood properly, you are trying to fix a call to `datasets` that takes 15 minutes: https://github.com/huggingface/datasets-preview-backend/issues/17 Is this right?\r\n\r\n", "Yes, that's it. And to do that I'm trying to use https://pypi.org/project/stopit/, which will raise a stopit.TimeoutException exception. But currently, if this exception is raised, it's caught and considered as a \"FileNotFoundError\" while it should not be caught. ", "And what about passing the `timeout` parameter instead?", "It might be a good idea, but I would have to add a timeout argument to several methods, I'm not sure we want that (I want to ensure all my queries in https://github.com/huggingface/datasets-preview-backend/tree/master/src/datasets_preview_backend/queries resolve in a given time, be it with an error in case of timeout, or with the successful response). The methods are `prepare_module`, `import_main_class`, *builder_cls.*`get_all_exported_dataset_infos`, `load_dataset_builder`, and `load_dataset`", "I understand, you are trying to find a fix for your use case. OK.\r\n\r\nJust note that it is also an issue for `datasets` users. Once #2859 fixed in `datasets`, you will no longer have this issue...", "Closing, since 1. my problem is more #2859, and I was asking for that change in order to make a hack work on my side, 2. if we want to change how exceptions are handled, we surely want to do it on all the codebase, not only in this particular case." ]
"2021-09-01T12:18:12Z"
"2021-09-02T09:53:36Z"
"2021-09-02T09:52:03Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/2861.diff", "html_url": "https://github.com/huggingface/datasets/pull/2861", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/2861.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/2861" }
The same specific exception is catched in other parts of the same function.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2861/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2861/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/97
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/97/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/97/comments
https://api.github.com/repos/huggingface/datasets/issues/97/events
https://github.com/huggingface/datasets/pull/97
617,809,431
MDExOlB1bGxSZXF1ZXN0NDE3NjU4MDcy
97
[Csv] add tests for csv dataset script
{ "avatar_url": "https://avatars.githubusercontent.com/u/23423619?v=4", "events_url": "https://api.github.com/users/patrickvonplaten/events{/privacy}", "followers_url": "https://api.github.com/users/patrickvonplaten/followers", "following_url": "https://api.github.com/users/patrickvonplaten/following{/other_user}", "gists_url": "https://api.github.com/users/patrickvonplaten/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/patrickvonplaten", "id": 23423619, "login": "patrickvonplaten", "node_id": "MDQ6VXNlcjIzNDIzNjE5", "organizations_url": "https://api.github.com/users/patrickvonplaten/orgs", "received_events_url": "https://api.github.com/users/patrickvonplaten/received_events", "repos_url": "https://api.github.com/users/patrickvonplaten/repos", "site_admin": false, "starred_url": "https://api.github.com/users/patrickvonplaten/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/patrickvonplaten/subscriptions", "type": "User", "url": "https://api.github.com/users/patrickvonplaten" }
[]
closed
false
null
[]
null
[ "@thomwolf - can you check and merge if ok? " ]
"2020-05-13T23:06:11Z"
"2020-05-13T23:23:16Z"
"2020-05-13T23:23:15Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/97.diff", "html_url": "https://github.com/huggingface/datasets/pull/97", "merged_at": "2020-05-13T23:23:15Z", "patch_url": "https://github.com/huggingface/datasets/pull/97.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/97" }
Adds dummy data tests for csv.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/97/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/97/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/3485
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3485/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3485/comments
https://api.github.com/repos/huggingface/datasets/issues/3485/events
https://github.com/huggingface/datasets/issues/3485
1,089,027,581
I_kwDODunzps5A6T39
3,485
skip columns which cannot set to specific format when set_format
{ "avatar_url": "https://avatars.githubusercontent.com/u/13161779?v=4", "events_url": "https://api.github.com/users/tshu-w/events{/privacy}", "followers_url": "https://api.github.com/users/tshu-w/followers", "following_url": "https://api.github.com/users/tshu-w/following{/other_user}", "gists_url": "https://api.github.com/users/tshu-w/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/tshu-w", "id": 13161779, "login": "tshu-w", "node_id": "MDQ6VXNlcjEzMTYxNzc5", "organizations_url": "https://api.github.com/users/tshu-w/orgs", "received_events_url": "https://api.github.com/users/tshu-w/received_events", "repos_url": "https://api.github.com/users/tshu-w/repos", "site_admin": false, "starred_url": "https://api.github.com/users/tshu-w/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tshu-w/subscriptions", "type": "User", "url": "https://api.github.com/users/tshu-w" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
closed
false
null
[]
null
[ "You can add columns that you wish to set into `torch` format using `dataset.set_format(\"torch\", ['id', 'abc'])` so that input batch of the transform only contains those columns", "Sorry, I miss `output_all_columns` args and thought after `dataset.set_format(\"torch\", columns=columns)` I can only get specific columns I assigned." ]
"2021-12-27T07:19:55Z"
"2021-12-27T09:07:07Z"
"2021-12-27T09:07:07Z"
NONE
null
null
null
**Is your feature request related to a problem? Please describe.** When using `dataset.set_format("torch")`, I must make sure every columns in datasets can convert to `torch`, however, sometimes I want to keep some string columns. **Describe the solution you'd like** skip columns which cannot set to specific format when set_format instead of raise an error.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3485/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3485/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/3347
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3347/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3347/comments
https://api.github.com/repos/huggingface/datasets/issues/3347/events
https://github.com/huggingface/datasets/pull/3347
1,067,738,902
PR_kwDODunzps4vNthw
3,347
iter_archive for zip files
{ "avatar_url": "https://avatars.githubusercontent.com/u/56029953?v=4", "events_url": "https://api.github.com/users/Mehdi2402/events{/privacy}", "followers_url": "https://api.github.com/users/Mehdi2402/followers", "following_url": "https://api.github.com/users/Mehdi2402/following{/other_user}", "gists_url": "https://api.github.com/users/Mehdi2402/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Mehdi2402", "id": 56029953, "login": "Mehdi2402", "node_id": "MDQ6VXNlcjU2MDI5OTUz", "organizations_url": "https://api.github.com/users/Mehdi2402/orgs", "received_events_url": "https://api.github.com/users/Mehdi2402/received_events", "repos_url": "https://api.github.com/users/Mehdi2402/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Mehdi2402/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Mehdi2402/subscriptions", "type": "User", "url": "https://api.github.com/users/Mehdi2402" }
[]
closed
false
null
[]
null
[ "And also don't always try streaming with Google Drive - it can have issues because of how Google Drive works (with quotas, restrictions, etc.) and it can indeed cause `BlockSizeError`.\r\n\r\nFeel free to host your test data elsewhere, such as in a dataset repository on https://huggingface.co (see [here](https://huggingface.co/docs/datasets/upload_dataset.html#upload-your-files) for a tutorial on how to upload files)" ]
"2021-11-30T22:34:17Z"
"2021-12-04T00:22:22Z"
"2021-12-04T00:22:11Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/3347.diff", "html_url": "https://github.com/huggingface/datasets/pull/3347", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/3347.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/3347" }
* In this PR, I added the option to iterate through zipfiles for `download_manager.py` only. * Next PR will be the same applied to `streaming_download_manager.py`. * Related issue #3272. ## Comments : * There is no `.isreg()` equivalent in zipfile library to check if file is Regular so I used `.is_dir()` instead to skip directories. * For now I got `streaming_download_manager.py` working for local zip files, but not for urls. I get the following error when I test it on an archive in google drive, so still working on it. `BlockSizeError: Got more bytes so far (>2112) than requested (22)` ## Tasks : - [x] download_manager.py - [ ] streaming_download_manager.py
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 1, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/3347/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3347/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/5158
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5158/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5158/comments
https://api.github.com/repos/huggingface/datasets/issues/5158/events
https://github.com/huggingface/datasets/issues/5158
1,422,059,287
I_kwDODunzps5UwucX
5,158
Fix language and license tag names in all Hub datasets
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[ { "color": "0e8a16", "default": false, "description": "Contribution to a dataset script", "id": 4564477500, "name": "dataset contribution", "node_id": "LA_kwDODunzps8AAAABEBBmPA", "url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20contribution" } ]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" } ]
null
[ "There are currently 402 datasets with deprecated \"languages\" or \"licenses\".", "hey @albertvillanova ,i would love to work on this issue if you like.", "Hi @ayushthe1, thanks for your offer.\r\n\r\nBut as you can see, I self-assigned this issue.\r\n\r\nI have already fixed 200 out of the 402 datasets. My script is still running and fixing the rest.\r\n\r\nFor example: https://huggingface.co/datasets/fhamborg/news_sentiment_newsmtsc/discussions/2/files", "Thanks for your time. Will try next time. 😇", "@ayushthe1 feel free to take one of the non-assigned open issues: https://github.com/huggingface/datasets/issues", "This is done." ]
"2022-10-25T08:19:29Z"
"2022-10-25T11:27:26Z"
"2022-10-25T10:42:19Z"
MEMBER
null
null
null
While working on this: - #5137 we realized there are still many datasets with deprecated "languages" and "licenses" tag names (instead of "language" and "license"). This is a blocking issue: no subsequent PR can be opened to modify their metadata: a ValueError will be thrown. We should fix the "language" and "license" tag names in all Hub datasets. TODO: - [x] Fix language and license tag names in 402 Hub datasets CC: @julien-c
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5158/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5158/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/3832
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3832/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3832/comments
https://api.github.com/repos/huggingface/datasets/issues/3832/events
https://github.com/huggingface/datasets/issues/3832
1,160,503,446
I_kwDODunzps5FK-CW
3,832
Making Hugging Face the place to go for Graph NNs datasets
{ "avatar_url": "https://avatars.githubusercontent.com/u/4755430?v=4", "events_url": "https://api.github.com/users/omarespejel/events{/privacy}", "followers_url": "https://api.github.com/users/omarespejel/followers", "following_url": "https://api.github.com/users/omarespejel/following{/other_user}", "gists_url": "https://api.github.com/users/omarespejel/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/omarespejel", "id": 4755430, "login": "omarespejel", "node_id": "MDQ6VXNlcjQ3NTU0MzA=", "organizations_url": "https://api.github.com/users/omarespejel/orgs", "received_events_url": "https://api.github.com/users/omarespejel/received_events", "repos_url": "https://api.github.com/users/omarespejel/repos", "site_admin": false, "starred_url": "https://api.github.com/users/omarespejel/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/omarespejel/subscriptions", "type": "User", "url": "https://api.github.com/users/omarespejel" }
[ { "color": "e99695", "default": false, "description": "Requesting to add a new dataset", "id": 2067376369, "name": "dataset request", "node_id": "MDU6TGFiZWwyMDY3Mzc2MzY5", "url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20request" }, { "color": "7AFCAA", "default": false, "description": "Datasets for Graph Neural Networks", "id": 3898693527, "name": "graph", "node_id": "LA_kwDODunzps7oYVeX", "url": "https://api.github.com/repos/huggingface/datasets/labels/graph" } ]
open
false
null
[]
null
[ "It will be indeed really great to add support to GNN datasets. Big :+1: for this initiative.", "@napoles-uach identifies the [TUDatasets](https://chrsmrrs.github.io/datasets/) (A collection of benchmark datasets for graph classification and regression). \r\n\r\nAdded to the Tasks in the initial issue.", "Thanks Omar, that is a great collection!", "Great initiative! Let's keep this issue for these 3 datasets, but moving forward maybe let's create a new issue per dataset :rocket: great work @napoles-uach and @omarespejel!" ]
"2022-03-06T03:02:58Z"
"2022-03-14T07:45:38Z"
null
NONE
null
null
null
Let's make Hugging Face Datasets the central hub for GNN datasets :) **Motivation**. Datasets are currently quite scattered and an open-source central point such as the Hugging Face Hub would be ideal to support the growth of the GNN field. What are some datasets worth integrating into the Hugging Face hub? Instructions to add a new dataset can be found [here](https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md). Special thanks to @napoles-uach for his collaboration on identifying the first ones: - [ ] [SNAP-Stanford OGB Datasets](https://github.com/snap-stanford/ogb). - [ ] [SNAP-Stanford Pretrained GNNs Chemistry and Biology Datasets](https://github.com/snap-stanford/pretrain-gnns). - [ ] [TUDatasets](https://chrsmrrs.github.io/datasets/) (A collection of benchmark datasets for graph classification and regression) cc @osanseviero
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 2, "hooray": 2, "laugh": 0, "rocket": 0, "total_count": 5, "url": "https://api.github.com/repos/huggingface/datasets/issues/3832/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3832/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/4299
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4299/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4299/comments
https://api.github.com/repos/huggingface/datasets/issues/4299/events
https://github.com/huggingface/datasets/pull/4299
1,230,236,782
PR_kwDODunzps43h5RP
4,299
Remove manual download from imagenet-1k
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "Thanks for the reviews @apsdehal and @lhoestq! As suggested by @lhoestq, I'll separate the train/val/test splits, apply the validation split fixes and shuffle the images files to simplify the script and make streaming faster.", "@apsdehal I dismissed your review as it's no longer relevant after the data files changes suggested by @lhoestq. " ]
"2022-05-09T20:49:18Z"
"2022-05-25T14:54:59Z"
"2022-05-25T14:46:16Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/4299.diff", "html_url": "https://github.com/huggingface/datasets/pull/4299", "merged_at": "2022-05-25T14:46:16Z", "patch_url": "https://github.com/huggingface/datasets/pull/4299.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4299" }
Remove the manual download code from `imagenet-1k` to make it a regular dataset.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4299/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4299/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/1960
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1960/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1960/comments
https://api.github.com/repos/huggingface/datasets/issues/1960/events
https://github.com/huggingface/datasets/pull/1960
818,073,154
MDExOlB1bGxSZXF1ZXN0NTgxNDMzOTY4
1,960
Allow stateful function in dataset.map
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko" }
[]
closed
false
null
[]
null
[ "@lhoestq Added a test. If you can come up with a better stateful callable, I'm all ears 😄. ", "Sorry I said earlier that it was good to have it inside the loop, my mistake !", "@lhoestq Okay, did some refactoring and now the \"cache\" part comes before the for loop. Thanks for the guidance.\r\n\r\nThink this is ready for the final review." ]
"2021-02-28T01:29:05Z"
"2021-03-23T15:26:49Z"
"2021-03-23T15:26:49Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/1960.diff", "html_url": "https://github.com/huggingface/datasets/pull/1960", "merged_at": "2021-03-23T15:26:49Z", "patch_url": "https://github.com/huggingface/datasets/pull/1960.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/1960" }
Removes the "test type" section in Dataset.map which would modify the state of the stateful function. Now, the return type of the map function is inferred after processing the first example. Fixes #1940 @lhoestq Not very happy with the usage of `nonlocal`. Would like to hear your opinion on this.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1960/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1960/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/420
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/420/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/420/comments
https://api.github.com/repos/huggingface/datasets/issues/420/events
https://github.com/huggingface/datasets/pull/420
662,029,782
MDExOlB1bGxSZXF1ZXN0NDUzNjI5OTk2
420
Better handle nested features
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
[]
closed
false
null
[]
null
[]
"2020-07-20T16:44:13Z"
"2020-07-21T08:20:49Z"
"2020-07-21T08:09:52Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/420.diff", "html_url": "https://github.com/huggingface/datasets/pull/420", "merged_at": "2020-07-21T08:09:51Z", "patch_url": "https://github.com/huggingface/datasets/pull/420.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/420" }
Changes: - added arrow schema to features conversion (it's going to be useful to fix #342 ) - make flatten handle deep features (useful for tfrecords conversion in #339 ) - add tests for flatten and features conversions - the reader now returns the kwargs to instantiate a Dataset (fix circular dependencies)
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/420/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/420/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/4260
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4260/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4260/comments
https://api.github.com/repos/huggingface/datasets/issues/4260/events
https://github.com/huggingface/datasets/pull/4260
1,221,830,292
PR_kwDODunzps43HSfs
4,260
Add mr_polarity movie review sentiment classification
{ "avatar_url": "https://avatars.githubusercontent.com/u/10004251?v=4", "events_url": "https://api.github.com/users/mo6zes/events{/privacy}", "followers_url": "https://api.github.com/users/mo6zes/followers", "following_url": "https://api.github.com/users/mo6zes/following{/other_user}", "gists_url": "https://api.github.com/users/mo6zes/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mo6zes", "id": 10004251, "login": "mo6zes", "node_id": "MDQ6VXNlcjEwMDA0MjUx", "organizations_url": "https://api.github.com/users/mo6zes/orgs", "received_events_url": "https://api.github.com/users/mo6zes/received_events", "repos_url": "https://api.github.com/users/mo6zes/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mo6zes/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mo6zes/subscriptions", "type": "User", "url": "https://api.github.com/users/mo6zes" }
[]
closed
false
null
[]
null
[ "whoops just found https://huggingface.co/datasets/rotten_tomatoes" ]
"2022-04-30T13:19:33Z"
"2022-04-30T14:16:25Z"
"2022-04-30T14:16:25Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/4260.diff", "html_url": "https://github.com/huggingface/datasets/pull/4260", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/4260.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4260" }
Add the MR (Movie Review) dataset. The original dataset contains sentences from Rotten Tomatoes labeled as either "positive" or "negative". Homepage: [https://www.cs.cornell.edu/people/pabo/movie-review-data/](https://www.cs.cornell.edu/people/pabo/movie-review-data/) paperswithcode: [https://paperswithcode.com/dataset/mr](https://paperswithcode.com/dataset/mr) - [ ] I was not able to generate dummy data, the original dataset files have ".pos" and ".neg" as file extensions so the auto-generator does not work. Is it fine like this or should dummy data be added?
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4260/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4260/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/4396
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4396/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4396/comments
https://api.github.com/repos/huggingface/datasets/issues/4396/events
https://github.com/huggingface/datasets/pull/4396
1,245,479,399
PR_kwDODunzps44T0Di
4,396
Fix URL in gem dataset for totto config
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
"2022-05-23T17:16:12Z"
"2022-05-24T05:49:11Z"
"2022-05-24T05:41:00Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/4396.diff", "html_url": "https://github.com/huggingface/datasets/pull/4396", "merged_at": "2022-05-24T05:40:59Z", "patch_url": "https://github.com/huggingface/datasets/pull/4396.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4396" }
As commented in: - https://github.com/huggingface/datasets/issues/4386#issuecomment-1134902372 CC: @StevenTang1998
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4396/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4396/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/3197
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3197/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3197/comments
https://api.github.com/repos/huggingface/datasets/issues/3197/events
https://github.com/huggingface/datasets/pull/3197
1,042,541,127
PR_kwDODunzps4t_cry
3,197
Fix optimized encoding for arrays
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
[]
closed
false
null
[]
null
[]
"2021-11-02T15:55:53Z"
"2021-11-02T19:12:24Z"
"2021-11-02T19:12:23Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/3197.diff", "html_url": "https://github.com/huggingface/datasets/pull/3197", "merged_at": "2021-11-02T19:12:23Z", "patch_url": "https://github.com/huggingface/datasets/pull/3197.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/3197" }
Hi ! #3124 introduced a regression that made the benchmarks CI fail because of a bad array comparison when checking the first encoded element. This PR fixes this by making sure that encoding is applied on all sequence types except lists. cc @eladsegal fyi (no big deal)
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/3197/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3197/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/3727
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3727/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3727/comments
https://api.github.com/repos/huggingface/datasets/issues/3727/events
https://github.com/huggingface/datasets/pull/3727
1,138,979,732
PR_kwDODunzps4y34JN
3,727
Patch all module attributes in its namespace
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[]
closed
false
null
[]
null
[]
"2022-02-15T17:12:27Z"
"2022-02-17T17:06:18Z"
"2022-02-17T17:06:17Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/3727.diff", "html_url": "https://github.com/huggingface/datasets/pull/3727", "merged_at": "2022-02-17T17:06:17Z", "patch_url": "https://github.com/huggingface/datasets/pull/3727.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/3727" }
When patching module attributes, only those defined in its `__all__` variable were considered by default (only falling back to `__dict__` if `__all__` was None). However those are only a subset of all the module attributes in its namespace (`__dict__` variable). This PR fixes the problem of modules that have non-None `__all__` variable, but try to access an attribute present in `__dict__` (and not in `__all__`). For example, `pandas` has attribute `__version__` only present in `__dict__`. - Before version 1.4, pandas `__all__` was None, thus all attributes in `__dict__` were patched - From version 1.4, pandas `__all__` is not None, thus attributes in `__dict__` not present in `__all__` are ignored Fix #3724. CC: @severo @lvwerra
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/3727/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3727/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/985
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/985/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/985/comments
https://api.github.com/repos/huggingface/datasets/issues/985/events
https://github.com/huggingface/datasets/pull/985
755,020,564
MDExOlB1bGxSZXF1ZXN0NTMwODEyNTM1
985
Add GAP dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/16107619?v=4", "events_url": "https://api.github.com/users/VictorSanh/events{/privacy}", "followers_url": "https://api.github.com/users/VictorSanh/followers", "following_url": "https://api.github.com/users/VictorSanh/following{/other_user}", "gists_url": "https://api.github.com/users/VictorSanh/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/VictorSanh", "id": 16107619, "login": "VictorSanh", "node_id": "MDQ6VXNlcjE2MTA3NjE5", "organizations_url": "https://api.github.com/users/VictorSanh/orgs", "received_events_url": "https://api.github.com/users/VictorSanh/received_events", "repos_url": "https://api.github.com/users/VictorSanh/repos", "site_admin": false, "starred_url": "https://api.github.com/users/VictorSanh/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/VictorSanh/subscriptions", "type": "User", "url": "https://api.github.com/users/VictorSanh" }
[]
closed
false
null
[]
null
[ "This dataset already exists apparently, sorry :/ \r\nsee\r\nhttps://github.com/huggingface/datasets/blob/master/datasets/gap/gap.py\r\n\r\nFeel free to re-use the dataset card you did for `/datasets/gap`\r\n", "oh heck, my bad 🤦‍♂️ sorry", "I think you should also delete this branch." ]
"2020-12-02T07:25:11Z"
"2022-10-06T14:11:52Z"
"2020-12-02T16:16:32Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/985.diff", "html_url": "https://github.com/huggingface/datasets/pull/985", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/985.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/985" }
GAP dataset Gender bias coreference resolution
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/985/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/985/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/5983
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5983/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5983/comments
https://api.github.com/repos/huggingface/datasets/issues/5983/events
https://github.com/huggingface/datasets/pull/5983
1,770,578,804
PR_kwDODunzps5TtDdy
5,983
replaced PathLike as a variable for save_to_disk for dataset_path wit…
{ "avatar_url": "https://avatars.githubusercontent.com/u/35114142?v=4", "events_url": "https://api.github.com/users/benjaminbrown038/events{/privacy}", "followers_url": "https://api.github.com/users/benjaminbrown038/followers", "following_url": "https://api.github.com/users/benjaminbrown038/following{/other_user}", "gists_url": "https://api.github.com/users/benjaminbrown038/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/benjaminbrown038", "id": 35114142, "login": "benjaminbrown038", "node_id": "MDQ6VXNlcjM1MTE0MTQy", "organizations_url": "https://api.github.com/users/benjaminbrown038/orgs", "received_events_url": "https://api.github.com/users/benjaminbrown038/received_events", "repos_url": "https://api.github.com/users/benjaminbrown038/repos", "site_admin": false, "starred_url": "https://api.github.com/users/benjaminbrown038/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/benjaminbrown038/subscriptions", "type": "User", "url": "https://api.github.com/users/benjaminbrown038" }
[]
closed
false
null
[]
null
[]
"2023-06-23T00:57:05Z"
"2023-09-11T04:17:17Z"
"2023-09-11T04:17:17Z"
NONE
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5983.diff", "html_url": "https://github.com/huggingface/datasets/pull/5983", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/5983.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5983" }
…h str like that of load_from_disk
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5983/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5983/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/5570
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5570/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5570/comments
https://api.github.com/repos/huggingface/datasets/issues/5570/events
https://github.com/huggingface/datasets/issues/5570
1,597,190,926
I_kwDODunzps5fMzMO
5,570
load_dataset gives FileNotFoundError on imagenet-1k if license is not accepted on the hub
{ "avatar_url": "https://avatars.githubusercontent.com/u/38630200?v=4", "events_url": "https://api.github.com/users/buoi/events{/privacy}", "followers_url": "https://api.github.com/users/buoi/followers", "following_url": "https://api.github.com/users/buoi/following{/other_user}", "gists_url": "https://api.github.com/users/buoi/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/buoi", "id": 38630200, "login": "buoi", "node_id": "MDQ6VXNlcjM4NjMwMjAw", "organizations_url": "https://api.github.com/users/buoi/orgs", "received_events_url": "https://api.github.com/users/buoi/received_events", "repos_url": "https://api.github.com/users/buoi/repos", "site_admin": false, "starred_url": "https://api.github.com/users/buoi/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/buoi/subscriptions", "type": "User", "url": "https://api.github.com/users/buoi" }
[]
closed
false
null
[]
null
[ "Hi, thanks for the feedback! Would it help to add a tip or note saying the dataset is gated and you need to accept the license before downloading it?", "The error is now more informative:\r\n```\r\nFileNotFoundError: Couldn't find a dataset script at /content/imagenet-1k/imagenet-1k.py or any data file in the same directory. Couldn't find 'imagenet-1k' on the Hugging Face Hub either: FileNotFoundError: Dataset 'imagenet-1k' doesn't exist on the Hub. If the repo is private or gated, make sure to log in with `huggingface-cli login`.\r\n```\r\n\r\n" ]
"2023-02-23T16:44:32Z"
"2023-07-24T15:18:50Z"
"2023-07-24T15:18:50Z"
NONE
null
null
null
### Describe the bug When calling ```load_dataset('imagenet-1k')``` FileNotFoundError is raised, if not logged in and if logged in with huggingface-cli but not having accepted the licence on the hub. There is no error once accepting. ### Steps to reproduce the bug ``` from datasets import load_dataset imagenet = load_dataset("imagenet-1k", split="train", streaming=True) FileNotFoundError: Couldn't find a dataset script at /content/imagenet-1k/imagenet-1k.py or any data file in the same directory. Couldn't find 'imagenet-1k' on the Hugging Face Hub either: FileNotFoundError: Dataset 'imagenet-1k' doesn't exist on the Hub ``` tested on a colab notebook. ### Expected behavior I would expect a specific error indicating that I have to login then accept the dataset licence. I find this bug very relevant as this code is on a guide on the [Huggingface documentation for Datasets](https://huggingface.co/docs/datasets/about_mapstyle_vs_iterable) ### Environment info google colab cpu-only instance
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5570/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5570/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/4987
