Datasets:

id
int64
0
7.97k
query
stringlengths
1.29k
1.31k
answer
stringclasses
2 values
choices
sequence
gold
int64
0
1
text
stringlengths
374
399
500
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.943, V2: -0.812, V3: -1.193, V4: -0.157, V5: -0.541, V6: -0.972, V7: -0.196, V8: -0.487, V9: 0.516, V10: 0.520, V11: 0.471, V12: -2.155, V13: 2.765, V14: 1.556, V15: -0.281, V16: -1.560, V17: 0.567, V18: 1.217, V19: -1.388, V20: -0.334, V21: -0.187, V22: 0.023, V23: 0.105, V24: 1.145, V25: -0.140, V26: 0.682, V27: -0.110, V28: -0.037, Amount: 128.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.943, V2: -0.812, V3: -1.193, V4: -0.157, V5: -0.541, V6: -0.972, V7: -0.196, V8: -0.487, V9: 0.516, V10: 0.520, V11: 0.471, V12: -2.155, V13: 2.765, V14: 1.556, V15: -0.281, V16: -1.560, V17: 0.567, V18: 1.217, V19: -1.388, V20: -0.334, V21: -0.187, V22: 0.023, V23: 0.105, V24: 1.145, V25: -0.140, V26: 0.682, V27: -0.110, V28: -0.037, Amount: 128.000.
501
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -2.282, V2: 1.430, V3: 1.089, V4: -0.793, V5: -1.344, V6: -0.925, V7: -0.315, V8: 0.776, V9: 1.154, V10: 0.271, V11: -0.868, V12: 0.149, V13: -0.673, V14: -0.248, V15: -0.431, V16: 0.178, V17: 0.072, V18: -0.280, V19: -0.628, V20: 0.316, V21: -0.003, V22: 0.443, V23: -0.113, V24: 0.788, V25: -0.008, V26: 0.965, V27: 0.303, V28: 0.105, Amount: 17.220.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -2.282, V2: 1.430, V3: 1.089, V4: -0.793, V5: -1.344, V6: -0.925, V7: -0.315, V8: 0.776, V9: 1.154, V10: 0.271, V11: -0.868, V12: 0.149, V13: -0.673, V14: -0.248, V15: -0.431, V16: 0.178, V17: 0.072, V18: -0.280, V19: -0.628, V20: 0.316, V21: -0.003, V22: 0.443, V23: -0.113, V24: 0.788, V25: -0.008, V26: 0.965, V27: 0.303, V28: 0.105, Amount: 17.220.
502
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.454, V2: 1.906, V3: -1.002, V4: -0.901, V5: 0.098, V6: -0.858, V7: 0.504, V8: 0.480, V9: 0.513, V10: 0.571, V11: -1.580, V12: 0.411, V13: 0.675, V14: 0.123, V15: -0.381, V16: 0.175, V17: -0.491, V18: -0.593, V19: 0.050, V20: 0.355, V21: -0.398, V22: -0.748, V23: 0.099, V24: -0.664, V25: -0.150, V26: 0.175, V27: 0.264, V28: -0.007, Amount: 13.480.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.454, V2: 1.906, V3: -1.002, V4: -0.901, V5: 0.098, V6: -0.858, V7: 0.504, V8: 0.480, V9: 0.513, V10: 0.571, V11: -1.580, V12: 0.411, V13: 0.675, V14: 0.123, V15: -0.381, V16: 0.175, V17: -0.491, V18: -0.593, V19: 0.050, V20: 0.355, V21: -0.398, V22: -0.748, V23: 0.099, V24: -0.664, V25: -0.150, V26: 0.175, V27: 0.264, V28: -0.007, Amount: 13.480.
503
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -3.061, V2: 2.106, V3: -1.037, V4: 0.806, V5: 0.061, V6: -0.404, V7: 0.350, V8: 1.016, V9: -0.984, V10: 0.327, V11: 0.062, V12: 0.862, V13: -0.132, V14: 1.314, V15: -0.779, V16: -0.578, V17: 0.367, V18: 0.267, V19: 1.270, V20: -0.235, V21: 0.076, V22: 0.251, V23: -0.559, V24: -0.356, V25: 1.303, V26: -0.192, V27: -0.217, V28: -0.232, Amount: 20.220.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -3.061, V2: 2.106, V3: -1.037, V4: 0.806, V5: 0.061, V6: -0.404, V7: 0.350, V8: 1.016, V9: -0.984, V10: 0.327, V11: 0.062, V12: 0.862, V13: -0.132, V14: 1.314, V15: -0.779, V16: -0.578, V17: 0.367, V18: 0.267, V19: 1.270, V20: -0.235, V21: 0.076, V22: 0.251, V23: -0.559, V24: -0.356, V25: 1.303, V26: -0.192, V27: -0.217, V28: -0.232, Amount: 20.220.
504
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.754, V2: -1.174, V3: 0.750, V4: 0.181, V5: -1.070, V6: 0.650, V7: -0.627, V8: 0.356, V9: 1.069, V10: -0.397, V11: 0.691, V12: 0.800, V13: -0.881, V14: -0.136, V15: -0.609, V16: -0.054, V17: 0.107, V18: -0.340, V19: 0.461, V20: 0.273, V21: -0.062, V22: -0.423, V23: -0.113, V24: -0.234, V25: -0.026, V26: 0.956, V27: -0.066, V28: 0.031, Amount: 212.360.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 0.754, V2: -1.174, V3: 0.750, V4: 0.181, V5: -1.070, V6: 0.650, V7: -0.627, V8: 0.356, V9: 1.069, V10: -0.397, V11: 0.691, V12: 0.800, V13: -0.881, V14: -0.136, V15: -0.609, V16: -0.054, V17: 0.107, V18: -0.340, V19: 0.461, V20: 0.273, V21: -0.062, V22: -0.423, V23: -0.113, V24: -0.234, V25: -0.026, V26: 0.956, V27: -0.066, V28: 0.031, Amount: 212.360.
505
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.921, V2: -0.435, V3: -1.080, V4: 0.294, V5: -0.316, V6: -0.931, V7: 0.087, V8: -0.255, V9: 1.112, V10: -0.241, V11: -0.985, V12: 0.505, V13: -0.224, V14: 0.140, V15: -0.209, V16: -0.538, V17: -0.058, V18: -0.693, V19: 0.290, V20: -0.134, V21: -0.130, V22: -0.247, V23: 0.162, V24: -0.070, V25: -0.097, V26: -0.087, V27: -0.034, V28: -0.047, Amount: 65.260.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.921, V2: -0.435, V3: -1.080, V4: 0.294, V5: -0.316, V6: -0.931, V7: 0.087, V8: -0.255, V9: 1.112, V10: -0.241, V11: -0.985, V12: 0.505, V13: -0.224, V14: 0.140, V15: -0.209, V16: -0.538, V17: -0.058, V18: -0.693, V19: 0.290, V20: -0.134, V21: -0.130, V22: -0.247, V23: 0.162, V24: -0.070, V25: -0.097, V26: -0.087, V27: -0.034, V28: -0.047, Amount: 65.260.
506
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.091, V2: 0.252, V3: -1.936, V4: -0.800, V5: 1.843, V6: -1.644, V7: 1.975, V8: -0.667, V9: -0.568, V10: -0.551, V11: -0.957, V12: 0.671, V13: 1.132, V14: 0.568, V15: -0.936, V16: -1.038, V17: -0.418, V18: -0.498, V19: -0.135, V20: 0.154, V21: 0.631, V22: 1.766, V23: 0.222, V24: 0.851, V25: -1.013, V26: 0.052, V27: 0.233, V28: 0.348, Amount: 107.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 0.091, V2: 0.252, V3: -1.936, V4: -0.800, V5: 1.843, V6: -1.644, V7: 1.975, V8: -0.667, V9: -0.568, V10: -0.551, V11: -0.957, V12: 0.671, V13: 1.132, V14: 0.568, V15: -0.936, V16: -1.038, V17: -0.418, V18: -0.498, V19: -0.135, V20: 0.154, V21: 0.631, V22: 1.766, V23: 0.222, V24: 0.851, V25: -1.013, V26: 0.052, V27: 0.233, V28: 0.348, Amount: 107.000.
507
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.062, V2: -0.308, V3: -2.787, V4: -0.777, V5: 2.500, V6: 3.163, V7: -0.400, V8: 0.716, V9: 0.448, V10: 0.033, V11: 0.062, V12: 0.285, V13: -0.144, V14: 0.695, V15: 1.166, V16: -0.286, V17: -0.587, V18: -0.180, V19: -0.356, V20: -0.171, V21: 0.242, V22: 0.745, V23: 0.040, V24: 0.737, V25: 0.304, V26: -0.088, V27: -0.001, V28: -0.065, Amount: 1.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.062, V2: -0.308, V3: -2.787, V4: -0.777, V5: 2.500, V6: 3.163, V7: -0.400, V8: 0.716, V9: 0.448, V10: 0.033, V11: 0.062, V12: 0.285, V13: -0.144, V14: 0.695, V15: 1.166, V16: -0.286, V17: -0.587, V18: -0.180, V19: -0.356, V20: -0.171, V21: 0.242, V22: 0.745, V23: 0.040, V24: 0.737, V25: 0.304, V26: -0.088, V27: -0.001, V28: -0.065, Amount: 1.000.
508
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -6.446, V2: 5.468, V3: -3.517, V4: -0.115, V5: -4.011, V6: -1.646, V7: -3.300, V8: 4.730, V9: -0.356, V10: 0.298, V11: -1.779, V12: 1.875, V13: 0.835, V14: 2.896, V15: 0.563, V16: 1.337, V17: 1.363, V18: -0.110, V19: -0.347, V20: 0.191, V21: -0.061, V22: -0.945, V23: 0.612, V24: 0.320, V25: 0.572, V26: 0.138, V27: -0.060, V28: 0.024, Amount: 8.910.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -6.446, V2: 5.468, V3: -3.517, V4: -0.115, V5: -4.011, V6: -1.646, V7: -3.300, V8: 4.730, V9: -0.356, V10: 0.298, V11: -1.779, V12: 1.875, V13: 0.835, V14: 2.896, V15: 0.563, V16: 1.337, V17: 1.363, V18: -0.110, V19: -0.347, V20: 0.191, V21: -0.061, V22: -0.945, V23: 0.612, V24: 0.320, V25: 0.572, V26: 0.138, V27: -0.060, V28: 0.024, Amount: 8.910.
509
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.093, V2: 0.894, V3: -0.871, V4: -0.896, V5: 2.103, V6: 3.763, V7: -1.087, V8: -1.519, V9: -0.184, V10: -0.329, V11: 0.088, V12: 0.041, V13: -0.131, V14: -0.016, V15: 1.190, V16: 0.862, V17: -0.327, V18: 0.211, V19: 0.027, V20: -0.406, V21: 1.920, V22: -2.070, V23: 0.170, V24: 0.908, V25: 1.022, V26: 0.202, V27: 0.099, V28: 0.120, Amount: 5.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.093, V2: 0.894, V3: -0.871, V4: -0.896, V5: 2.103, V6: 3.763, V7: -1.087, V8: -1.519, V9: -0.184, V10: -0.329, V11: 0.088, V12: 0.041, V13: -0.131, V14: -0.016, V15: 1.190, V16: 0.862, V17: -0.327, V18: 0.211, V19: 0.027, V20: -0.406, V21: 1.920, V22: -2.070, V23: 0.170, V24: 0.908, V25: 1.022, V26: 0.202, V27: 0.099, V28: 0.120, Amount: 5.990.
510
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.144, V2: -0.730, V3: -1.586, V4: -0.990, V5: -0.192, V6: -0.222, V7: -0.760, V8: 0.089, V9: -0.295, V10: 0.408, V11: 0.653, V12: -0.716, V13: -0.969, V14: -1.111, V15: -0.359, V16: 1.914, V17: 0.745, V18: -0.511, V19: 1.196, V20: 0.022, V21: -0.337, V22: -1.151, V23: 0.402, V24: -0.102, V25: -0.506, V26: -0.688, V27: -0.014, V28: -0.026, Amount: 29.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.144, V2: -0.730, V3: -1.586, V4: -0.990, V5: -0.192, V6: -0.222, V7: -0.760, V8: 0.089, V9: -0.295, V10: 0.408, V11: 0.653, V12: -0.716, V13: -0.969, V14: -1.111, V15: -0.359, V16: 1.914, V17: 0.745, V18: -0.511, V19: 1.196, V20: 0.022, V21: -0.337, V22: -1.151, V23: 0.402, V24: -0.102, V25: -0.506, V26: -0.688, V27: -0.014, V28: -0.026, Amount: 29.990.
511
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.026, V2: 1.641, V3: -1.089, V4: -0.830, V5: 0.660, V6: -0.204, V7: 0.486, V8: 0.254, V9: 0.114, V10: 0.507, V11: 0.282, V12: 0.574, V13: -0.025, V14: 0.675, V15: -0.099, V16: -0.107, V17: -0.725, V18: 0.750, V19: 0.418, V20: -0.017, V21: 0.498, V22: 1.291, V23: -0.053, V24: 0.246, V25: -0.742, V26: -0.299, V27: -0.213, V28: 0.316, Amount: 1.500.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.026, V2: 1.641, V3: -1.089, V4: -0.830, V5: 0.660, V6: -0.204, V7: 0.486, V8: 0.254, V9: 0.114, V10: 0.507, V11: 0.282, V12: 0.574, V13: -0.025, V14: 0.675, V15: -0.099, V16: -0.107, V17: -0.725, V18: 0.750, V19: 0.418, V20: -0.017, V21: 0.498, V22: 1.291, V23: -0.053, V24: 0.246, V25: -0.742, V26: -0.299, V27: -0.213, V28: 0.316, Amount: 1.500.
512
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.092, V2: 0.024, V3: -2.579, V4: -0.094, V5: 0.892, V6: -1.148, V7: 0.822, V8: -0.395, V9: -0.026, V10: 0.205, V11: 0.860, V12: 0.458, V13: -1.162, V14: 1.239, V15: -0.615, V16: -0.822, V17: -0.214, V18: -0.066, V19: 0.423, V20: -0.264, V21: 0.328, V22: 1.041, V23: -0.168, V24: 0.779, V25: 0.692, V26: 0.412, V27: -0.115, V28: -0.094, Amount: 12.410.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.092, V2: 0.024, V3: -2.579, V4: -0.094, V5: 0.892, V6: -1.148, V7: 0.822, V8: -0.395, V9: -0.026, V10: 0.205, V11: 0.860, V12: 0.458, V13: -1.162, V14: 1.239, V15: -0.615, V16: -0.822, V17: -0.214, V18: -0.066, V19: 0.423, V20: -0.264, V21: 0.328, V22: 1.041, V23: -0.168, V24: 0.779, V25: 0.692, V26: 0.412, V27: -0.115, V28: -0.094, Amount: 12.410.
513
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.667, V2: 1.285, V3: 1.213, V4: 2.742, V5: 1.044, V6: 0.334, V7: 1.120, V8: -0.168, V9: -1.326, V10: 1.316, V11: 0.109, V12: -0.341, V13: -1.239, V14: -0.033, V15: -2.492, V16: 0.422, V17: -0.804, V18: 0.047, V19: -1.302, V20: -0.346, V21: 0.199, V22: 0.720, V23: -0.317, V24: 0.001, V25: 0.398, V26: 0.120, V27: -0.552, V28: -0.268, Amount: 4.980.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.667, V2: 1.285, V3: 1.213, V4: 2.742, V5: 1.044, V6: 0.334, V7: 1.120, V8: -0.168, V9: -1.326, V10: 1.316, V11: 0.109, V12: -0.341, V13: -1.239, V14: -0.033, V15: -2.492, V16: 0.422, V17: -0.804, V18: 0.047, V19: -1.302, V20: -0.346, V21: 0.199, V22: 0.720, V23: -0.317, V24: 0.001, V25: 0.398, V26: 0.120, V27: -0.552, V28: -0.268, Amount: 4.980.
514
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.741, V2: 1.326, V3: -2.288, V4: -2.457, V5: 3.693, V6: 2.761, V7: 1.457, V8: 0.210, V9: 0.502, V10: 1.195, V11: 0.124, V12: -0.268, V13: -0.532, V14: 0.228, V15: 0.364, V16: -0.986, V17: -0.727, V18: -0.621, V19: -0.372, V20: 0.645, V21: 0.017, V22: 0.764, V23: -0.236, V24: 0.739, V25: -0.118, V26: 0.071, V27: 0.509, V28: 0.067, Amount: 7.320.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.741, V2: 1.326, V3: -2.288, V4: -2.457, V5: 3.693, V6: 2.761, V7: 1.457, V8: 0.210, V9: 0.502, V10: 1.195, V11: 0.124, V12: -0.268, V13: -0.532, V14: 0.228, V15: 0.364, V16: -0.986, V17: -0.727, V18: -0.621, V19: -0.372, V20: 0.645, V21: 0.017, V22: 0.764, V23: -0.236, V24: 0.739, V25: -0.118, V26: 0.071, V27: 0.509, V28: 0.067, Amount: 7.320.
515
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.730, V2: 1.295, V3: -0.062, V4: 1.130, V5: 0.032, V6: -0.481, V7: 0.439, V8: 0.509, V9: -0.750, V10: 0.540, V11: 1.217, V12: 0.197, V13: -1.417, V14: 1.286, V15: 0.469, V16: -0.642, V17: 0.300, V18: 0.096, V19: 0.504, V20: 0.034, V21: 0.245, V22: 0.780, V23: 0.137, V24: 0.194, V25: -0.911, V26: -0.344, V27: 0.493, V28: 0.281, Amount: 28.610.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.730, V2: 1.295, V3: -0.062, V4: 1.130, V5: 0.032, V6: -0.481, V7: 0.439, V8: 0.509, V9: -0.750, V10: 0.540, V11: 1.217, V12: 0.197, V13: -1.417, V14: 1.286, V15: 0.469, V16: -0.642, V17: 0.300, V18: 0.096, V19: 0.504, V20: 0.034, V21: 0.245, V22: 0.780, V23: 0.137, V24: 0.194, V25: -0.911, V26: -0.344, V27: 0.493, V28: 0.281, Amount: 28.610.
516
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.606, V2: 0.590, V3: 0.481, V4: -0.362, V5: -1.769, V6: 0.541, V7: 1.780, V8: -1.193, V9: 0.178, V10: -0.662, V11: -0.854, V12: 0.179, V13: 0.500, V14: -0.232, V15: 0.301, V16: 0.333, V17: -0.464, V18: -0.309, V19: 0.273, V20: -0.446, V21: 0.548, V22: -0.492, V23: 0.375, V24: 0.067, V25: -1.340, V26: 0.176, V27: 0.360, V28: 0.100, Amount: 379.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.606, V2: 0.590, V3: 0.481, V4: -0.362, V5: -1.769, V6: 0.541, V7: 1.780, V8: -1.193, V9: 0.178, V10: -0.662, V11: -0.854, V12: 0.179, V13: 0.500, V14: -0.232, V15: 0.301, V16: 0.333, V17: -0.464, V18: -0.309, V19: 0.273, V20: -0.446, V21: 0.548, V22: -0.492, V23: 0.375, V24: 0.067, V25: -1.340, V26: 0.176, V27: 0.360, V28: 0.100, Amount: 379.000.
517
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.157, V2: 1.223, V3: 1.062, V4: -1.168, V5: 0.292, V6: -0.390, V7: 0.500, V8: 0.542, V9: -0.859, V10: -0.791, V11: 0.571, V12: 0.533, V13: -0.127, V14: 0.718, V15: -0.073, V16: 0.767, V17: -0.748, V18: -0.070, V19: 0.336, V20: 0.004, V21: -0.430, V22: -1.454, V23: -0.095, V24: -0.520, V25: 0.168, V26: 0.173, V27: 0.075, V28: 0.026, Amount: 3.870.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.157, V2: 1.223, V3: 1.062, V4: -1.168, V5: 0.292, V6: -0.390, V7: 0.500, V8: 0.542, V9: -0.859, V10: -0.791, V11: 0.571, V12: 0.533, V13: -0.127, V14: 0.718, V15: -0.073, V16: 0.767, V17: -0.748, V18: -0.070, V19: 0.336, V20: 0.004, V21: -0.430, V22: -1.454, V23: -0.095, V24: -0.520, V25: 0.168, V26: 0.173, V27: 0.075, V28: 0.026, Amount: 3.870.
518
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.180, V2: 0.926, V3: -1.141, V4: -0.764, V5: 0.547, V6: -0.072, V7: 0.137, V8: 0.879, V9: -0.427, V10: -0.500, V11: -0.999, V12: -0.070, V13: -0.687, V14: 1.121, V15: -0.600, V16: 0.714, V17: -0.851, V18: 1.056, V19: 0.297, V20: -0.200, V21: 0.443, V22: 1.064, V23: -0.342, V24: -1.390, V25: -0.252, V26: 0.537, V27: 0.029, V28: 0.042, Amount: 35.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.180, V2: 0.926, V3: -1.141, V4: -0.764, V5: 0.547, V6: -0.072, V7: 0.137, V8: 0.879, V9: -0.427, V10: -0.500, V11: -0.999, V12: -0.070, V13: -0.687, V14: 1.121, V15: -0.600, V16: 0.714, V17: -0.851, V18: 1.056, V19: 0.297, V20: -0.200, V21: 0.443, V22: 1.064, V23: -0.342, V24: -1.390, V25: -0.252, V26: 0.537, V27: 0.029, V28: 0.042, Amount: 35.000.
519
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.067, V2: 2.222, V3: -2.282, V4: 1.488, V5: 0.708, V6: -1.280, V7: 0.413, V8: 0.430, V9: -0.437, V10: -0.678, V11: 2.745, V12: 0.455, V13: -0.114, V14: -3.144, V15: 0.592, V16: 0.753, V17: 3.069, V18: 1.481, V19: -0.625, V20: 0.228, V21: -0.069, V22: 0.056, V23: 0.200, V24: -0.128, V25: -0.459, V26: -0.391, V27: 0.356, V28: 0.062, Amount: 0.890.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.067, V2: 2.222, V3: -2.282, V4: 1.488, V5: 0.708, V6: -1.280, V7: 0.413, V8: 0.430, V9: -0.437, V10: -0.678, V11: 2.745, V12: 0.455, V13: -0.114, V14: -3.144, V15: 0.592, V16: 0.753, V17: 3.069, V18: 1.481, V19: -0.625, V20: 0.228, V21: -0.069, V22: 0.056, V23: 0.200, V24: -0.128, V25: -0.459, V26: -0.391, V27: 0.356, V28: 0.062, Amount: 0.890.
520
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.947, V2: -0.303, V3: 1.042, V4: 0.901, V5: 0.482, V6: 0.181, V7: 0.619, V8: -0.340, V9: 0.198, V10: 0.111, V11: -0.704, V12: 0.302, V13: 0.656, V14: -0.537, V15: 0.475, V16: -0.902, V17: 0.299, V18: -0.866, V19: 1.147, V20: -0.234, V21: -0.291, V22: -0.156, V23: -0.289, V24: -0.330, V25: -0.316, V26: 0.369, V27: -0.137, V28: -0.241, Amount: 167.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.947, V2: -0.303, V3: 1.042, V4: 0.901, V5: 0.482, V6: 0.181, V7: 0.619, V8: -0.340, V9: 0.198, V10: 0.111, V11: -0.704, V12: 0.302, V13: 0.656, V14: -0.537, V15: 0.475, V16: -0.902, V17: 0.299, V18: -0.866, V19: 1.147, V20: -0.234, V21: -0.291, V22: -0.156, V23: -0.289, V24: -0.330, V25: -0.316, V26: 0.369, V27: -0.137, V28: -0.241, Amount: 167.990.
521
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.564, V2: 0.837, V3: 2.151, V4: -0.384, V5: -0.028, V6: -0.283, V7: 0.600, V8: -0.087, V9: 0.446, V10: -0.562, V11: -0.790, V12: -0.422, V13: -0.588, V14: -0.099, V15: 1.463, V16: -0.263, V17: -0.372, V18: 0.246, V19: 0.671, V20: 0.183, V21: -0.219, V22: -0.305, V23: -0.318, V24: -0.146, V25: 0.322, V26: -0.662, V27: 0.192, V28: -0.082, Amount: 1.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.564, V2: 0.837, V3: 2.151, V4: -0.384, V5: -0.028, V6: -0.283, V7: 0.600, V8: -0.087, V9: 0.446, V10: -0.562, V11: -0.790, V12: -0.422, V13: -0.588, V14: -0.099, V15: 1.463, V16: -0.263, V17: -0.372, V18: 0.246, V19: 0.671, V20: 0.183, V21: -0.219, V22: -0.305, V23: -0.318, V24: -0.146, V25: 0.322, V26: -0.662, V27: 0.192, V28: -0.082, Amount: 1.000.