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4987/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4987/comments
https://api.github.com/repos/huggingface/datasets/issues/4987/events
https://github.com/huggingface/datasets/pull/4987
1,376,006,477
PR_kwDODunzps4_GlIu
4,987
Embed image/audio data in dl_and_prepare parquet
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
"2022-09-16T14:09:27Z"
"2022-09-16T16:24:47Z"
"2022-09-16T16:22:35Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/4987.diff", "html_url": "https://github.com/huggingface/datasets/pull/4987", "merged_at": "2022-09-16T16:22:35Z", "patch_url": "https://github.com/huggingface/datasets/pull/4987.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4987" }
Embed the bytes of the image or audio files in the Parquet files directly, instead of having a "path" that points to a local file. Indeed Parquet files are often used to share data or to be used by workers that may not have access to the local files.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4987/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4987/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/83
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/83/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/83/comments
https://api.github.com/repos/huggingface/datasets/issues/83/events
https://github.com/huggingface/datasets/pull/83
616,863,601
MDExOlB1bGxSZXF1ZXN0NDE2ODkyOTUz
83
New datasets
{ "avatar_url": "https://avatars.githubusercontent.com/u/38249783?v=4", "events_url": "https://api.github.com/users/mariamabarham/events{/privacy}", "followers_url": "https://api.github.com/users/mariamabarham/followers", "following_url": "https://api.github.com/users/mariamabarham/following{/other_user}", "gists_url": "https://api.github.com/users/mariamabarham/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariamabarham", "id": 38249783, "login": "mariamabarham", "node_id": "MDQ6VXNlcjM4MjQ5Nzgz", "organizations_url": "https://api.github.com/users/mariamabarham/orgs", "received_events_url": "https://api.github.com/users/mariamabarham/received_events", "repos_url": "https://api.github.com/users/mariamabarham/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariamabarham/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariamabarham/subscriptions", "type": "User", "url": "https://api.github.com/users/mariamabarham" }
[]
closed
false
null
[]
null
[]
"2020-05-12T18:22:27Z"
"2020-05-12T18:22:47Z"
"2020-05-12T18:22:45Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/83.diff", "html_url": "https://github.com/huggingface/datasets/pull/83", "merged_at": "2020-05-12T18:22:45Z", "patch_url": "https://github.com/huggingface/datasets/pull/83.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/83" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/83/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/83/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/4344
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4344/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4344/comments
https://api.github.com/repos/huggingface/datasets/issues/4344/events
https://github.com/huggingface/datasets/pull/4344
1,234,882,542
PR_kwDODunzps43xFEn
4,344
Fix docstring in DatasetDict::shuffle
{ "avatar_url": "https://avatars.githubusercontent.com/u/4403130?v=4", "events_url": "https://api.github.com/users/felixdivo/events{/privacy}", "followers_url": "https://api.github.com/users/felixdivo/followers", "following_url": "https://api.github.com/users/felixdivo/following{/other_user}", "gists_url": "https://api.github.com/users/felixdivo/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/felixdivo", "id": 4403130, "login": "felixdivo", "node_id": "MDQ6VXNlcjQ0MDMxMzA=", "organizations_url": "https://api.github.com/users/felixdivo/orgs", "received_events_url": "https://api.github.com/users/felixdivo/received_events", "repos_url": "https://api.github.com/users/felixdivo/repos", "site_admin": false, "starred_url": "https://api.github.com/users/felixdivo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/felixdivo/subscriptions", "type": "User", "url": "https://api.github.com/users/felixdivo" }
[]
closed
false
null
[]
null
[]
"2022-05-13T08:06:00Z"
"2022-05-25T09:23:43Z"
"2022-05-24T15:35:21Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/4344.diff", "html_url": "https://github.com/huggingface/datasets/pull/4344", "merged_at": "2022-05-24T15:35:21Z", "patch_url": "https://github.com/huggingface/datasets/pull/4344.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4344" }
I think due to #1626, the docstring contained this error ever since `seed` was added.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4344/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4344/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/321
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/321/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/321/comments
https://api.github.com/repos/huggingface/datasets/issues/321/events
https://github.com/huggingface/datasets/issues/321
647,271,526
MDU6SXNzdWU2NDcyNzE1MjY=
321
ERROR:root:mwparserfromhell
{ "avatar_url": "https://avatars.githubusercontent.com/u/26505641?v=4", "events_url": "https://api.github.com/users/Shiro-LK/events{/privacy}", "followers_url": "https://api.github.com/users/Shiro-LK/followers", "following_url": "https://api.github.com/users/Shiro-LK/following{/other_user}", "gists_url": "https://api.github.com/users/Shiro-LK/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Shiro-LK", "id": 26505641, "login": "Shiro-LK", "node_id": "MDQ6VXNlcjI2NTA1NjQx", "organizations_url": "https://api.github.com/users/Shiro-LK/orgs", "received_events_url": "https://api.github.com/users/Shiro-LK/received_events", "repos_url": "https://api.github.com/users/Shiro-LK/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Shiro-LK/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Shiro-LK/subscriptions", "type": "User", "url": "https://api.github.com/users/Shiro-LK" }
[ { "color": "2edb81", "default": false, "description": "A bug in a dataset script provided in the library", "id": 2067388877, "name": "dataset bug", "node_id": "MDU6TGFiZWwyMDY3Mzg4ODc3", "url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20bug" } ]
closed
false
null
[]
null
[ "It looks like it comes from `mwparserfromhell`.\r\n\r\nWould it be possible to get the bad `section` that causes this issue ? The `section` string is from `datasets/wikipedia.py:L548` ? You could just add a `try` statement and print the section if the line `section_text.append(section.strip_code().strip())` crashes.\r\n\r\nIt will help us know if we have to fix it on our side or if it is a `mwparserfromhell` issue.", "Hi, \r\n\r\nThank you for you answer.\r\nI have try to print the bad section using `try` and `except`, but it is a bit weird as the error seems to appear 3 times for instance, but the two first error does not print anything (as if the function did not go in the `except` part).\r\nFor the third one, I got that (I haven't display the entire text) :\r\n\r\n> error : ==== Parque nacional Cajas ====\r\n> {{AP|Parque nacional Cajas}}\r\n> [[Archivo:Ecuador cajas national park.jpg|thumb|left|300px|Laguna del Cajas]]\r\n> El parque nacional Cajas está situado en los [[Cordillera de los Andes|Andes]], al sur del [[Ecuador]], en la provincia de [[Provincia de Azuay|Azuay]], a 33\r\n> [[km]] al noroccidente de la ciudad de [[Cuenca (Ecuador)|Cuenca]]. Los accesos más comunes al parque inician todos en Cuenca: Desde allí, la vía Cuenca-Mol\r\n> leturo atraviesa en Control de [[Surocucho]] en poco más de 30 minutos de viaje; más adelante, esta misma carretera pasa a orillas de la laguna La Toreadora donde están el Centro Administrativo y de Información del parque. Siguiendo de largo hacia [[Molleturo]], por esta vía se conoce el sector norte del Cajas y se serpentea entre varias lagunas mayores y menores.\r\n> Para acceder al parque desde la costa, la vía Molleturo-Cuenca es también la mejor opción.\r\n\r\nHow can I display the link instead of the text ? I suppose it will help you more ", "The error appears several times as Apache Beam retries to process examples up to 4 times irc.\r\n\r\nI just tried to run this text into `mwparserfromhell` but it worked without the issue.\r\n\r\nI used this code (from the `wikipedia.py` script):\r\n```python\r\nimport mwparserfromhell as parser\r\nimport re\r\nimport six\r\n\r\nraw_content = r\"\"\"==== Parque nacional Cajas ====\r\n{{AP|Parque nacional Cajas}}\r\n[[Archivo:Ecuador cajas national park.jpg|thumb|left|300px|Laguna del Cajas]]\r\nEl parque nacional Cajas está situado en los [[Cordillera de los Andes|Andes]], al sur del [[Ecuador]], en la provincia de [[Provincia de Azuay|Azuay]], a 33\r\n[[km]] al noroccidente de la ciudad de [[Cuenca (Ecuador)|Cuenca]]. Los accesos más comunes al parque inician todos en Cuenca: Desde allí, la vía Cuenca-Mol\r\nleturo atraviesa en Control de [[Surocucho]] en poco más de 30 minutos de viaje; más adelante, esta misma carretera pasa a orillas de la laguna La Toreadora donde están el Centro Administrativo y de Información del parque. Siguiendo de largo hacia [[Molleturo]], por esta vía se conoce el sector norte del Cajas y se serpentea entre varias lagunas mayores y menores.\r\n\"\"\"\r\n\r\nwikicode = parser.parse(raw_content)\r\n\r\n# Filters for references, tables, and file/image links.\r\nre_rm_wikilink = re.compile(\"^(?:File|Image|Media):\", flags=re.IGNORECASE | re.UNICODE)\r\n\r\ndef rm_wikilink(obj):\r\n return bool(re_rm_wikilink.match(six.text_type(obj.title)))\r\n\r\ndef rm_tag(obj):\r\n return six.text_type(obj.tag) in {\"ref\", \"table\"}\r\n\r\ndef rm_template(obj):\r\n return obj.name.lower() in {\"reflist\", \"notelist\", \"notelist-ua\", \"notelist-lr\", \"notelist-ur\", \"notelist-lg\"}\r\n\r\ndef try_remove_obj(obj, section):\r\n try:\r\n section.remove(obj)\r\n except ValueError:\r\n # For unknown reasons, objects are sometimes not found.\r\n pass\r\n\r\nsection_text = []\r\nfor section in wikicode.get_sections(flat=True, include_lead=True, include_headings=True):\r\n for obj in section.ifilter_wikilinks(matches=rm_wikilink, recursive=True):\r\n try_remove_obj(obj, section)\r\n for obj in section.ifilter_templates(matches=rm_template, recursive=True):\r\n try_remove_obj(obj, section)\r\n for obj in section.ifilter_tags(matches=rm_tag, recursive=True):\r\n try_remove_obj(obj, section)\r\n\r\n section_text.append(section.strip_code().strip())\r\n```", "Not sure why we're having this issue. Maybe could you get also the file that's causing that ?", "thanks for your answer.\r\nHow can I know which file is causing the issue ? \r\nI am trying to load the spanish wikipedia data. ", "Because of the way Apache Beam works we indeed don't have access to the file name at this point in the code.\r\nWe'll have to use some tricks I think :p \r\n\r\nYou can append `filepath` to `title` in `wikipedia.py:L512` for example. [[EDIT: it's L494 my bad]]\r\nThen just do `try:...except:` on the call of `_parse_and_clean_wikicode` L500 I guess.\r\n\r\nThanks for diving into this ! I tried it myself but I run out of memory on my laptop\r\nAs soon as we have the name of the file it should be easier to find what's wrong.", "Thanks for your help.\r\n\r\nI tried to print the \"title\" of the document inside the` except (mwparserfromhell.parser.ParserError) as e`,the title displayed was : \"Campeonato Mundial de futsal de la AMF 2015\". (Wikipedia ES) Is it what you were looking for ?", "Thanks a lot @Shiro-LK !\r\n\r\nI was able to reproduce the issue. It comes from [this table on wikipedia](https://es.wikipedia.org/wiki/Campeonato_Mundial_de_futsal_de_la_AMF_2015#Clasificados) that can't be parsed.\r\n\r\nThe file in which the problem occurs comes from the wikipedia dumps, and it can be downloaded [here](https://dumps.wikimedia.org/eswiki/20200501/eswiki-20200501-pages-articles-multistream6.xml-p6424816p7924815.bz2)\r\n\r\nParsing the file this way raises the parsing issue:\r\n\r\n```python\r\nimport mwparserfromhell as parser\r\nfrom tqdm.auto import tqdm\r\nimport bz2\r\nimport six\r\nimport logging\r\nimport codecs\r\nimport xml.etree.cElementTree as etree\r\n\r\nfilepath = \"path/to/eswiki-20200501-pages-articles-multistream6.xml-p6424816p7924815.bz2\"\r\n\r\ndef _extract_content(filepath):\r\n \"\"\"Extracts article content from a single WikiMedia XML file.\"\"\"\r\n logging.info(\"generating examples from = %s\", filepath)\r\n with open(filepath, \"rb\") as f:\r\n f = bz2.BZ2File(filename=f)\r\n if six.PY3:\r\n # Workaround due to:\r\n # https://github.com/tensorflow/tensorflow/issues/33563\r\n utf_f = codecs.getreader(\"utf-8\")(f)\r\n else:\r\n utf_f = f\r\n # To clear root, to free-up more memory than just `elem.clear()`.\r\n context = etree.iterparse(utf_f, events=(\"end\",))\r\n context = iter(context)\r\n unused_event, root = next(context)\r\n for unused_event, elem in tqdm(context, total=949087):\r\n if not elem.tag.endswith(\"page\"):\r\n continue\r\n namespace = elem.tag[:-4]\r\n title = elem.find(\"./{0}title\".format(namespace)).text\r\n ns = elem.find(\"./{0}ns\".format(namespace)).text\r\n id_ = elem.find(\"./{0}id\".format(namespace)).text\r\n # Filter pages that are not in the \"main\" namespace.\r\n if ns != \"0\":\r\n root.clear()\r\n continue\r\n raw_content = elem.find(\"./{0}revision/{0}text\".format(namespace)).text\r\n root.clear()\r\n\r\n if \"Campeonato Mundial de futsal de la AMF 2015\" in title:\r\n yield (id_, title, raw_content)\r\n\r\nfor id_, title, raw_content in _extract_content(filepath):\r\n wikicode = parser.parse(raw_content)\r\n```\r\n\r\nThe copied the raw content that can't be parsed [here](https://pastebin.com/raw/ZbmevLyH).\r\n\r\nThe minimal code to reproduce is:\r\n```python\r\nimport mwparserfromhell as parser\r\nimport requests\r\n\r\nraw_content = requests.get(\"https://pastebin.com/raw/ZbmevLyH\").content.decode(\"utf-8\")\r\nwikicode = parser.parse(raw_content)\r\n\r\n```\r\n\r\nI will create an issue on mwparserfromhell's repo to see if we can fix that\r\n", "This going to be fixed in the next `mwparserfromhell` release :)", "Fixed in `mwparserfromhell` version 0.6." ]
"2020-06-29T11:10:43Z"
"2022-02-14T15:21:46Z"
"2022-02-14T15:21:46Z"
NONE
null
null
null
Hi, I am trying to download some wikipedia data but I got this error for spanish "es" (but there are maybe some others languages which have the same error I haven't tried all of them ). `ERROR:root:mwparserfromhell ParseError: This is a bug and should be reported. Info: C tokenizer exited with non-empty token stack.` The code I have use was : `dataset = load_dataset('wikipedia', '20200501.es', beam_runner='DirectRunner')`
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/321/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/321/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/1634
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1634/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1634/comments
https://api.github.com/repos/huggingface/datasets/issues/1634/events
https://github.com/huggingface/datasets/issues/1634
774,487,934
MDU6SXNzdWU3NzQ0ODc5MzQ=
1,634
Inspecting datasets per category
{ "avatar_url": "https://avatars.githubusercontent.com/u/10137?v=4", "events_url": "https://api.github.com/users/ghost/events{/privacy}", "followers_url": "https://api.github.com/users/ghost/followers", "following_url": "https://api.github.com/users/ghost/following{/other_user}", "gists_url": "https://api.github.com/users/ghost/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/ghost", "id": 10137, "login": "ghost", "node_id": "MDQ6VXNlcjEwMTM3", "organizations_url": "https://api.github.com/users/ghost/orgs", "received_events_url": "https://api.github.com/users/ghost/received_events", "repos_url": "https://api.github.com/users/ghost/repos", "site_admin": false, "starred_url": "https://api.github.com/users/ghost/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ghost/subscriptions", "type": "User", "url": "https://api.github.com/users/ghost" }
[]
closed
false
null
[]
null
[ "That's interesting, can you tell me what you think would be useful to access to inspect a dataset?\r\n\r\nYou can filter them in the hub with the search by the way: https://huggingface.co/datasets have you seen it?", "Hi @thomwolf \r\nthank you, I was not aware of this, I was looking into the data viewer linked into readme page. \r\n\r\nThis is exactly what I was looking for, but this does not work currently, please see the attached \r\nI am selecting to see all nli datasets in english and it retrieves none. thanks\r\n\r\n![5tarDHn9CP6ngeM](https://user-images.githubusercontent.com/53898419/103107612-1509aa80-4638-11eb-85b5-0c995a189969.png)\r\n\r\n\r\n\r\n", "I see 4 results for NLI in English but indeed some are not tagged yet and missing (GLUE), we will focus on that in January (cc @yjernite): https://huggingface.co/datasets?filter=task_ids:natural-language-inference,languages:en", "Hi! You can use `huggingface_hub`'s `list_datasets` for that now:\r\n```python\r\nimport huggingface_hub # pip install huggingface_hub\r\nhuggingface_hub.list_datasets(filter=\"task_categories:question-answering\")\r\n# or\r\nhuggingface_hub.list_datasets(filter=(\"task_categories:natural-language-inference\", \"languages:\"en\"))\r\n```" ]
"2020-12-24T15:26:34Z"
"2022-10-04T14:57:33Z"
"2022-10-04T14:57:33Z"
NONE
null
null
null
Hi Is there a way I could get all NLI datasets/all QA datasets to get some understanding of available datasets per category? this is hard for me to inspect the datasets one by one in the webpage, thanks for the suggestions @lhoestq
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1634/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1634/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/1022
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1022/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1022/comments
https://api.github.com/repos/huggingface/datasets/issues/1022/events
https://github.com/huggingface/datasets/pull/1022
755,651,377
MDExOlB1bGxSZXF1ZXN0NTMxMzIzNTkw
1,022
add MRQA
{ "avatar_url": "https://avatars.githubusercontent.com/u/16107619?v=4", "events_url": "https://api.github.com/users/VictorSanh/events{/privacy}", "followers_url": "https://api.github.com/users/VictorSanh/followers", "following_url": "https://api.github.com/users/VictorSanh/following{/other_user}", "gists_url": "https://api.github.com/users/VictorSanh/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/VictorSanh", "id": 16107619, "login": "VictorSanh", "node_id": "MDQ6VXNlcjE2MTA3NjE5", "organizations_url": "https://api.github.com/users/VictorSanh/orgs", "received_events_url": "https://api.github.com/users/VictorSanh/received_events", "repos_url": "https://api.github.com/users/VictorSanh/repos", "site_admin": false, "starred_url": "https://api.github.com/users/VictorSanh/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/VictorSanh/subscriptions", "type": "User", "url": "https://api.github.com/users/VictorSanh" }
[]
closed
false
null
[]
null
[ "THanks!\r\nDone!" ]
"2020-12-02T22:17:56Z"
"2020-12-04T00:34:26Z"
"2020-12-04T00:34:25Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/1022.diff", "html_url": "https://github.com/huggingface/datasets/pull/1022", "merged_at": "2020-12-04T00:34:24Z", "patch_url": "https://github.com/huggingface/datasets/pull/1022.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/1022" }
MRQA (shared task 2019) out of distribution generalization Framed as extractive question answering Dataset is the concatenation (of subsets) of existing QA datasets processed to match the SQuAD format
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1022/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1022/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/5892
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5892/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5892/comments
https://api.github.com/repos/huggingface/datasets/issues/5892/events
https://github.com/huggingface/datasets/issues/5892
1,722,503,824
I_kwDODunzps5mq1KQ
5,892
User access requests with manual review do not notify the dataset owner
{ "avatar_url": "https://avatars.githubusercontent.com/u/121934?v=4", "events_url": "https://api.github.com/users/leondz/events{/privacy}", "followers_url": "https://api.github.com/users/leondz/followers", "following_url": "https://api.github.com/users/leondz/following{/other_user}", "gists_url": "https://api.github.com/users/leondz/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/leondz", "id": 121934, "login": "leondz", "node_id": "MDQ6VXNlcjEyMTkzNA==", "organizations_url": "https://api.github.com/users/leondz/orgs", "received_events_url": "https://api.github.com/users/leondz/received_events", "repos_url": "https://api.github.com/users/leondz/repos", "site_admin": false, "starred_url": "https://api.github.com/users/leondz/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/leondz/subscriptions", "type": "User", "url": "https://api.github.com/users/leondz" }
[]
closed
false
null
[]
null
[ "cc @SBrandeis", "I think this has been addressed.\r\n\r\nPlease open a new issue if you are still not getting notified." ]
"2023-05-23T17:27:46Z"
"2023-07-21T13:55:37Z"
"2023-07-21T13:55:36Z"
CONTRIBUTOR
null
null
null
### Describe the bug When a user access requests are enabled, and new requests are set to Manual Review, the dataset owner should be notified of the pending requests. However, instead, currently nothing happens, and so the dataset request can go unanswered for quite some time until the owner happens to check that particular dataset's Settings pane. ### Steps to reproduce the bug 1. Enable a dataset's user access requests 2. Set to Manual Review 3. Ask another HF user to request access to the dataset 4. Dataset owner is not notified ### Expected behavior The dataset owner should receive some kind of notification, perhaps in their HF site inbox, or by email, when a dataset access request is made and manual review is enabled. ### Environment info n/a
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5892/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5892/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/312
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/312/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/312/comments
https://api.github.com/repos/huggingface/datasets/issues/312/events
https://github.com/huggingface/datasets/issues/312
645,025,561
MDU6SXNzdWU2NDUwMjU1NjE=
312
[Feature request] Add `shard()` method to dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/4564897?v=4", "events_url": "https://api.github.com/users/jarednielsen/events{/privacy}", "followers_url": "https://api.github.com/users/jarednielsen/followers", "following_url": "https://api.github.com/users/jarednielsen/following{/other_user}", "gists_url": "https://api.github.com/users/jarednielsen/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jarednielsen", "id": 4564897, "login": "jarednielsen", "node_id": "MDQ6VXNlcjQ1NjQ4OTc=", "organizations_url": "https://api.github.com/users/jarednielsen/orgs", "received_events_url": "https://api.github.com/users/jarednielsen/received_events", "repos_url": "https://api.github.com/users/jarednielsen/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jarednielsen/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jarednielsen/subscriptions", "type": "User", "url": "https://api.github.com/users/jarednielsen" }
[]
closed
false
null
[]
null
[ "Hi Jared,\r\nInteresting, thanks for raising this question. You can also do that after loading with `dataset.select()` or `dataset.filter()` which let you keep only a specific subset of rows in a dataset.\r\nWhat is your use-case for sharding?", "Thanks for the pointer to those functions! It's still a little more verbose since you have to manually calculate which ids each rank would keep, but definitely works.\r\n\r\nMy use case is multi-node, multi-GPU training and avoiding global batches of duplicate elements. I'm using horovod. You can shuffle indices, or set random seeds, but explicitly sharding the dataset up front is the safest and clearest way I've found to do so." ]
"2020-06-24T22:48:33Z"
"2020-07-06T12:35:36Z"
"2020-07-06T12:35:36Z"
CONTRIBUTOR
null
null
null
Currently, to shard a dataset into 10 pieces on different ranks, you can run ```python rank = 3 # for example size = 10 dataset = nlp.load_dataset('wikitext', 'wikitext-2-raw-v1', split=f"train[{rank*10}%:{(rank+1)*10}%]") ``` However, this breaks down if you have a number of ranks that doesn't divide cleanly into 100, such as 64 ranks. Is there interest in adding a method shard() that looks like this? ```python rank = 3 size = 64 dataset = nlp.load_dataset("wikitext", "wikitext-2-raw-v1", split="train").shard(rank=rank, size=size) ``` TensorFlow has a similar API: https://www.tensorflow.org/api_docs/python/tf/data/Dataset#shard. I'd be happy to contribute this code.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/312/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/312/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/3021
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3021/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3021/comments
https://api.github.com/repos/huggingface/datasets/issues/3021/events
https://github.com/huggingface/datasets/pull/3021
1,015,444,094
PR_kwDODunzps4spzJU
3,021
Support loading dataset from multiple zipped CSV data files
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[]
closed
false
null
[]
null
[]
"2021-10-04T17:33:57Z"
"2021-10-06T08:36:46Z"
"2021-10-06T08:36:45Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/3021.diff", "html_url": "https://github.com/huggingface/datasets/pull/3021", "merged_at": "2021-10-06T08:36:45Z", "patch_url": "https://github.com/huggingface/datasets/pull/3021.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/3021" }
Fix partially #3018. CC: @lewtun
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 1, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/3021/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3021/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/55
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/55/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/55/comments
https://api.github.com/repos/huggingface/datasets/issues/55/events
https://github.com/huggingface/datasets/pull/55
613,968,072
MDExOlB1bGxSZXF1ZXN0NDE0NjE0MjE1
55
Beam datasets
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
[]
closed
false
null
[]
null
[ "Right now the changes are a bit hard to read as the one from #25 are also included. You can wait until #25 is merged before looking at the implementation details", "Nice!! I tested it a bit and works quite well. I will do a my review once the #25 will be merged because there are several overlaps.\r\n\r\nAt least I can share my thoughts on your **Next** section:\r\n1) I don't think it is a good thing to rely on tfds preprocessed datasets uploaded in their online storage, because they might be updated or deleted at any moment by Google and then possibly break our own processing.\r\n2) Improves the pipeline is always a good direction, but in the meantime we might also share the preprocessed dataset in S3 storage. Which might be another way to see 1), instead of downloading Google preprocessed datasets, using our own ones.\r\n3) Apache Beam can be easily integrated in Spark, so I don't see the need to replace Beam by Spark.", "Ok I've merged #25 so you can rebase or merge if you want.\r\n\r\nI fully agree with @jplu notes for the \"next section\".\r\n\r\nDon't hesitate to use some credit on Google Dataflow if you think it would be useful to give it a try.", "Pr is ready for review !\r\n\r\nNew minor changes:\r\n- re-added the csv dataset builder (it was on my branch from #25 but disappeared from master)\r\n- move the csv script and the wikipedia script to \"under construction\" for now\r\n- some renaming in the `nlp-cli test` command" ]
"2020-05-07T11:04:32Z"
"2020-05-11T07:20:02Z"
"2020-05-11T07:20:00Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/55.diff", "html_url": "https://github.com/huggingface/datasets/pull/55", "merged_at": "2020-05-11T07:20:00Z", "patch_url": "https://github.com/huggingface/datasets/pull/55.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/55" }
# Beam datasets ## Intro Beam Datasets are using beam pipelines for preprocessing (basically lots of `.map` over objects called PCollections). The advantage of apache beam is that you can choose which type of runner you want to use to preprocess your data. The main runners are: - the `DirectRunner` to run the pipeline locally (default). However I encountered memory issues for big datasets (like the french or english wikipedia). Small dataset work fine - Google Dataflow. I didn't play with it. - Spark or Flink, two well known data processing frameworks. I tried to use the Spark/Flink local runners provided by apache beam for python and wasn't able to make them work properly though... ## From tfds beam datasets to our own beam datasets Tensorflow datasets used beam and a complicated pipeline to shard the TFRecords files. To allow users to download beam datasets and not having to preprocess them, they also allow to download the already preprocessed datasets from their google storage (the beam pipeline doesn't run in that case). On our side, we replace TFRecords by something else. Arrow or Parquet do the job but I chose Parquet as: 1) there is a builtin apache beam parquet writer that is quite convenient, and 2) reading parquet from the pyarrow library is also simple and effective (there is a mmap option !) Moreover we don't shard datasets in many many files like tfds (they were doing probably doing that mainly because of the limit of 2Gb per TFRecord file). Therefore we have a simpler pipeline that saves each split into one parquet file. We also removed the utilities to use their google storage (for now maybe ? we'll have to discuss it). ## Main changes - Added a BeamWriter to save the output of beam pipelines into parquet files and fill dataset infos - Create a ParquetReader and refactor a bit the arrow_reader.py \> **With this, we can now try to add beam datasets from tfds** I already added the wikipedia one, and I will also try to add the Wiki40b dataset ## Test the wikipedia script You can download and run the beam pipeline for wikipedia (using the `DirectRunner` by default) like this: ``` >>> import nlp >>> nlp.load("datasets/nlp/wikipedia", dataset_config="20200501.frr") ``` This wikipedia dataset (lang: frr, North Frisian) is a small one (~10Mb), but feel free to try bigger ones (and fill 20Gb of swap memory if you try the english one lol) ## Next Should we allow to download preprocessed datasets from the tfds google storage ? Should we try to optimize the beam pipelines to run locally without memory issues ? Should we try other data processing frameworks for big datasets, like spark ? ## About this PR It should be merged after #25 ----------------- I'd be happy to have your feedback and your ideas to improve the processing of big datasets like wikipedia :)
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/55/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/55/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/187
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/187/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/187/comments
https://api.github.com/repos/huggingface/datasets/issues/187/events
https://github.com/huggingface/datasets/issues/187
623,627,800
MDU6SXNzdWU2MjM2Mjc4MDA=
187
[Question] How to load wikipedia ? Beam runner ?
{ "avatar_url": "https://avatars.githubusercontent.com/u/17963619?v=4", "events_url": "https://api.github.com/users/richarddwang/events{/privacy}", "followers_url": "https://api.github.com/users/richarddwang/followers", "following_url": "https://api.github.com/users/richarddwang/following{/other_user}", "gists_url": "https://api.github.com/users/richarddwang/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/richarddwang", "id": 17963619, "login": "richarddwang", "node_id": "MDQ6VXNlcjE3OTYzNjE5", "organizations_url": "https://api.github.com/users/richarddwang/orgs", "received_events_url": "https://api.github.com/users/richarddwang/received_events", "repos_url": "https://api.github.com/users/richarddwang/repos", "site_admin": false, "starred_url": "https://api.github.com/users/richarddwang/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/richarddwang/subscriptions", "type": "User", "url": "https://api.github.com/users/richarddwang" }
[]
closed
false
null
[]
null
[ "I have seen that somebody is hard working on easierly loadable wikipedia. #129 \r\nMaybe I should wait a few days for that version ?", "Yes we (well @lhoestq) are very actively working on this." ]
"2020-05-23T10:18:52Z"
"2020-05-25T00:12:02Z"
"2020-05-25T00:12:02Z"
CONTRIBUTOR
null
null
null
When `nlp.load_dataset('wikipedia')`, I got * `WARNING:nlp.builder:Trying to generate a dataset using Apache Beam, yet no Beam Runner or PipelineOptions() has been provided. Please pass a nlp.DownloadConfig(beam_runner=...) object to the builder.download_and_prepare(download_config=...) method. Default values will be used.` * `AttributeError: 'NoneType' object has no attribute 'size'` Could somebody tell me what should I do ? # Env On Colab, ``` git clone https://github.com/huggingface/nlp cd nlp pip install -q . ``` ``` %pip install -q apache_beam mwparserfromhell -> ERROR: pydrive 1.3.1 has requirement oauth2client>=4.0.0, but you'll have oauth2client 3.0.0 which is incompatible. ERROR: google-api-python-client 1.7.12 has requirement httplib2<1dev,>=0.17.0, but you'll have httplib2 0.12.0 which is incompatible. ERROR: chainer 6.5.0 has requirement typing-extensions<=3.6.6, but you'll have typing-extensions 3.7.4.2 which is incompatible. ``` ``` pip install -q apache-beam[interactive] ERROR: google-colab 1.0.0 has requirement ipython~=5.5.0, but you'll have ipython 5.10.0 which is incompatible. ``` # The whole message ``` WARNING:nlp.builder:Trying to generate a dataset using Apache Beam, yet no Beam Runner or PipelineOptions() has been provided. Please pass a nlp.DownloadConfig(beam_runner=...) object to the builder.download_and_prepare(download_config=...) method. Default values will be used. Downloading and preparing dataset wikipedia/20200501.aa (download: Unknown size, generated: Unknown size, total: Unknown size) to /root/.cache/huggingface/datasets/wikipedia/20200501.aa/1.0.0... --------------------------------------------------------------------------- AttributeError Traceback (most recent call last) /usr/local/lib/python3.6/dist-packages/apache_beam/runners/common.cpython-36m-x86_64-linux-gnu.so in apache_beam.runners.common.DoFnRunner.process() 44 frames /usr/local/lib/python3.6/dist-packages/apache_beam/runners/common.cpython-36m-x86_64-linux-gnu.so in apache_beam.runners.common.PerWindowInvoker.invoke_process() /usr/local/lib/python3.6/dist-packages/apache_beam/runners/common.cpython-36m-x86_64-linux-gnu.so in apache_beam.runners.common.PerWindowInvoker._invoke_process_per_window() /usr/local/lib/python3.6/dist-packages/apache_beam/io/iobase.py in process(self, element, init_result) 1081 writer.write(e) -> 1082 return [window.TimestampedValue(writer.close(), timestamp.MAX_TIMESTAMP)] 1083 /usr/local/lib/python3.6/dist-packages/apache_beam/io/filebasedsink.py in close(self) 422 def close(self): --> 423 self.sink.close(self.temp_handle) 424 return self.temp_shard_path /usr/local/lib/python3.6/dist-packages/apache_beam/io/parquetio.py in close(self, writer) 537 if len(self._buffer[0]) > 0: --> 538 self._flush_buffer() 539 if self._record_batches_byte_size > 0: /usr/local/lib/python3.6/dist-packages/apache_beam/io/parquetio.py in _flush_buffer(self) 569 for b in x.buffers(): --> 570 size = size + b.size 571 self._record_batches_byte_size = self._record_batches_byte_size + size AttributeError: 'NoneType' object has no attribute 'size' During handling of the above exception, another exception occurred: AttributeError Traceback (most recent call last) <ipython-input-9-340aabccefff> in <module>() ----> 1 dset = nlp.load_dataset('wikipedia') /usr/local/lib/python3.6/dist-packages/nlp/load.py in load_dataset(path, name, version, data_dir, data_files, split, cache_dir, download_config, download_mode, ignore_verifications, save_infos, **config_kwargs) 518 download_mode=download_mode, 519 ignore_verifications=ignore_verifications, --> 520 save_infos=save_infos, 521 ) 522 /usr/local/lib/python3.6/dist-packages/nlp/builder.py in download_and_prepare(self, download_config, download_mode, ignore_verifications, save_infos, dl_manager, **download_and_prepare_kwargs) 370 verify_infos = not save_infos and not ignore_verifications 371 self._download_and_prepare( --> 372 dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs 373 ) 374 # Sync info /usr/local/lib/python3.6/dist-packages/nlp/builder.py in _download_and_prepare(self, dl_manager, verify_infos) 770 with beam.Pipeline(runner=beam_runner, options=beam_options,) as pipeline: 771 super(BeamBasedBuilder, self)._download_and_prepare( --> 772 dl_manager, pipeline=pipeline, verify_infos=False 773 ) # TODO{beam} verify infos 774 /usr/local/lib/python3.6/dist-packages/apache_beam/pipeline.py in __exit__(self, exc_type, exc_val, exc_tb) 501 def __exit__(self, exc_type, exc_val, exc_tb): 502 if not exc_type: --> 503 self.run().wait_until_finish() 504 505 def visit(self, visitor): /usr/local/lib/python3.6/dist-packages/apache_beam/pipeline.py in run(self, test_runner_api) 481 return Pipeline.from_runner_api( 482 self.to_runner_api(use_fake_coders=True), self.runner, --> 483 self._options).run(False) 484 485 if self._options.view_as(TypeOptions).runtime_type_check: /usr/local/lib/python3.6/dist-packages/apache_beam/pipeline.py in run(self, test_runner_api) 494 finally: 495 shutil.rmtree(tmpdir) --> 496 return self.runner.run_pipeline(self, self._options) 497 498 def __enter__(self): /usr/local/lib/python3.6/dist-packages/apache_beam/runners/direct/direct_runner.py in run_pipeline(self, pipeline, options) 128 runner = BundleBasedDirectRunner() 129 --> 130 return runner.run_pipeline(pipeline, options) 131 132 /usr/local/lib/python3.6/dist-packages/apache_beam/runners/portability/fn_api_runner.py in run_pipeline(self, pipeline, options) 553 554 self._latest_run_result = self.run_via_runner_api( --> 555 pipeline.to_runner_api(default_environment=self._default_environment)) 556 return self._latest_run_result 557 /usr/local/lib/python3.6/dist-packages/apache_beam/runners/portability/fn_api_runner.py in run_via_runner_api(self, pipeline_proto) 563 # TODO(pabloem, BEAM-7514): Create a watermark manager (that has access to 564 # the teststream (if any), and all the stages). --> 565 return self.run_stages(stage_context, stages) 566 567 @contextlib.contextmanager /usr/local/lib/python3.6/dist-packages/apache_beam/runners/portability/fn_api_runner.py in run_stages(self, stage_context, stages) 704 stage, 705 pcoll_buffers, --> 706 stage_context.safe_coders) 707 metrics_by_stage[stage.name] = stage_results.process_bundle.metrics 708 monitoring_infos_by_stage[stage.name] = ( /usr/local/lib/python3.6/dist-packages/apache_beam/runners/portability/fn_api_runner.py in _run_stage(self, worker_handler_factory, pipeline_components, stage, pcoll_buffers, safe_coders) 1071 cache_token_generator=cache_token_generator) 1072 -> 1073 result, splits = bundle_manager.process_bundle(data_input, data_output) 1074 1075 def input_for(transform_id, input_id): /usr/local/lib/python3.6/dist-packages/apache_beam/runners/portability/fn_api_runner.py in process_bundle(self, inputs, expected_outputs) 2332 2333 with UnboundedThreadPoolExecutor() as executor: -> 2334 for result, split_result in executor.map(execute, part_inputs): 2335 2336 split_result_list += split_result /usr/lib/python3.6/concurrent/futures/_base.py in result_iterator() 584 # Careful not to keep a reference to the popped future 585 if timeout is None: --> 586 yield fs.pop().result() 587 else: 588 yield fs.pop().result(end_time - time.monotonic()) /usr/lib/python3.6/concurrent/futures/_base.py in result(self, timeout) 430 raise CancelledError() 431 elif self._state == FINISHED: --> 432 return self.__get_result() 433 else: 434 raise TimeoutError() /usr/lib/python3.6/concurrent/futures/_base.py in __get_result(self) 382 def __get_result(self): 383 if self._exception: --> 384 raise self._exception 385 else: 386 return self._result /usr/local/lib/python3.6/dist-packages/apache_beam/utils/thread_pool_executor.py in run(self) 42 # If the future wasn't cancelled, then attempt to execute it. 43 try: ---> 44 self._future.set_result(self._fn(*self._fn_args, **self._fn_kwargs)) 45 except BaseException as exc: 46 # Even though Python 2 futures library has #set_exection(), /usr/local/lib/python3.6/dist-packages/apache_beam/runners/portability/fn_api_runner.py in execute(part_map) 2329 self._registered, 2330 cache_token_generator=self._cache_token_generator) -> 2331 return bundle_manager.process_bundle(part_map, expected_outputs) 2332 2333 with UnboundedThreadPoolExecutor() as executor: /usr/local/lib/python3.6/dist-packages/apache_beam/runners/portability/fn_api_runner.py in process_bundle(self, inputs, expected_outputs) 2243 process_bundle_descriptor_id=self._bundle_descriptor.id, 2244 cache_tokens=[next(self._cache_token_generator)])) -> 2245 result_future = self._worker_handler.control_conn.push(process_bundle_req) 2246 2247 split_results = [] # type: List[beam_fn_api_pb2.ProcessBundleSplitResponse] /usr/local/lib/python3.6/dist-packages/apache_beam/runners/portability/fn_api_runner.py in push(self, request) 1557 self._uid_counter += 1 1558 request.instruction_id = 'control_%s' % self._uid_counter -> 1559 response = self.worker.do_instruction(request) 1560 return ControlFuture(request.instruction_id, response) 1561 /usr/local/lib/python3.6/dist-packages/apache_beam/runners/worker/sdk_worker.py in do_instruction(self, request) 413 # E.g. if register is set, this will call self.register(request.register)) 414 return getattr(self, request_type)( --> 415 getattr(request, request_type), request.instruction_id) 416 else: 417 raise NotImplementedError /usr/local/lib/python3.6/dist-packages/apache_beam/runners/worker/sdk_worker.py in process_bundle(self, request, instruction_id) 448 with self.maybe_profile(instruction_id): 449 delayed_applications, requests_finalization = ( --> 450 bundle_processor.process_bundle(instruction_id)) 451 monitoring_infos = bundle_processor.monitoring_infos() 452 monitoring_infos.extend(self.state_cache_metrics_fn()) /usr/local/lib/python3.6/dist-packages/apache_beam/runners/worker/bundle_processor.py in process_bundle(self, instruction_id) 837 for data in data_channel.input_elements(instruction_id, 838 expected_transforms): --> 839 input_op_by_transform_id[data.transform_id].process_encoded(data.data) 840 841 # Finish all operations. /usr/local/lib/python3.6/dist-packages/apache_beam/runners/worker/bundle_processor.py in process_encoded(self, encoded_windowed_values) 214 decoded_value = self.windowed_coder_impl.decode_from_stream( 215 input_stream, True) --> 216 self.output(decoded_value) 217 218 def try_split(self, fraction_of_remainder, total_buffer_size): /usr/local/lib/python3.6/dist-packages/apache_beam/runners/worker/operations.cpython-36m-x86_64-linux-gnu.so in apache_beam.runners.worker.operations.Operation.output() /usr/local/lib/python3.6/dist-packages/apache_beam/runners/worker/operations.cpython-36m-x86_64-linux-gnu.so in apache_beam.runners.worker.operations.Operation.output() /usr/local/lib/python3.6/dist-packages/apache_beam/runners/worker/operations.cpython-36m-x86_64-linux-gnu.so in apache_beam.runners.worker.operations.SingletonConsumerSet.receive() /usr/local/lib/python3.6/dist-packages/apache_beam/runners/worker/operations.cpython-36m-x86_64-linux-gnu.so in apache_beam.runners.worker.operations.DoOperation.process() /usr/local/lib/python3.6/dist-packages/apache_beam/runners/worker/operations.cpython-36m-x86_64-linux-gnu.so in apache_beam.runners.worker.operations.DoOperation.process() /usr/local/lib/python3.6/dist-packages/apache_beam/runners/common.cpython-36m-x86_64-linux-gnu.so in apache_beam.runners.common.DoFnRunner.process() /usr/local/lib/python3.6/dist-packages/apache_beam/runners/common.cpython-36m-x86_64-linux-gnu.so in apache_beam.runners.common.DoFnRunner._reraise_augmented() /usr/local/lib/python3.6/dist-packages/future/utils/__init__.py in raise_with_traceback(exc, traceback) 417 if traceback == Ellipsis: 418 _, _, traceback = sys.exc_info() --> 419 raise exc.with_traceback(traceback) 420 421 else: /usr/local/lib/python3.6/dist-packages/apache_beam/runners/common.cpython-36m-x86_64-linux-gnu.so in apache_beam.runners.common.DoFnRunner.process() /usr/local/lib/python3.6/dist-packages/apache_beam/runners/common.cpython-36m-x86_64-linux-gnu.so in apache_beam.runners.common.PerWindowInvoker.invoke_process() /usr/local/lib/python3.6/dist-packages/apache_beam/runners/common.cpython-36m-x86_64-linux-gnu.so in apache_beam.runners.common.PerWindowInvoker._invoke_process_per_window() /usr/local/lib/python3.6/dist-packages/apache_beam/io/iobase.py in process(self, element, init_result) 1080 for e in bundle[1]: # values 1081 writer.write(e) -> 1082 return [window.TimestampedValue(writer.close(), timestamp.MAX_TIMESTAMP)] 1083 1084 /usr/local/lib/python3.6/dist-packages/apache_beam/io/filebasedsink.py in close(self) 421 422 def close(self): --> 423 self.sink.close(self.temp_handle) 424 return self.temp_shard_path /usr/local/lib/python3.6/dist-packages/apache_beam/io/parquetio.py in close(self, writer) 536 def close(self, writer): 537 if len(self._buffer[0]) > 0: --> 538 self._flush_buffer() 539 if self._record_batches_byte_size > 0: 540 self._write_batches(writer) /usr/local/lib/python3.6/dist-packages/apache_beam/io/parquetio.py in _flush_buffer(self) 568 for x in arrays: 569 for b in x.buffers(): --> 570 size = size + b.size 571 self._record_batches_byte_size = self._record_batches_byte_size + size AttributeError: 'NoneType' object has no attribute 'size' [while running 'train/Save to parquet/Write/WriteImpl/WriteBundles'] ```
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/187/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/187/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/154
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/154/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/154/comments
https://api.github.com/repos/huggingface/datasets/issues/154/events
https://github.com/huggingface/datasets/pull/154
620,059,066
MDExOlB1bGxSZXF1ZXN0NDE5Mzc4Mzgw
154
add Ubuntu Dialogs Corpus datasets
{ "avatar_url": "https://avatars.githubusercontent.com/u/38249783?v=4", "events_url": "https://api.github.com/users/mariamabarham/events{/privacy}", "followers_url": "https://api.github.com/users/mariamabarham/followers", "following_url": "https://api.github.com/users/mariamabarham/following{/other_user}", "gists_url": "https://api.github.com/users/mariamabarham/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariamabarham", "id": 38249783, "login": "mariamabarham", "node_id": "MDQ6VXNlcjM4MjQ5Nzgz", "organizations_url": "https://api.github.com/users/mariamabarham/orgs", "received_events_url": "https://api.github.com/users/mariamabarham/received_events", "repos_url": "https://api.github.com/users/mariamabarham/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariamabarham/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariamabarham/subscriptions", "type": "User", "url": "https://api.github.com/users/mariamabarham" }
[]
closed
false
null
[]
null
[]
"2020-05-18T09:34:48Z"
"2020-05-18T10:12:28Z"
"2020-05-18T10:12:27Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/154.diff", "html_url": "https://github.com/huggingface/datasets/pull/154", "merged_at": "2020-05-18T10:12:27Z", "patch_url": "https://github.com/huggingface/datasets/pull/154.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/154" }
This PR adds the Ubuntu Dialog Corpus datasets version 2.0.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/154/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/154/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/5738
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5738/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5738/comments
https://api.github.com/repos/huggingface/datasets/issues/5738/events
https://github.com/huggingface/datasets/issues/5738
1,663,477,690
I_kwDODunzps5jJqe6
5,738
load_dataset("text","dataset.txt") loads the wrong dataset!
{ "avatar_url": "https://avatars.githubusercontent.com/u/41713505?v=4", "events_url": "https://api.github.com/users/Tylersuard/events{/privacy}", "followers_url": "https://api.github.com/users/Tylersuard/followers", "following_url": "https://api.github.com/users/Tylersuard/following{/other_user}", "gists_url": "https://api.github.com/users/Tylersuard/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Tylersuard", "id": 41713505, "login": "Tylersuard", "node_id": "MDQ6VXNlcjQxNzEzNTA1", "organizations_url": "https://api.github.com/users/Tylersuard/orgs", "received_events_url": "https://api.github.com/users/Tylersuard/received_events", "repos_url": "https://api.github.com/users/Tylersuard/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Tylersuard/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Tylersuard/subscriptions", "type": "User", "url": "https://api.github.com/users/Tylersuard" }
[]
closed
false
null
[]
null
[ "You need to provide a text file as `data_files`, not as a configuration:\r\n\r\n```python\r\nmy_dataset = load_dataset(\"text\", data_files=\"TextFile.txt\")\r\n```\r\n\r\nOtherwise, since `data_files` is `None`, it picks up Colab's sample datasets from the `content` dir." ]
"2023-04-12T01:07:46Z"
"2023-04-19T12:08:27Z"
"2023-04-19T12:08:27Z"
NONE
null
null
null
### Describe the bug I am trying to load my own custom text dataset using the load_dataset function. My dataset is a bunch of ordered text, think along the lines of shakespeare plays. However, after I load the dataset and I inspect it, the dataset is a table with a bunch of latitude and longitude values! What in the world?? ### Steps to reproduce the bug my_dataset = load_dataset("text","TextFile.txt") my_dataset ### Expected behavior I expected the dataset to contain the actual data from the text document that I used. ### Environment info Google Colab
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5738/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5738/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/1717
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1717/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1717/comments
https://api.github.com/repos/huggingface/datasets/issues/1717/events
https://github.com/huggingface/datasets/issues/1717
783,074,255
MDU6SXNzdWU3ODMwNzQyNTU=
1,717
SciFact dataset - minor changes
{ "avatar_url": "https://avatars.githubusercontent.com/u/3091916?v=4", "events_url": "https://api.github.com/users/dwadden/events{/privacy}", "followers_url": "https://api.github.com/users/dwadden/followers", "following_url": "https://api.github.com/users/dwadden/following{/other_user}", "gists_url": "https://api.github.com/users/dwadden/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/dwadden", "id": 3091916, "login": "dwadden", "node_id": "MDQ6VXNlcjMwOTE5MTY=", "organizations_url": "https://api.github.com/users/dwadden/orgs", "received_events_url": "https://api.github.com/users/dwadden/received_events", "repos_url": "https://api.github.com/users/dwadden/repos", "site_admin": false, "starred_url": "https://api.github.com/users/dwadden/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/dwadden/subscriptions", "type": "User", "url": "https://api.github.com/users/dwadden" }
[]
closed
false
null
[]
null
[ "Hi Dave,\r\nYou are more than welcome to open a PR to make these changes! 🤗\r\nYou will find the relevant information about opening a PR in the [contributing guide](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md) and in the [dataset addition guide](https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md).\r\n\r\nPinging also @lhoestq for the Google cloud matter.", "> I'd like to make a few minor changes, including the citation information and the `_URL` from which to download the dataset. Can I submit a PR for this?\r\n\r\nSure ! Also feel free to ping us for reviews or if we can help :)\r\n\r\n> It also looks like the dataset is being downloaded directly from Huggingface's Google cloud account rather than via the `_URL` in [scifact.py](https://github.com/huggingface/datasets/blob/master/datasets/scifact/scifact.py). Can you help me update the version on gcloud?\r\n\r\nWhat makes you think that ?\r\nAfaik there's no scifact on our google storage\r\n", "\r\n\r\n> > I'd like to make a few minor changes, including the citation information and the `_URL` from which to download the dataset. Can I submit a PR for this?\r\n> \r\n> Sure ! Also feel free to ping us for reviews or if we can help :)\r\n> \r\nOK! We're organizing a [shared task](https://sdproc.org/2021/sharedtasks.html#sciver) based on the dataset, and I made some updates and changed the download URL - so the current code points to a dead URL. I'll update appropriately once the task is finalized and make a PR.\r\n\r\n> > It also looks like the dataset is being downloaded directly from Huggingface's Google cloud account rather than via the `_URL` in [scifact.py](https://github.com/huggingface/datasets/blob/master/datasets/scifact/scifact.py). Can you help me update the version on gcloud?\r\n> \r\n> What makes you think that ?\r\n> Afaik there's no scifact on our google storage\r\n\r\nYou're right, I had the data cached on my machine somewhere. \r\n\r\n", "I opened a PR about this: https://github.com/huggingface/datasets/pull/1780. Closing this issue, will continue there." ]
"2021-01-11T05:26:40Z"
"2021-01-26T02:52:17Z"
"2021-01-26T02:52:17Z"
CONTRIBUTOR
null
null
null
Hi, SciFact dataset creator here. First of all, thanks for adding the dataset to Huggingface, much appreciated! I'd like to make a few minor changes, including the citation information and the `_URL` from which to download the dataset. Can I submit a PR for this? It also looks like the dataset is being downloaded directly from Huggingface's Google cloud account rather than via the `_URL` in [scifact.py](https://github.com/huggingface/datasets/blob/master/datasets/scifact/scifact.py). Can you help me update the version on gcloud? Thanks, Dave
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1717/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1717/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/2816
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2816/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2816/comments
https://api.github.com/repos/huggingface/datasets/issues/2816/events
https://github.com/huggingface/datasets/issues/2816
974,031,404
MDU6SXNzdWU5NzQwMzE0MDQ=
2,816
Add Mostly Basic Python Problems Dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/7246357?v=4", "events_url": "https://api.github.com/users/osanseviero/events{/privacy}", "followers_url": "https://api.github.com/users/osanseviero/followers", "following_url": "https://api.github.com/users/osanseviero/following{/other_user}", "gists_url": "https://api.github.com/users/osanseviero/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/osanseviero", "id": 7246357, "login": "osanseviero", "node_id": "MDQ6VXNlcjcyNDYzNTc=", "organizations_url": "https://api.github.com/users/osanseviero/orgs", "received_events_url": "https://api.github.com/users/osanseviero/received_events", "repos_url": "https://api.github.com/users/osanseviero/repos", "site_admin": false, "starred_url": "https://api.github.com/users/osanseviero/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/osanseviero/subscriptions", "type": "User", "url": "https://api.github.com/users/osanseviero" }
[ { "color": "e99695", "default": false, "description": "Requesting to add a new dataset", "id": 2067376369, "name": "dataset request", "node_id": "MDU6TGFiZWwyMDY3Mzc2MzY5", "url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20request" } ]
open
false
null
[]
null
[ "I started working on that." ]
"2021-08-18T20:28:39Z"
"2021-09-10T08:04:20Z"
null
MEMBER
null
null
null
## Adding a Dataset - **Name:** Mostly Basic Python Problems Dataset - **Description:** The benchmark consists of around 1,000 crowd-sourced Python programming problems, designed to be solvable by entry level programmers, covering programming fundamentals, standard library functionality, and so on. Each problem consists of a task description, code solution and 3 automated test cases. - **Paper:** *link to the dataset paper if available* - **Data:** https://github.com/google-research/google-research/tree/master/mbpp - **Motivation:** Simple, small dataset related to coding problems. Instructions to add a new dataset can be found [here](https://github.com/huggingface/datasets/blob/master/ADD_NEW_DATASET.md).
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 2, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 3, "url": "https://api.github.com/repos/huggingface/datasets/issues/2816/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2816/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/3233
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3233/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3233/comments
https://api.github.com/repos/huggingface/datasets/issues/3233/events
https://github.com/huggingface/datasets/pull/3233
1,047,474,931
PR_kwDODunzps4uOl9-
3,233
Improve repository structure docs
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
[]
closed
false
null
[]
null
[]
"2021-11-08T13:51:35Z"
"2021-11-09T10:02:18Z"
"2021-11-09T10:02:17Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/3233.diff", "html_url": "https://github.com/huggingface/datasets/pull/3233", "merged_at": "2021-11-09T10:02:17Z", "patch_url": "https://github.com/huggingface/datasets/pull/3233.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/3233" }
Continuation of the documentation started in https://github.com/huggingface/datasets/pull/3221, taking into account @stevhliu 's comments
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3233/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3233/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/578
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/578/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/578/comments
https://api.github.com/repos/huggingface/datasets/issues/578/events
https://github.com/huggingface/datasets/pull/578
694,849,940
MDExOlB1bGxSZXF1ZXN0NDgxMTczNDE0
578
Add CommonGen Dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/22514219?v=4", "events_url": "https://api.github.com/users/JetRunner/events{/privacy}", "followers_url": "https://api.github.com/users/JetRunner/followers", "following_url": "https://api.github.com/users/JetRunner/following{/other_user}", "gists_url": "https://api.github.com/users/JetRunner/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/JetRunner", "id": 22514219, "login": "JetRunner", "node_id": "MDQ6VXNlcjIyNTE0MjE5", "organizations_url": "https://api.github.com/users/JetRunner/orgs", "received_events_url": "https://api.github.com/users/JetRunner/received_events", "repos_url": "https://api.github.com/users/JetRunner/repos", "site_admin": false, "starred_url": "https://api.github.com/users/JetRunner/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/JetRunner/subscriptions", "type": "User", "url": "https://api.github.com/users/JetRunner" }
[]
closed
false
null
[]
null
[]
"2020-09-07T08:17:17Z"
"2020-09-07T11:50:29Z"
"2020-09-07T11:49:07Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/578.diff", "html_url": "https://github.com/huggingface/datasets/pull/578", "merged_at": "2020-09-07T11:49:07Z", "patch_url": "https://github.com/huggingface/datasets/pull/578.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/578" }
CC Authors: @yuchenlin @MichaelZhouwang
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/578/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/578/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/4122
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4122/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4122/comments
https://api.github.com/repos/huggingface/datasets/issues/4122/events
https://github.com/huggingface/datasets/issues/4122
1,196,095,072
I_kwDODunzps5HSvZg
4,122
medical_dialog zh has very slow _generate_examples
{ "avatar_url": "https://avatars.githubusercontent.com/u/24982805?v=4", "events_url": "https://api.github.com/users/nbroad1881/events{/privacy}", "followers_url": "https://api.github.com/users/nbroad1881/followers", "following_url": "https://api.github.com/users/nbroad1881/following{/other_user}", "gists_url": "https://api.github.com/users/nbroad1881/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/nbroad1881", "id": 24982805, "login": "nbroad1881", "node_id": "MDQ6VXNlcjI0OTgyODA1", "organizations_url": "https://api.github.com/users/nbroad1881/orgs", "received_events_url": "https://api.github.com/users/nbroad1881/received_events", "repos_url": "https://api.github.com/users/nbroad1881/repos", "site_admin": false, "starred_url": "https://api.github.com/users/nbroad1881/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/nbroad1881/subscriptions", "type": "User", "url": "https://api.github.com/users/nbroad1881" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" } ]
null
[ "Hi @nbroad1881, thanks for reporting.\r\n\r\nLet me have a look to try to improve its performance. ", "Thanks @nbroad1881 for reporting! I don't recall it taking so long. I will also have a look at this. \r\n@albertvillanova please let me know if I am doing something unnecessary or time consuming.", "Hi @nbroad1881 and @vrindaprabhu,\r\n\r\nAs a workaround for the performance of the parsing of the raw data files (this could be addressed in a subsequent PR), I have found that there are also processed data files, that do not require parsing. I have added these as new configurations `processed.en` and `processed.zh`:\r\n```python\r\nds = load_dataset(\"medical_dialog\", \"processed.zh\")\r\n```" ]
"2022-04-07T14:00:51Z"
"2022-04-08T16:20:51Z"
"2022-04-08T16:20:51Z"
NONE
null
null
null
## Describe the bug After downloading the files from Google Drive, `load_dataset("medical_dialog", "zh", data_dir="./")` takes an unreasonable amount of time. Generating the train/test split for 33% of the dataset takes over 4.5 hours. ## Steps to reproduce the bug The easiest way I've found to download files from Google Drive is to use `gdown` and use Google Colab because the download speeds will be very high due to the fact that they are both in Google Cloud. ```python file_ids = [ "1AnKxGEuzjeQsDHHqL3NqI_aplq2hVL_E", "1tt7weAT1SZknzRFyLXOT2fizceUUVRXX", "1A64VBbsQ_z8wZ2LDox586JIyyO6mIwWc", "1AKntx-ECnrxjB07B6BlVZcFRS4YPTB-J", "1xUk8AAua_x27bHUr-vNoAuhEAjTxOvsu", "1ezKTfe7BgqVN5o-8Vdtr9iAF0IueCSjP", "1tA7bSOxR1RRNqZst8cShzhuNHnayUf7c", "1pA3bCFA5nZDhsQutqsJcH3d712giFb0S", "1pTLFMdN1A3ro-KYghk4w4sMz6aGaMOdU", "1dUSnG0nUPq9TEQyHd6ZWvaxO0OpxVjXD", "1UfCH05nuWiIPbDZxQzHHGAHyMh8dmPQH", ] for i in file_ids: url = f"https://drive.google.com/uc?id={i}" !gdown $url from datasets import load_dataset ds = load_dataset("medical_dialog", "zh", data_dir="./") ``` ## Expected results Faster load time ## Actual results `Generating train split: 33%: 625519/1921127 [4:31:03<31:39:20, 11.37 examples/s]` ## Environment info - `datasets` version: 2.0.0 - Platform: Linux-5.4.144+-x86_64-with-Ubuntu-18.04-bionic - Python version: 3.7.13 - PyArrow version: 6.0.1 - Pandas version: 1.3.5 @vrindaprabhu , could you take a look at this since you implemented it? I think the `_generate_examples` function might need to be rewritten
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4122/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4122/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/2709
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2709/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2709/comments
https://api.github.com/repos/huggingface/datasets/issues/2709/events
https://github.com/huggingface/datasets/issues/2709
951,534,757
MDU6SXNzdWU5NTE1MzQ3NTc=
2,709
Missing documentation for wnut_17 (ner_tags)
{ "avatar_url": "https://avatars.githubusercontent.com/u/31095360?v=4", "events_url": "https://api.github.com/users/maxpel/events{/privacy}", "followers_url": "https://api.github.com/users/maxpel/followers", "following_url": "https://api.github.com/users/maxpel/following{/other_user}", "gists_url": "https://api.github.com/users/maxpel/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/maxpel", "id": 31095360, "login": "maxpel", "node_id": "MDQ6VXNlcjMxMDk1MzYw", "organizations_url": "https://api.github.com/users/maxpel/orgs", "received_events_url": "https://api.github.com/users/maxpel/received_events", "repos_url": "https://api.github.com/users/maxpel/repos", "site_admin": false, "starred_url": "https://api.github.com/users/maxpel/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/maxpel/subscriptions", "type": "User", "url": "https://api.github.com/users/maxpel" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" } ]
null
[ "Hi @maxpel, thanks for reporting this issue.\r\n\r\nIndeed, the documentation in the dataset card is not complete. I’m opening a Pull Request to fix it.\r\n\r\nAs the paper explains, there are 6 entity types and we have ordered them alphabetically: `corporation`, `creative-work`, `group`, `location`, `person` and `product`. \r\n\r\nEach of these entity types has 2 possible IOB2 format tags: \r\n- `B-`: to indicate that the token is the beginning of an entity name, and the \r\n- `I-`: to indicate that the token is inside an entity name. \r\n\r\nAdditionally, there is the standalone IOB2 tag \r\n- `O`: that indicates that the token belongs to no named entity. \r\n\r\nIn total there are 13 possible tags, which correspond to the following integer numbers:\r\n\r\n0. `O`\r\n1. `B-corporation`\r\n2. `I-corporation`\r\n3. `B-creative-work`\r\n4. `I-creative-work`\r\n5. `B-group`\r\n6. `I-group`\r\n7. `B-location`\r\n8. `I-location`\r\n9. `B-person`\r\n10. `I-person`\r\n11. `B-product`\r\n12. `I-product`" ]
"2021-07-23T12:25:32Z"
"2021-07-26T09:30:55Z"
"2021-07-26T09:30:55Z"
CONTRIBUTOR
null
null
null
On the info page of the wnut_17 data set (https://huggingface.co/datasets/wnut_17), the model output of ner-tags is only documented for these 5 cases: `ner_tags: a list of classification labels, with possible values including O (0), B-corporation (1), I-corporation (2), B-creative-work (3), I-creative-work (4).` I trained a model with the data and it gives me 13 classes: ``` "id2label": { "0": 0, "1": 1, "2": 2, "3": 3, "4": 4, "5": 5, "6": 6, "7": 7, "8": 8, "9": 9, "10": 10, "11": 11, "12": 12 } "label2id": { "0": 0, "1": 1, "10": 10, "11": 11, "12": 12, "2": 2, "3": 3, "4": 4, "5": 5, "6": 6, "7": 7, "8": 8, "9": 9 } ``` The paper (https://www.aclweb.org/anthology/W17-4418.pdf) explains those 6 categories, but the ordering does not match: ``` 1. person 2. location (including GPE, facility) 3. corporation 4. product (tangible goods, or well-defined services) 5. creative-work (song, movie, book and so on) 6. group (subsuming music band, sports team, and non-corporate organisations) ``` I would be very helpful for me, if somebody could clarify the model ouputs and explain the "B-" and "I-" prefixes to me. Really great work with that and the other packages, I couldn't believe that training the model with that data was basically a one-liner!