522
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.025, V2: -0.495, V3: 1.768, V4: -1.960, V5: -1.474, V6: -0.556, V7: -0.628, V8: 0.079, V9: -2.357, V10: 1.205, V11: 1.037, V12: -0.972, V13: -0.565, V14: -0.161, V15: -0.088, V16: -0.168, V17: 0.308, V18: 0.998, V19: -0.071, V20: -0.310, V21: 0.118, V22: 0.636, V23: -0.127, V24: 0.517, V25: -0.084, V26: -0.102, V27: 0.056, V28: 0.017, Amount: 20.550.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.025, V2: -0.495, V3: 1.768, V4: -1.960, V5: -1.474, V6: -0.556, V7: -0.628, V8: 0.079, V9: -2.357, V10: 1.205, V11: 1.037, V12: -0.972, V13: -0.565, V14: -0.161, V15: -0.088, V16: -0.168, V17: 0.308, V18: 0.998, V19: -0.071, V20: -0.310, V21: 0.118, V22: 0.636, V23: -0.127, V24: 0.517, V25: -0.084, V26: -0.102, V27: 0.056, V28: 0.017, Amount: 20.550.
523
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.966, V2: -0.208, V3: 0.265, V4: 1.488, V5: -0.357, V6: -0.172, V7: 0.122, V8: 0.028, V9: 0.463, V10: -0.137, V11: -0.743, V12: -0.115, V13: -1.332, V14: 0.332, V15: 0.053, V16: -0.652, V17: 0.336, V18: -0.808, V19: -0.392, V20: -0.059, V21: -0.054, V22: -0.210, V23: -0.138, V24: 0.067, V25: 0.584, V26: -0.320, V27: 0.013, V28: 0.031, Amount: 111.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 0.966, V2: -0.208, V3: 0.265, V4: 1.488, V5: -0.357, V6: -0.172, V7: 0.122, V8: 0.028, V9: 0.463, V10: -0.137, V11: -0.743, V12: -0.115, V13: -1.332, V14: 0.332, V15: 0.053, V16: -0.652, V17: 0.336, V18: -0.808, V19: -0.392, V20: -0.059, V21: -0.054, V22: -0.210, V23: -0.138, V24: 0.067, V25: 0.584, V26: -0.320, V27: 0.013, V28: 0.031, Amount: 111.000.
524
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.287, V2: -0.709, V3: 1.543, V4: -0.533, V5: 1.282, V6: -2.530, V7: 0.311, V8: -0.310, V9: -0.133, V10: -0.403, V11: -0.115, V12: -0.563, V13: -1.591, V14: 0.459, V15: 0.338, V16: 0.069, V17: -0.283, V18: -0.898, V19: -0.475, V20: 0.216, V21: -0.244, V22: -1.129, V23: 0.420, V24: 0.868, V25: -0.713, V26: 0.348, V27: -0.210, V28: -0.063, Amount: 11.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.287, V2: -0.709, V3: 1.543, V4: -0.533, V5: 1.282, V6: -2.530, V7: 0.311, V8: -0.310, V9: -0.133, V10: -0.403, V11: -0.115, V12: -0.563, V13: -1.591, V14: 0.459, V15: 0.338, V16: 0.069, V17: -0.283, V18: -0.898, V19: -0.475, V20: 0.216, V21: -0.244, V22: -1.129, V23: 0.420, V24: 0.868, V25: -0.713, V26: 0.348, V27: -0.210, V28: -0.063, Amount: 11.990.
525
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.051, V2: 0.421, V3: -2.173, V4: 0.360, V5: 1.838, V6: -1.434, V7: 1.485, V8: -0.640, V9: 0.446, V10: -0.627, V11: 1.611, V12: -0.275, V13: -0.582, V14: -3.154, V15: 0.242, V16: 0.440, V17: 1.775, V18: 1.995, V19: 0.466, V20: 0.434, V21: -0.156, V22: 0.184, V23: -0.075, V24: -0.778, V25: -0.067, V26: -0.534, V27: 0.079, V28: -0.257, Amount: 128.350.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.051, V2: 0.421, V3: -2.173, V4: 0.360, V5: 1.838, V6: -1.434, V7: 1.485, V8: -0.640, V9: 0.446, V10: -0.627, V11: 1.611, V12: -0.275, V13: -0.582, V14: -3.154, V15: 0.242, V16: 0.440, V17: 1.775, V18: 1.995, V19: 0.466, V20: 0.434, V21: -0.156, V22: 0.184, V23: -0.075, V24: -0.778, V25: -0.067, V26: -0.534, V27: 0.079, V28: -0.257, Amount: 128.350.
526
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.481, V2: -1.315, V3: 2.947, V4: -0.736, V5: -1.751, V6: 3.167, V7: -1.437, V8: 0.776, V9: -1.032, V10: 1.215, V11: 1.285, V12: -0.109, V13: -0.649, V14: -1.438, V15: -0.744, V16: -3.042, V17: 2.899, V18: -1.210, V19: 0.869, V20: -0.201, V21: -0.046, V22: 1.025, V23: 0.035, V24: -0.782, V25: -0.614, V26: 0.249, V27: 0.048, V28: -0.136, Amount: 107.500.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.481, V2: -1.315, V3: 2.947, V4: -0.736, V5: -1.751, V6: 3.167, V7: -1.437, V8: 0.776, V9: -1.032, V10: 1.215, V11: 1.285, V12: -0.109, V13: -0.649, V14: -1.438, V15: -0.744, V16: -3.042, V17: 2.899, V18: -1.210, V19: 0.869, V20: -0.201, V21: -0.046, V22: 1.025, V23: 0.035, V24: -0.782, V25: -0.614, V26: 0.249, V27: 0.048, V28: -0.136, Amount: 107.500.
527
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.046, V2: -1.026, V3: 0.464, V4: -2.942, V5: 1.560, V6: 4.429, V7: 0.712, V8: 0.470, V9: -0.898, V10: 0.108, V11: 0.125, V12: -1.111, V13: -0.067, V14: -0.826, V15: 0.535, V16: 1.050, V17: -0.204, V18: -1.487, V19: 0.582, V20: 0.347, V21: -0.164, V22: -0.283, V23: 0.201, V24: 0.679, V25: 0.384, V26: -0.382, V27: -0.276, V28: -0.452, Amount: 258.870.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.046, V2: -1.026, V3: 0.464, V4: -2.942, V5: 1.560, V6: 4.429, V7: 0.712, V8: 0.470, V9: -0.898, V10: 0.108, V11: 0.125, V12: -1.111, V13: -0.067, V14: -0.826, V15: 0.535, V16: 1.050, V17: -0.204, V18: -1.487, V19: 0.582, V20: 0.347, V21: -0.164, V22: -0.283, V23: 0.201, V24: 0.679, V25: 0.384, V26: -0.382, V27: -0.276, V28: -0.452, Amount: 258.870.
528
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.535, V2: 0.451, V3: 1.871, V4: 1.303, V5: 0.507, V6: 0.107, V7: 0.432, V8: 0.072, V9: -0.384, V10: 0.112, V11: 1.149, V12: 0.214, V13: -1.441, V14: 0.289, V15: -0.313, V16: -1.116, V17: 0.438, V18: -0.124, V19: 1.002, V20: 0.076, V21: 0.022, V22: 0.307, V23: -0.167, V24: 0.208, V25: -0.110, V26: -0.267, V27: -0.018, V28: -0.103, Amount: 4.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.535, V2: 0.451, V3: 1.871, V4: 1.303, V5: 0.507, V6: 0.107, V7: 0.432, V8: 0.072, V9: -0.384, V10: 0.112, V11: 1.149, V12: 0.214, V13: -1.441, V14: 0.289, V15: -0.313, V16: -1.116, V17: 0.438, V18: -0.124, V19: 1.002, V20: 0.076, V21: 0.022, V22: 0.307, V23: -0.167, V24: 0.208, V25: -0.110, V26: -0.267, V27: -0.018, V28: -0.103, Amount: 4.990.
529
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.333, V2: -3.593, V3: 0.221, V4: 0.433, V5: -2.577, V6: -0.014, V7: 0.023, V8: -0.134, V9: 0.097, V10: 0.044, V11: -1.162, V12: -0.110, V13: -0.335, V14: -0.366, V15: -0.309, V16: -1.437, V17: 0.447, V18: 0.976, V19: -0.631, V20: 1.202, V21: -0.087, V22: -1.501, V23: -0.581, V24: 0.430, V25: -0.309, V26: 0.824, V27: -0.172, V28: 0.167, Amount: 862.170.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.333, V2: -3.593, V3: 0.221, V4: 0.433, V5: -2.577, V6: -0.014, V7: 0.023, V8: -0.134, V9: 0.097, V10: 0.044, V11: -1.162, V12: -0.110, V13: -0.335, V14: -0.366, V15: -0.309, V16: -1.437, V17: 0.447, V18: 0.976, V19: -0.631, V20: 1.202, V21: -0.087, V22: -1.501, V23: -0.581, V24: 0.430, V25: -0.309, V26: 0.824, V27: -0.172, V28: 0.167, Amount: 862.170.
530
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.354, V2: 1.239, V3: 0.290, V4: 0.960, V5: 1.308, V6: -0.054, V7: 1.076, V8: -0.143, V9: 0.344, V10: -0.333, V11: 1.439, V12: -2.459, V13: 0.419, V14: 2.277, V15: -1.550, V16: -0.998, V17: 0.740, V18: 0.535, V19: 0.931, V20: -0.138, V21: 0.032, V22: 0.366, V23: -0.347, V24: 0.640, V25: 0.259, V26: -0.427, V27: -0.035, V28: 0.139, Amount: 1.500.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.354, V2: 1.239, V3: 0.290, V4: 0.960, V5: 1.308, V6: -0.054, V7: 1.076, V8: -0.143, V9: 0.344, V10: -0.333, V11: 1.439, V12: -2.459, V13: 0.419, V14: 2.277, V15: -1.550, V16: -0.998, V17: 0.740, V18: 0.535, V19: 0.931, V20: -0.138, V21: 0.032, V22: 0.366, V23: -0.347, V24: 0.640, V25: 0.259, V26: -0.427, V27: -0.035, V28: 0.139, Amount: 1.500.
531
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.103, V2: -0.618, V3: -1.260, V4: -0.594, V5: -0.620, V6: -1.161, V7: -0.486, V8: -0.317, V9: -0.332, V10: 0.202, V11: -0.164, V12: -0.080, V13: 1.178, V14: -1.738, V15: 0.021, V16: 1.229, V17: 1.191, V18: -1.160, V19: 0.345, V20: 0.126, V21: 0.138, V22: 0.461, V23: 0.127, V24: -0.066, V25: -0.117, V26: -0.207, V27: 0.009, V28: -0.019, Amount: 45.850.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.103, V2: -0.618, V3: -1.260, V4: -0.594, V5: -0.620, V6: -1.161, V7: -0.486, V8: -0.317, V9: -0.332, V10: 0.202, V11: -0.164, V12: -0.080, V13: 1.178, V14: -1.738, V15: 0.021, V16: 1.229, V17: 1.191, V18: -1.160, V19: 0.345, V20: 0.126, V21: 0.138, V22: 0.461, V23: 0.127, V24: -0.066, V25: -0.117, V26: -0.207, V27: 0.009, V28: -0.019, Amount: 45.850.
532
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.062, V2: -0.092, V3: -1.499, V4: 0.178, V5: 0.440, V6: -0.256, V7: -0.154, V8: -0.091, V9: 2.028, V10: -0.265, V11: 1.319, V12: -2.431, V13: 0.210, V14: 2.379, V15: -0.297, V16: 0.038, V17: -0.084, V18: 1.113, V19: 0.002, V20: -0.346, V21: 0.126, V22: 0.660, V23: -0.016, V24: 0.143, V25: 0.292, V26: -0.474, V27: -0.034, V28: -0.072, Amount: 1.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.062, V2: -0.092, V3: -1.499, V4: 0.178, V5: 0.440, V6: -0.256, V7: -0.154, V8: -0.091, V9: 2.028, V10: -0.265, V11: 1.319, V12: -2.431, V13: 0.210, V14: 2.379, V15: -0.297, V16: 0.038, V17: -0.084, V18: 1.113, V19: 0.002, V20: -0.346, V21: 0.126, V22: 0.660, V23: -0.016, V24: 0.143, V25: 0.292, V26: -0.474, V27: -0.034, V28: -0.072, Amount: 1.000.
533
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.983, V2: -0.547, V3: -0.454, V4: -0.104, V5: -0.087, V6: -0.282, V7: 0.342, V8: -0.176, V9: -0.008, V10: -0.179, V11: 0.595, V12: 1.093, V13: 0.671, V14: 0.216, V15: -0.546, V16: 0.094, V17: -0.508, V18: -0.041, V19: 0.908, V20: 0.344, V21: 0.022, V22: -0.181, V23: -0.363, V24: -0.374, V25: 0.581, V26: 1.135, V27: -0.130, V28: 0.005, Amount: 179.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 0.983, V2: -0.547, V3: -0.454, V4: -0.104, V5: -0.087, V6: -0.282, V7: 0.342, V8: -0.176, V9: -0.008, V10: -0.179, V11: 0.595, V12: 1.093, V13: 0.671, V14: 0.216, V15: -0.546, V16: 0.094, V17: -0.508, V18: -0.041, V19: 0.908, V20: 0.344, V21: 0.022, V22: -0.181, V23: -0.363, V24: -0.374, V25: 0.581, V26: 1.135, V27: -0.130, V28: 0.005, Amount: 179.000.
534
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.737, V2: 0.898, V3: 2.570, V4: 0.671, V5: 0.045, V6: -0.188, V7: 0.882, V8: -0.395, V9: -0.459, V10: 0.392, V11: 1.647, V12: 0.365, V13: -0.243, V14: -0.084, V15: 0.783, V16: -0.044, V17: -0.638, V18: 0.444, V19: 0.761, V20: 0.123, V21: -0.155, V22: -0.223, V23: -0.162, V24: 0.489, V25: 0.004, V26: -0.598, V27: -0.486, V28: -0.372, Amount: 19.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.737, V2: 0.898, V3: 2.570, V4: 0.671, V5: 0.045, V6: -0.188, V7: 0.882, V8: -0.395, V9: -0.459, V10: 0.392, V11: 1.647, V12: 0.365, V13: -0.243, V14: -0.084, V15: 0.783, V16: -0.044, V17: -0.638, V18: 0.444, V19: 0.761, V20: 0.123, V21: -0.155, V22: -0.223, V23: -0.162, V24: 0.489, V25: 0.004, V26: -0.598, V27: -0.486, V28: -0.372, Amount: 19.990.
535
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -2.657, V2: -1.031, V3: 1.718, V4: 0.252, V5: 0.999, V6: -2.396, V7: -0.556, V8: 0.446, V9: -0.640, V10: -0.980, V11: -0.214, V12: 0.250, V13: -0.293, V14: 0.676, V15: 0.527, V16: 0.447, V17: -0.201, V18: -0.459, V19: -0.844, V20: 0.394, V21: 0.060, V22: -0.866, V23: -0.084, V24: 0.908, V25: 0.133, V26: -0.042, V27: -0.100, V28: -0.340, Amount: 1.980.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -2.657, V2: -1.031, V3: 1.718, V4: 0.252, V5: 0.999, V6: -2.396, V7: -0.556, V8: 0.446, V9: -0.640, V10: -0.980, V11: -0.214, V12: 0.250, V13: -0.293, V14: 0.676, V15: 0.527, V16: 0.447, V17: -0.201, V18: -0.459, V19: -0.844, V20: 0.394, V21: 0.060, V22: -0.866, V23: -0.084, V24: 0.908, V25: 0.133, V26: -0.042, V27: -0.100, V28: -0.340, Amount: 1.980.
536
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.988, V2: -0.854, V3: -0.800, V4: -0.822, V5: -0.807, V6: -0.718, V7: -0.602, V8: -0.023, V9: 1.807, V10: -0.368, V11: -1.509, V12: -0.697, V13: -1.548, V14: 0.331, V15: 1.417, V16: 0.582, V17: -0.641, V18: 0.154, V19: 0.518, V20: -0.153, V21: -0.209, V22: -0.695, V23: 0.300, V24: -0.691, V25: -0.634, V26: 0.375, V27: -0.062, V28: -0.047, Amount: 60.780.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.988, V2: -0.854, V3: -0.800, V4: -0.822, V5: -0.807, V6: -0.718, V7: -0.602, V8: -0.023, V9: 1.807, V10: -0.368, V11: -1.509, V12: -0.697, V13: -1.548, V14: 0.331, V15: 1.417, V16: 0.582, V17: -0.641, V18: 0.154, V19: 0.518, V20: -0.153, V21: -0.209, V22: -0.695, V23: 0.300, V24: -0.691, V25: -0.634, V26: 0.375, V27: -0.062, V28: -0.047, Amount: 60.780.
537
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.801, V2: -0.541, V3: -1.380, V4: 0.548, V5: -0.223, V6: -1.055, V7: 0.314, V8: -0.356, V9: 0.865, V10: -0.123, V11: -1.041, V12: 0.266, V13: -0.175, V14: 0.349, V15: 0.238, V16: -0.344, V17: -0.352, V18: -0.112, V19: -0.030, V20: 0.014, V21: 0.228, V22: 0.584, V23: -0.113, V24: -0.072, V25: 0.210, V26: -0.152, V27: -0.037, V28: -0.035, Amount: 139.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.801, V2: -0.541, V3: -1.380, V4: 0.548, V5: -0.223, V6: -1.055, V7: 0.314, V8: -0.356, V9: 0.865, V10: -0.123, V11: -1.041, V12: 0.266, V13: -0.175, V14: 0.349, V15: 0.238, V16: -0.344, V17: -0.352, V18: -0.112, V19: -0.030, V20: 0.014, V21: 0.228, V22: 0.584, V23: -0.113, V24: -0.072, V25: 0.210, V26: -0.152, V27: -0.037, V28: -0.035, Amount: 139.000.
538
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.300, V2: 1.128, V3: 1.072, V4: -0.066, V5: 0.294, V6: -0.674, V7: 0.706, V8: -0.043, V9: -0.369, V10: -0.513, V11: -0.680, V12: -0.219, V13: 0.282, V14: -0.476, V15: 0.925, V16: 0.536, V17: -0.191, V18: 0.027, V19: 0.111, V20: 0.133, V21: -0.299, V22: -0.782, V23: -0.084, V24: -0.202, V25: -0.087, V26: 0.105, V27: 0.246, V28: 0.093, Amount: 2.580.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.300, V2: 1.128, V3: 1.072, V4: -0.066, V5: 0.294, V6: -0.674, V7: 0.706, V8: -0.043, V9: -0.369, V10: -0.513, V11: -0.680, V12: -0.219, V13: 0.282, V14: -0.476, V15: 0.925, V16: 0.536, V17: -0.191, V18: 0.027, V19: 0.111, V20: 0.133, V21: -0.299, V22: -0.782, V23: -0.084, V24: -0.202, V25: -0.087, V26: 0.105, V27: 0.246, V28: 0.093, Amount: 2.580.
539
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.433, V2: -0.422, V3: 0.010, V4: -0.759, V5: -0.658, V6: -0.879, V7: -0.319, V8: -0.293, V9: -0.947, V10: 0.635, V11: -0.605, V12: -0.495, V13: 0.796, V14: -0.204, V15: 0.633, V16: 1.111, V17: 0.080, V18: -1.291, V19: 0.698, V20: 0.149, V21: 0.195, V22: 0.496, V23: -0.195, V24: -0.064, V25: 0.711, V26: -0.089, V27: -0.006, V28: 0.009, Amount: 25.900.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.433, V2: -0.422, V3: 0.010, V4: -0.759, V5: -0.658, V6: -0.879, V7: -0.319, V8: -0.293, V9: -0.947, V10: 0.635, V11: -0.605, V12: -0.495, V13: 0.796, V14: -0.204, V15: 0.633, V16: 1.111, V17: 0.080, V18: -1.291, V19: 0.698, V20: 0.149, V21: 0.195, V22: 0.496, V23: -0.195, V24: -0.064, V25: 0.711, V26: -0.089, V27: -0.006, V28: 0.009, Amount: 25.900.
540
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.756, V2: 0.540, V3: 0.768, V4: 0.839, V5: 1.573, V6: 0.039, V7: 0.316, V8: -0.118, V9: -0.492, V10: -0.245, V11: -1.083, V12: 0.404, V13: 1.311, V14: 0.107, V15: 1.476, V16: -1.606, V17: 0.561, V18: -0.089, V19: 3.378, V20: 0.235, V21: -0.265, V22: -0.489, V23: -0.508, V24: 0.078, V25: 0.544, V26: -0.282, V27: 0.097, V28: 0.041, Amount: 1.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.756, V2: 0.540, V3: 0.768, V4: 0.839, V5: 1.573, V6: 0.039, V7: 0.316, V8: -0.118, V9: -0.492, V10: -0.245, V11: -1.083, V12: 0.404, V13: 1.311, V14: 0.107, V15: 1.476, V16: -1.606, V17: 0.561, V18: -0.089, V19: 3.378, V20: 0.235, V21: -0.265, V22: -0.489, V23: -0.508, V24: 0.078, V25: 0.544, V26: -0.282, V27: 0.097, V28: 0.041, Amount: 1.000.
541
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.177, V2: 0.065, V3: -0.461, V4: 0.235, V5: 0.602, V6: 0.323, V7: 0.247, V8: -0.014, V9: -0.429, V10: 0.057, V11: 0.717, V12: 1.063, V13: 1.039, V14: 0.404, V15: 0.336, V16: 0.209, V17: -0.734, V18: -0.158, V19: 0.236, V20: 0.071, V21: -0.013, V22: -0.075, V23: -0.245, V24: -1.086, V25: 0.633, V26: 0.444, V27: -0.045, V28: -0.008, Amount: 57.590.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.177, V2: 0.065, V3: -0.461, V4: 0.235, V5: 0.602, V6: 0.323, V7: 0.247, V8: -0.014, V9: -0.429, V10: 0.057, V11: 0.717, V12: 1.063, V13: 1.039, V14: 0.404, V15: 0.336, V16: 0.209, V17: -0.734, V18: -0.158, V19: 0.236, V20: 0.071, V21: -0.013, V22: -0.075, V23: -0.245, V24: -1.086, V25: 0.633, V26: 0.444, V27: -0.045, V28: -0.008, Amount: 57.590.
542
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.051, V2: -0.090, V3: -1.463, V4: 0.154, V5: 0.217, V6: -0.740, V7: 0.110, V8: -0.190, V9: 0.412, V10: 0.186, V11: 0.642, V12: 0.701, V13: -0.279, V14: 0.731, V15: 0.152, V16: 0.053, V17: -0.824, V18: 0.511, V19: 0.139, V20: -0.250, V21: 0.272, V22: 0.912, V23: -0.051, V24: -0.438, V25: 0.266, V26: -0.097, V27: -0.023, V28: -0.074, Amount: 1.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.051, V2: -0.090, V3: -1.463, V4: 0.154, V5: 0.217, V6: -0.740, V7: 0.110, V8: -0.190, V9: 0.412, V10: 0.186, V11: 0.642, V12: 0.701, V13: -0.279, V14: 0.731, V15: 0.152, V16: 0.053, V17: -0.824, V18: 0.511, V19: 0.139, V20: -0.250, V21: 0.272, V22: 0.912, V23: -0.051, V24: -0.438, V25: 0.266, V26: -0.097, V27: -0.023, V28: -0.074, Amount: 1.000.