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2709/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2709/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/4412
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4412/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4412/comments
https://api.github.com/repos/huggingface/datasets/issues/4412/events
https://github.com/huggingface/datasets/pull/4412
1,249,490,179
PR_kwDODunzps44hFvq
4,412
Skip hidden files/directories in data files resolution and `iter_files`
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "This PR (via new release) broke many transformers tests.\r\n\r\nI will try to post a summary shortly.\r\n\r\ncc: @ydshieh ", "So now it can't handle a local path via: `--train_file tests/deepspeed/../fixtures/tests_samples/wmt_en_ro/train.json` even though it's there. it works just fine if I change the path to not have `..`\r\n\r\nYou can reproduce the original problem with:\r\n\r\n```\r\n$ cd transformers \r\n$ python examples/pytorch/translation/run_translation.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/wmt_en_ro/train.json --validation_file tests/deepspeed/../fixtures/tests_samples/wmt_en_ro/val.json --output_dir /tmp/tmp5o5to4k0 --overwrite_output_dir --max_source_length 32 --max_target_length 32 --val_max_target_length 32 --warmup_steps 8 --predict_with_generate --save_steps 0 --eval_steps 1 --group_by_length --label_smoothing_factor 0.1 --source_lang en --target_lang ro --report_to none --source_prefix \"translate English to Romanian: \" --fp16 --do_train --num_train_epochs 1 --max_train_samples 16 --per_device_train_batch_size 2 --learning_rate 3e-3\r\n[...]\r\nTraceback (most recent call last):\r\n File \"examples/pytorch/translation/run_translation.py\", line 656, in <module>\r\n main()\r\n File \"examples/pytorch/translation/run_translation.py\", line 346, in main\r\n raw_datasets = load_dataset(\r\n File \"/home/stas/anaconda3/envs/py38-pt111/lib/python3.8/site-packages/datasets/load.py\", line 1656, in load_dataset\r\n builder_instance = load_dataset_builder(\r\n File \"/home/stas/anaconda3/envs/py38-pt111/lib/python3.8/site-packages/datasets/load.py\", line 1439, in load_dataset_builder\r\n dataset_module = dataset_module_factory(\r\n File \"/home/stas/anaconda3/envs/py38-pt111/lib/python3.8/site-packages/datasets/load.py\", line 1097, in dataset_module_factory\r\n return PackagedDatasetModuleFactory(\r\n File \"/home/stas/anaconda3/envs/py38-pt111/lib/python3.8/site-packages/datasets/load.py\", line 743, in get_module\r\n data_files = DataFilesDict.from_local_or_remote(\r\n File \"/home/stas/anaconda3/envs/py38-pt111/lib/python3.8/site-packages/datasets/data_files.py\", line 588, in from_local_or_remote\r\n DataFilesList.from_local_or_remote(\r\n File \"/home/stas/anaconda3/envs/py38-pt111/lib/python3.8/site-packages/datasets/data_files.py\", line 556, in from_local_or_remote\r\n data_files = resolve_patterns_locally_or_by_urls(base_path, patterns, allowed_extensions)\r\n File \"/home/stas/anaconda3/envs/py38-pt111/lib/python3.8/site-packages/datasets/data_files.py\", line 194, in resolve_patterns_locally_or_by_urls\r\n for path in _resolve_single_pattern_locally(base_path, pattern, allowed_extensions):\r\n File \"/home/stas/anaconda3/envs/py38-pt111/lib/python3.8/site-packages/datasets/data_files.py\", line 144, in _resolve_single_pattern_locally\r\n raise FileNotFoundError(error_msg)\r\nFileNotFoundError: Unable to find '/mnt/nvme0/code/huggingface/transformers-master/tests/deepspeed/../fixtures/tests_samples/wmt_en_ro/val.json' at /mnt/nvme0/code/huggingface/transformers-master\r\n```", "will apply a workaround to `transformers` tests here https://github.com/huggingface/transformers/pull/17721\r\n", "This has been fixed with https://github.com/huggingface/datasets/pull/4505, will do a patch release tomorrow for `datasets` ;)", "Thank you for the quick fix, @lhoestq " ]
"2022-05-26T12:10:28Z"
"2022-06-15T17:11:25Z"
"2022-06-01T13:04:16Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/4412.diff", "html_url": "https://github.com/huggingface/datasets/pull/4412", "merged_at": "2022-06-01T13:04:16Z", "patch_url": "https://github.com/huggingface/datasets/pull/4412.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/4412" }
Fix #4115
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4412/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4412/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/1357
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1357/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1357/comments
https://api.github.com/repos/huggingface/datasets/issues/1357/events
https://github.com/huggingface/datasets/pull/1357
760,023,525
MDExOlB1bGxSZXF1ZXN0NTM0OTIzMzA4
1,357
Youtube caption corrections
{ "avatar_url": "https://avatars.githubusercontent.com/u/21292059?v=4", "events_url": "https://api.github.com/users/2dot71mily/events{/privacy}", "followers_url": "https://api.github.com/users/2dot71mily/followers", "following_url": "https://api.github.com/users/2dot71mily/following{/other_user}", "gists_url": "https://api.github.com/users/2dot71mily/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/2dot71mily", "id": 21292059, "login": "2dot71mily", "node_id": "MDQ6VXNlcjIxMjkyMDU5", "organizations_url": "https://api.github.com/users/2dot71mily/orgs", "received_events_url": "https://api.github.com/users/2dot71mily/received_events", "repos_url": "https://api.github.com/users/2dot71mily/repos", "site_admin": false, "starred_url": "https://api.github.com/users/2dot71mily/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/2dot71mily/subscriptions", "type": "User", "url": "https://api.github.com/users/2dot71mily" }
[]
closed
false
null
[]
null
[ "Sorry about forgetting flake8.\r\nRather than use up the circleci resources on a new push with only formatting changes, I will wait to push until the results from all tests finish and/or any feedback comes in... probably tomorrow for me.", "\r\nSo... my normal work is with mercurial and seem to have clearly forked this up using git... :(\r\n\r\nWhat I did is after calling:\r\n```\r\ngit fetch upstream\r\ngit rebase upstream/master\r\n```\r\n\r\nI then I attempt to pull in my most recent changes UI commit changes based on @lhoestq's feedback with:\r\n```\r\ngit pull\r\n``` \r\n... which I now suspect undid the above fetch and rebase. Will look into fixing later today when I have more time. Sorry!\r\n", "My dummy data seems quite large as a single row is composed of tokens/labels for an entire youtube video, with at least one row required for each file, which in this case 1 file per 13 youtube channels.\r\n\r\nTo make it smaller I passed `--n_lines 1` to reduce about 5x.\r\n\r\nI then manually reduced size of the particularly long youtube lectures to get the size to about 30KB. However, after recompressing into a zip, and running dummy data test I got the following error:\r\n`FAILED tests/test_dataset_common.py::LocalDatasetTest::test_load_dataset_all_configs_youtube_caption_corrections - OSError: Cannot find data file. `, despite file being there, which I haven't had a chance yet to debug.", "I wrote a small script to generate a smaller json file for the dummy_data, with the hope that I could resolve the pytest error noted above (in case related to a manual typo I could have introduce), however the test contains to fail locally... here's to hoping it can pass on remote!", "Sorry for delayed comments here. Last commit made two changes:\r\n- Increased the valency of the labels from just True/False to more categories to describe the various types of diffs encountered. This required some rewrite of the README\r\n- Reduced the number of remote files to be downloaded from 13 to 4, by combining all 13 of the channel-specific files together, and the splitting them up in a way to meet Github file size requirements. This also reduces size of the dummy-data.", "@lhoestq, thank you for the great feedback, especially given how busy you guys are now! \r\n\r\nI checked out GitHub release tags and looks cool. I have added the version tag to the url, instead of the commit sha as originally suggested, with the hope that it serves the same purpose of pinning the content to this url. Please let me know if I have misunderstood.\r\n\r\nIn regard to dynamically changing the number of files downloaded by first downloading a JSON listing the files, I love that idea. But I am a little confused, as I was thinking that any changes to the dataset itself would require a new PR with an updated `dataset_infos.json`, e.g. `num_examples` would increase. \r\n\r\nIf the purpose of this is not to permit dynamic (without a PR needed) growth of the number of files, but instead to provide stability to the consumers of the dataset, maybe I continued use the release tags, maintaining access to old releases could serve this purpose? I am still learning about these release tags... ", "For dynamic datasets, i.e. datasets that evolve over time, we support custom configurations: they are configurations that are not part of the BUILDER_CONFIGS or in the dataset_infos.json\r\n\r\nFor example for wikipedia, you can use the latest wiki dump by specifying `date=` inside `load_dataset()`. A configuration is created on the fly for this date and is used to build the dataset using the latest data.\r\n\r\nTherefore we don't need to have PRs to update the script for each wikipedia release.\r\n\r\nOne downside though is that we don't have metadata in advance such as the size of the dataset.\r\n\r\nI think this could be a nice addition for the youtube caption dataset in the future to be have a system of releases and be able to load the version we want easily. What do you think ?", "\r\n\r\n\r\n\r\n> For dynamic datasets, i.e. datasets that evolve over time, we support custom configurations: they are configurations that are not part of the BUILDER_CONFIGS or in the dataset_infos.json\r\n> \r\n \r\n> I think this could be a nice addition for the youtube caption dataset in the future to be have a system of releases and be able to load the version we want easily. What do you think ?\r\n\r\nThank you for the suggestion! This sounds great! I will take a look at the some datasets that do this, and would love to give it a try in the future, if I continue to grow the captions dataset in a meaningful way. \r\n\r\nAppreciate all the help on this. It has been a really great experience for me. :)", "Excited to merge! And sorry to be such a github n00b, but from what I've quickly read, I don't 'Close pull request', but rather the next steps are action taken on your end... Please let me know if there is some action to be taken at my end first. :/", "Alright merging this one then :) " ]
"2020-12-09T05:52:34Z"
"2020-12-15T18:12:56Z"
"2020-12-15T18:12:56Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/1357.diff", "html_url": "https://github.com/huggingface/datasets/pull/1357", "merged_at": "2020-12-15T18:12:56Z", "patch_url": "https://github.com/huggingface/datasets/pull/1357.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/1357" }
This PR adds a new dataset of YouTube captions, error and corrections. This dataset was created in just the last week, as inspired by this sprint!
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1357/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1357/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/3520
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3520/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3520/comments
https://api.github.com/repos/huggingface/datasets/issues/3520/events
https://github.com/huggingface/datasets/pull/3520
1,093,747,753
PR_kwDODunzps4wh6oD
3,520
Audio datacard update - first pass
{ "avatar_url": "https://avatars.githubusercontent.com/u/90473723?v=4", "events_url": "https://api.github.com/users/meg-huggingface/events{/privacy}", "followers_url": "https://api.github.com/users/meg-huggingface/followers", "following_url": "https://api.github.com/users/meg-huggingface/following{/other_user}", "gists_url": "https://api.github.com/users/meg-huggingface/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/meg-huggingface", "id": 90473723, "login": "meg-huggingface", "node_id": "MDQ6VXNlcjkwNDczNzIz", "organizations_url": "https://api.github.com/users/meg-huggingface/orgs", "received_events_url": "https://api.github.com/users/meg-huggingface/received_events", "repos_url": "https://api.github.com/users/meg-huggingface/repos", "site_admin": false, "starred_url": "https://api.github.com/users/meg-huggingface/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/meg-huggingface/subscriptions", "type": "User", "url": "https://api.github.com/users/meg-huggingface" }
[]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/90473723?v=4", "events_url": "https://api.github.com/users/meg-huggingface/events{/privacy}", "followers_url": "https://api.github.com/users/meg-huggingface/followers", "following_url": "https://api.github.com/users/meg-huggingface/following{/other_user}", "gists_url": "https://api.github.com/users/meg-huggingface/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/meg-huggingface", "id": 90473723, "login": "meg-huggingface", "node_id": "MDQ6VXNlcjkwNDczNzIz", "organizations_url": "https://api.github.com/users/meg-huggingface/orgs", "received_events_url": "https://api.github.com/users/meg-huggingface/received_events", "repos_url": "https://api.github.com/users/meg-huggingface/repos", "site_admin": false, "starred_url": "https://api.github.com/users/meg-huggingface/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/meg-huggingface/subscriptions", "type": "User", "url": "https://api.github.com/users/meg-huggingface" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/90473723?v=4", "events_url": "https://api.github.com/users/meg-huggingface/events{/privacy}", "followers_url": "https://api.github.com/users/meg-huggingface/followers", "following_url": "https://api.github.com/users/meg-huggingface/following{/other_user}", "gists_url": "https://api.github.com/users/meg-huggingface/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/meg-huggingface", "id": 90473723, "login": "meg-huggingface", "node_id": "MDQ6VXNlcjkwNDczNzIz", "organizations_url": "https://api.github.com/users/meg-huggingface/orgs", "received_events_url": "https://api.github.com/users/meg-huggingface/received_events", "repos_url": "https://api.github.com/users/meg-huggingface/repos", "site_admin": false, "starred_url": "https://api.github.com/users/meg-huggingface/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/meg-huggingface/subscriptions", "type": "User", "url": "https://api.github.com/users/meg-huggingface" } ]
null
[ "I'm not sure that we want to change the tags at the top of the cards by hand. Those are used to create the tags in the hub. Although looking at all the tags now, we might want to normalize the current tags again (hyphens or no, \".0\" or no). Maybe we could add a binary tag for public domain or not?", "> \r\n\r\nThat's a good point, I didn't realize these were auto-populated.\r\nAt the same time, some of them are wrong -- how/where are they auto-populated? Seems like we should fix it at that source for the future.\r\nIn the mean time, I see that \"cc0-1.0\" is the desired tag for public domain, so I will change that for now." ]
"2022-01-04T20:58:25Z"
"2022-01-05T12:30:21Z"
"2022-01-05T12:30:20Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/3520.diff", "html_url": "https://github.com/huggingface/datasets/pull/3520", "merged_at": "2022-01-05T12:30:20Z", "patch_url": "https://github.com/huggingface/datasets/pull/3520.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/3520" }
Filling out data card "Personal and Sensitive Information" for speech datasets to note PII concerns
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3520/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3520/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/3730
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3730/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3730/comments
https://api.github.com/repos/huggingface/datasets/issues/3730/events
https://github.com/huggingface/datasets/issues/3730
1,139,545,613
I_kwDODunzps5D7BYN
3,730
Checksum Error when loading multi-news dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/60560991?v=4", "events_url": "https://api.github.com/users/byw2/events{/privacy}", "followers_url": "https://api.github.com/users/byw2/followers", "following_url": "https://api.github.com/users/byw2/following{/other_user}", "gists_url": "https://api.github.com/users/byw2/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/byw2", "id": 60560991, "login": "byw2", "node_id": "MDQ6VXNlcjYwNTYwOTkx", "organizations_url": "https://api.github.com/users/byw2/orgs", "received_events_url": "https://api.github.com/users/byw2/received_events", "repos_url": "https://api.github.com/users/byw2/repos", "site_admin": false, "starred_url": "https://api.github.com/users/byw2/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/byw2/subscriptions", "type": "User", "url": "https://api.github.com/users/byw2" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" } ]
null
[ "Thanks for reporting @byw2.\r\nWe are fixing it.\r\nIn the meantime, you can load the dataset by passing `ignore_verifications=True`:\r\n ```python\r\ndataset = load_dataset(\"multi_news\", ignore_verifications=True)" ]
"2022-02-16T05:11:08Z"
"2022-02-16T20:05:06Z"
"2022-02-16T08:48:46Z"
NONE
null
null
null
## Describe the bug When using the load_dataset function from datasets module to load the Multi-News dataset, does not load the dataset but throws Checksum Error instead. ## Steps to reproduce the bug ```python from datasets import load_dataset dataset = load_dataset("multi_news") ``` ## Expected results Should download and load Multi-News dataset. ## Actual results Throws the following error and cannot load data successfully: ``` NonMatchingChecksumError: Checksums didn't match for dataset source files: ['https://drive.google.com/uc?export=download&id=1vRY2wM6rlOZrf9exGTm5pXj5ExlVwJ0C'] ``` Could this issue please be looked at? Thanks!
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3730/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3730/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6396
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6396/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6396/comments
https://api.github.com/repos/huggingface/datasets/issues/6396/events
https://github.com/huggingface/datasets/issues/6396
1,987,308,077
I_kwDODunzps52c-ot
6,396
Issue with pyarrow 14.0.1
{ "avatar_url": "https://avatars.githubusercontent.com/u/1676121?v=4", "events_url": "https://api.github.com/users/severo/events{/privacy}", "followers_url": "https://api.github.com/users/severo/followers", "following_url": "https://api.github.com/users/severo/following{/other_user}", "gists_url": "https://api.github.com/users/severo/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/severo", "id": 1676121, "login": "severo", "node_id": "MDQ6VXNlcjE2NzYxMjE=", "organizations_url": "https://api.github.com/users/severo/orgs", "received_events_url": "https://api.github.com/users/severo/received_events", "repos_url": "https://api.github.com/users/severo/repos", "site_admin": false, "starred_url": "https://api.github.com/users/severo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/severo/subscriptions", "type": "User", "url": "https://api.github.com/users/severo" }
[]
closed
false
null
[]
null
[ "Looks like we should stop using `PyExtensionType` and use `ExtensionType` instead\r\n\r\nsee https://github.com/apache/arrow/commit/f14170976372436ec1d03a724d8d3f3925484ecf", "https://github.com/huggingface/datasets-server/pull/2089#pullrequestreview-1724449532\r\n\r\n> Yes, I understand now: they have disabled their `PyExtensionType` and we use it in `datasets` for arrays... ", "related?\r\n\r\nhttps://huggingface.co/datasets/ssbuild/tools_data/discussions/1#654e663b77c8ec680d10479c", "> related?\r\n>\r\n> https://huggingface.co/datasets/ssbuild/tools_data/discussions/1#654e663b77c8ec680d10479c\r\n\r\nNo, related to https://github.com/huggingface/datasets/issues/5706", "Running the following is a workaround:\r\n\r\n```\r\nimport pyarrow\r\npyarrow.PyExtensionType.set_auto_load(True)\r\n```" ]
"2023-11-10T10:02:12Z"
"2023-11-14T10:23:30Z"
"2023-11-14T10:23:30Z"
CONTRIBUTOR
null
null
null
See https://github.com/huggingface/datasets-server/pull/2089 for reference ``` from datasets import (Array2D, Dataset, Features) feature_type = Array2D(shape=(2, 2), dtype="float32") content = [[0.0, 0.0], [0.0, 0.0]] features = Features({"col": feature_type}) dataset = Dataset.from_dict({"col": [content]}, features=features) ``` generates ``` /home/slesage/hf/datasets-server/libs/libcommon/.venv/lib/python3.9/site-packages/datasets/features/features.py:648: FutureWarning: pyarrow.PyExtensionType is deprecated and will refuse deserialization by default. Instead, please derive from pyarrow.ExtensionType and implement your own serialization mechanism. pa.PyExtensionType.__init__(self, self.storage_dtype) /home/slesage/hf/datasets-server/libs/libcommon/.venv/lib/python3.9/site-packages/datasets/features/features.py:1661: RuntimeWarning: pickle-based deserialization of pyarrow.PyExtensionType subclasses is disabled by default; if you only ingest trusted data files, you may re-enable this using `pyarrow.PyExtensionType.set_auto_load(True)`. In the future, Python-defined extension subclasses should derive from pyarrow.ExtensionType (not pyarrow.PyExtensionType) and implement their own serialization mechanism. obj = {field.name: generate_from_arrow_type(field.type) for field in pa_schema} /home/slesage/hf/datasets-server/libs/libcommon/.venv/lib/python3.9/site-packages/datasets/features/features.py:1661: FutureWarning: pyarrow.PyExtensionType is deprecated and will refuse deserialization by default. Instead, please derive from pyarrow.ExtensionType and implement your own serialization mechanism. obj = {field.name: generate_from_arrow_type(field.type) for field in pa_schema} Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/home/slesage/hf/datasets-server/libs/libcommon/.venv/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 924, in from_dict return cls(pa_table, info=info, split=split) File "/home/slesage/hf/datasets-server/libs/libcommon/.venv/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 693, in __init__ inferred_features = Features.from_arrow_schema(arrow_table.schema) File "/home/slesage/hf/datasets-server/libs/libcommon/.venv/lib/python3.9/site-packages/datasets/features/features.py", line 1661, in from_arrow_schema obj = {field.name: generate_from_arrow_type(field.type) for field in pa_schema} File "/home/slesage/hf/datasets-server/libs/libcommon/.venv/lib/python3.9/site-packages/datasets/features/features.py", line 1661, in <dictcomp> obj = {field.name: generate_from_arrow_type(field.type) for field in pa_schema} File "/home/slesage/hf/datasets-server/libs/libcommon/.venv/lib/python3.9/site-packages/datasets/features/features.py", line 1381, in generate_from_arrow_type return Value(dtype=_arrow_to_datasets_dtype(pa_type)) File "/home/slesage/hf/datasets-server/libs/libcommon/.venv/lib/python3.9/site-packages/datasets/features/features.py", line 111, in _arrow_to_datasets_dtype raise ValueError(f"Arrow type {arrow_type} does not have a datasets dtype equivalent.") ValueError: Arrow type extension<arrow.py_extension_type<pyarrow.lib.UnknownExtensionType>> does not have a datasets dtype equivalent. ```
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/6396/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6396/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/4612
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4612/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4612/comments
https://api.github.com/repos/huggingface/datasets/issues/4612/events
https://github.com/huggingface/datasets/issues/4612
1,290,984,660
I_kwDODunzps5M8tzU
4,612
Release 2.3.0 broke custom iterable datasets
{ "avatar_url": "https://avatars.githubusercontent.com/u/19529125?v=4", "events_url": "https://api.github.com/users/aapot/events{/privacy}", "followers_url": "https://api.github.com/users/aapot/followers", "following_url": "https://api.github.com/users/aapot/following{/other_user}", "gists_url": "https://api.github.com/users/aapot/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/aapot", "id": 19529125, "login": "aapot", "node_id": "MDQ6VXNlcjE5NTI5MTI1", "organizations_url": "https://api.github.com/users/aapot/orgs", "received_events_url": "https://api.github.com/users/aapot/received_events", "repos_url": "https://api.github.com/users/aapot/repos", "site_admin": false, "starred_url": "https://api.github.com/users/aapot/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/aapot/subscriptions", "type": "User", "url": "https://api.github.com/users/aapot" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
null
[]
null
[ "Apparently, `fsspec` does not allow access to attribute-based modules anymore, such as `fsspec.async`.\r\n\r\nHowever, this is a fairly simple fix:\r\n- Change the import to: `from fsspec import asyn`;\r\n- Change line 18 to: `asyn.iothread[0] = None`;\r\n- Change line 19 to `asyn.loop[0] = None`.", "Hi! I think it's easier to replace `import fsspec` with `import fsspec.asyn` and leave the rest unchanged. @gugarosa Are you interested in submitting a PR?", "Perfect, it is even better!\r\n\r\nJust submitted the PR: #4630.\r\n\r\nThank you!" ]
"2022-07-01T06:46:07Z"
"2022-07-05T15:08:21Z"
"2022-07-05T15:08:21Z"
NONE
null
null
null
## Describe the bug Trying to iterate examples from custom iterable dataset fails to bug introduced in `torch_iterable_dataset.py` since the release of 2.3.0. ## Steps to reproduce the bug ```python next(iter(custom_iterable_dataset)) ``` ## Expected results `next(iter(custom_iterable_dataset))` should return examples from the dataset ## Actual results ``` /usr/local/lib/python3.7/dist-packages/datasets/formatting/dataset_wrappers/torch_iterable_dataset.py in _set_fsspec_for_multiprocess() 16 See https://github.com/fsspec/gcsfs/issues/379 17 """ ---> 18 fsspec.asyn.iothread[0] = None 19 fsspec.asyn.loop[0] = None 20 AttributeError: module 'fsspec' has no attribute 'asyn' ``` ## Environment info - `datasets` version: 2.3.0 - Platform: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic - Python version: 3.7.13 - PyArrow version: 8.0.0 - Pandas version: 1.3.5
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/4612/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4612/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/2542
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2542/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2542/comments
https://api.github.com/repos/huggingface/datasets/issues/2542/events
https://github.com/huggingface/datasets/issues/2542
928,540,382
MDU6SXNzdWU5Mjg1NDAzODI=
2,542
`datasets.keyhash.DuplicatedKeysError` for `drop` and `adversarial_qa/adversarialQA`
{ "avatar_url": "https://avatars.githubusercontent.com/u/16107619?v=4", "events_url": "https://api.github.com/users/VictorSanh/events{/privacy}", "followers_url": "https://api.github.com/users/VictorSanh/followers", "following_url": "https://api.github.com/users/VictorSanh/following{/other_user}", "gists_url": "https://api.github.com/users/VictorSanh/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/VictorSanh", "id": 16107619, "login": "VictorSanh", "node_id": "MDQ6VXNlcjE2MTA3NjE5", "organizations_url": "https://api.github.com/users/VictorSanh/orgs", "received_events_url": "https://api.github.com/users/VictorSanh/received_events", "repos_url": "https://api.github.com/users/VictorSanh/repos", "site_admin": false, "starred_url": "https://api.github.com/users/VictorSanh/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/VictorSanh/subscriptions", "type": "User", "url": "https://api.github.com/users/VictorSanh" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" } ]