543
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.992, V2: -2.063, V3: -1.469, V4: 0.256, V5: 0.100, V6: 1.962, V7: -0.154, V8: 0.491, V9: 0.876, V10: -0.239, V11: 0.713, V12: 0.990, V13: -0.356, V14: 0.287, V15: 0.096, V16: -0.296, V17: 0.100, V18: -1.289, V19: -0.395, V20: 0.680, V21: -0.073, V22: -1.086, V23: 0.099, V24: -0.954, V25: -0.948, V26: 0.178, V27: -0.094, V28: 0.013, Amount: 473.210.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 0.992, V2: -2.063, V3: -1.469, V4: 0.256, V5: 0.100, V6: 1.962, V7: -0.154, V8: 0.491, V9: 0.876, V10: -0.239, V11: 0.713, V12: 0.990, V13: -0.356, V14: 0.287, V15: 0.096, V16: -0.296, V17: 0.100, V18: -1.289, V19: -0.395, V20: 0.680, V21: -0.073, V22: -1.086, V23: 0.099, V24: -0.954, V25: -0.948, V26: 0.178, V27: -0.094, V28: 0.013, Amount: 473.210.
544
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.567, V2: 1.104, V3: -0.335, V4: -0.768, V5: 0.114, V6: -0.700, V7: 0.487, V8: 0.461, V9: -0.071, V10: -0.127, V11: 0.149, V12: 0.223, V13: -1.207, V14: 0.785, V15: -0.963, V16: 0.362, V17: -0.546, V18: 0.027, V19: 0.299, V20: -0.082, V21: -0.234, V22: -0.656, V23: 0.092, V24: -0.380, V25: -0.445, V26: 0.152, V27: 0.228, V28: 0.065, Amount: 15.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.567, V2: 1.104, V3: -0.335, V4: -0.768, V5: 0.114, V6: -0.700, V7: 0.487, V8: 0.461, V9: -0.071, V10: -0.127, V11: 0.149, V12: 0.223, V13: -1.207, V14: 0.785, V15: -0.963, V16: 0.362, V17: -0.546, V18: 0.027, V19: 0.299, V20: -0.082, V21: -0.234, V22: -0.656, V23: 0.092, V24: -0.380, V25: -0.445, V26: 0.152, V27: 0.228, V28: 0.065, Amount: 15.990.
545
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.863, V2: -0.336, V3: -2.148, V4: 0.137, V5: 0.604, V6: -0.015, V7: 0.018, V8: 0.035, V9: 0.875, V10: -0.708, V11: 0.451, V12: 0.445, V13: -0.577, V14: -1.182, V15: -0.615, V16: 0.409, V17: 0.607, V18: 0.793, V19: 0.627, V20: 0.023, V21: -0.199, V22: -0.597, V23: 0.047, V24: -0.241, V25: -0.035, V26: -0.096, V27: -0.034, V28: -0.019, Amount: 98.920.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.863, V2: -0.336, V3: -2.148, V4: 0.137, V5: 0.604, V6: -0.015, V7: 0.018, V8: 0.035, V9: 0.875, V10: -0.708, V11: 0.451, V12: 0.445, V13: -0.577, V14: -1.182, V15: -0.615, V16: 0.409, V17: 0.607, V18: 0.793, V19: 0.627, V20: 0.023, V21: -0.199, V22: -0.597, V23: 0.047, V24: -0.241, V25: -0.035, V26: -0.096, V27: -0.034, V28: -0.019, Amount: 98.920.
546
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.260, V2: -0.167, V3: 0.461, V4: -0.244, V5: -0.670, V6: -0.537, V7: -0.389, V8: 0.064, V9: 0.321, V10: -0.012, V11: 0.995, V12: 0.229, V13: -0.978, V14: 0.522, V15: 0.694, V16: 0.749, V17: -0.672, V18: 0.316, V19: 0.448, V20: -0.110, V21: -0.115, V22: -0.410, V23: 0.056, V24: 0.036, V25: 0.094, V26: 0.911, V27: -0.082, V28: -0.006, Amount: 3.780.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.260, V2: -0.167, V3: 0.461, V4: -0.244, V5: -0.670, V6: -0.537, V7: -0.389, V8: 0.064, V9: 0.321, V10: -0.012, V11: 0.995, V12: 0.229, V13: -0.978, V14: 0.522, V15: 0.694, V16: 0.749, V17: -0.672, V18: 0.316, V19: 0.448, V20: -0.110, V21: -0.115, V22: -0.410, V23: 0.056, V24: 0.036, V25: 0.094, V26: 0.911, V27: -0.082, V28: -0.006, Amount: 3.780.
547
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -2.739, V2: 2.689, V3: -2.078, V4: -1.325, V5: 0.586, V6: 0.010, V7: 0.246, V8: -0.453, V9: 1.854, V10: 2.350, V11: 0.229, V12: -0.349, V13: -1.557, V14: -1.125, V15: -0.511, V16: 0.626, V17: -0.004, V18: 0.509, V19: 0.073, V20: 0.578, V21: 0.180, V22: -1.381, V23: 0.362, V24: -0.405, V25: 0.005, V26: 0.127, V27: 0.252, V28: 0.360, Amount: 10.730.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -2.739, V2: 2.689, V3: -2.078, V4: -1.325, V5: 0.586, V6: 0.010, V7: 0.246, V8: -0.453, V9: 1.854, V10: 2.350, V11: 0.229, V12: -0.349, V13: -1.557, V14: -1.125, V15: -0.511, V16: 0.626, V17: -0.004, V18: 0.509, V19: 0.073, V20: 0.578, V21: 0.180, V22: -1.381, V23: 0.362, V24: -0.405, V25: 0.005, V26: 0.127, V27: 0.252, V28: 0.360, Amount: 10.730.
548
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.013, V2: 0.185, V3: 1.857, V4: 2.626, V5: -0.814, V6: 0.741, V7: -1.051, V8: 0.411, V9: 1.078, V10: 0.411, V11: 2.238, V12: -2.311, V13: 0.771, V14: 1.647, V15: 0.006, V16: 1.168, V17: -0.045, V18: 0.838, V19: -1.766, V20: -0.240, V21: 0.168, V22: 0.665, V23: 0.034, V24: 0.149, V25: 0.061, V26: 0.074, V27: 0.025, V28: 0.023, Amount: 12.160.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.013, V2: 0.185, V3: 1.857, V4: 2.626, V5: -0.814, V6: 0.741, V7: -1.051, V8: 0.411, V9: 1.078, V10: 0.411, V11: 2.238, V12: -2.311, V13: 0.771, V14: 1.647, V15: 0.006, V16: 1.168, V17: -0.045, V18: 0.838, V19: -1.766, V20: -0.240, V21: 0.168, V22: 0.665, V23: 0.034, V24: 0.149, V25: 0.061, V26: 0.074, V27: 0.025, V28: 0.023, Amount: 12.160.
549
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.004, V2: -1.190, V3: -0.465, V4: -0.581, V5: -0.651, V6: -0.193, V7: -0.050, V8: -0.160, V9: -1.043, V10: 0.690, V11: 0.242, V12: 0.447, V13: 0.354, V14: 0.195, V15: -0.669, V16: -1.337, V17: -0.236, V18: 1.390, V19: 0.068, V20: -0.017, V21: -0.320, V22: -0.831, V23: -0.311, V24: -0.436, V25: 0.438, V26: 1.103, V27: -0.114, V28: 0.017, Amount: 222.580.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.004, V2: -1.190, V3: -0.465, V4: -0.581, V5: -0.651, V6: -0.193, V7: -0.050, V8: -0.160, V9: -1.043, V10: 0.690, V11: 0.242, V12: 0.447, V13: 0.354, V14: 0.195, V15: -0.669, V16: -1.337, V17: -0.236, V18: 1.390, V19: 0.068, V20: -0.017, V21: -0.320, V22: -0.831, V23: -0.311, V24: -0.436, V25: 0.438, V26: 1.103, V27: -0.114, V28: 0.017, Amount: 222.580.
550
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.947, V2: -0.045, V3: -0.406, V4: -1.013, V5: 2.942, V6: 2.955, V7: -0.063, V8: 0.856, V9: 0.050, V10: 0.574, V11: -0.081, V12: -0.216, V13: 0.044, V14: 0.034, V15: 1.191, V16: 0.579, V17: -0.976, V18: 0.044, V19: 0.489, V20: -0.217, V21: -0.580, V22: -0.799, V23: 0.870, V24: 0.983, V25: 0.321, V26: 0.150, V27: 0.708, V28: 0.015, Amount: 0.890.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.947, V2: -0.045, V3: -0.406, V4: -1.013, V5: 2.942, V6: 2.955, V7: -0.063, V8: 0.856, V9: 0.050, V10: 0.574, V11: -0.081, V12: -0.216, V13: 0.044, V14: 0.034, V15: 1.191, V16: 0.579, V17: -0.976, V18: 0.044, V19: 0.489, V20: -0.217, V21: -0.580, V22: -0.799, V23: 0.870, V24: 0.983, V25: 0.321, V26: 0.150, V27: 0.708, V28: 0.015, Amount: 0.890.
551
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.432, V2: -0.787, V3: -0.357, V4: -2.410, V5: -0.603, V6: -0.548, V7: -0.415, V8: -0.195, V9: 0.190, V10: -0.336, V11: -0.752, V12: 0.435, V13: 1.024, V14: 0.074, V15: 1.826, V16: -2.195, V17: 0.076, V18: 1.049, V19: -0.084, V20: -0.426, V21: -0.307, V22: -0.234, V23: -0.149, V24: -0.733, V25: 0.622, V26: 0.055, V27: 0.046, V28: 0.008, Amount: 21.190.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.432, V2: -0.787, V3: -0.357, V4: -2.410, V5: -0.603, V6: -0.548, V7: -0.415, V8: -0.195, V9: 0.190, V10: -0.336, V11: -0.752, V12: 0.435, V13: 1.024, V14: 0.074, V15: 1.826, V16: -2.195, V17: 0.076, V18: 1.049, V19: -0.084, V20: -0.426, V21: -0.307, V22: -0.234, V23: -0.149, V24: -0.733, V25: 0.622, V26: 0.055, V27: 0.046, V28: 0.008, Amount: 21.190.
552
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.851, V2: 0.720, V3: 1.426, V4: 0.050, V5: 0.212, V6: -0.318, V7: 1.287, V8: -0.021, V9: -0.610, V10: -0.828, V11: -0.483, V12: -0.285, V13: -0.552, V14: 0.373, V15: 0.609, V16: -0.063, V17: -0.360, V18: -0.408, V19: -1.249, V20: 0.032, V21: 0.193, V22: 0.336, V23: -0.045, V24: 0.051, V25: 0.350, V26: -0.435, V27: 0.047, V28: 0.101, Amount: 110.500.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.851, V2: 0.720, V3: 1.426, V4: 0.050, V5: 0.212, V6: -0.318, V7: 1.287, V8: -0.021, V9: -0.610, V10: -0.828, V11: -0.483, V12: -0.285, V13: -0.552, V14: 0.373, V15: 0.609, V16: -0.063, V17: -0.360, V18: -0.408, V19: -1.249, V20: 0.032, V21: 0.193, V22: 0.336, V23: -0.045, V24: 0.051, V25: 0.350, V26: -0.435, V27: 0.047, V28: 0.101, Amount: 110.500.
553
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.980, V2: -0.566, V3: -0.660, V4: 0.166, V5: -0.291, V6: 0.466, V7: -0.837, V8: 0.276, V9: 1.394, V10: 0.025, V11: -0.049, V12: 0.383, V13: -0.852, V14: 0.148, V15: -0.024, V16: 0.530, V17: -0.946, V18: 1.060, V19: 0.314, V20: -0.218, V21: 0.188, V22: 0.672, V23: 0.073, V24: 0.087, V25: -0.059, V26: -0.224, V27: 0.025, V28: -0.047, Amount: 12.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.980, V2: -0.566, V3: -0.660, V4: 0.166, V5: -0.291, V6: 0.466, V7: -0.837, V8: 0.276, V9: 1.394, V10: 0.025, V11: -0.049, V12: 0.383, V13: -0.852, V14: 0.148, V15: -0.024, V16: 0.530, V17: -0.946, V18: 1.060, V19: 0.314, V20: -0.218, V21: 0.188, V22: 0.672, V23: 0.073, V24: 0.087, V25: -0.059, V26: -0.224, V27: 0.025, V28: -0.047, Amount: 12.990.