null
[ "very much related: https://github.com/huggingface/datasets/pull/2333", "Hi @VictorSanh, thank you for reporting this issue with duplicated keys.\r\n\r\n- The issue with \"adversarial_qa\" was fixed 23 days ago: #2433. Current version of `datasets` (1.8.0) includes the patch.\r\n- I am investigating the issue with `drop`. I'll ping you to keep you informed.", "Hi @VictorSanh, the issue is already fixed and merged into master branch and will be included in our next release version 1.9.0.", "thank you!" ]
"2021-06-23T18:41:16Z"
"2021-06-25T21:50:05Z"
"2021-06-24T14:57:08Z"
MEMBER
null
null
null
## Describe the bug Failure to generate the datasets (`drop` and subset `adversarialQA` from `adversarial_qa`) because of duplicate keys. ## Steps to reproduce the bug ```python from datasets import load_dataset load_dataset("drop") load_dataset("adversarial_qa", "adversarialQA") ``` ## Expected results The examples keys should be unique. ## Actual results ```bash >>> load_dataset("drop") Using custom data configuration default Downloading and preparing dataset drop/default (download: 7.92 MiB, generated: 111.88 MiB, post-processed: Unknown size, total: 119.80 MiB) to /home/hf/.cache/huggingface/datasets/drop/default/0.1.0/7a94f1e2bb26c4b5c75f89857c06982967d7416e5af935a9374b9bccf5068026... Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/home/hf/dev/promptsource/.venv/lib/python3.7/site-packages/datasets/load.py", line 751, in load_dataset use_auth_token=use_auth_token, File "/home/hf/dev/promptsource/.venv/lib/python3.7/site-packages/datasets/builder.py", line 575, in download_and_prepare dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs File "/home/hf/dev/promptsource/.venv/lib/python3.7/site-packages/datasets/builder.py", line 652, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/home/hf/dev/promptsource/.venv/lib/python3.7/site-packages/datasets/builder.py", line 992, in _prepare_split num_examples, num_bytes = writer.finalize() File "/home/hf/dev/promptsource/.venv/lib/python3.7/site-packages/datasets/arrow_writer.py", line 409, in finalize self.check_duplicate_keys() File "/home/hf/dev/promptsource/.venv/lib/python3.7/site-packages/datasets/arrow_writer.py", line 349, in check_duplicate_keys raise DuplicatedKeysError(key) datasets.keyhash.DuplicatedKeysError: FAILURE TO GENERATE DATASET ! Found duplicate Key: 28553293-d719-441b-8f00-ce3dc6df5398 Keys should be unique and deterministic in nature ``` ## Environment info <!-- You can run the command `datasets-cli env` and copy-and-paste its output below. --> - `datasets` version: 1.7.0 - Platform: Linux-5.4.0-1044-gcp-x86_64-with-Ubuntu-18.04-bionic - Python version: 3.7.10 - PyArrow version: 3.0.0
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/2542/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2542/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/1920
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1920/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1920/comments
https://api.github.com/repos/huggingface/datasets/issues/1920/events
https://github.com/huggingface/datasets/pull/1920
812,628,220
MDExOlB1bGxSZXF1ZXN0NTc2OTQ5NzI2
1,920
Fix save_to_disk issue
{ "avatar_url": "https://avatars.githubusercontent.com/u/9285264?v=4", "events_url": "https://api.github.com/users/M-Salti/events{/privacy}", "followers_url": "https://api.github.com/users/M-Salti/followers", "following_url": "https://api.github.com/users/M-Salti/following{/other_user}", "gists_url": "https://api.github.com/users/M-Salti/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/M-Salti", "id": 9285264, "login": "M-Salti", "node_id": "MDQ6VXNlcjkyODUyNjQ=", "organizations_url": "https://api.github.com/users/M-Salti/orgs", "received_events_url": "https://api.github.com/users/M-Salti/received_events", "repos_url": "https://api.github.com/users/M-Salti/repos", "site_admin": false, "starred_url": "https://api.github.com/users/M-Salti/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/M-Salti/subscriptions", "type": "User", "url": "https://api.github.com/users/M-Salti" }
[]
closed
false
null
[]
null
[ "So I was curious why the issue reported at #1919 wasn't caught in [this test](https://github.com/huggingface/datasets/blob/248104c4bdb2e01c036b7578867199191fbff181/tests/test_arrow_dataset.py#L209), so I did some digging.\r\nI tried to save to a temporary directory (just like in the test), like this:\r\n```python\r\nwith tempfile.TemporaryDirectory() as requested_tempdir:\r\n squad.save_to_disk(requested_tempdir) # no error\r\n```\r\nand it executes succesfuly without problems.\r\nSo why does it work, but this doesn't?\r\n```python\r\nsquad.save_to_disk(\"./squad\") # error\r\n```\r\nIt's because `save_to_disk` also creates a temporary directory (let's call it `tempdir`), and since `tempdir` and `requested_tempdir` share the same parents, the `Path.joinpath` method [(here)](https://github.com/huggingface/datasets/blob/248104c4bdb2e01c036b7578867199191fbff181/src/datasets/arrow_dataset.py#L469) will keep `requested_tempdir` as it is and the *train* directory will be created under `requested_tempdir` and hence no errors will arise.\r\n\r\nBut in the second case (where we are saving to a local dir), the *train* directory is created under *squad* which in turn is created under `tempdir`, not under `.` (current dir).\r\n\r\nSo, all of this probably doesn't help solving the issue but it might help creating a better test, and it also makes me wonder why are we saving to a temporary dir in `save_to_disk` anyway? I mean, won't it be removed with all its contents upon execution completion? what's the point then? ", "CLosing in favor of #1923" ]
"2021-02-20T14:22:39Z"
"2021-02-22T10:30:11Z"
"2021-02-22T10:30:11Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/1920.diff", "html_url": "https://github.com/huggingface/datasets/pull/1920", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/1920.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/1920" }
Fixes #1919
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1920/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1920/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/4982
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/4982/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/4982/comments
https://api.github.com/repos/huggingface/datasets/issues/4982/events
https://github.com/huggingface/datasets/issues/4982
1,375,604,693
I_kwDODunzps5R_g_V
4,982
Create dataset_infos.json with VALIDATION and TEST splits
{ "avatar_url": "https://avatars.githubusercontent.com/u/26695348?v=4", "events_url": "https://api.github.com/users/skalinin/events{/privacy}", "followers_url": "https://api.github.com/users/skalinin/followers", "following_url": "https://api.github.com/users/skalinin/following{/other_user}", "gists_url": "https://api.github.com/users/skalinin/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/skalinin", "id": 26695348, "login": "skalinin", "node_id": "MDQ6VXNlcjI2Njk1MzQ4", "organizations_url": "https://api.github.com/users/skalinin/orgs", "received_events_url": "https://api.github.com/users/skalinin/received_events", "repos_url": "https://api.github.com/users/skalinin/repos", "site_admin": false, "starred_url": "https://api.github.com/users/skalinin/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/skalinin/subscriptions", "type": "User", "url": "https://api.github.com/users/skalinin" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
null
[]
null
[ "@mariosasko could you help me with this issue? we've started the discussion from [here](https://github.com/huggingface/datasets/issues/4895#issuecomment-1248227130)", "Hi again! Can you please pass the directory name containing the dataset script instead of the script name to `datasets-cli test`?", "Yes, it worked! thanks a lot" ]
"2022-09-16T08:21:19Z"
"2022-09-28T07:59:39Z"
"2022-09-28T07:59:39Z"
NONE
null
null
null
The problem is described in that [issue](https://github.com/huggingface/datasets/issues/4895#issuecomment-1247975569). > When I try to create data_infos.json using datasets-cli test Peter.py --save_infos --all_configs I get an error: > ValueError: Unknown split "test". Should be one of ['train']. > > The data_infos.json is created perfectly fine when I use only one split - datasets.Split.TRAIN > > You can find the code here: https://huggingface.co/datasets/sberbank-ai/Peter/tree/add_splits (add_splits branch) I tried to clear the cache folder, than I got an another error. I run: ``` git clone https://huggingface.co/datasets/sberbank-ai/Peter cd Peter git checkout add_splits # switch to a add_splits branch rm dataset_infos.json # remove local dataset_infos.json rm -r ~/.cache/huggingface # remove cached dataset_infos.json datasets-cli test Peter.py --save_infos --all_configs # trying to create new dataset_infos.json ``` The error message: ``` Using custom data configuration default Testing builder 'default' (1/1) Downloading and preparing dataset peter/default to /Users/kalinin/.cache/huggingface/datasets/peter/default/0.0.0/ef579519e140d6a40df2555996f26165f04c47557d7373709c8d7e7b4fd7465d... Downloading data files: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████| 4/4 [00:00<00:00, 5160.63it/s] Extracting data files: 0%| | 0/4 [00:00<?, ?it/s]Traceback (most recent call last): File "/usr/local/bin/datasets-cli", line 8, in <module> sys.exit(main()) File "/usr/local/lib/python3.9/site-packages/datasets/commands/datasets_cli.py", line 39, in main service.run() File "/usr/local/lib/python3.9/site-packages/datasets/commands/test.py", line 137, in run builder.download_and_prepare( File "/usr/local/lib/python3.9/site-packages/datasets/builder.py", line 704, in download_and_prepare self._download_and_prepare( File "/usr/local/lib/python3.9/site-packages/datasets/builder.py", line 1227, in _download_and_prepare super()._download_and_prepare(dl_manager, verify_infos, check_duplicate_keys=verify_infos) File "/usr/local/lib/python3.9/site-packages/datasets/builder.py", line 771, in _download_and_prepare split_generators = self._split_generators(dl_manager, **split_generators_kwargs) File "/Users/kalinin/.cache/huggingface/modules/datasets_modules/datasets/Peter/ef579519e140d6a40df2555996f26165f04c47557d7373709c8d7e7b4fd7465d/Peter.py", line 23, in _split_generators data_files = dl_manager.download_and_extract(_URLS) File "/usr/local/lib/python3.9/site-packages/datasets/download/download_manager.py", line 431, in download_and_extract return self.extract(self.download(url_or_urls)) File "/usr/local/lib/python3.9/site-packages/datasets/download/download_manager.py", line 403, in extract extracted_paths = map_nested( File "/usr/local/lib/python3.9/site-packages/datasets/utils/py_utils.py", line 393, in map_nested mapped = [ File "/usr/local/lib/python3.9/site-packages/datasets/utils/py_utils.py", line 394, in <listcomp> _single_map_nested((function, obj, types, None, True, None)) File "/usr/local/lib/python3.9/site-packages/datasets/utils/py_utils.py", line 330, in _single_map_nested return function(data_struct) File "/usr/local/lib/python3.9/site-packages/datasets/utils/file_utils.py", line 213, in cached_path output_path = ExtractManager(cache_dir=download_config.cache_dir).extract( File "/usr/local/lib/python3.9/site-packages/datasets/utils/extract.py", line 46, in extract self.extractor.extract(input_path, output_path, extractor_format) File "/usr/local/lib/python3.9/site-packages/datasets/utils/extract.py", line 263, in extract with FileLock(lock_path): File "/usr/local/lib/python3.9/site-packages/datasets/utils/filelock.py", line 399, in __init__ max_filename_length = os.statvfs(os.path.dirname(lock_file)).f_namemax FileNotFoundError: [Errno 2] No such file or directory: '' Exception ignored in: <function BaseFileLock.__del__ at 0x11caeec10> Traceback (most recent call last): File "/usr/local/lib/python3.9/site-packages/datasets/utils/filelock.py", line 328, in __del__ self.release(force=True) File "/usr/local/lib/python3.9/site-packages/datasets/utils/filelock.py", line 303, in release with self._thread_lock: AttributeError: 'UnixFileLock' object has no attribute '_thread_lock' Extracting data files: 0%| | 0/4 [00:00<?, ?it/s] ``` Can you help me please? ## Environment info - `datasets` version: 2.4.0 - Platform: macOS-12.5.1-x86_64-i386-64bit - Python version: 3.9.5 - PyArrow version: 9.0.0 - Pandas version: 1.2.4
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 1, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/4982/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/4982/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/2168
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2168/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2168/comments
https://api.github.com/repos/huggingface/datasets/issues/2168/events
https://github.com/huggingface/datasets/pull/2168
849,957,941
MDExOlB1bGxSZXF1ZXN0NjA4NjA4Nzg5
2,168
Preserve split type when realoding dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko" }
[]
closed
false
null
[]
null
[ "Thanks for diving into this !\r\n\r\nBefore going further, I just want to make sure if using `eval` is the right solution\r\nPersonally I'm not a big fan of `eval` since it has many security concerns. Also storing string representations of python objects in the json files is not ideal either IMO, so maybe it's possible to change this aspect instead.\r\n\r\nMaybe it would be better to convert the `_RelativeInstruction` to a string (or \"specs\") ?\r\nIt looks like `ReadInstruction.from_spec` already exists, but not the other way around.\r\nThe specs are the string representation of instructions. For example: `train+validation[:50%]`.\r\n\r\nLet me know what you think ! And thanks again, this issue has been here for a while now ^^", "@lhoestq Yes, before going with `eval`, I thought about this approach with the \"spec\". The only issue with this approach is that we have to come up with a represenation for the `rounding` arg.\r\n\r\nWhat do you think about this (maybe too verbose)?\r\n```python\r\n>>> print(ReadInstruction(\"train\", rounding=\"pct1_dropremainder\", from_=10, to=30).to_spec())\r\ntrain[10:30](pct1_dropremainder)", "Good idea !\r\n\r\nFirst we must note that the rounding is only used for percentage instructions.\r\nFor absolute instructions there's no rounding ambiguity.\r\n\r\nBy default the rounding is set to `closest`. For example if you have a train set of 999 examples and if you provide an instruction spec `\"train[:1%]\"`, you're going to get the first ten examples (while the `pct1_dropremainder ` rounding would return 9 examples).\r\n\r\nCurrently there's no way to get an instruction with a `pct1_dropremainder` rounding strategy from an instruction spec.\r\nSo we can either drop the support of `pct1_dropremainder` or define a way to use this strategy from a spec.\r\nI don't think dropping `pct1_dropremainder` would be a good idea since it allows to load each percent to all have the same number of examples (even the last one). Therefore I think your suggestion makes total sense and we should add a representation of this rounding strategy.\r\n\r\nI like what you suggested `train[10%:30%](pct1_dropremainder)` is fine, and it seems compatible with the regex that parses the instructions specs.", "@lhoestq I've made the changes as you suggested. Ready for the review.", "@lhoestq I've added a test and addressed the comments.\r\n\r\nAdditionally, `ReadInstruction` is converted to its spec form in `builder.py` to avoid a circular import that would happen if this logic was in `arrow_reader.py`. If you think it's better to have this logic in `arrow_reader.py`, the import can be delayed by putting it inside a function." ]
"2021-04-04T20:46:21Z"
"2021-04-19T10:57:05Z"
"2021-04-19T09:08:55Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/2168.diff", "html_url": "https://github.com/huggingface/datasets/pull/2168", "merged_at": "2021-04-19T09:08:55Z", "patch_url": "https://github.com/huggingface/datasets/pull/2168.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/2168" }
Fixes #2167 Using `eval` is not ideal for security reasons (in web apps I assume), but without it the code would be much more complex IMO. In terms of style, instead of explicitly importing a private member (`_RelativeInstruction`), we can add these imports at the top of the module: ```python from . import arrow_reader # gives us access to ReadInstruction and _RelativeInstruction from . import splits # gives us access to NamedSplit ``` and then define the `eval` globals as follows: ```python {**arrow_reader.__dict__, **splits.__dict__} ```
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2168/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2168/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/5765
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5765/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5765/comments
https://api.github.com/repos/huggingface/datasets/issues/5765/events
https://github.com/huggingface/datasets/issues/5765
1,671,388,824
I_kwDODunzps5jn16Y
5,765
ValueError: You should supply an encoding or a list of encodings to this method that includes input_ids, but you provided ['text']
{ "avatar_url": "https://avatars.githubusercontent.com/u/109907638?v=4", "events_url": "https://api.github.com/users/sauravtii/events{/privacy}", "followers_url": "https://api.github.com/users/sauravtii/followers", "following_url": "https://api.github.com/users/sauravtii/following{/other_user}", "gists_url": "https://api.github.com/users/sauravtii/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/sauravtii", "id": 109907638, "login": "sauravtii", "node_id": "U_kgDOBo0Otg", "organizations_url": "https://api.github.com/users/sauravtii/orgs", "received_events_url": "https://api.github.com/users/sauravtii/received_events", "repos_url": "https://api.github.com/users/sauravtii/repos", "site_admin": false, "starred_url": "https://api.github.com/users/sauravtii/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sauravtii/subscriptions", "type": "User", "url": "https://api.github.com/users/sauravtii" }
[]
open
false
null
[]
null
[ "You need to remove the `text` and `text_en` columns before passing the dataset to the `DataLoader` to avoid this error:\r\n```python\r\ntokenized_datasets = tokenized_datasets.remove_columns([\"text\", \"text_en\"])\r\n```\r\n", "Thanks @mariosasko. Now I am getting this error:\r\n\r\n```\r\nTraceback (most recent call last):\r\n File \"client_2.py\", line 138, in <module>\r\n main()\r\n File \"client_2.py\", line 134, in main\r\n fl.client.start_numpy_client(server_address=\"localhost:8080\", client=IMDBClient())\r\n File \"/home/saurav/.local/lib/python3.8/site-packages/flwr/client/app.py\", line 208, in start_numpy_client\r\n start_client(\r\n File \"/home/saurav/.local/lib/python3.8/site-packages/flwr/client/app.py\", line 142, in start_client\r\n client_message, sleep_duration, keep_going = handle(\r\n File \"/home/saurav/.local/lib/python3.8/site-packages/flwr/client/grpc_client/message_handler.py\", line 68, in handle\r\n return _fit(client, server_msg.fit_ins), 0, True\r\n File \"/home/saurav/.local/lib/python3.8/site-packages/flwr/client/grpc_client/message_handler.py\", line 157, in _fit\r\n fit_res = client.fit(fit_ins)\r\n File \"/home/saurav/.local/lib/python3.8/site-packages/flwr/client/app.py\", line 252, in _fit\r\n results = self.numpy_client.fit(parameters, ins.config) # type: ignore\r\n File \"client_2.py\", line 124, in fit\r\n train(net, trainloader, epochs=1)\r\n File \"client_2.py\", line 78, in train\r\n for batch in trainloader:\r\n File \"/home/saurav/.local/lib/python3.8/site-packages/torch/utils/data/dataloader.py\", line 652, in __next__\r\n data = self._next_data()\r\n File \"/home/saurav/.local/lib/python3.8/site-packages/torch/utils/data/dataloader.py\", line 692, in _next_data\r\n data = self._dataset_fetcher.fetch(index) # may raise StopIteration\r\n File \"/home/saurav/.local/lib/python3.8/site-packages/torch/utils/data/_utils/fetch.py\", line 49, in fetch\r\n data = [self.dataset[idx] for idx in possibly_batched_index]\r\n File \"/home/saurav/.local/lib/python3.8/site-packages/torch/utils/data/_utils/fetch.py\", line 49, in <listcomp>\r\n data = [self.dataset[idx] for idx in possibly_batched_index]\r\n File \"/home/saurav/.local/lib/python3.8/site-packages/datasets/arrow_dataset.py\", line 1525, in __getitem__\r\n return self._getitem(\r\n File \"/home/saurav/.local/lib/python3.8/site-packages/datasets/arrow_dataset.py\", line 1517, in _getitem\r\n pa_subtable = query_table(self._data, key, indices=self._indices if self._indices is not None else None)\r\n File \"/home/saurav/.local/lib/python3.8/site-packages/datasets/formatting/formatting.py\", line 373, in query_table\r\n pa_subtable = _query_table_with_indices_mapping(table, key, indices=indices)\r\n File \"/home/saurav/.local/lib/python3.8/site-packages/datasets/formatting/formatting.py\", line 55, in _query_table_with_indices_mapping\r\n return _query_table(table, key)\r\n File \"/home/saurav/.local/lib/python3.8/site-packages/datasets/formatting/formatting.py\", line 79, in _query_table\r\n return table.fast_slice(key % table.num_rows, 1)\r\nZeroDivisionError: integer division or modulo by zero\r\n```\r\n\r\nThis is my code:\r\n\r\n```\r\nfrom collections import OrderedDict\r\nimport warnings\r\n\r\nimport flwr as fl\r\nimport torch\r\nimport numpy as np\r\n\r\nimport random\r\nfrom torch.utils.data import DataLoader\r\n\r\nfrom datasets import load_dataset, load_metric\r\n\r\nfrom transformers import AutoTokenizer, DataCollatorWithPadding\r\nfrom transformers import AutoModelForSequenceClassification\r\nfrom transformers import AdamW\r\n#from transformers import tokenized_datasets\r\n\r\n\r\nwarnings.filterwarnings(\"ignore\", category=UserWarning)\r\n# DEVICE = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu\")\r\n\r\nDEVICE = \"cpu\"\r\n\r\nCHECKPOINT = \"distilbert-base-uncased\" # transformer model checkpoint\r\n\r\n\r\ndef load_data():\r\n \"\"\"Load IMDB data (training and eval)\"\"\"\r\n raw_datasets = load_dataset(\"yhavinga/imdb_dutch\")\r\n raw_datasets = raw_datasets.shuffle(seed=42)\r\n\r\n # remove unnecessary data split\r\n del raw_datasets[\"unsupervised\"]\r\n\r\n tokenizer = AutoTokenizer.from_pretrained(CHECKPOINT)\r\n\r\n def tokenize_function(examples):\r\n return tokenizer(examples[\"text\"], truncation=True)\r\n\r\n # random 100 samples\r\n population = random.sample(range(len(raw_datasets[\"train\"])), 100)\r\n\r\n tokenized_datasets = raw_datasets.map(tokenize_function, batched=True)\r\n tokenized_datasets[\"train\"] = tokenized_datasets[\"train\"].select(population)\r\n tokenized_datasets[\"test\"] = tokenized_datasets[\"test\"].select(population)\r\n\r\n # tokenized_datasets = tokenized_datasets.remove_columns(\"text\")\r\n # tokenized_datasets = tokenized_datasets.rename_column(\"label\", \"labels\")\r\n\r\n tokenized_datasets = tokenized_datasets.remove_columns(\"attention_mask\")\r\n tokenized_datasets = tokenized_datasets.remove_columns(\"input_ids\")\r\n tokenized_datasets = tokenized_datasets.remove_columns(\"label\")\r\n # tokenized_datasets = tokenized_datasets.remove_columns(\"text_en\")\r\n\r\n # tokenized_datasets = tokenized_datasets.remove_columns(raw_datasets[\"train\"].column_names)\r\n \r\n tokenized_datasets = tokenized_datasets.remove_columns([\"text\", \"text_en\"])\r\n \r\n data_collator = DataCollatorWithPadding(tokenizer=tokenizer)\r\n trainloader = DataLoader(\r\n tokenized_datasets[\"train\"],\r\n shuffle=True,\r\n batch_size=32,\r\n collate_fn=data_collator,\r\n )\r\n\r\n testloader = DataLoader(\r\n tokenized_datasets[\"test\"], batch_size=32, collate_fn=data_collator\r\n )\r\n\r\n return trainloader, testloader\r\n\r\n\r\ndef train(net, trainloader, epochs):\r\n optimizer = AdamW(net.parameters(), lr=5e-4)\r\n net.train()\r\n for _ in range(epochs):\r\n for batch in trainloader:\r\n batch = {k: v.to(DEVICE) for k, v in batch.items()}\r\n outputs = net(**batch)\r\n loss = outputs.loss\r\n loss.backward()\r\n optimizer.step()\r\n optimizer.zero_grad()\r\n\r\n\r\ndef test(net, testloader):\r\n metric = load_metric(\"accuracy\")\r\n loss = 0\r\n net.eval()\r\n for batch in testloader:\r\n batch = {k: v.to(DEVICE) for k, v in batch.items()}\r\n with torch.no_grad():\r\n outputs = net(**batch)\r\n logits = outputs.logits\r\n loss += outputs.loss.item()\r\n predictions = torch.argmax(logits, dim=-1)\r\n metric.add_batch(predictions=predictions, references=batch[\"labels\"])\r\n loss /= len(testloader.dataset)\r\n accuracy = metric.compute()[\"accuracy\"]\r\n return loss, accuracy\r\n\r\n\r\ndef main():\r\n net = AutoModelForSequenceClassification.from_pretrained(\r\n CHECKPOINT, num_labels=2\r\n ).to(DEVICE)\r\n\r\n trainloader, testloader = load_data()\r\n\r\n # Flower client\r\n class IMDBClient(fl.client.NumPyClient):\r\n def get_parameters(self, config):\r\n return [val.cpu().numpy() for _, val in net.state_dict().items()]\r\n\r\n def set_parameters(self, parameters):\r\n params_dict = zip(net.state_dict().keys(), parameters)\r\n state_dict = OrderedDict({k: torch.Tensor(v) for k, v in params_dict})\r\n net.load_state_dict(state_dict, strict=True)\r\n\r\n def fit(self, parameters, config):\r\n self.set_parameters(parameters)\r\n print(\"Training Started...\")\r\n train(net, trainloader, epochs=1)\r\n print(\"Training Finished.\")\r\n return self.get_parameters(config={}), len(trainloader), {}\r\n\r\n def evaluate(self, parameters, config):\r\n self.set_parameters(parameters)\r\n loss, accuracy = test(net, testloader)\r\n return float(loss), len(testloader), {\"accuracy\": float(accuracy)}\r\n\r\n # Start client\r\n fl.client.start_numpy_client(server_address=\"localhost:8080\", client=IMDBClient())\r\n\r\n\r\nif __name__ == \"__main__\":\r\n main()\r\n```", "Please also remove/comment these lines:\r\n```python\r\ntokenized_datasets = tokenized_datasets.remove_columns(\"attention_mask\")\r\ntokenized_datasets = tokenized_datasets.remove_columns(\"input_ids\")\r\ntokenized_datasets = tokenized_datasets.remove_columns(\"label\")\r\n```", "Thanks @mariosasko .\r\n\r\nNow, I am trying out this [tutorial](https://flower.dev/docs/quickstart-huggingface.html) which basically trains distil-BERT with IMDB dataset (very similar to this [tutorial](https://huggingface.co/docs/transformers/main/tasks/sequence_classification)). But I don't know why my accuracy isn't increasing even after training for a significant amount of time and also by using the entire dataset. Below I have attached `client.py` file:\r\n\r\n`client.py`:\r\n\r\n```\r\nfrom collections import OrderedDict\r\nimport warnings\r\n\r\nimport flwr as fl\r\nimport torch\r\nimport numpy as np\r\n\r\nimport random\r\nfrom torch.utils.data import DataLoader\r\n\r\nfrom datasets import load_dataset, load_metric\r\n\r\nfrom transformers import AutoTokenizer, DataCollatorWithPadding\r\nfrom transformers import AutoModelForSequenceClassification\r\nfrom transformers import AdamW\r\n\r\nwarnings.filterwarnings(\"ignore\", category=UserWarning)\r\n\r\nDEVICE = \"cuda:1\"\r\n\r\nCHECKPOINT = \"distilbert-base-uncased\" # transformer model checkpoint\r\n\r\n\r\ndef load_data():\r\n \"\"\"Load IMDB data (training and eval)\"\"\"\r\n raw_datasets = load_dataset(\"imdb\")\r\n raw_datasets = raw_datasets.shuffle(seed=42)\r\n\r\n # remove unnecessary data split\r\n del raw_datasets[\"unsupervised\"]\r\n\r\n tokenizer = AutoTokenizer.from_pretrained(CHECKPOINT)\r\n\r\n def tokenize_function(examples):\r\n return tokenizer(examples[\"text\"], truncation=True)\r\n\r\n tokenized_datasets = raw_datasets.map(tokenize_function, batched=True)\r\n\r\n tokenized_datasets = tokenized_datasets.remove_columns(\"text\")\r\n tokenized_datasets = tokenized_datasets.rename_column(\"label\", \"labels\")\r\n\r\n data_collator = DataCollatorWithPadding(tokenizer=tokenizer)\r\n trainloader = DataLoader(\r\n tokenized_datasets[\"train\"],\r\n shuffle=True,\r\n batch_size=32,\r\n collate_fn=data_collator,\r\n )\r\n\r\n testloader = DataLoader(\r\n tokenized_datasets[\"test\"], batch_size=32, collate_fn=data_collator\r\n )\r\n\r\n return trainloader, testloader\r\n\r\n\r\ndef train(net, trainloader, epochs):\r\n optimizer = AdamW(net.parameters(), lr=5e-5)\r\n net.train()\r\n for i in range(epochs):\r\n print(\"Epoch: \", i+1)\r\n j = 1\r\n print(\"####################### The length of the trainloader is: \", len(trainloader)) \r\n for batch in trainloader:\r\n print(\"####################### The batch number is: \", j)\r\n batch = {k: v.to(DEVICE) for k, v in batch.items()}\r\n outputs = net(**batch)\r\n loss = outputs.loss\r\n loss.backward()\r\n optimizer.step()\r\n optimizer.zero_grad()\r\n j += 1\r\n\r\n\r\ndef test(net, testloader):\r\n metric = load_metric(\"accuracy\")\r\n loss = 0\r\n net.eval()\r\n for batch in testloader:\r\n batch = {k: v.to(DEVICE) for k, v in batch.items()}\r\n with torch.no_grad():\r\n outputs = net(**batch)\r\n logits = outputs.logits\r\n loss += outputs.loss.item()\r\n predictions = torch.argmax(logits, dim=-1)\r\n metric.add_batch(predictions=predictions, references=batch[\"labels\"])\r\n loss /= len(testloader.dataset)\r\n accuracy = metric.compute()[\"accuracy\"]\r\n return loss, accuracy\r\n\r\n\r\ndef main():\r\n net = AutoModelForSequenceClassification.from_pretrained(\r\n CHECKPOINT, num_labels=2\r\n ).to(DEVICE)\r\n\r\n trainloader, testloader = load_data()\r\n\r\n # Flower client\r\n class IMDBClient(fl.client.NumPyClient):\r\n def get_parameters(self, config):\r\n return [val.cpu().numpy() for _, val in net.state_dict().items()]\r\n\r\n def set_parameters(self, parameters):\r\n params_dict = zip(net.state_dict().keys(), parameters)\r\n state_dict = OrderedDict({k: torch.Tensor(v) for k, v in params_dict})\r\n net.load_state_dict(state_dict, strict=True)\r\n\r\n def fit(self, parameters, config):\r\n self.set_parameters(parameters)\r\n print(\"Training Started...\")\r\n train(net, trainloader, epochs=1)\r\n print(\"Training Finished.\")\r\n return self.get_parameters(config={}), len(trainloader), {}\r\n\r\n def evaluate(self, parameters, config):\r\n self.set_parameters(parameters)\r\n loss, accuracy = test(net, testloader)\r\n print({\"loss\": float(loss), \"accuracy\": float(accuracy)})\r\n return float(loss), len(testloader), {\"loss\": float(loss), \"accuracy\": float(accuracy)}\r\n\r\n # Start client\r\n fl.client.start_numpy_client(server_address=\"localhost:5040\", client=IMDBClient())\r\n\r\n\r\nif __name__ == \"__main__\":\r\n main()\r\n```\r\n\r\nCan I get any help, please?" ]