554
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.612, V2: 2.288, V3: -0.567, V4: 4.416, V5: 0.510, V6: -0.307, V7: 0.602, V8: 0.543, V9: -2.829, V10: 1.312, V11: -1.560, V12: -1.058, V13: -0.623, V14: 1.583, V15: 0.565, V16: -0.277, V17: 0.551, V18: 0.082, V19: 1.262, V20: -0.153, V21: 0.297, V22: 0.562, V23: -0.111, V24: -0.115, V25: -0.404, V26: 0.443, V27: -0.203, V28: 0.048, Amount: 10.610.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.612, V2: 2.288, V3: -0.567, V4: 4.416, V5: 0.510, V6: -0.307, V7: 0.602, V8: 0.543, V9: -2.829, V10: 1.312, V11: -1.560, V12: -1.058, V13: -0.623, V14: 1.583, V15: 0.565, V16: -0.277, V17: 0.551, V18: 0.082, V19: 1.262, V20: -0.153, V21: 0.297, V22: 0.562, V23: -0.111, V24: -0.115, V25: -0.404, V26: 0.443, V27: -0.203, V28: 0.048, Amount: 10.610.
555
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.443, V2: 0.288, V3: -0.893, V4: -0.625, V5: 1.545, V6: 0.909, V7: 1.518, V8: 0.033, V9: -0.285, V10: -0.631, V11: -0.666, V12: 0.182, V13: -0.160, V14: 0.373, V15: -0.151, V16: -1.415, V17: 0.510, V18: -1.976, V19: -1.158, V20: -0.272, V21: 0.222, V22: 0.870, V23: 0.262, V24: -0.382, V25: -0.976, V26: 0.233, V27: 0.147, V28: 0.232, Amount: 135.290.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.443, V2: 0.288, V3: -0.893, V4: -0.625, V5: 1.545, V6: 0.909, V7: 1.518, V8: 0.033, V9: -0.285, V10: -0.631, V11: -0.666, V12: 0.182, V13: -0.160, V14: 0.373, V15: -0.151, V16: -1.415, V17: 0.510, V18: -1.976, V19: -1.158, V20: -0.272, V21: 0.222, V22: 0.870, V23: 0.262, V24: -0.382, V25: -0.976, V26: 0.233, V27: 0.147, V28: 0.232, Amount: 135.290.
556
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.929, V2: -1.724, V3: 0.433, V4: -1.206, V5: -1.767, V6: -0.647, V7: -0.575, V8: -0.246, V9: -2.397, V10: 1.408, V11: 1.772, V12: 0.854, V13: 2.142, V14: -0.381, V15: -0.208, V16: -0.176, V17: 0.206, V18: 0.036, V19: -0.040, V20: 0.340, V21: -0.205, V22: -0.824, V23: -0.034, V24: 0.540, V25: 0.020, V26: -0.545, V27: -0.008, V28: 0.071, Amount: 285.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 0.929, V2: -1.724, V3: 0.433, V4: -1.206, V5: -1.767, V6: -0.647, V7: -0.575, V8: -0.246, V9: -2.397, V10: 1.408, V11: 1.772, V12: 0.854, V13: 2.142, V14: -0.381, V15: -0.208, V16: -0.176, V17: 0.206, V18: 0.036, V19: -0.040, V20: 0.340, V21: -0.205, V22: -0.824, V23: -0.034, V24: 0.540, V25: 0.020, V26: -0.545, V27: -0.008, V28: 0.071, Amount: 285.000.
557
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.791, V2: 0.056, V3: 2.539, V4: 0.647, V5: -0.675, V6: -0.187, V7: -0.165, V8: 0.111, V9: -1.738, V10: 0.471, V11: 0.046, V12: -0.057, V13: 0.715, V14: -0.075, V15: 1.655, V16: -2.011, V17: 0.512, V18: 1.192, V19: -0.763, V20: -0.135, V21: -0.062, V22: 0.188, V23: 0.014, V24: 0.575, V25: 0.080, V26: -0.124, V27: 0.128, V28: 0.107, Amount: 56.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.791, V2: 0.056, V3: 2.539, V4: 0.647, V5: -0.675, V6: -0.187, V7: -0.165, V8: 0.111, V9: -1.738, V10: 0.471, V11: 0.046, V12: -0.057, V13: 0.715, V14: -0.075, V15: 1.655, V16: -2.011, V17: 0.512, V18: 1.192, V19: -0.763, V20: -0.135, V21: -0.062, V22: 0.188, V23: 0.014, V24: 0.575, V25: 0.080, V26: -0.124, V27: 0.128, V28: 0.107, Amount: 56.000.
558
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.158, V2: 0.887, V3: -0.692, V4: -1.078, V5: 1.017, V6: -1.517, V7: 1.651, V8: -0.347, V9: -0.600, V10: -0.312, V11: 0.790, V12: 0.339, V13: -0.867, V14: 1.029, V15: -0.830, V16: -0.471, V17: -0.589, V18: 0.153, V19: 0.116, V20: -0.025, V21: 0.320, V22: 1.011, V23: -0.167, V24: 0.115, V25: -0.354, V26: 0.064, V27: 0.377, V28: 0.262, Amount: 30.820.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.158, V2: 0.887, V3: -0.692, V4: -1.078, V5: 1.017, V6: -1.517, V7: 1.651, V8: -0.347, V9: -0.600, V10: -0.312, V11: 0.790, V12: 0.339, V13: -0.867, V14: 1.029, V15: -0.830, V16: -0.471, V17: -0.589, V18: 0.153, V19: 0.116, V20: -0.025, V21: 0.320, V22: 1.011, V23: -0.167, V24: 0.115, V25: -0.354, V26: 0.064, V27: 0.377, V28: 0.262, Amount: 30.820.
559
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.244, V2: 0.800, V3: 1.150, V4: -0.628, V5: 0.102, V6: -0.851, V7: 0.897, V8: -0.089, V9: -0.878, V10: -0.406, V11: 1.380, V12: 0.606, V13: -0.207, V14: 0.523, V15: -0.052, V16: 0.231, V17: -0.437, V18: -0.334, V19: 0.708, V20: 0.012, V21: -0.314, V22: -1.060, V23: 0.090, V24: 0.339, V25: -0.363, V26: 0.565, V27: -0.084, V28: -0.000, Amount: 20.240.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.244, V2: 0.800, V3: 1.150, V4: -0.628, V5: 0.102, V6: -0.851, V7: 0.897, V8: -0.089, V9: -0.878, V10: -0.406, V11: 1.380, V12: 0.606, V13: -0.207, V14: 0.523, V15: -0.052, V16: 0.231, V17: -0.437, V18: -0.334, V19: 0.708, V20: 0.012, V21: -0.314, V22: -1.060, V23: 0.090, V24: 0.339, V25: -0.363, V26: 0.565, V27: -0.084, V28: -0.000, Amount: 20.240.
560
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.418, V2: 0.056, V3: 1.058, V4: 0.980, V5: 0.624, V6: 1.174, V7: 0.930, V8: 0.077, V9: 0.009, V10: -0.216, V11: 0.033, V12: 0.884, V13: 0.141, V14: -0.365, V15: -1.588, V16: -0.670, V17: -0.238, V18: 0.004, V19: 1.592, V20: 0.437, V21: -0.335, V22: -0.871, V23: 0.450, V24: 0.141, V25: -0.727, V26: -1.063, V27: 0.041, V28: -0.002, Amount: 151.480.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.418, V2: 0.056, V3: 1.058, V4: 0.980, V5: 0.624, V6: 1.174, V7: 0.930, V8: 0.077, V9: 0.009, V10: -0.216, V11: 0.033, V12: 0.884, V13: 0.141, V14: -0.365, V15: -1.588, V16: -0.670, V17: -0.238, V18: 0.004, V19: 1.592, V20: 0.437, V21: -0.335, V22: -0.871, V23: 0.450, V24: 0.141, V25: -0.727, V26: -1.063, V27: 0.041, V28: -0.002, Amount: 151.480.
561
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.229, V2: 0.016, V3: -0.418, V4: -0.277, V5: 0.328, V6: -0.279, V7: 0.338, V8: -0.170, V9: -0.414, V10: -0.023, V11: 0.686, V12: 1.136, V13: 1.209, V14: 0.354, V15: 0.128, V16: 0.612, V17: -0.936, V18: -0.251, V19: 0.984, V20: 0.160, V21: -0.422, V22: -1.379, V23: -0.011, V24: -0.785, V25: 0.241, V26: 0.667, V27: -0.110, V28: -0.006, Amount: 64.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.229, V2: 0.016, V3: -0.418, V4: -0.277, V5: 0.328, V6: -0.279, V7: 0.338, V8: -0.170, V9: -0.414, V10: -0.023, V11: 0.686, V12: 1.136, V13: 1.209, V14: 0.354, V15: 0.128, V16: 0.612, V17: -0.936, V18: -0.251, V19: 0.984, V20: 0.160, V21: -0.422, V22: -1.379, V23: -0.011, V24: -0.785, V25: 0.241, V26: 0.667, V27: -0.110, V28: -0.006, Amount: 64.990.
562
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.183, V2: -0.588, V3: 0.728, V4: -0.950, V5: -0.967, V6: 0.115, V7: -0.883, V8: 0.377, V9: 1.855, V10: -0.901, V11: 0.878, V12: 0.442, V13: -1.902, V14: 0.417, V15: 1.047, V16: -0.358, V17: -0.133, V18: 0.564, V19: 0.623, V20: -0.252, V21: 0.025, V22: 0.232, V23: -0.037, V24: -0.334, V25: 0.380, V26: -0.648, V27: 0.094, V28: 0.014, Amount: 1.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.183, V2: -0.588, V3: 0.728, V4: -0.950, V5: -0.967, V6: 0.115, V7: -0.883, V8: 0.377, V9: 1.855, V10: -0.901, V11: 0.878, V12: 0.442, V13: -1.902, V14: 0.417, V15: 1.047, V16: -0.358, V17: -0.133, V18: 0.564, V19: 0.623, V20: -0.252, V21: 0.025, V22: 0.232, V23: -0.037, V24: -0.334, V25: 0.380, V26: -0.648, V27: 0.094, V28: 0.014, Amount: 1.000.
563
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.119, V2: 0.728, V3: -1.681, V4: -1.551, V5: 3.121, V6: 3.216, V7: 0.365, V8: 0.920, V9: -0.162, V10: -0.804, V11: 0.137, V12: -0.157, V13: -0.429, V14: -0.752, V15: 0.155, V16: 0.216, V17: 0.352, V18: -0.376, V19: -0.399, V20: 0.046, V21: -0.335, V22: -0.906, V23: 0.112, V24: 0.593, V25: -0.424, V26: 0.164, V27: 0.245, V28: 0.071, Amount: 2.580.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 0.119, V2: 0.728, V3: -1.681, V4: -1.551, V5: 3.121, V6: 3.216, V7: 0.365, V8: 0.920, V9: -0.162, V10: -0.804, V11: 0.137, V12: -0.157, V13: -0.429, V14: -0.752, V15: 0.155, V16: 0.216, V17: 0.352, V18: -0.376, V19: -0.399, V20: 0.046, V21: -0.335, V22: -0.906, V23: 0.112, V24: 0.593, V25: -0.424, V26: 0.164, V27: 0.245, V28: 0.071, Amount: 2.580.
564
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.138, V2: 0.820, V3: 0.535, V4: 0.910, V5: 0.262, V6: -0.825, V7: 0.081, V8: 0.393, V9: -0.350, V10: -0.059, V11: -1.364, V12: -0.830, V13: -1.174, V14: 0.855, V15: 1.212, V16: 0.011, V17: -0.139, V18: 0.476, V19: 0.612, V20: -0.023, V21: 0.126, V22: 0.215, V23: -0.264, V24: -0.163, V25: -0.183, V26: -0.294, V27: 0.187, V28: 0.083, Amount: 4.640.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.138, V2: 0.820, V3: 0.535, V4: 0.910, V5: 0.262, V6: -0.825, V7: 0.081, V8: 0.393, V9: -0.350, V10: -0.059, V11: -1.364, V12: -0.830, V13: -1.174, V14: 0.855, V15: 1.212, V16: 0.011, V17: -0.139, V18: 0.476, V19: 0.612, V20: -0.023, V21: 0.126, V22: 0.215, V23: -0.264, V24: -0.163, V25: -0.183, V26: -0.294, V27: 0.187, V28: 0.083, Amount: 4.640.