"2023-04-17T15:00:50Z"
"2023-04-25T13:50:45Z"
null
NONE
null
null
null
### Describe the bug Following is my code that I am trying to run, but facing an error (have attached the whole error below): My code: ``` from collections import OrderedDict import warnings import flwr as fl import torch import numpy as np import random from torch.utils.data import DataLoader from datasets import load_dataset, load_metric from transformers import AutoTokenizer, DataCollatorWithPadding from transformers import AutoModelForSequenceClassification from transformers import AdamW #from transformers import tokenized_datasets warnings.filterwarnings("ignore", category=UserWarning) # DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") DEVICE = "cpu" CHECKPOINT = "distilbert-base-uncased" # transformer model checkpoint def load_data(): """Load IMDB data (training and eval)""" raw_datasets = load_dataset("yhavinga/imdb_dutch") raw_datasets = raw_datasets.shuffle(seed=42) # remove unnecessary data split del raw_datasets["unsupervised"] tokenizer = AutoTokenizer.from_pretrained(CHECKPOINT) def tokenize_function(examples): return tokenizer(examples["text"], truncation=True) # random 100 samples population = random.sample(range(len(raw_datasets["train"])), 100) tokenized_datasets = raw_datasets.map(tokenize_function, batched=True) tokenized_datasets["train"] = tokenized_datasets["train"].select(population) tokenized_datasets["test"] = tokenized_datasets["test"].select(population) # tokenized_datasets = tokenized_datasets.remove_columns("text") # tokenized_datasets = tokenized_datasets.rename_column("label", "labels") tokenized_datasets = tokenized_datasets.remove_columns("attention_mask") tokenized_datasets = tokenized_datasets.remove_columns("input_ids") tokenized_datasets = tokenized_datasets.remove_columns("label") tokenized_datasets = tokenized_datasets.remove_columns("text_en") # tokenized_datasets = tokenized_datasets.remove_columns(raw_datasets["train"].column_names) data_collator = DataCollatorWithPadding(tokenizer=tokenizer) trainloader = DataLoader( tokenized_datasets["train"], shuffle=True, batch_size=32, collate_fn=data_collator, ) testloader = DataLoader( tokenized_datasets["test"], batch_size=32, collate_fn=data_collator ) return trainloader, testloader def train(net, trainloader, epochs): optimizer = AdamW(net.parameters(), lr=5e-4) net.train() for _ in range(epochs): for batch in trainloader: batch = {k: v.to(DEVICE) for k, v in batch.items()} outputs = net(**batch) loss = outputs.loss loss.backward() optimizer.step() optimizer.zero_grad() def test(net, testloader): metric = load_metric("accuracy") loss = 0 net.eval() for batch in testloader: batch = {k: v.to(DEVICE) for k, v in batch.items()} with torch.no_grad(): outputs = net(**batch) logits = outputs.logits loss += outputs.loss.item() predictions = torch.argmax(logits, dim=-1) metric.add_batch(predictions=predictions, references=batch["labels"]) loss /= len(testloader.dataset) accuracy = metric.compute()["accuracy"] return loss, accuracy def main(): net = AutoModelForSequenceClassification.from_pretrained( CHECKPOINT, num_labels=2 ).to(DEVICE) trainloader, testloader = load_data() # Flower client class IMDBClient(fl.client.NumPyClient): def get_parameters(self, config): return [val.cpu().numpy() for _, val in net.state_dict().items()] def set_parameters(self, parameters): params_dict = zip(net.state_dict().keys(), parameters) state_dict = OrderedDict({k: torch.Tensor(v) for k, v in params_dict}) net.load_state_dict(state_dict, strict=True) def fit(self, parameters, config): self.set_parameters(parameters) print("Training Started...") train(net, trainloader, epochs=1) print("Training Finished.") return self.get_parameters(config={}), len(trainloader), {} def evaluate(self, parameters, config): self.set_parameters(parameters) loss, accuracy = test(net, testloader) return float(loss), len(testloader), {"accuracy": float(accuracy)} # Start client fl.client.start_numpy_client(server_address="localhost:8080", client=IMDBClient()) if __name__ == "__main__": main() ``` Error: ``` Traceback (most recent call last): File "client_2.py", line 136, in <module> main() File "client_2.py", line 132, in main fl.client.start_numpy_client(server_address="localhost:8080", client=IMDBClient()) File "/home/saurav/.local/lib/python3.8/site-packages/flwr/client/app.py", line 208, in start_numpy_client start_client( File "/home/saurav/.local/lib/python3.8/site-packages/flwr/client/app.py", line 142, in start_client client_message, sleep_duration, keep_going = handle( File "/home/saurav/.local/lib/python3.8/site-packages/flwr/client/grpc_client/message_handler.py", line 68, in handle return _fit(client, server_msg.fit_ins), 0, True File "/home/saurav/.local/lib/python3.8/site-packages/flwr/client/grpc_client/message_handler.py", line 157, in _fit fit_res = client.fit(fit_ins) File "/home/saurav/.local/lib/python3.8/site-packages/flwr/client/app.py", line 252, in _fit results = self.numpy_client.fit(parameters, ins.config) # type: ignore File "client_2.py", line 122, in fit train(net, trainloader, epochs=1) File "client_2.py", line 76, in train for batch in trainloader: File "/home/saurav/.local/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 652, in __next__ data = self._next_data() File "/home/saurav/.local/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 692, in _next_data data = self._dataset_fetcher.fetch(index) # may raise StopIteration File "/home/saurav/.local/lib/python3.8/site-packages/torch/utils/data/_utils/fetch.py", line 52, in fetch return self.collate_fn(data) File "/home/saurav/.local/lib/python3.8/site-packages/transformers/data/data_collator.py", line 221, in __call__ batch = self.tokenizer.pad( File "/home/saurav/.local/lib/python3.8/site-packages/transformers/tokenization_utils_base.py", line 2713, in pad raise ValueError( ValueError: You should supply an encoding or a list of encodings to this method that includes input_ids, but you provided ['text'] ``` ### Steps to reproduce the bug Run the above code. ### Expected behavior Don't know, doing it for the first time. ### Environment info - `datasets` version: 1.12.1 - Platform: Linux-5.4.0-58-generic-x86_64-with-glibc2.29 - Python version: 3.8.10 - PyArrow version: 11.0.0
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5765/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5765/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/2197
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2197/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2197/comments
https://api.github.com/repos/huggingface/datasets/issues/2197/events
https://github.com/huggingface/datasets/pull/2197
854,356,559
MDExOlB1bGxSZXF1ZXN0NjEyMzEzMzQw
2,197
fix missing indices_files in load_form_disk
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
[]
closed
false
null
[]
null
[]
"2021-04-09T09:37:57Z"
"2021-04-09T09:54:40Z"
"2021-04-09T09:54:39Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/2197.diff", "html_url": "https://github.com/huggingface/datasets/pull/2197", "merged_at": "2021-04-09T09:54:39Z", "patch_url": "https://github.com/huggingface/datasets/pull/2197.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/2197" }
This should fix #2195 `load_from_disk` was failing if there was no "_indices_files" field in state.json. This can happen if the dataset has no indices mapping
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2197/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2197/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/1928
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1928/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1928/comments
https://api.github.com/repos/huggingface/datasets/issues/1928/events
https://github.com/huggingface/datasets/pull/1928
813,793,434
MDExOlB1bGxSZXF1ZXN0NTc3ODgyMDM4
1,928
Updating old cards
{ "avatar_url": "https://avatars.githubusercontent.com/u/26722925?v=4", "events_url": "https://api.github.com/users/mcmillanmajora/events{/privacy}", "followers_url": "https://api.github.com/users/mcmillanmajora/followers", "following_url": "https://api.github.com/users/mcmillanmajora/following{/other_user}", "gists_url": "https://api.github.com/users/mcmillanmajora/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mcmillanmajora", "id": 26722925, "login": "mcmillanmajora", "node_id": "MDQ6VXNlcjI2NzIyOTI1", "organizations_url": "https://api.github.com/users/mcmillanmajora/orgs", "received_events_url": "https://api.github.com/users/mcmillanmajora/received_events", "repos_url": "https://api.github.com/users/mcmillanmajora/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mcmillanmajora/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mcmillanmajora/subscriptions", "type": "User", "url": "https://api.github.com/users/mcmillanmajora" }
[]
closed
false
null
[]
null
[]
"2021-02-22T19:26:04Z"
"2021-02-23T18:19:25Z"
"2021-02-23T18:19:25Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/1928.diff", "html_url": "https://github.com/huggingface/datasets/pull/1928", "merged_at": "2021-02-23T18:19:25Z", "patch_url": "https://github.com/huggingface/datasets/pull/1928.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/1928" }
Updated the cards for [Allocine](https://github.com/mcmillanmajora/datasets/tree/updating-old-cards/datasets/allocine), [CNN/DailyMail](https://github.com/mcmillanmajora/datasets/tree/updating-old-cards/datasets/cnn_dailymail), and [SNLI](https://github.com/mcmillanmajora/datasets/tree/updating-old-cards/datasets/snli). For the most part, the information was just rearranged or rephrased, but the social impact statements are new.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/1928/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1928/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6135
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6135/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6135/comments
https://api.github.com/repos/huggingface/datasets/issues/6135/events
https://github.com/huggingface/datasets/pull/6135
1,844,870,943
PR_kwDODunzps5Xn2AT
6,135
Remove unused allowed_extensions param
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009055 / 0.011353 (-0.002298) | 0.008835 / 0.011008 (-0.002173) | 0.117048 / 0.038508 (0.078540) | 0.096268 / 0.023109 (0.073159) | 0.474678 / 0.275898 (0.198780) | 0.550509 / 0.323480 (0.227029) | 0.005552 / 0.007986 (-0.002434) | 0.004315 / 0.004328 (-0.000013) | 0.094336 / 0.004250 (0.090086) | 0.061945 / 0.037052 (0.024892) | 0.461422 / 0.258489 (0.202933) | 0.521271 / 0.293841 (0.227430) | 0.049116 / 0.128546 (-0.079430) | 0.015007 / 0.075646 (-0.060639) | 0.414351 / 0.419271 (-0.004920) | 0.137520 / 0.043533 (0.093987) | 0.465627 / 0.255139 (0.210488) | 0.537244 / 0.283200 (0.254044) | 0.068577 / 0.141683 (-0.073106) | 1.921373 / 1.452155 (0.469219) | 2.506653 / 1.492716 (1.013937) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.273970 / 0.018006 (0.255963) | 0.750295 / 0.000490 (0.749805) | 0.004241 / 0.000200 (0.004041) | 0.000128 / 0.000054 (0.000073) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033793 / 0.037411 (-0.003618) | 0.105562 / 0.014526 (0.091037) | 0.131771 / 0.176557 (-0.044786) | 0.196890 / 0.737135 (-0.540245) | 0.119842 / 0.296338 (-0.176496) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.634881 / 0.215209 (0.419672) | 6.069221 / 2.077655 (3.991566) | 2.678765 / 1.504120 (1.174646) | 2.460309 / 1.541195 (0.919114) | 2.517579 / 1.468490 (1.049089) | 0.869558 / 4.584777 (-3.715219) | 5.407686 / 3.745712 (1.661974) | 4.920687 / 5.269862 (-0.349175) | 3.130066 / 4.565676 (-1.435611) | 0.100337 / 0.424275 (-0.323938) | 0.009615 / 0.007607 (0.002008) | 0.745275 / 0.226044 (0.519231) | 7.577890 / 2.268929 (5.308962) | 3.607887 / 55.444624 (-51.836738) | 2.922211 / 6.876477 (-3.954266) | 3.205592 / 2.142072 (1.063519) | 1.052298 / 4.805227 (-3.752929) | 0.218798 / 6.500664 (-6.281866) | 0.082137 / 0.075469 (0.006667) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.696551 / 1.841788 (-0.145237) | 24.946074 / 8.074308 (16.871766) | 23.114202 / 10.191392 (12.922810) | 0.220498 / 0.680424 (-0.459925) | 0.029388 / 0.534201 (-0.504813) | 0.494721 / 0.579283 (-0.084562) | 0.603085 / 0.434364 (0.168722) | 0.573093 / 0.540337 (0.032756) | 0.784937 / 1.386936 (-0.601999) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009642 / 0.011353 (-0.001711) | 0.007551 / 0.011008 (-0.003457) | 0.085224 / 0.038508 (0.046716) | 0.099493 / 0.023109 (0.076384) | 0.503824 / 0.275898 (0.227926) | 0.546583 / 0.323480 (0.223103) | 0.006385 / 0.007986 (-0.001601) | 0.004751 / 0.004328 (0.000423) | 0.084699 / 0.004250 (0.080449) | 0.067875 / 0.037052 (0.030823) | 0.485313 / 0.258489 (0.226824) | 0.535808 / 0.293841 (0.241967) | 0.049935 / 0.128546 (-0.078611) | 0.014427 / 0.075646 (-0.061219) | 0.095531 / 0.419271 (-0.323741) | 0.068487 / 0.043533 (0.024954) | 0.502204 / 0.255139 (0.247065) | 0.514393 / 0.283200 (0.231193) | 0.037350 / 0.141683 (-0.104333) | 1.849380 / 1.452155 (0.397226) | 1.920151 / 1.492716 (0.427434) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.298363 / 0.018006 (0.280357) | 0.651555 / 0.000490 (0.651065) | 0.005910 / 0.000200 (0.005710) | 0.000103 / 0.000054 (0.000048) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.039170 / 0.037411 (0.001758) | 0.106436 / 0.014526 (0.091910) | 0.129880 / 0.176557 (-0.046677) | 0.185401 / 0.737135 (-0.551734) | 0.125732 / 0.296338 (-0.170607) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.643248 / 0.215209 (0.428039) | 6.374807 / 2.077655 (4.297152) | 3.057296 / 1.504120 (1.553176) | 2.779534 / 1.541195 (1.238340) | 2.790165 / 1.468490 (1.321675) | 0.841580 / 4.584777 (-3.743197) | 5.371478 / 3.745712 (1.625766) | 4.973251 / 5.269862 (-0.296610) | 3.235817 / 4.565676 (-1.329860) | 0.097276 / 0.424275 (-0.326999) | 0.008840 / 0.007607 (0.001233) | 0.728678 / 0.226044 (0.502634) | 7.526382 / 2.268929 (5.257454) | 3.792550 / 55.444624 (-51.652074) | 3.439134 / 6.876477 (-3.437342) | 3.466626 / 2.142072 (1.324553) | 1.035894 / 4.805227 (-3.769333) | 0.211670 / 6.500664 (-6.288994) | 0.087596 / 0.075469 (0.012127) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.782755 / 1.841788 (-0.059033) | 25.704407 / 8.074308 (17.630099) | 23.799672 / 10.191392 (13.608280) | 0.233952 / 0.680424 (-0.446472) | 0.030810 / 0.534201 (-0.503391) | 0.505857 / 0.579283 (-0.073426) | 0.629331 / 0.434364 (0.194967) | 0.608530 / 0.540337 (0.068192) | 0.813688 / 1.386936 (-0.573248) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#ed4d6bb5f1331576c41b04acd9872a5349a0915c \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006401 / 0.011353 (-0.004952) | 0.003916 / 0.011008 (-0.007092) | 0.083976 / 0.038508 (0.045468) | 0.072583 / 0.023109 (0.049474) | 0.322747 / 0.275898 (0.046849) | 0.345159 / 0.323480 (0.021679) | 0.005366 / 0.007986 (-0.002620) | 0.003399 / 0.004328 (-0.000930) | 0.064232 / 0.004250 (0.059982) | 0.053313 / 0.037052 (0.016261) | 0.353127 / 0.258489 (0.094638) | 0.361398 / 0.293841 (0.067557) | 0.030604 / 0.128546 (-0.097942) | 0.008615 / 0.075646 (-0.067031) | 0.285806 / 0.419271 (-0.133466) | 0.050887 / 0.043533 (0.007354) | 0.312293 / 0.255139 (0.057154) | 0.349716 / 0.283200 (0.066516) | 0.024546 / 0.141683 (-0.117137) | 1.472318 / 1.452155 (0.020163) | 1.536063 / 1.492716 (0.043347) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.280012 / 0.018006 (0.262006) | 0.593574 / 0.000490 (0.593085) | 0.004083 / 0.000200 (0.003883) | 0.000195 / 0.000054 (0.000141) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027715 / 0.037411 (-0.009696) | 0.081392 / 0.014526 (0.066866) | 0.096445 / 0.176557 (-0.080112) | 0.152131 / 0.737135 (-0.585004) | 0.094825 / 0.296338 (-0.201514) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.380749 / 0.215209 (0.165540) | 3.806994 / 2.077655 (1.729339) | 1.842544 / 1.504120 (0.338424) | 1.682829 / 1.541195 (0.141635) | 1.701679 / 1.468490 (0.233189) | 0.484830 / 4.584777 (-4.099947) | 3.517359 / 3.745712 (-0.228353) | 3.231211 / 5.269862 (-2.038651) | 2.029371 / 4.565676 (-2.536306) | 0.057199 / 0.424275 (-0.367077) | 0.007653 / 0.007607 (0.000046) | 0.458572 / 0.226044 (0.232528) | 4.579835 / 2.268929 (2.310907) | 2.326467 / 55.444624 (-53.118157) | 1.939646 / 6.876477 (-4.936831) | 2.133150 / 2.142072 (-0.008922) | 0.596251 / 4.805227 (-4.208976) | 0.131979 / 6.500664 (-6.368686) | 0.059226 / 0.075469 (-0.016243) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.234833 / 1.841788 (-0.606955) | 19.475522 / 8.074308 (11.401214) | 14.102760 / 10.191392 (3.911368) | 0.159657 / 0.680424 (-0.520767) | 0.018292 / 0.534201 (-0.515909) | 0.391079 / 0.579283 (-0.188204) | 0.406736 / 0.434364 (-0.027628) | 0.459159 / 0.540337 (-0.081178) | 0.618159 / 1.386936 (-0.768777) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006592 / 0.011353 (-0.004761) | 0.004052 / 0.011008 (-0.006957) | 0.064536 / 0.038508 (0.026028) | 0.075051 / 0.023109 (0.051942) | 0.379596 / 0.275898 (0.103698) | 0.412413 / 0.323480 (0.088933) | 0.005377 / 0.007986 (-0.002608) | 0.003466 / 0.004328 (-0.000863) | 0.064958 / 0.004250 (0.060708) | 0.055265 / 0.037052 (0.018213) | 0.391505 / 0.258489 (0.133016) | 0.425345 / 0.293841 (0.131504) | 0.030750 / 0.128546 (-0.097796) | 0.008652 / 0.075646 (-0.066994) | 0.072107 / 0.419271 (-0.347165) | 0.048340 / 0.043533 (0.004807) | 0.387714 / 0.255139 (0.132575) | 0.402602 / 0.283200 (0.119402) | 0.023492 / 0.141683 (-0.118191) | 1.528377 / 1.452155 (0.076222) | 1.574827 / 1.492716 (0.082110) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.316999 / 0.018006 (0.298993) | 0.528391 / 0.000490 (0.527901) | 0.005183 / 0.000200 (0.004983) | 0.000085 / 0.000054 (0.000031) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029670 / 0.037411 (-0.007741) | 0.087130 / 0.014526 (0.072604) | 0.099897 / 0.176557 (-0.076660) | 0.154074 / 0.737135 (-0.583062) | 0.104309 / 0.296338 (-0.192030) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.408804 / 0.215209 (0.193595) | 4.072248 / 2.077655 (1.994593) | 2.103333 / 1.504120 (0.599213) | 1.931972 / 1.541195 (0.390777) | 1.980132 / 1.468490 (0.511642) | 0.482623 / 4.584777 (-4.102154) | 3.532789 / 3.745712 (-0.212923) | 3.304962 / 5.269862 (-1.964899) | 2.036672 / 4.565676 (-2.529004) | 0.056944 / 0.424275 (-0.367331) | 0.007190 / 0.007607 (-0.000417) | 0.490650 / 0.226044 (0.264606) | 4.903604 / 2.268929 (2.634675) | 2.586247 / 55.444624 (-52.858377) | 2.227631 / 6.876477 (-4.648846) | 2.397286 / 2.142072 (0.255214) | 0.579167 / 4.805227 (-4.226060) | 0.132037 / 6.500664 (-6.368627) | 0.059971 / 0.075469 (-0.015498) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.336430 / 1.841788 (-0.505358) | 19.915846 / 8.074308 (11.841538) | 14.102781 / 10.191392 (3.911389) | 0.147956 / 0.680424 (-0.532468) | 0.018192 / 0.534201 (-0.516009) | 0.397949 / 0.579283 (-0.181334) | 0.408529 / 0.434364 (-0.025835) | 0.479382 / 0.540337 (-0.060955) | 0.659735 / 1.386936 (-0.727201) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#98074122449bc031f7269f298f1c55f20e39b975 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005880 / 0.011353 (-0.005473) | 0.003677 / 0.011008 (-0.007332) | 0.080022 / 0.038508 (0.041514) | 0.055554 / 0.023109 (0.032445) | 0.397449 / 0.275898 (0.121551) | 0.428346 / 0.323480 (0.104867) | 0.004613 / 0.007986 (-0.003373) | 0.002873 / 0.004328 (-0.001455) | 0.062226 / 0.004250 (0.057976) | 0.044721 / 0.037052 (0.007669) | 0.404792 / 0.258489 (0.146303) | 0.437467 / 0.293841 (0.143626) | 0.027166 / 0.128546 (-0.101381) | 0.008077 / 0.075646 (-0.067569) | 0.260469 / 0.419271 (-0.158803) | 0.043551 / 0.043533 (0.000018) | 0.401712 / 0.255139 (0.146573) | 0.427294 / 0.283200 (0.144094) | 0.021243 / 0.141683 (-0.120440) | 1.464553 / 1.452155 (0.012398) | 1.507112 / 1.492716 (0.014396) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.198415 / 0.018006 (0.180408) | 0.427940 / 0.000490 (0.427450) | 0.004236 / 0.000200 (0.004036) | 0.000067 / 0.000054 (0.000013) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023759 / 0.037411 (-0.013652) | 0.073262 / 0.014526 (0.058736) | 0.677113 / 0.176557 (0.500557) | 0.194964 / 0.737135 (-0.542172) | 0.086121 / 0.296338 (-0.210217) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.401176 / 0.215209 (0.185967) | 4.028688 / 2.077655 (1.951034) | 2.026804 / 1.504120 (0.522685) | 1.887964 / 1.541195 (0.346770) | 2.008991 / 1.468490 (0.540501) | 0.498847 / 4.584777 (-4.085930) | 3.015920 / 3.745712 (-0.729792) | 2.837019 / 5.269862 (-2.432843) | 1.849976 / 4.565676 (-2.715701) | 0.057545 / 0.424275 (-0.366730) | 0.006645 / 0.007607 (-0.000962) | 0.470225 / 0.226044 (0.244180) | 4.720910 / 2.268929 (2.451982) | 2.473693 / 55.444624 (-52.970931) | 2.177525 / 6.876477 (-4.698952) | 2.374702 / 2.142072 (0.232630) | 0.588253 / 4.805227 (-4.216974) | 0.125512 / 6.500664 (-6.375152) | 0.061247 / 0.075469 (-0.014222) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.255829 / 1.841788 (-0.585959) | 18.251689 / 8.074308 (10.177381) | 13.690373 / 10.191392 (3.498981) | 0.146928 / 0.680424 (-0.533496) | 0.016534 / 0.534201 (-0.517667) | 0.335249 / 0.579283 (-0.244034) | 0.338940 / 0.434364 (-0.095424) | 0.382170 / 0.540337 (-0.158168) | 0.529570 / 1.386936 (-0.857366) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005920 / 0.011353 (-0.005433) | 0.003557 / 0.011008 (-0.007451) | 0.062776 / 0.038508 (0.024267) | 0.058473 / 0.023109 (0.035364) | 0.358780 / 0.275898 (0.082882) | 0.394161 / 0.323480 (0.070682) | 0.004636 / 0.007986 (-0.003349) | 0.002865 / 0.004328 (-0.001463) | 0.062033 / 0.004250 (0.057782) | 0.047154 / 0.037052 (0.010101) | 0.367718 / 0.258489 (0.109229) | 0.400814 / 0.293841 (0.106973) | 0.026919 / 0.128546 (-0.101628) | 0.008071 / 0.075646 (-0.067575) | 0.067802 / 0.419271 (-0.351469) | 0.040894 / 0.043533 (-0.002638) | 0.358757 / 0.255139 (0.103618) | 0.384971 / 0.283200 (0.101771) | 0.020019 / 0.141683 (-0.121664) | 1.458578 / 1.452155 (0.006423) | 1.525059 / 1.492716 (0.032342) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.207795 / 0.018006 (0.189789) | 0.413201 / 0.000490 (0.412712) | 0.005199 / 0.000200 (0.004999) | 0.000085 / 0.000054 (0.000031) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025716 / 0.037411 (-0.011696) | 0.078434 / 0.014526 (0.063908) | 0.086920 / 0.176557 (-0.089637) | 0.138327 / 0.737135 (-0.598808) | 0.088120 / 0.296338 (-0.208219) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.434344 / 0.215209 (0.219135) | 4.343114 / 2.077655 (2.265459) | 2.384439 / 1.504120 (0.880319) | 2.253929 / 1.541195 (0.712735) | 2.306811 / 1.468490 (0.838321) | 0.497572 / 4.584777 (-4.087205) | 3.028794 / 3.745712 (-0.716919) | 2.833484 / 5.269862 (-2.436377) | 1.878918 / 4.565676 (-2.686759) | 0.057133 / 0.424275 (-0.367143) | 0.006357 / 0.007607 (-0.001251) | 0.508019 / 0.226044 (0.281975) | 5.076935 / 2.268929 (2.808007) | 2.745784 / 55.444624 (-52.698841) | 2.476291 / 6.876477 (-4.400186) | 2.677264 / 2.142072 (0.535191) | 0.587173 / 4.805227 (-4.218054) | 0.126373 / 6.500664 (-6.374291) | 0.062815 / 0.075469 (-0.012654) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.355482 / 1.841788 (-0.486305) | 18.818227 / 8.074308 (10.743919) | 13.954289 / 10.191392 (3.762896) | 0.143413 / 0.680424 (-0.537011) | 0.016844 / 0.534201 (-0.517357) | 0.338334 / 0.579283 (-0.240949) | 0.344559 / 0.434364 (-0.089805) | 0.400669 / 0.540337 (-0.139669) | 0.563835 / 1.386936 (-0.823101) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#c02a44715c036b5261686669727394b1308a3a4b \"CML watermark\")\n" ]
"2023-08-10T10:09:54Z"
"2023-08-10T12:08:38Z"
"2023-08-10T12:00:02Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6135.diff", "html_url": "https://github.com/huggingface/datasets/pull/6135", "merged_at": "2023-08-10T12:00:01Z", "patch_url": "https://github.com/huggingface/datasets/pull/6135.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6135" }
This PR removes unused `allowed_extensions` parameter from `create_builder_configs_from_metadata_configs`.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6135/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6135/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/5619
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5619/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5619/comments
https://api.github.com/repos/huggingface/datasets/issues/5619/events
https://github.com/huggingface/datasets/pull/5619
1,613,439,709
PR_kwDODunzps5LeaYP
5,619
unpin fsspec