565
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.898, V2: -0.477, V3: -1.942, V4: 0.447, V5: 0.178, V6: -0.965, V7: 0.462, V8: -0.287, V9: 0.649, V10: 0.110, V11: -1.272, V12: -0.725, V13: -1.991, V14: 0.799, V15: -0.176, V16: -0.424, V17: -0.000, V18: -0.540, V19: 0.208, V20: -0.115, V21: -0.003, V22: -0.162, V23: 0.038, V24: 0.746, V25: 0.101, V26: 0.523, V27: -0.134, V28: -0.056, Amount: 110.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.898, V2: -0.477, V3: -1.942, V4: 0.447, V5: 0.178, V6: -0.965, V7: 0.462, V8: -0.287, V9: 0.649, V10: 0.110, V11: -1.272, V12: -0.725, V13: -1.991, V14: 0.799, V15: -0.176, V16: -0.424, V17: -0.000, V18: -0.540, V19: 0.208, V20: -0.115, V21: -0.003, V22: -0.162, V23: 0.038, V24: 0.746, V25: 0.101, V26: 0.523, V27: -0.134, V28: -0.056, Amount: 110.000.
566
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.240, V2: 0.152, V3: -0.327, V4: 0.938, V5: 0.536, V6: 0.567, V7: 0.024, V8: 0.193, V9: 0.056, V10: 0.159, V11: 0.027, V12: 0.051, V13: -1.253, V14: 0.647, V15: -0.240, V16: -0.075, V17: -0.439, V18: 0.138, V19: 0.250, V20: -0.234, V21: -0.048, V22: -0.025, V23: -0.258, V24: -1.167, V25: 0.851, V26: -0.172, V27: 0.013, V28: -0.015, Amount: 1.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.240, V2: 0.152, V3: -0.327, V4: 0.938, V5: 0.536, V6: 0.567, V7: 0.024, V8: 0.193, V9: 0.056, V10: 0.159, V11: 0.027, V12: 0.051, V13: -1.253, V14: 0.647, V15: -0.240, V16: -0.075, V17: -0.439, V18: 0.138, V19: 0.250, V20: -0.234, V21: -0.048, V22: -0.025, V23: -0.258, V24: -1.167, V25: 0.851, V26: -0.172, V27: 0.013, V28: -0.015, Amount: 1.000.
567
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.781, V2: -0.412, V3: 1.398, V4: -1.601, V5: -0.790, V6: -0.370, V7: 0.884, V8: -0.182, V9: -1.503, V10: -0.220, V11: -0.941, V12: 0.059, V13: 1.607, V14: -0.385, V15: 0.378, V16: -0.748, V17: -0.639, V18: 1.035, V19: -1.116, V20: 0.099, V21: -0.391, V22: -1.107, V23: 0.540, V24: -0.138, V25: -0.458, V26: 0.593, V27: -0.022, V28: 0.139, Amount: 214.760.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.781, V2: -0.412, V3: 1.398, V4: -1.601, V5: -0.790, V6: -0.370, V7: 0.884, V8: -0.182, V9: -1.503, V10: -0.220, V11: -0.941, V12: 0.059, V13: 1.607, V14: -0.385, V15: 0.378, V16: -0.748, V17: -0.639, V18: 1.035, V19: -1.116, V20: 0.099, V21: -0.391, V22: -1.107, V23: 0.540, V24: -0.138, V25: -0.458, V26: 0.593, V27: -0.022, V28: 0.139, Amount: 214.760.
568
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.112, V2: 0.423, V3: 0.454, V4: -1.029, V5: -0.073, V6: 0.870, V7: 0.516, V8: -0.809, V9: 0.567, V10: -0.144, V11: 0.061, V12: -0.142, V13: -1.085, V14: -0.053, V15: -0.377, V16: 0.875, V17: -1.129, V18: 0.479, V19: 0.272, V20: -0.343, V21: 0.491, V22: -0.914, V23: 0.261, V24: 0.032, V25: -0.839, V26: 0.118, V27: -0.206, V28: -0.262, Amount: 115.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.112, V2: 0.423, V3: 0.454, V4: -1.029, V5: -0.073, V6: 0.870, V7: 0.516, V8: -0.809, V9: 0.567, V10: -0.144, V11: 0.061, V12: -0.142, V13: -1.085, V14: -0.053, V15: -0.377, V16: 0.875, V17: -1.129, V18: 0.479, V19: 0.272, V20: -0.343, V21: 0.491, V22: -0.914, V23: 0.261, V24: 0.032, V25: -0.839, V26: 0.118, V27: -0.206, V28: -0.262, Amount: 115.000.
569
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.094, V2: 0.278, V3: 1.188, V4: -1.219, V5: -0.386, V6: -1.060, V7: 0.708, V8: -0.503, V9: -1.332, V10: 0.602, V11: -0.622, V12: -0.790, V13: -0.262, V14: -0.037, V15: 0.578, V16: -1.619, V17: -0.024, V18: 0.903, V19: -0.519, V20: -0.407, V21: -0.415, V22: -0.638, V23: -0.116, V24: 0.400, V25: -0.171, V26: 0.931, V27: -0.345, V28: -0.224, Amount: 21.500.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.094, V2: 0.278, V3: 1.188, V4: -1.219, V5: -0.386, V6: -1.060, V7: 0.708, V8: -0.503, V9: -1.332, V10: 0.602, V11: -0.622, V12: -0.790, V13: -0.262, V14: -0.037, V15: 0.578, V16: -1.619, V17: -0.024, V18: 0.903, V19: -0.519, V20: -0.407, V21: -0.415, V22: -0.638, V23: -0.116, V24: 0.400, V25: -0.171, V26: 0.931, V27: -0.345, V28: -0.224, Amount: 21.500.
570
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.883, V2: 0.532, V3: 0.151, V4: 3.889, V5: 0.011, V6: 0.102, V7: -0.105, V8: -0.028, V9: -0.649, V10: 1.276, V11: -1.098, V12: 0.725, V13: 1.301, V14: -0.405, V15: -1.262, V16: 0.873, V17: -0.762, V18: -0.954, V19: -1.265, V20: -0.226, V21: -0.401, V22: -1.016, V23: 0.488, V24: -0.024, V25: -0.513, V26: -0.516, V27: 0.011, V28: -0.027, Amount: 0.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.883, V2: 0.532, V3: 0.151, V4: 3.889, V5: 0.011, V6: 0.102, V7: -0.105, V8: -0.028, V9: -0.649, V10: 1.276, V11: -1.098, V12: 0.725, V13: 1.301, V14: -0.405, V15: -1.262, V16: 0.873, V17: -0.762, V18: -0.954, V19: -1.265, V20: -0.226, V21: -0.401, V22: -1.016, V23: 0.488, V24: -0.024, V25: -0.513, V26: -0.516, V27: 0.011, V28: -0.027, Amount: 0.000.
571
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.875, V2: -0.661, V3: 0.086, V4: 0.379, V5: -0.837, V6: 0.325, V7: -1.198, V8: 0.273, V9: 2.582, V10: -0.212, V11: 1.611, V12: -2.155, V13: 0.504, V14: 1.556, V15: -0.440, V16: 0.853, V17: -0.037, V18: 0.892, V19: -0.296, V20: -0.207, V21: -0.060, V22: 0.035, V23: 0.354, V24: 0.636, V25: -0.705, V26: 0.394, V27: -0.058, V28: -0.045, Amount: 39.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.875, V2: -0.661, V3: 0.086, V4: 0.379, V5: -0.837, V6: 0.325, V7: -1.198, V8: 0.273, V9: 2.582, V10: -0.212, V11: 1.611, V12: -2.155, V13: 0.504, V14: 1.556, V15: -0.440, V16: 0.853, V17: -0.037, V18: 0.892, V19: -0.296, V20: -0.207, V21: -0.060, V22: 0.035, V23: 0.354, V24: 0.636, V25: -0.705, V26: 0.394, V27: -0.058, V28: -0.045, Amount: 39.000.
572
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.063, V2: 0.051, V3: -2.018, V4: 0.149, V5: 0.588, V6: -1.188, V7: 0.664, V8: -0.433, V9: -0.286, V10: 0.379, V11: 0.827, V12: 0.909, V13: 0.223, V14: 0.856, V15: -0.439, V16: -0.071, V17: -0.687, V18: -0.119, V19: 0.366, V20: -0.148, V21: 0.124, V22: 0.402, V23: -0.036, V24: -0.264, V25: 0.252, V26: 0.612, V27: -0.122, V28: -0.090, Amount: 23.780.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.063, V2: 0.051, V3: -2.018, V4: 0.149, V5: 0.588, V6: -1.188, V7: 0.664, V8: -0.433, V9: -0.286, V10: 0.379, V11: 0.827, V12: 0.909, V13: 0.223, V14: 0.856, V15: -0.439, V16: -0.071, V17: -0.687, V18: -0.119, V19: 0.366, V20: -0.148, V21: 0.124, V22: 0.402, V23: -0.036, V24: -0.264, V25: 0.252, V26: 0.612, V27: -0.122, V28: -0.090, Amount: 23.780.
573
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.072, V2: -1.969, V3: 0.299, V4: -1.514, V5: -1.616, V6: 0.352, V7: -1.232, V8: 0.099, V9: -1.648, V10: 1.476, V11: 0.101, V12: -0.761, V13: 0.400, V14: -0.316, V15: 0.402, V16: 0.579, V17: -0.325, V18: 1.258, V19: 0.219, V20: 0.185, V21: -0.048, V22: -0.323, V23: -0.263, V24: -0.867, V25: 0.193, V26: -0.204, V27: 0.011, V28: 0.051, Amount: 245.700.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.072, V2: -1.969, V3: 0.299, V4: -1.514, V5: -1.616, V6: 0.352, V7: -1.232, V8: 0.099, V9: -1.648, V10: 1.476, V11: 0.101, V12: -0.761, V13: 0.400, V14: -0.316, V15: 0.402, V16: 0.579, V17: -0.325, V18: 1.258, V19: 0.219, V20: 0.185, V21: -0.048, V22: -0.323, V23: -0.263, V24: -0.867, V25: 0.193, V26: -0.204, V27: 0.011, V28: 0.051, Amount: 245.700.
574
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.148, V2: 0.778, V3: 1.793, V4: 1.254, V5: -0.684, V6: 1.267, V7: -0.085, V8: 0.885, V9: 0.166, V10: -0.640, V11: -1.797, V12: -0.317, V13: -0.667, V14: -0.076, V15: 0.320, V16: -0.536, V17: 0.553, V18: -0.030, V19: 1.064, V20: 0.261, V21: -0.106, V22: -0.230, V23: -0.021, V24: -0.801, V25: 0.360, V26: -0.158, V27: 0.233, V28: 0.086, Amount: 107.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.148, V2: 0.778, V3: 1.793, V4: 1.254, V5: -0.684, V6: 1.267, V7: -0.085, V8: 0.885, V9: 0.166, V10: -0.640, V11: -1.797, V12: -0.317, V13: -0.667, V14: -0.076, V15: 0.320, V16: -0.536, V17: 0.553, V18: -0.030, V19: 1.064, V20: 0.261, V21: -0.106, V22: -0.230, V23: -0.021, V24: -0.801, V25: 0.360, V26: -0.158, V27: 0.233, V28: 0.086, Amount: 107.000.
575
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.968, V2: 1.622, V3: 0.462, V4: -1.233, V5: -0.920, V6: -1.195, V7: -0.159, V8: 0.580, V9: 0.186, V10: -0.266, V11: -0.545, V12: 0.757, V13: 0.967, V14: 0.130, V15: 0.413, V16: 0.784, V17: -0.452, V18: -0.454, V19: -0.783, V20: -0.150, V21: 0.026, V22: -0.236, V23: 0.164, V24: 0.441, V25: -0.167, V26: 0.666, V27: -0.666, V28: 0.070, Amount: 7.680.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.968, V2: 1.622, V3: 0.462, V4: -1.233, V5: -0.920, V6: -1.195, V7: -0.159, V8: 0.580, V9: 0.186, V10: -0.266, V11: -0.545, V12: 0.757, V13: 0.967, V14: 0.130, V15: 0.413, V16: 0.784, V17: -0.452, V18: -0.454, V19: -0.783, V20: -0.150, V21: 0.026, V22: -0.236, V23: 0.164, V24: 0.441, V25: -0.167, V26: 0.666, V27: -0.666, V28: 0.070, Amount: 7.680.