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009954 / 0.011353 (-0.001398) | 0.005468 / 0.011008 (-0.005541) | 0.101228 / 0.038508 (0.062720) | 0.037878 / 0.023109 (0.014769) | 0.305635 / 0.275898 (0.029737) | 0.391672 / 0.323480 (0.068192) | 0.008893 / 0.007986 (0.000908) | 0.005861 / 0.004328 (0.001533) | 0.076940 / 0.004250 (0.072689) | 0.046242 / 0.037052 (0.009190) | 0.324033 / 0.258489 (0.065544) | 0.383306 / 0.293841 (0.089465) | 0.039298 / 0.128546 (-0.089249) | 0.012187 / 0.075646 (-0.063459) | 0.336774 / 0.419271 (-0.082498) | 0.053493 / 0.043533 (0.009960) | 0.303381 / 0.255139 (0.048242) | 0.323494 / 0.283200 (0.040295) | 0.118613 / 0.141683 (-0.023070) | 1.463430 / 1.452155 (0.011275) | 1.549856 / 1.492716 (0.057139) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.289264 / 0.018006 (0.271258) | 0.520348 / 0.000490 (0.519858) | 0.004543 / 0.000200 (0.004343) | 0.000090 / 0.000054 (0.000036) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028183 / 0.037411 (-0.009229) | 0.107869 / 0.014526 (0.093343) | 0.124019 / 0.176557 (-0.052537) | 0.167769 / 0.737135 (-0.569367) | 0.130304 / 0.296338 (-0.166034) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.402296 / 0.215209 (0.187087) | 4.018884 / 2.077655 (1.941229) | 1.834050 / 1.504120 (0.329930) | 1.649974 / 1.541195 (0.108779) | 1.741697 / 1.468490 (0.273207) | 0.684354 / 4.584777 (-3.900423) | 3.778213 / 3.745712 (0.032501) | 2.158086 / 5.269862 (-3.111775) | 1.472671 / 4.565676 (-3.093006) | 0.083912 / 0.424275 (-0.340363) | 0.012285 / 0.007607 (0.004678) | 0.501689 / 0.226044 (0.275645) | 5.014722 / 2.268929 (2.745794) | 2.310722 / 55.444624 (-53.133902) | 1.983214 / 6.876477 (-4.893262) | 2.154518 / 2.142072 (0.012446) | 0.821277 / 4.805227 (-3.983950) | 0.164434 / 6.500664 (-6.336231) | 0.062568 / 0.075469 (-0.012901) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.224338 / 1.841788 (-0.617450) | 14.981623 / 8.074308 (6.907315) | 14.296356 / 10.191392 (4.104964) | 0.193554 / 0.680424 (-0.486870) | 0.028511 / 0.534201 (-0.505690) | 0.437649 / 0.579283 (-0.141634) | 0.448934 / 0.434364 (0.014570) | 0.552624 / 0.540337 (0.012287) | 0.654268 / 1.386936 (-0.732668) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007772 / 0.011353 (-0.003581) | 0.005534 / 0.011008 (-0.005474) | 0.074347 / 0.038508 (0.035839) | 0.034486 / 0.023109 (0.011376) | 0.343430 / 0.275898 (0.067532) | 0.385778 / 0.323480 (0.062298) | 0.006424 / 0.007986 (-0.001562) | 0.004241 / 0.004328 (-0.000087) | 0.072839 / 0.004250 (0.068589) | 0.055523 / 0.037052 (0.018471) | 0.342778 / 0.258489 (0.084289) | 0.389961 / 0.293841 (0.096120) | 0.037238 / 0.128546 (-0.091308) | 0.012450 / 0.075646 (-0.063197) | 0.085282 / 0.419271 (-0.333990) | 0.049678 / 0.043533 (0.006146) | 0.345300 / 0.255139 (0.090161) | 0.365220 / 0.283200 (0.082020) | 0.109257 / 0.141683 (-0.032426) | 1.480284 / 1.452155 (0.028129) | 1.627881 / 1.492716 (0.135165) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.323330 / 0.018006 (0.305324) | 0.530824 / 0.000490 (0.530334) | 0.000463 / 0.000200 (0.000263) | 0.000063 / 0.000054 (0.000009) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032398 / 0.037411 (-0.005013) | 0.115889 / 0.014526 (0.101363) | 0.131093 / 0.176557 (-0.045464) | 0.180757 / 0.737135 (-0.556379) | 0.134395 / 0.296338 (-0.161943) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.423931 / 0.215209 (0.208722) | 4.238207 / 2.077655 (2.160553) | 2.075721 / 1.504120 (0.571602) | 1.887752 / 1.541195 (0.346557) | 2.055054 / 1.468490 (0.586564) | 0.703145 / 4.584777 (-3.881632) | 3.937120 / 3.745712 (0.191408) | 3.748550 / 5.269862 (-1.521311) | 1.562849 / 4.565676 (-3.002827) | 0.087695 / 0.424275 (-0.336580) | 0.012614 / 0.007607 (0.005007) | 0.523901 / 0.226044 (0.297856) | 5.230210 / 2.268929 (2.961282) | 2.592667 / 55.444624 (-52.851958) | 2.345662 / 6.876477 (-4.530815) | 2.475388 / 2.142072 (0.333316) | 0.836443 / 4.805227 (-3.968784) | 0.170304 / 6.500664 (-6.330360) | 0.067741 / 0.075469 (-0.007729) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.255171 / 1.841788 (-0.586617) | 16.312856 / 8.074308 (8.238548) | 13.184770 / 10.191392 (2.993378) | 0.145557 / 0.680424 (-0.534867) | 0.017723 / 0.534201 (-0.516478) | 0.423447 / 0.579283 (-0.155836) | 0.423063 / 0.434364 (-0.011301) | 0.494159 / 0.540337 (-0.046179) | 0.589590 / 1.386936 (-0.797346) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#4ea6f1db3f80eb3bb7ac6f252c2cd5bd97537c01 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.012068 / 0.011353 (0.000715) | 0.006127 / 0.011008 (-0.004881) | 0.112550 / 0.038508 (0.074042) | 0.043201 / 0.023109 (0.020092) | 0.346666 / 0.275898 (0.070768) | 0.413852 / 0.323480 (0.090372) | 0.009342 / 0.007986 (0.001356) | 0.006302 / 0.004328 (0.001974) | 0.086901 / 0.004250 (0.082650) | 0.053992 / 0.037052 (0.016940) | 0.362192 / 0.258489 (0.103703) | 0.409867 / 0.293841 (0.116026) | 0.046124 / 0.128546 (-0.082422) | 0.014139 / 0.075646 (-0.061507) | 0.386386 / 0.419271 (-0.032886) | 0.058465 / 0.043533 (0.014932) | 0.344832 / 0.255139 (0.089693) | 0.370684 / 0.283200 (0.087485) | 0.122886 / 0.141683 (-0.018796) | 1.724013 / 1.452155 (0.271858) | 1.775756 / 1.492716 (0.283039) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.220289 / 0.018006 (0.202283) | 0.493585 / 0.000490 (0.493096) | 0.001970 / 0.000200 (0.001770) | 0.000099 / 0.000054 (0.000044) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030763 / 0.037411 (-0.006649) | 0.128237 / 0.014526 (0.113711) | 0.138364 / 0.176557 (-0.038192) | 0.188115 / 0.737135 (-0.549021) | 0.145367 / 0.296338 (-0.150972) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.452487 / 0.215209 (0.237277) | 4.592728 / 2.077655 (2.515074) | 2.075712 / 1.504120 (0.571592) | 1.845424 / 1.541195 (0.304229) | 1.956400 / 1.468490 (0.487910) | 0.808387 / 4.584777 (-3.776390) | 4.483678 / 3.745712 (0.737966) | 3.870287 / 5.269862 (-1.399574) | 2.151205 / 4.565676 (-2.414471) | 0.098123 / 0.424275 (-0.326152) | 0.014139 / 0.007607 (0.006531) | 0.577775 / 0.226044 (0.351730) | 5.785545 / 2.268929 (3.516616) | 2.614418 / 55.444624 (-52.830206) | 2.312136 / 6.876477 (-4.564341) | 2.364189 / 2.142072 (0.222117) | 0.970028 / 4.805227 (-3.835199) | 0.189592 / 6.500664 (-6.311072) | 0.072883 / 0.075469 (-0.002586) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.414252 / 1.841788 (-0.427535) | 17.518307 / 8.074308 (9.443999) | 16.053748 / 10.191392 (5.862356) | 0.215297 / 0.680424 (-0.465127) | 0.033947 / 0.534201 (-0.500253) | 0.525794 / 0.579283 (-0.053489) | 0.514676 / 0.434364 (0.080312) | 0.595066 / 0.540337 (0.054728) | 0.689404 / 1.386936 (-0.697532) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008185 / 0.011353 (-0.003168) | 0.005776 / 0.011008 (-0.005232) | 0.084919 / 0.038508 (0.046411) | 0.037575 / 0.023109 (0.014466) | 0.401192 / 0.275898 (0.125294) | 0.443920 / 0.323480 (0.120440) | 0.006446 / 0.007986 (-0.001540) | 0.004428 / 0.004328 (0.000099) | 0.084013 / 0.004250 (0.079763) | 0.052013 / 0.037052 (0.014961) | 0.398429 / 0.258489 (0.139940) | 0.455676 / 0.293841 (0.161836) | 0.041568 / 0.128546 (-0.086978) | 0.013631 / 0.075646 (-0.062015) | 0.098709 / 0.419271 (-0.320563) | 0.055889 / 0.043533 (0.012356) | 0.402002 / 0.255139 (0.146863) | 0.424248 / 0.283200 (0.141049) | 0.113288 / 0.141683 (-0.028395) | 1.672214 / 1.452155 (0.220059) | 1.792940 / 1.492716 (0.300223) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.211847 / 0.018006 (0.193841) | 0.486711 / 0.000490 (0.486221) | 0.002907 / 0.000200 (0.002707) | 0.000118 / 0.000054 (0.000063) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032931 / 0.037411 (-0.004480) | 0.142073 / 0.014526 (0.127547) | 0.142872 / 0.176557 (-0.033685) | 0.202612 / 0.737135 (-0.534523) | 0.154390 / 0.296338 (-0.141949) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.488682 / 0.215209 (0.273473) | 4.755805 / 2.077655 (2.678150) | 2.348778 / 1.504120 (0.844658) | 2.144992 / 1.541195 (0.603797) | 2.245654 / 1.468490 (0.777164) | 0.792690 / 4.584777 (-3.792087) | 4.569190 / 3.745712 (0.823478) | 3.919317 / 5.269862 (-1.350545) | 2.140302 / 4.565676 (-2.425374) | 0.096430 / 0.424275 (-0.327845) | 0.014551 / 0.007607 (0.006944) | 0.605138 / 0.226044 (0.379094) | 5.989470 / 2.268929 (3.720542) | 2.915525 / 55.444624 (-52.529099) | 2.516243 / 6.876477 (-4.360234) | 2.673114 / 2.142072 (0.531041) | 0.932330 / 4.805227 (-3.872897) | 0.191456 / 6.500664 (-6.309209) | 0.073887 / 0.075469 (-0.001582) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.455552 / 1.841788 (-0.386236) | 17.824864 / 8.074308 (9.750556) | 15.764150 / 10.191392 (5.572758) | 0.184935 / 0.680424 (-0.495489) | 0.020552 / 0.534201 (-0.513649) | 0.486816 / 0.579283 (-0.092467) | 0.489006 / 0.434364 (0.054642) | 0.609826 / 0.540337 (0.069488) | 0.721313 / 1.386936 (-0.665623) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#a0a35c5fa84a8a7df656c1f5b0a7266126fa9b75 \"CML watermark\")\n" ]
"2023-03-07T13:22:41Z"
"2023-03-07T13:47:01Z"
"2023-03-07T13:39:02Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5619.diff", "html_url": "https://github.com/huggingface/datasets/pull/5619", "merged_at": "2023-03-07T13:39:02Z", "patch_url": "https://github.com/huggingface/datasets/pull/5619.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5619" }
close https://github.com/huggingface/datasets/issues/5618
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5619/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5619/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/5512
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5512/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5512/comments
https://api.github.com/repos/huggingface/datasets/issues/5512/events
https://github.com/huggingface/datasets/pull/5512
1,576,142,432
PR_kwDODunzps5JhtQy
5,512
Speed up batched PyTorch DataLoader
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008882 / 0.011353 (-0.002471) | 0.004562 / 0.011008 (-0.006446) | 0.100035 / 0.038508 (0.061527) | 0.030654 / 0.023109 (0.007545) | 0.298745 / 0.275898 (0.022847) | 0.356869 / 0.323480 (0.033389) | 0.007170 / 0.007986 (-0.000815) | 0.003471 / 0.004328 (-0.000858) | 0.077975 / 0.004250 (0.073725) | 0.037861 / 0.037052 (0.000809) | 0.311643 / 0.258489 (0.053154) | 0.343504 / 0.293841 (0.049663) | 0.033768 / 0.128546 (-0.094778) | 0.011342 / 0.075646 (-0.064304) | 0.323953 / 0.419271 (-0.095319) | 0.040818 / 0.043533 (-0.002715) | 0.298492 / 0.255139 (0.043353) | 0.327292 / 0.283200 (0.044092) | 0.088423 / 0.141683 (-0.053260) | 1.489520 / 1.452155 (0.037366) | 1.532962 / 1.492716 (0.040245) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.223654 / 0.018006 (0.205647) | 0.415134 / 0.000490 (0.414644) | 0.007394 / 0.000200 (0.007194) | 0.000080 / 0.000054 (0.000026) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023616 / 0.037411 (-0.013795) | 0.096652 / 0.014526 (0.082126) | 0.105239 / 0.176557 (-0.071318) | 0.148637 / 0.737135 (-0.588498) | 0.107937 / 0.296338 (-0.188402) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.426816 / 0.215209 (0.211607) | 4.241533 / 2.077655 (2.163878) | 1.946493 / 1.504120 (0.442373) | 1.735765 / 1.541195 (0.194570) | 1.781424 / 1.468490 (0.312934) | 0.688082 / 4.584777 (-3.896694) | 3.396444 / 3.745712 (-0.349268) | 1.920333 / 5.269862 (-3.349528) | 1.293833 / 4.565676 (-3.271843) | 0.081967 / 0.424275 (-0.342308) | 0.012911 / 0.007607 (0.005304) | 0.536928 / 0.226044 (0.310884) | 5.452327 / 2.268929 (3.183399) | 2.505785 / 55.444624 (-52.938840) | 2.173627 / 6.876477 (-4.702850) | 2.119978 / 2.142072 (-0.022095) | 0.809012 / 4.805227 (-3.996215) | 0.149124 / 6.500664 (-6.351540) | 0.066008 / 0.075469 (-0.009461) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.215702 / 1.841788 (-0.626085) | 13.757525 / 8.074308 (5.683217) | 13.999208 / 10.191392 (3.807816) | 0.164875 / 0.680424 (-0.515549) | 0.028517 / 0.534201 (-0.505684) | 0.394829 / 0.579283 (-0.184454) | 0.404962 / 0.434364 (-0.029401) | 0.484455 / 0.540337 (-0.055882) | 0.575008 / 1.386936 (-0.811928) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006754 / 0.011353 (-0.004598) | 0.004579 / 0.011008 (-0.006430) | 0.076617 / 0.038508 (0.038109) | 0.027902 / 0.023109 (0.004793) | 0.346278 / 0.275898 (0.070380) | 0.398060 / 0.323480 (0.074580) | 0.004938 / 0.007986 (-0.003047) | 0.004681 / 0.004328 (0.000353) | 0.076336 / 0.004250 (0.072086) | 0.038018 / 0.037052 (0.000966) | 0.358701 / 0.258489 (0.100212) | 0.408413 / 0.293841 (0.114572) | 0.031772 / 0.128546 (-0.096774) | 0.011604 / 0.075646 (-0.064042) | 0.085964 / 0.419271 (-0.333308) | 0.042030 / 0.043533 (-0.001502) | 0.343568 / 0.255139 (0.088429) | 0.381805 / 0.283200 (0.098605) | 0.090759 / 0.141683 (-0.050924) | 1.504553 / 1.452155 (0.052398) | 1.594006 / 1.492716 (0.101289) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.227395 / 0.018006 (0.209389) | 0.403097 / 0.000490 (0.402608) | 0.000413 / 0.000200 (0.000213) | 0.000060 / 0.000054 (0.000006) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024693 / 0.037411 (-0.012718) | 0.100470 / 0.014526 (0.085944) | 0.108481 / 0.176557 (-0.068076) | 0.142791 / 0.737135 (-0.594345) | 0.109949 / 0.296338 (-0.186389) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.443674 / 0.215209 (0.228465) | 4.412207 / 2.077655 (2.334553) | 2.073752 / 1.504120 (0.569632) | 1.863153 / 1.541195 (0.321958) | 1.940063 / 1.468490 (0.471573) | 0.696456 / 4.584777 (-3.888321) | 3.422120 / 3.745712 (-0.323592) | 1.902579 / 5.269862 (-3.367282) | 1.184948 / 4.565676 (-3.380729) | 0.083079 / 0.424275 (-0.341196) | 0.012649 / 0.007607 (0.005042) | 0.542035 / 0.226044 (0.315991) | 5.421826 / 2.268929 (3.152897) | 2.525092 / 55.444624 (-52.919532) | 2.177144 / 6.876477 (-4.699332) | 2.225224 / 2.142072 (0.083151) | 0.804739 / 4.805227 (-4.000488) | 0.151000 / 6.500664 (-6.349664) | 0.066987 / 0.075469 (-0.008482) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.277199 / 1.841788 (-0.564589) | 14.184146 / 8.074308 (6.109838) | 13.413348 / 10.191392 (3.221956) | 0.128551 / 0.680424 (-0.551872) | 0.016461 / 0.534201 (-0.517740) | 0.379963 / 0.579283 (-0.199320) | 0.381350 / 0.434364 (-0.053014) | 0.439044 / 0.540337 (-0.101293) | 0.521559 / 1.386936 (-0.865377) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#4f3c152c1c35df250d2fbeb25d5823a65714f2d8 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008876 / 0.011353 (-0.002477) | 0.004629 / 0.011008 (-0.006379) | 0.101697 / 0.038508 (0.063189) | 0.030373 / 0.023109 (0.007264) | 0.302206 / 0.275898 (0.026308) | 0.365835 / 0.323480 (0.042355) | 0.007877 / 0.007986 (-0.000109) | 0.004473 / 0.004328 (0.000144) | 0.077334 / 0.004250 (0.073084) | 0.038066 / 0.037052 (0.001014) | 0.308064 / 0.258489 (0.049575) | 0.347329 / 0.293841 (0.053488) | 0.034478 / 0.128546 (-0.094068) | 0.011651 / 0.075646 (-0.063995) | 0.323481 / 0.419271 (-0.095791) | 0.043515 / 0.043533 (-0.000018) | 0.299885 / 0.255139 (0.044746) | 0.328959 / 0.283200 (0.045760) | 0.095308 / 0.141683 (-0.046375) | 1.474058 / 1.452155 (0.021903) | 1.535335 / 1.492716 (0.042619) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.197416 / 0.018006 (0.179410) | 0.421935 / 0.000490 (0.421446) | 0.003490 / 0.000200 (0.003290) | 0.000074 / 0.000054 (0.000020) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024519 / 0.037411 (-0.012892) | 0.100710 / 0.014526 (0.086185) | 0.104520 / 0.176557 (-0.072036) | 0.142048 / 0.737135 (-0.595087) | 0.109274 / 0.296338 (-0.187064) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.408766 / 0.215209 (0.193557) | 4.101720 / 2.077655 (2.024065) | 1.812375 / 1.504120 (0.308256) | 1.605819 / 1.541195 (0.064624) | 1.688923 / 1.468490 (0.220433) | 0.691198 / 4.584777 (-3.893579) | 3.422137 / 3.745712 (-0.323575) | 1.921318 / 5.269862 (-3.348544) | 1.168770 / 4.565676 (-3.396906) | 0.082840 / 0.424275 (-0.341435) | 0.012740 / 0.007607 (0.005133) | 0.524333 / 0.226044 (0.298289) | 5.258077 / 2.268929 (2.989149) | 2.273177 / 55.444624 (-53.171447) | 1.931919 / 6.876477 (-4.944558) | 1.988415 / 2.142072 (-0.153658) | 0.812227 / 4.805227 (-3.993000) | 0.150043 / 6.500664 (-6.350622) | 0.066422 / 0.075469 (-0.009047) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.188069 / 1.841788 (-0.653718) | 13.942681 / 8.074308 (5.868373) | 14.104658 / 10.191392 (3.913266) | 0.151966 / 0.680424 (-0.528458) | 0.028833 / 0.534201 (-0.505368) | 0.395125 / 0.579283 (-0.184158) | 0.408512 / 0.434364 (-0.025852) | 0.487587 / 0.540337 (-0.052751) | 0.570023 / 1.386936 (-0.816913) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006860 / 0.011353 (-0.004493) | 0.004582 / 0.011008 (-0.006426) | 0.079902 / 0.038508 (0.041394) | 0.027565 / 0.023109 (0.004456) | 0.341393 / 0.275898 (0.065495) | 0.378911 / 0.323480 (0.055431) | 0.005847 / 0.007986 (-0.002138) | 0.004681 / 0.004328 (0.000353) | 0.079422 / 0.004250 (0.075171) | 0.039135 / 0.037052 (0.002083) | 0.342026 / 0.258489 (0.083537) | 0.387510 / 0.293841 (0.093669) | 0.031999 / 0.128546 (-0.096547) | 0.011782 / 0.075646 (-0.063865) | 0.088563 / 0.419271 (-0.330709) | 0.042435 / 0.043533 (-0.001098) | 0.343055 / 0.255139 (0.087916) | 0.367437 / 0.283200 (0.084237) | 0.091578 / 0.141683 (-0.050104) | 1.506828 / 1.452155 (0.054673) | 1.599590 / 1.492716 (0.106874) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.217939 / 0.018006 (0.199932) | 0.408352 / 0.000490 (0.407863) | 0.000394 / 0.000200 (0.000194) | 0.000063 / 0.000054 (0.000009) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026344 / 0.037411 (-0.011067) | 0.102968 / 0.014526 (0.088442) | 0.110340 / 0.176557 (-0.066217) | 0.145696 / 0.737135 (-0.591439) | 0.111632 / 0.296338 (-0.184707) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.440764 / 0.215209 (0.225555) | 4.423179 / 2.077655 (2.345524) | 2.057016 / 1.504120 (0.552896) | 1.848741 / 1.541195 (0.307546) | 1.939827 / 1.468490 (0.471337) | 0.699370 / 4.584777 (-3.885407) | 3.472521 / 3.745712 (-0.273191) | 3.232557 / 5.269862 (-2.037305) | 1.755534 / 4.565676 (-2.810143) | 0.083469 / 0.424275 (-0.340807) | 0.012980 / 0.007607 (0.005373) | 0.557662 / 0.226044 (0.331618) | 5.435657 / 2.268929 (3.166729) | 2.545106 / 55.444624 (-52.899519) | 2.168047 / 6.876477 (-4.708430) | 2.234070 / 2.142072 (0.091997) | 0.804662 / 4.805227 (-4.000565) | 0.152832 / 6.500664 (-6.347833) | 0.069372 / 0.075469 (-0.006097) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.299189 / 1.841788 (-0.542598) | 14.752880 / 8.074308 (6.678572) | 13.607676 / 10.191392 (3.416284) | 0.150773 / 0.680424 (-0.529650) | 0.016701 / 0.534201 (-0.517500) | 0.379507 / 0.579283 (-0.199776) | 0.389401 / 0.434364 (-0.044963) | 0.444199 / 0.540337 (-0.096139) | 0.524264 / 1.386936 (-0.862672) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#12be850b36c0b9d4841af86c75e08c0a726ffb5c \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008694 / 0.011353 (-0.002659) | 0.004549 / 0.011008 (-0.006459) | 0.101164 / 0.038508 (0.062656) | 0.029644 / 0.023109 (0.006535) | 0.294849 / 0.275898 (0.018950) | 0.366755 / 0.323480 (0.043275) | 0.007205 / 0.007986 (-0.000780) | 0.004255 / 0.004328 (-0.000074) | 0.077433 / 0.004250 (0.073183) | 0.038024 / 0.037052 (0.000972) | 0.310380 / 0.258489 (0.051891) | 0.347093 / 0.293841 (0.053252) | 0.033232 / 0.128546 (-0.095314) | 0.011404 / 0.075646 (-0.064242) | 0.323341 / 0.419271 (-0.095930) | 0.040586 / 0.043533 (-0.002946) | 0.296083 / 0.255139 (0.040944) | 0.321870 / 0.283200 (0.038671) | 0.087377 / 0.141683 (-0.054306) | 1.466869 / 1.452155 (0.014715) | 1.514763 / 1.492716 (0.022046) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.010272 / 0.018006 (-0.007734) | 0.414645 / 0.000490 (0.414155) | 0.003730 / 0.000200 (0.003530) | 0.000076 / 0.000054 (0.000021) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024093 / 0.037411 (-0.013318) | 0.098718 / 0.014526 (0.084192) | 0.105526 / 0.176557 (-0.071030) | 0.141578 / 0.737135 (-0.595557) | 0.109679 / 0.296338 (-0.186660) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.412907 / 0.215209 (0.197698) | 4.134934 / 2.077655 (2.057280) | 1.881180 / 1.504120 (0.377060) | 1.693207 / 1.541195 (0.152012) | 1.753725 / 1.468490 (0.285235) | 0.693077 / 4.584777 (-3.891700) | 3.367409 / 3.745712 (-0.378303) | 2.749035 / 5.269862 (-2.520827) | 1.565015 / 4.565676 (-3.000662) | 0.082609 / 0.424275 (-0.341666) | 0.012500 / 0.007607 (0.004892) | 0.523619 / 0.226044 (0.297575) | 5.250188 / 2.268929 (2.981259) | 2.314255 / 55.444624 (-53.130369) | 1.962357 / 6.876477 (-4.914120) | 2.020632 / 2.142072 (-0.121441) | 0.812504 / 4.805227 (-3.992724) | 0.149921 / 6.500664 (-6.350743) | 0.065816 / 0.075469 (-0.009653) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.230811 / 1.841788 (-0.610977) | 14.008566 / 8.074308 (5.934258) | 14.371285 / 10.191392 (4.179893) | 0.166323 / 0.680424 (-0.514101) | 0.029702 / 0.534201 (-0.504499) | 0.408629 / 0.579283 (-0.170654) | 0.410529 / 0.434364 (-0.023835) | 0.484482 / 0.540337 (-0.055855) | 0.572360 / 1.386936 (-0.814576) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006873 / 0.011353 (-0.004480) | 0.004609 / 0.011008 (-0.006400) | 0.075492 / 0.038508 (0.036984) | 0.028560 / 0.023109 (0.005450) | 0.340321 / 0.275898 (0.064423) | 0.376758 / 0.323480 (0.053278) | 0.005271 / 0.007986 (-0.002715) | 0.004786 / 0.004328 (0.000457) | 0.074843 / 0.004250 (0.070592) | 0.041072 / 0.037052 (0.004019) | 0.339952 / 0.258489 (0.081463) | 0.384375 / 0.293841 (0.090534) | 0.031771 / 0.128546 (-0.096775) | 0.011607 / 0.075646 (-0.064039) | 0.084338 / 0.419271 (-0.334933) | 0.042251 / 0.043533 (-0.001282) | 0.338904 / 0.255139 (0.083765) | 0.365360 / 0.283200 (0.082160) | 0.093151 / 0.141683 (-0.048532) | 1.449833 / 1.452155 (-0.002322) | 1.601946 / 1.492716 (0.109229) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.225149 / 0.018006 (0.207142) | 0.409855 / 0.000490 (0.409365) | 0.000384 / 0.000200 (0.000184) | 0.000060 / 0.000054 (0.000006) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025914 / 0.037411 (-0.011497) | 0.100443 / 0.014526 (0.085917) | 0.108557 / 0.176557 (-0.067999) | 0.150338 / 0.737135 (-0.586798) | 0.111472 / 0.296338 (-0.184866) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.440221 / 0.215209 (0.225012) | 4.409268 / 2.077655 (2.331613) | 2.096008 / 1.504120 (0.591888) | 1.849443 / 1.541195 (0.308248) | 1.934901 / 1.468490 (0.466410) | 0.704072 / 4.584777 (-3.880705) | 3.371370 / 3.745712 (-0.374343) | 3.185478 / 5.269862 (-2.084384) | 1.514541 / 4.565676 (-3.051135) | 0.083724 / 0.424275 (-0.340551) | 0.012674 / 0.007607 (0.005067) | 0.542155 / 0.226044 (0.316111) | 5.413456 / 2.268929 (3.144528) | 2.508567 / 55.444624 (-52.936057) | 2.163235 / 6.876477 (-4.713242) | 2.193914 / 2.142072 (0.051842) | 0.810955 / 4.805227 (-3.994272) | 0.152769 / 6.500664 (-6.347895) | 0.068009 / 0.075469 (-0.007460) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.272511 / 1.841788 (-0.569276) | 14.334861 / 8.074308 (6.260553) | 13.555445 / 10.191392 (3.364053) | 0.160520 / 0.680424 (-0.519904) | 0.018363 / 0.534201 (-0.515838) | 0.384937 / 0.579283 (-0.194346) | 0.409138 / 0.434364 (-0.025225) | 0.484037 / 0.540337 (-0.056300) | 0.565595 / 1.386936 (-0.821341) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#23f076ef0187a4009d3c62b14a02e146baf0e35f \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010077 / 0.011353 (-0.001276) | 0.005650 / 0.011008 (-0.005359) | 0.101285 / 0.038508 (0.062777) | 0.039571 / 0.023109 (0.016462) | 0.291855 / 0.275898 (0.015957) | 0.363582 / 0.323480 (0.040102) | 0.008513 / 0.007986 (0.000527) | 0.004472 / 0.004328 (0.000144) | 0.077314 / 0.004250 (0.073064) | 0.050707 / 0.037052 (0.013654) | 0.317282 / 0.258489 (0.058792) | 0.342348 / 0.293841 (0.048507) | 0.042951 / 0.128546 (-0.085595) | 0.012295 / 0.075646 (-0.063351) | 0.337269 / 0.419271 (-0.082003) | 0.048953 / 0.043533 (0.005420) | 0.292547 / 0.255139 (0.037408) | 0.325436 / 0.283200 (0.042236) | 0.111859 / 0.141683 (-0.029824) | 1.501958 / 1.452155 (0.049804) | 1.522281 / 1.492716 (0.029565) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.011775 / 0.018006 (-0.006231) | 0.513283 / 0.000490 (0.512793) | 0.002941 / 0.000200 (0.002741) | 0.000099 / 0.000054 (0.000044) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028702 / 0.037411 (-0.008710) | 0.108465 / 0.014526 (0.093940) | 0.121806 / 0.176557 (-0.054750) | 0.158424 / 0.737135 (-0.578712) | 0.128077 / 0.296338 (-0.168262) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.395392 / 0.215209 (0.180183) | 3.944138 / 2.077655 (1.866483) | 1.773698 / 1.504120 (0.269578) | 1.588907 / 1.541195 (0.047712) | 1.697794 / 1.468490 (0.229304) | 0.690281 / 4.584777 (-3.894496) | 3.819661 / 3.745712 (0.073948) | 3.228006 / 5.269862 (-2.041856) | 1.755625 / 4.565676 (-2.810052) | 0.083169 / 0.424275 (-0.341106) | 0.012337 / 0.007607 (0.004730) | 0.504730 / 0.226044 (0.278686) | 5.016916 / 2.268929 (2.747988) | 2.245484 / 55.444624 (-53.199141) | 1.911682 / 6.876477 (-4.964795) | 1.957659 / 2.142072 (-0.184413) | 0.818361 / 4.805227 (-3.986866) | 0.162386 / 6.500664 (-6.338279) | 0.062461 / 0.075469 (-0.013008) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.197654 / 1.841788 (-0.644134) | 15.465611 / 8.074308 (7.391303) | 14.409126 / 10.191392 (4.217734) | 0.171776 / 0.680424 (-0.508647) | 0.028749 / 0.534201 (-0.505452) | 0.439666 / 0.579283 (-0.139618) | 0.445159 / 0.434364 (0.010795) | 0.543992 / 0.540337 (0.003655) | 0.643911 / 1.386936 (-0.743025) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007036 / 0.011353 (-0.004317) | 0.005273 / 0.011008 (-0.005735) | 0.075314 / 0.038508 (0.036806) | 0.033075 / 0.023109 (0.009966) | 0.350133 / 0.275898 (0.074235) | 0.399366 / 0.323480 (0.075886) | 0.005945 / 0.007986 (-0.002041) | 0.004276 / 0.004328 (-0.000052) | 0.074975 / 0.004250 (0.070725) | 0.051758 / 0.037052 (0.014706) | 0.355077 / 0.258489 (0.096588) | 0.430296 / 0.293841 (0.136455) | 0.036257 / 0.128546 (-0.092290) | 0.012376 / 0.075646 (-0.063270) | 0.087441 / 0.419271 (-0.331830) | 0.049066 / 0.043533 (0.005534) | 0.339867 / 0.255139 (0.084728) | 0.384379 / 0.283200 (0.101179) | 0.104843 / 0.141683 (-0.036840) | 1.498897 / 1.452155 (0.046742) | 1.551400 / 1.492716 (0.058684) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.334504 / 0.018006 (0.316498) | 0.516551 / 0.000490 (0.516061) | 0.000450 / 0.000200 (0.000250) | 0.000057 / 0.000054 (0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029313 / 0.037411 (-0.008099) | 0.110667 / 0.014526 (0.096141) | 0.124001 / 0.176557 (-0.052556) | 0.159154 / 0.737135 (-0.577981) | 0.129503 / 0.296338 (-0.166836) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.416749 / 0.215209 (0.201540) | 4.171163 / 2.077655 (2.093508) | 1.981071 / 1.504120 (0.476951) | 1.788303 / 1.541195 (0.247108) | 1.912118 / 1.468490 (0.443628) | 0.708764 / 4.584777 (-3.876013) | 3.815222 / 3.745712 (0.069510) | 2.121633 / 5.269862 (-3.148229) | 1.347866 / 4.565676 (-3.217811) | 0.086340 / 0.424275 (-0.337935) | 0.012646 / 0.007607 (0.005039) | 0.525286 / 0.226044 (0.299241) | 5.254922 / 2.268929 (2.985994) | 2.488743 / 55.444624 (-52.955881) | 2.128069 / 6.876477 (-4.748408) | 2.180358 / 2.142072 (0.038286) | 0.841011 / 4.805227 (-3.964216) | 0.168732 / 6.500664 (-6.331932) | 0.065559 / 0.075469 (-0.009910) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.270518 / 1.841788 (-0.571270) | 15.557563 / 8.074308 (7.483255) | 13.660757 / 10.191392 (3.469365) | 0.185636 / 0.680424 (-0.494788) | 0.018152 / 0.534201 (-0.516049) | 0.423553 / 0.579283 (-0.155730) | 0.412718 / 0.434364 (-0.021646) | 0.528455 / 0.540337 (-0.011882) | 0.635274 / 1.386936 (-0.751662) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#d40f05ef827c52344a2c6e83f7c8d13bb6b660d3 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.011194 / 0.011353 (-0.000159) | 0.006344 / 0.011008 (-0.004664) | 0.122013 / 0.038508 (0.083505) | 0.044323 / 0.023109 (0.021214) | 0.356665 / 0.275898 (0.080767) | 0.439871 / 0.323480 (0.116391) | 0.010694 / 0.007986 (0.002709) | 0.004648 / 0.004328 (0.000320) | 0.091140 / 0.004250 (0.086890) | 0.052457 / 0.037052 (0.015404) | 0.369282 / 0.258489 (0.110793) | 0.403279 / 0.293841 (0.109438) | 0.054075 / 0.128546 (-0.074472) | 0.014484 / 0.075646 (-0.061162) | 0.407932 / 0.419271 (-0.011340) | 0.060681 / 0.043533 (0.017148) | 0.350889 / 0.255139 (0.095750) | 0.392041 / 0.283200 (0.108841) | 0.121252 / 0.141683 (-0.020431) | 1.809527 / 1.452155 (0.357373) | 1.835141 / 1.492716 (0.342425) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.227372 / 0.018006 (0.209366) | 0.481908 / 0.000490 (0.481418) | 0.007262 / 0.000200 (0.007062) | 0.000148 / 0.000054 (0.000093) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031039 / 0.037411 (-0.006372) | 0.133947 / 0.014526 (0.119421) | 0.141935 / 0.176557 (-0.034622) | 0.197854 / 0.737135 (-0.539281) | 0.152393 / 0.296338 (-0.143945) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.517400 / 0.215209 (0.302191) | 4.899972 / 2.077655 (2.822317) | 2.171023 / 1.504120 (0.666903) | 2.008706 / 1.541195 (0.467511) | 1.988777 / 1.468490 (0.520287) | 0.859872 / 4.584777 (-3.724905) | 4.673923 / 3.745712 (0.928211) | 2.703189 / 5.269862 (-2.566672) | 1.891680 / 4.565676 (-2.673997) | 0.109601 / 0.424275 (-0.314674) | 0.014622 / 0.007607 (0.007015) | 0.618990 / 0.226044 (0.392946) | 6.255608 / 2.268929 (3.986679) | 2.822199 / 55.444624 (-52.622425) | 2.457684 / 6.876477 (-4.418793) | 2.500041 / 2.142072 (0.357968) | 1.054529 / 4.805227 (-3.750698) | 0.209501 / 6.500664 (-6.291163) | 0.074929 / 0.075469 (-0.000540) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.532780 / 1.841788 (-0.309008) | 19.159455 / 8.074308 (11.085147) | 17.817063 / 10.191392 (7.625671) | 0.194078 / 0.680424 (-0.486346) | 0.038211 / 0.534201 (-0.495990) | 0.537366 / 0.579283 (-0.041917) | 0.538995 / 0.434364 (0.104631) | 0.679431 / 0.540337 (0.139094) | 0.801960 / 1.386936 (-0.584976) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008729 / 0.011353 (-0.002624) | 0.005711 / 0.011008 (-0.005297) | 0.091570 / 0.038508 (0.053062) | 0.039805 / 0.023109 (0.016696) | 0.413507 / 0.275898 (0.137609) | 0.456342 / 0.323480 (0.132862) | 0.006201 / 0.007986 (-0.001785) | 0.009700 / 0.004328 (0.005372) | 0.089146 / 0.004250 (0.084896) | 0.057543 / 0.037052 (0.020490) | 0.420806 / 0.258489 (0.162317) | 0.471962 / 0.293841 (0.178121) | 0.043940 / 0.128546 (-0.084606) | 0.014457 / 0.075646 (-0.061190) | 0.106674 / 0.419271 (-0.312598) | 0.058930 / 0.043533 (0.015397) | 0.419111 / 0.255139 (0.163972) | 0.452974 / 0.283200 (0.169774) | 0.124573 / 0.141683 (-0.017110) | 1.864753 / 1.452155 (0.412599) | 1.935387 / 1.492716 (0.442670) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.275657 / 0.018006 (0.257651) | 0.498096 / 0.000490 (0.497606) | 0.000480 / 0.000200 (0.000280) | 0.000066 / 0.000054 (0.000012) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034377 / 0.037411 (-0.003035) | 0.138050 / 0.014526 (0.123524) | 0.153718 / 0.176557 (-0.022838) | 0.201445 / 0.737135 (-0.535690) | 0.160346 / 0.296338 (-0.135992) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.540670 / 0.215209 (0.325461) | 5.376291 / 2.077655 (3.298636) | 2.581799 / 1.504120 (1.077679) | 2.328858 / 1.541195 (0.787663) | 2.446458 / 1.468490 (0.977968) | 0.923005 / 4.584777 (-3.661772) | 4.815977 / 3.745712 (1.070265) | 4.205725 / 5.269862 (-1.064137) | 2.400466 / 4.565676 (-2.165211) | 0.107207 / 0.424275 (-0.317068) | 0.015427 / 0.007607 (0.007819) | 0.657267 / 0.226044 (0.431222) | 6.491256 / 2.268929 (4.222327) | 3.179099 / 55.444624 (-52.265525) | 2.722434 / 6.876477 (-4.154042) | 2.788202 / 2.142072 (0.646129) | 1.060016 / 4.805227 (-3.745211) | 0.206899 / 6.500664 (-6.293766) | 0.077868 / 0.075469 (0.002399) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.567894 / 1.841788 (-0.273893) | 19.314330 / 8.074308 (11.240022) | 17.597614 / 10.191392 (7.406222) | 0.195777 / 0.680424 (-0.484647) | 0.022160 / 0.534201 (-0.512041) | 0.530592 / 0.579283 (-0.048691) | 0.508591 / 0.434364 (0.074227) | 0.619794 / 0.540337 (0.079457) | 0.749773 / 1.386936 (-0.637163) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#8637141a67639c510294620306c9bb25d31d34ef \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.012431 / 0.011353 (0.001078) | 0.006526 / 0.011008 (-0.004482) | 0.132266 / 0.038508 (0.093757) | 0.043199 / 0.023109 (0.020089) | 0.405230 / 0.275898 (0.129332) | 0.494643 / 0.323480 (0.171163) | 0.009927 / 0.007986 (0.001941) | 0.005227 / 0.004328 (0.000899) | 0.110914 / 0.004250 (0.106664) | 0.047815 / 0.037052 (0.010763) | 0.419099 / 0.258489 (0.160610) | 0.463405 / 0.293841 (0.169564) | 0.057858 / 0.128546 (-0.070688) | 0.018918 / 0.075646 (-0.056728) | 0.450584 / 0.419271 (0.031313) | 0.060457 / 0.043533 (0.016924) | 0.408234 / 0.255139 (0.153095) | 0.433722 / 0.283200 (0.150523) | 0.119403 / 0.141683 (-0.022280) | 1.966742 / 1.452155 (0.514587) | 1.980685 / 1.492716 (0.487969) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.292853 / 0.018006 (0.274847) | 0.619697 / 0.000490 (0.619207) | 0.002135 / 0.000200 (0.001935) | 0.000117 / 0.000054 (0.000062) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031283 / 0.037411 (-0.006129) | 0.128649 / 0.014526 (0.114123) | 0.150116 / 0.176557 (-0.026441) | 0.187605 / 0.737135 (-0.549530) | 0.153334 / 0.296338 (-0.143005) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.659660 / 0.215209 (0.444451) | 6.459749 / 2.077655 (4.382094) | 2.764566 / 1.504120 (1.260446) | 2.362630 / 1.541195 (0.821435) | 2.426421 / 1.468490 (0.957931) | 1.282407 / 4.584777 (-3.302370) | 5.668865 / 3.745712 (1.923153) | 3.236255 / 5.269862 (-2.033606) | 2.248836 / 4.565676 (-2.316841) | 0.145861 / 0.424275 (-0.278414) | 0.015707 / 0.007607 (0.008100) | 0.805218 / 0.226044 (0.579174) | 8.146831 / 2.268929 (5.877903) | 3.506283 / 55.444624 (-51.938341) | 2.736682 / 6.876477 (-4.139795) | 2.959039 / 2.142072 (0.816967) | 1.528428 / 4.805227 (-3.276799) | 0.270980 / 6.500664 (-6.229684) | 0.086824 / 0.075469 (0.011355) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.682506 / 1.841788 (-0.159282) | 18.844103 / 8.074308 (10.769795) | 21.008471 / 10.191392 (10.817079) | 0.258372 / 0.680424 (-0.422052) | 0.046505 / 0.534201 (-0.487696) | 0.574760 / 0.579283 (-0.004523) | 0.663745 / 0.434364 (0.229381) | 0.702411 / 0.540337 (0.162074) | 0.824024 / 1.386936 (-0.562912) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010016 / 0.011353 (-0.001337) | 0.007459 / 0.011008 (-0.003549) | 0.103954 / 0.038508 (0.065446) | 0.036363 / 0.023109 (0.013254) | 0.464079 / 0.275898 (0.188181) | 0.504730 / 0.323480 (0.181250) | 0.007865 / 0.007986 (-0.000121) | 0.005210 / 0.004328 (0.000882) | 0.105018 / 0.004250 (0.100767) | 0.062191 / 0.037052 (0.025139) | 0.483304 / 0.258489 (0.224815) | 0.547030 / 0.293841 (0.253189) | 0.055436 / 0.128546 (-0.073110) | 0.021073 / 0.075646 (-0.054573) | 0.120952 / 0.419271 (-0.298319) | 0.075593 / 0.043533 (0.032060) | 0.459930 / 0.255139 (0.204791) | 0.486924 / 0.283200 (0.203724) | 0.129465 / 0.141683 (-0.012218) | 1.902322 / 1.452155 (0.450167) | 1.980809 / 1.492716 (0.488092) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.259263 / 0.018006 (0.241257) | 0.596703 / 0.000490 (0.596213) | 0.004520 / 0.000200 (0.004320) | 0.000124 / 0.000054 (0.000070) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032802 / 0.037411 (-0.004609) | 0.138751 / 0.014526 (0.124225) | 0.147106 / 0.176557 (-0.029451) | 0.194791 / 0.737135 (-0.542345) | 0.152643 / 0.296338 (-0.143696) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.678455 / 0.215209 (0.463246) | 6.673643 / 2.077655 (4.595989) | 2.943368 / 1.504120 (1.439248) | 2.591223 / 1.541195 (1.050029) | 2.741097 / 1.468490 (1.272607) | 1.261178 / 4.584777 (-3.323599) | 5.773853 / 3.745712 (2.028141) | 3.171559 / 5.269862 (-2.098303) | 2.124898 / 4.565676 (-2.440779) | 0.161849 / 0.424275 (-0.262426) | 0.015498 / 0.007607 (0.007891) | 0.857984 / 0.226044 (0.631940) | 8.456946 / 2.268929 (6.188018) | 3.818787 / 55.444624 (-51.625837) | 3.009953 / 6.876477 (-3.866523) | 3.113006 / 2.142072 (0.970934) | 1.477299 / 4.805227 (-3.327929) | 0.267207 / 6.500664 (-6.233457) | 0.087590 / 0.075469 (0.012121) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.757389 / 1.841788 (-0.084398) | 19.287690 / 8.074308 (11.213381) | 21.601991 / 10.191392 (11.410599) | 0.260464 / 0.680424 (-0.419960) | 0.028552 / 0.534201 (-0.505649) | 0.558934 / 0.579283 (-0.020349) | 0.673651 / 0.434364 (0.239287) | 0.714448 / 0.540337 (0.174111) | 0.857608 / 1.386936 (-0.529328) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#2d3bd0134de444ffd10c4a39873dbf9aa3732c08 \"CML watermark\")\n", "Ready for review @mariosasko, LMKWYT :)\r\n\r\nSorry it tooks me a few tries to fix the CI - I ended up not trying to use the latest `torch` version in the CI.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009474 / 0.011353 (-0.001878) | 0.005507 / 0.011008 (-0.005501) | 0.101219 / 0.038508 (0.062711) | 0.035591 / 0.023109 (0.012481) | 0.305841 / 0.275898 (0.029943) | 0.339135 / 0.323480 (0.015656) | 0.007920 / 0.007986 (-0.000066) | 0.004252 / 0.004328 (-0.000077) | 0.076912 / 0.004250 (0.072662) | 0.041923 / 0.037052 (0.004871) | 0.301405 / 0.258489 (0.042916) | 0.356488 / 0.293841 (0.062647) | 0.039342 / 0.128546 (-0.089204) | 0.012711 / 0.075646 (-0.062935) | 0.334193 / 0.419271 (-0.085079) | 0.049112 / 0.043533 (0.005579) | 0.301484 / 0.255139 (0.046345) | 0.315306 / 0.283200 (0.032106) | 0.102959 / 0.141683 (-0.038724) | 1.420677 / 1.452155 (-0.031478) | 1.549493 / 1.492716 (0.056777) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.284639 / 0.018006 (0.266633) | 0.501226 / 0.000490 (0.500736) | 0.004328 / 0.000200 (0.004128) | 0.000091 / 0.000054 (0.000036) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027034 / 0.037411 (-0.010377) | 0.108066 / 0.014526 (0.093540) | 0.122106 / 0.176557 (-0.054451) | 0.162908 / 0.737135 (-0.574227) | 0.127233 / 0.296338 (-0.169105) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.394023 / 0.215209 (0.178813) | 3.932729 / 2.077655 (1.855075) | 1.771195 / 1.504120 (0.267075) | 1.582788 / 1.541195 (0.041594) | 1.703219 / 1.468490 (0.234728) | 0.702629 / 4.584777 (-3.882148) | 3.780187 / 3.745712 (0.034475) | 2.180433 / 5.269862 (-3.089428) | 1.504806 / 4.565676 (-3.060871) | 0.085289 / 0.424275 (-0.338986) | 0.012580 / 0.007607 (0.004973) | 0.515408 / 0.226044 (0.289363) | 5.010613 / 2.268929 (2.741685) | 2.256648 / 55.444624 (-53.187976) | 1.914971 / 6.876477 (-4.961505) | 2.038436 / 2.142072 (-0.103636) | 0.846240 / 4.805227 (-3.958987) | 0.164920 / 6.500664 (-6.335744) | 0.063899 / 0.075469 (-0.011570) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.224160 / 1.841788 (-0.617627) | 15.089995 / 8.074308 (7.015687) | 14.777003 / 10.191392 (4.585611) | 0.169873 / 0.680424 (-0.510551) | 0.029233 / 0.534201 (-0.504968) | 0.445424 / 0.579283 (-0.133859) | 0.439194 / 0.434364 (0.004830) | 0.536370 / 0.540337 (-0.003968) | 0.636694 / 1.386936 (-0.750242) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008230 / 0.011353 (-0.003122) | 0.005499 / 0.011008 (-0.005509) | 0.076108 / 0.038508 (0.037600) | 0.037444 / 0.023109 (0.014335) | 0.364420 / 0.275898 (0.088522) | 0.412308 / 0.323480 (0.088828) | 0.006704 / 0.007986 (-0.001282) | 0.004359 / 0.004328 (0.000031) | 0.075080 / 0.004250 (0.070830) | 0.057698 / 0.037052 (0.020646) | 0.366088 / 0.258489 (0.107599) | 0.409583 / 0.293841 (0.115742) | 0.037882 / 0.128546 (-0.090664) | 0.012421 / 0.075646 (-0.063225) | 0.087701 / 0.419271 (-0.331571) | 0.050669 / 0.043533 (0.007136) | 0.351139 / 0.255139 (0.096000) | 0.384340 / 0.283200 (0.101140) | 0.108097 / 0.141683 (-0.033586) | 1.445010 / 1.452155 (-0.007145) | 1.559570 / 1.492716 (0.066853) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.324114 / 0.018006 (0.306108) | 0.549134 / 0.000490 (0.548644) | 0.003544 / 0.000200 (0.003344) | 0.000097 / 0.000054 (0.000042) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030646 / 0.037411 (-0.006765) | 0.108573 / 0.014526 (0.094047) | 0.125291 / 0.176557 (-0.051266) | 0.174798 / 0.737135 (-0.562338) | 0.128000 / 0.296338 (-0.168338) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.428881 / 0.215209 (0.213672) | 4.282320 / 2.077655 (2.204665) | 2.061462 / 1.504120 (0.557342) | 1.858477 / 1.541195 (0.317283) | 1.971646 / 1.468490 (0.503156) | 0.723631 / 4.584777 (-3.861146) | 3.822376 / 3.745712 (0.076664) | 2.174427 / 5.269862 (-3.095434) | 1.386066 / 4.565676 (-3.179611) | 0.088391 / 0.424275 (-0.335884) | 0.012948 / 0.007607 (0.005341) | 0.524423 / 0.226044 (0.298378) | 5.249389 / 2.268929 (2.980460) | 2.528662 / 55.444624 (-52.915962) | 2.245329 / 6.876477 (-4.631147) | 2.402733 / 2.142072 (0.260660) | 0.868864 / 4.805227 (-3.936364) | 0.174066 / 6.500664 (-6.326598) | 0.066165 / 0.075469 (-0.009304) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.296922 / 1.841788 (-0.544865) | 15.814109 / 8.074308 (7.739801) | 14.086059 / 10.191392 (3.894667) | 0.190952 / 0.680424 (-0.489472) | 0.017679 / 0.534201 (-0.516522) | 0.428872 / 0.579283 (-0.150411) | 0.435399 / 0.434364 (0.001035) | 0.540856 / 0.540337 (0.000519) | 0.648904 / 1.386936 (-0.738032) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#f401758c5019ede4404994d5d59220125984874d \"CML watermark\")\n" ]
"2023-02-08T13:38:59Z"
"2023-02-19T18:35:09Z"
"2023-02-19T18:27:29Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/5512.diff", "html_url": "https://github.com/huggingface/datasets/pull/5512", "merged_at": "2023-02-19T18:27:29Z", "patch_url": "https://github.com/huggingface/datasets/pull/5512.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5512" }
I implemented `__getitems__` to speed up batched data loading in PyTorch close https://github.com/huggingface/datasets/issues/5505
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5512/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5512/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/2931
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/2931/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/2931/comments
https://api.github.com/repos/huggingface/datasets/issues/2931/events
https://github.com/huggingface/datasets/pull/2931
998,326,359
PR_kwDODunzps4r1-JH
2,931
Fix bug in to_tf_dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/12866554?v=4", "events_url": "https://api.github.com/users/Rocketknight1/events{/privacy}", "followers_url": "https://api.github.com/users/Rocketknight1/followers", "following_url": "https://api.github.com/users/Rocketknight1/following{/other_user}", "gists_url": "https://api.github.com/users/Rocketknight1/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Rocketknight1", "id": 12866554, "login": "Rocketknight1", "node_id": "MDQ6VXNlcjEyODY2NTU0", "organizations_url": "https://api.github.com/users/Rocketknight1/orgs", "received_events_url": "https://api.github.com/users/Rocketknight1/received_events", "repos_url": "https://api.github.com/users/Rocketknight1/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Rocketknight1/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Rocketknight1/subscriptions", "type": "User", "url": "https://api.github.com/users/Rocketknight1" }
[]
closed
false
null
[]
null
[ "I'm going to merge it, but yeah - hopefully the CI runner just cleans that up automatically and few other people run the tests on Windows anyway!" ]
"2021-09-16T15:08:03Z"
"2021-09-16T17:01:38Z"
"2021-09-16T17:01:37Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/2931.diff", "html_url": "https://github.com/huggingface/datasets/pull/2931", "merged_at": "2021-09-16T17:01:37Z", "patch_url": "https://github.com/huggingface/datasets/pull/2931.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/2931" }
Replace `set_format()` to `with_format()` so that we don't alter the original dataset in `to_tf_dataset()`
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/2931/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/2931/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/3083
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3083/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3083/comments
https://api.github.com/repos/huggingface/datasets/issues/3083/events
https://github.com/huggingface/datasets/issues/3083
1,026,397,062
I_kwDODunzps49LZOG
3,083
Datasets with Audio feature raise error when loaded from cache due to _resampler parameter
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" } ]
null
[]
"2021-10-14T13:23:53Z"
"2021-10-14T15:13:40Z"
"2021-10-14T15:13:40Z"
MEMBER
null
null
null
## Describe the bug As reported by @patrickvonplaten, when loaded from the cache, datasets containing the Audio feature raise TypeError. ## Steps to reproduce the bug ```python from datasets import load_dataset # load first time works ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean") # load from cache breaks ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean") ``` ## Actual results ``` TypeError: __init__() got an unexpected keyword argument '_resampler' ```
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3083/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3083/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/3065
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3065/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3065/comments
https://api.github.com/repos/huggingface/datasets/issues/3065/events
https://github.com/huggingface/datasets/pull/3065
1,023,951,322
PR_kwDODunzps4tFDjk
3,065
Fix test command after refac
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
[]
closed
false
null
[]
null
[]
"2021-10-12T15:23:30Z"
"2021-10-12T15:28:47Z"
"2021-10-12T15:28:46Z"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/3065.diff", "html_url": "https://github.com/huggingface/datasets/pull/3065", "merged_at": "2021-10-12T15:28:46Z", "patch_url": "https://github.com/huggingface/datasets/pull/3065.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/3065" }
Fix the `datasets-cli` test command after the `prepare_module` change in #2986
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3065/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3065/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/766
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/766/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/766/comments
https://api.github.com/repos/huggingface/datasets/issues/766/events
https://github.com/huggingface/datasets/issues/766
730,669,596
MDU6SXNzdWU3MzA2Njk1OTY=
766
[GEM] add DART data-to-text generation dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/10469459?v=4", "events_url": "https://api.github.com/users/yjernite/events{/privacy}", "followers_url": "https://api.github.com/users/yjernite/followers", "following_url": "https://api.github.com/users/yjernite/following{/other_user}", "gists_url": "https://api.github.com/users/yjernite/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/yjernite", "id": 10469459, "login": "yjernite", "node_id": "MDQ6VXNlcjEwNDY5NDU5", "organizations_url": "https://api.github.com/users/yjernite/orgs", "received_events_url": "https://api.github.com/users/yjernite/received_events", "repos_url": "https://api.github.com/users/yjernite/repos", "site_admin": false, "starred_url": "https://api.github.com/users/yjernite/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/yjernite/subscriptions", "type": "User", "url": "https://api.github.com/users/yjernite" }
[ { "color": "e99695", "default": false, "description": "Requesting to add a new dataset", "id": 2067376369, "name": "dataset request", "node_id": "MDU6TGFiZWwyMDY3Mzc2MzY5", "url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20request" } ]
closed
false
null
[]
null
[ "Is this a duplicate of #924 ?", "Yup, closing! Haven't been keeping track of the solved issues during the sprint." ]
"2020-10-27T17:34:04Z"
"2020-12-03T13:37:18Z"
"2020-12-03T13:37:18Z"
MEMBER
null
null
null
## Adding a Dataset - **Name:** DART - **Description:** DART consists of 82,191 examples across different domains with each input being a semantic RDF triple set derived from data records in tables and the tree ontology of the schema, annotated with sentence descriptions that cover all facts in the triple set. - **Paper:** https://arxiv.org/abs/2007.02871v1 - **Data:** https://github.com/Yale-LILY/dart - **Motivation:** the dataset will likely be included in the GEM benchmark Instructions to add a new dataset can be found [here](https://huggingface.co/docs/datasets/share_dataset.html).
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/766/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/766/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/1771
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/1771/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/1771/comments
https://api.github.com/repos/huggingface/datasets/issues/1771/events
https://github.com/huggingface/datasets/issues/1771
792,701,276
MDU6SXNzdWU3OTI3MDEyNzY=
1,771
Couldn't reach https://raw.githubusercontent.com/huggingface/datasets/1.2.1/datasets/csv/csv.py
{ "avatar_url": "https://avatars.githubusercontent.com/u/7607120?v=4", "events_url": "https://api.github.com/users/world2vec/events{/privacy}", "followers_url": "https://api.github.com/users/world2vec/followers", "following_url": "https://api.github.com/users/world2vec/following{/other_user}", "gists_url": "https://api.github.com/users/world2vec/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/world2vec", "id": 7607120, "login": "world2vec", "node_id": "MDQ6VXNlcjc2MDcxMjA=", "organizations_url": "https://api.github.com/users/world2vec/orgs", "received_events_url": "https://api.github.com/users/world2vec/received_events", "repos_url": "https://api.github.com/users/world2vec/repos", "site_admin": false, "starred_url": "https://api.github.com/users/world2vec/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/world2vec/subscriptions", "type": "User", "url": "https://api.github.com/users/world2vec" }
[]
closed
false
null
[]
null
[ "I temporary manually download csv.py as custom dataset loading script", "Indeed in 1.2.1 the script to process csv file is downloaded. Starting from the next release though we include the csv processing directly in the library.\r\nSee PR #1726 \r\nWe'll do a new release soon :)", "Thanks." ]
"2021-01-24T01:53:52Z"
"2021-01-24T23:06:29Z"
"2021-01-24T23:06:29Z"
NONE
null
null
null
Hi, When I load_dataset from local csv files, below error happened, looks raw.githubusercontent.com was blocked by the chinese government. But why it need to download csv.py? should it include when pip install the dataset? ``` Traceback (most recent call last): File "/home/tom/pyenv/pystory/lib/python3.6/site-packages/datasets/load.py", line 267, in prepare_module local_path = cached_path(file_path, download_config=download_config) File "/home/tom/pyenv/pystory/lib/python3.6/site-packages/datasets/utils/file_utils.py", line 343, in cached_path max_retries=download_config.max_retries, File "/home/tom/pyenv/pystory/lib/python3.6/site-packages/datasets/utils/file_utils.py", line 617, in get_from_cache raise ConnectionError("Couldn't reach {}".format(url)) ConnectionError: Couldn't reach https://raw.githubusercontent.com/huggingface/datasets/1.2.1/datasets/csv/csv.py ```
{ "+1": 2, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 2, "url": "https://api.github.com/repos/huggingface/datasets/issues/1771/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/1771/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/3721
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/3721/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/3721/comments
https://api.github.com/repos/huggingface/datasets/issues/3721/events
https://github.com/huggingface/datasets/pull/3721
1,137,617,108
PR_kwDODunzps4yzXCd
3,721
Multi-GPU support for `FaissIndex`
{ "avatar_url": "https://avatars.githubusercontent.com/u/32859905?v=4", "events_url": "https://api.github.com/users/rentruewang/events{/privacy}", "followers_url": "https://api.github.com/users/rentruewang/followers", "following_url": "https://api.github.com/users/rentruewang/following{/other_user}", "gists_url": "https://api.github.com/users/rentruewang/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/rentruewang", "id": 32859905, "login": "rentruewang", "node_id": "MDQ6VXNlcjMyODU5OTA1", "organizations_url": "https://api.github.com/users/rentruewang/orgs", "received_events_url": "https://api.github.com/users/rentruewang/received_events", "repos_url": "https://api.github.com/users/rentruewang/repos", "site_admin": false, "starred_url": "https://api.github.com/users/rentruewang/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/rentruewang/subscriptions", "type": "User", "url": "https://api.github.com/users/rentruewang" }
[]
closed
false
null
[]
null
[ "Any love?", "Hi, any update?", "@albertvillanova Sorry for bothering you again, quick follow up: is there anything else you want me to add / modify?", "Hi @rentruewang , we updated the documentation on `master`, could you merge `master` into your branch please ?", "@lhoestq I've merge `huggingface/datasets/master` into this PR. Please review. Thanks! 🤗\r\n\r\nEdit: Umm... I was experimenting with what renaming a branch would do to a pull request. Please ignore the `closed this PR` down below. 🤗" ]
"2022-02-14T17:26:51Z"
"2022-03-07T16:28:57Z"
"2022-03-07T16:28:56Z"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/3721.diff", "html_url": "https://github.com/huggingface/datasets/pull/3721", "merged_at": "2022-03-07T16:28:56Z", "patch_url": "https://github.com/huggingface/datasets/pull/3721.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/3721" }
Per #3716 , current implementation does not take into consideration that `faiss` can run on multiple GPUs. In this commit, I provided multi-GPU support for `FaissIndex` by modifying the device management in `IndexableMixin.add_faiss_index` and `FaissIndex.load`. Now users are able to pass in 1. a positive integer (as usual) to use 1 GPU 2. a negative integer `-1` to use all GPUs 3. a list of integers e.g. `[0, 1]` to run only on those GPUs 4. Of course, passing in nothing still runs on CPU. This closes: #3716
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/3721/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/3721/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/5839
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5839/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5839/comments
https://api.github.com/repos/huggingface/datasets/issues/5839/events
https://github.com/huggingface/datasets/issues/5839
1,704,554,718
I_kwDODunzps5lmXDe
5,839
Make models/functions optimized with `torch.compile` hashable
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko" } ]
null
[]
"2023-05-10T20:02:08Z"
"2023-11-28T16:29:33Z"
"2023-11-28T16:29:33Z"
CONTRIBUTOR
null
null
null
As reported in https://github.com/huggingface/datasets/issues/5819, hashing functions/transforms that reference a model, or a function, optimized with `torch.compile` currently fails due to them not being picklable (the concrete error can be found in the linked issue). The solutions to consider: 1. hashing/pickling the original, uncompiled version of a compiled model/function (attributes `_orig_mod`/`_torchdynamo_orig_callable`) (less precise than the 2nd option as it ignores the other params of `torch.compute`) 2. wait for https://github.com/pytorch/pytorch/issues/101107 to be resolved
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5839/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/5839/timeline
null
completed
false