576
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -2.037, V2: 1.942, V3: 0.137, V4: -0.799, V5: -0.845, V6: -0.590, V7: -0.462, V8: 1.425, V9: -0.348, V10: -0.542, V11: 0.273, V12: 1.159, V13: -0.053, V14: 0.890, V15: -1.055, V16: 0.609, V17: -0.169, V18: 0.108, V19: 0.116, V20: -0.041, V21: -0.097, V22: -0.410, V23: 0.039, V24: 0.022, V25: -0.033, V26: 0.312, V27: 0.132, V28: 0.100, Amount: 1.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -2.037, V2: 1.942, V3: 0.137, V4: -0.799, V5: -0.845, V6: -0.590, V7: -0.462, V8: 1.425, V9: -0.348, V10: -0.542, V11: 0.273, V12: 1.159, V13: -0.053, V14: 0.890, V15: -1.055, V16: 0.609, V17: -0.169, V18: 0.108, V19: 0.116, V20: -0.041, V21: -0.097, V22: -0.410, V23: 0.039, V24: 0.022, V25: -0.033, V26: 0.312, V27: 0.132, V28: 0.100, Amount: 1.000.
577
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.747, V2: -1.690, V3: 0.126, V4: -0.360, V5: -1.771, V6: 0.253, V7: -1.469, V8: 0.221, V9: 0.299, V10: 0.888, V11: 0.226, V12: 0.496, V13: 0.346, V14: -0.372, V15: 0.163, V16: -0.362, V17: -0.822, V18: 2.338, V19: -0.884, V20: -0.249, V21: -0.030, V22: 0.169, V23: 0.145, V24: -0.327, V25: -0.734, V26: 0.611, V27: -0.006, V28: -0.016, Amount: 165.550.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.747, V2: -1.690, V3: 0.126, V4: -0.360, V5: -1.771, V6: 0.253, V7: -1.469, V8: 0.221, V9: 0.299, V10: 0.888, V11: 0.226, V12: 0.496, V13: 0.346, V14: -0.372, V15: 0.163, V16: -0.362, V17: -0.822, V18: 2.338, V19: -0.884, V20: -0.249, V21: -0.030, V22: 0.169, V23: 0.145, V24: -0.327, V25: -0.734, V26: 0.611, V27: -0.006, V28: -0.016, Amount: 165.550.
578
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -2.039, V2: 1.617, V3: -0.557, V4: -2.451, V5: -0.609, V6: -1.489, V7: 0.025, V8: 1.242, V9: -0.143, V10: -1.255, V11: 0.193, V12: 0.287, V13: -1.997, V14: 1.600, V15: -1.084, V16: 0.851, V17: -0.390, V18: -0.071, V19: -0.595, V20: -0.443, V21: -0.134, V22: -0.825, V23: 0.097, V24: 0.027, V25: -0.082, V26: 0.352, V27: -0.181, V28: -0.003, Amount: 4.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -2.039, V2: 1.617, V3: -0.557, V4: -2.451, V5: -0.609, V6: -1.489, V7: 0.025, V8: 1.242, V9: -0.143, V10: -1.255, V11: 0.193, V12: 0.287, V13: -1.997, V14: 1.600, V15: -1.084, V16: 0.851, V17: -0.390, V18: -0.071, V19: -0.595, V20: -0.443, V21: -0.134, V22: -0.825, V23: 0.097, V24: 0.027, V25: -0.082, V26: 0.352, V27: -0.181, V28: -0.003, Amount: 4.000.
579
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.635, V2: 0.797, V3: 1.091, V4: -2.153, V5: 0.022, V6: -1.328, V7: 1.021, V8: -0.260, V9: 0.851, V10: -0.654, V11: 1.448, V12: 0.632, V13: -1.010, V14: 0.352, V15: 0.256, V16: -0.434, V17: -0.717, V18: 0.538, V19: 0.085, V20: 0.122, V21: 0.089, V22: 0.628, V23: -0.263, V24: 0.519, V25: 0.044, V26: -0.863, V27: 0.336, V28: 0.037, Amount: 1.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.635, V2: 0.797, V3: 1.091, V4: -2.153, V5: 0.022, V6: -1.328, V7: 1.021, V8: -0.260, V9: 0.851, V10: -0.654, V11: 1.448, V12: 0.632, V13: -1.010, V14: 0.352, V15: 0.256, V16: -0.434, V17: -0.717, V18: 0.538, V19: 0.085, V20: 0.122, V21: 0.089, V22: 0.628, V23: -0.263, V24: 0.519, V25: 0.044, V26: -0.863, V27: 0.336, V28: 0.037, Amount: 1.000.
580
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.200, V2: 0.254, V3: 0.396, V4: 0.632, V5: -0.483, V6: -0.884, V7: -0.067, V8: -0.024, V9: -0.121, V10: -0.090, V11: 1.679, V12: 0.567, V13: -0.690, V14: 0.079, V15: 0.466, V16: 0.653, V17: -0.137, V18: 0.227, V19: 0.020, V20: -0.129, V21: -0.232, V22: -0.745, V23: 0.152, V24: 0.474, V25: 0.132, V26: 0.067, V27: -0.032, V28: 0.021, Amount: 0.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.200, V2: 0.254, V3: 0.396, V4: 0.632, V5: -0.483, V6: -0.884, V7: -0.067, V8: -0.024, V9: -0.121, V10: -0.090, V11: 1.679, V12: 0.567, V13: -0.690, V14: 0.079, V15: 0.466, V16: 0.653, V17: -0.137, V18: 0.227, V19: 0.020, V20: -0.129, V21: -0.232, V22: -0.745, V23: 0.152, V24: 0.474, V25: 0.132, V26: 0.067, V27: -0.032, V28: 0.021, Amount: 0.990.
581
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.929, V2: -0.588, V3: 0.542, V4: 0.161, V5: -1.045, V6: -0.747, V7: -0.169, V8: -0.005, V9: 0.187, V10: -0.022, V11: 1.465, V12: 0.423, V13: -0.976, V14: 0.574, V15: 0.623, V16: 0.650, V17: -0.499, V18: 0.168, V19: 0.131, V20: 0.176, V21: 0.011, V22: -0.388, V23: -0.010, V24: 0.574, V25: -0.025, V26: 0.830, V27: -0.107, V28: 0.026, Amount: 152.430.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 0.929, V2: -0.588, V3: 0.542, V4: 0.161, V5: -1.045, V6: -0.747, V7: -0.169, V8: -0.005, V9: 0.187, V10: -0.022, V11: 1.465, V12: 0.423, V13: -0.976, V14: 0.574, V15: 0.623, V16: 0.650, V17: -0.499, V18: 0.168, V19: 0.131, V20: 0.176, V21: 0.011, V22: -0.388, V23: -0.010, V24: 0.574, V25: -0.025, V26: 0.830, V27: -0.107, V28: 0.026, Amount: 152.430.
582
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.478, V2: 0.601, V3: 1.836, V4: 0.080, V5: 0.103, V6: 0.160, V7: 0.522, V8: 0.098, V9: 0.101, V10: -0.092, V11: 1.133, V12: 0.646, V13: -0.819, V14: -0.176, V15: -1.035, V16: -0.719, V17: 0.122, V18: -0.368, V19: 0.190, V20: 0.083, V21: 0.016, V22: 0.534, V23: -0.178, V24: 0.278, V25: -0.310, V26: 0.335, V27: 0.205, V28: -0.035, Amount: 3.790.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.478, V2: 0.601, V3: 1.836, V4: 0.080, V5: 0.103, V6: 0.160, V7: 0.522, V8: 0.098, V9: 0.101, V10: -0.092, V11: 1.133, V12: 0.646, V13: -0.819, V14: -0.176, V15: -1.035, V16: -0.719, V17: 0.122, V18: -0.368, V19: 0.190, V20: 0.083, V21: 0.016, V22: 0.534, V23: -0.178, V24: 0.278, V25: -0.310, V26: 0.335, V27: 0.205, V28: -0.035, Amount: 3.790.
583
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.084, V2: -0.158, V3: 1.247, V4: 1.325, V5: -0.660, V6: 0.783, V7: -0.948, V8: 0.409, V9: 2.188, V10: -0.400, V11: 1.500, V12: -2.246, V13: -0.043, V14: 1.614, V15: -0.801, V16: 0.126, V17: 0.489, V18: 0.569, V19: -0.350, V20: -0.287, V21: -0.172, V22: -0.131, V23: 0.000, V24: -0.417, V25: 0.274, V26: -0.409, V27: 0.046, V28: 0.012, Amount: 12.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.084, V2: -0.158, V3: 1.247, V4: 1.325, V5: -0.660, V6: 0.783, V7: -0.948, V8: 0.409, V9: 2.188, V10: -0.400, V11: 1.500, V12: -2.246, V13: -0.043, V14: 1.614, V15: -0.801, V16: 0.126, V17: 0.489, V18: 0.569, V19: -0.350, V20: -0.287, V21: -0.172, V22: -0.131, V23: 0.000, V24: -0.417, V25: 0.274, V26: -0.409, V27: 0.046, V28: 0.012, Amount: 12.990.
584
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.045, V2: 0.867, V3: -0.146, V4: -0.960, V5: 0.964, V6: -0.205, V7: 0.898, V8: -0.045, V9: -0.199, V10: -0.137, V11: -0.096, V12: 0.603, V13: 0.321, V14: 0.169, V15: -1.045, V16: 0.378, V17: -1.049, V18: 0.046, V19: 0.592, V20: 0.003, V21: -0.256, V22: -0.629, V23: -0.060, V24: -1.039, V25: -0.387, V26: 0.171, V27: 0.108, V28: 0.075, Amount: 3.580.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.045, V2: 0.867, V3: -0.146, V4: -0.960, V5: 0.964, V6: -0.205, V7: 0.898, V8: -0.045, V9: -0.199, V10: -0.137, V11: -0.096, V12: 0.603, V13: 0.321, V14: 0.169, V15: -1.045, V16: 0.378, V17: -1.049, V18: 0.046, V19: 0.592, V20: 0.003, V21: -0.256, V22: -0.629, V23: -0.060, V24: -1.039, V25: -0.387, V26: 0.171, V27: 0.108, V28: 0.075, Amount: 3.580.
585
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.855, V2: -0.570, V3: -0.039, V4: 0.417, V5: -0.965, V6: -0.348, V7: -0.746, V8: 0.132, V9: 1.248, V10: -0.002, V11: 0.842, V12: 0.957, V13: -0.456, V14: 0.150, V15: 0.132, V16: 0.511, V17: -0.797, V18: 0.586, V19: 0.039, V20: -0.176, V21: 0.032, V22: 0.131, V23: 0.291, V24: 0.039, V25: -0.478, V26: -0.534, V27: 0.034, V28: -0.032, Amount: 41.500.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.855, V2: -0.570, V3: -0.039, V4: 0.417, V5: -0.965, V6: -0.348, V7: -0.746, V8: 0.132, V9: 1.248, V10: -0.002, V11: 0.842, V12: 0.957, V13: -0.456, V14: 0.150, V15: 0.132, V16: 0.511, V17: -0.797, V18: 0.586, V19: 0.039, V20: -0.176, V21: 0.032, V22: 0.131, V23: 0.291, V24: 0.039, V25: -0.478, V26: -0.534, V27: 0.034, V28: -0.032, Amount: 41.500.
586
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.931, V2: 0.498, V3: 1.713, V4: 0.682, V5: -0.091, V6: 0.458, V7: 0.947, V8: 0.312, V9: -0.453, V10: -0.565, V11: 0.653, V12: -0.322, V13: -2.417, V14: 0.602, V15: -0.699, V16: -0.540, V17: 0.191, V18: 0.009, V19: 0.163, V20: 0.037, V21: 0.046, V22: -0.033, V23: -0.073, V24: -0.048, V25: 0.520, V26: -0.293, V27: 0.021, V28: 0.057, Amount: 119.900.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.931, V2: 0.498, V3: 1.713, V4: 0.682, V5: -0.091, V6: 0.458, V7: 0.947, V8: 0.312, V9: -0.453, V10: -0.565, V11: 0.653, V12: -0.322, V13: -2.417, V14: 0.602, V15: -0.699, V16: -0.540, V17: 0.191, V18: 0.009, V19: 0.163, V20: 0.037, V21: 0.046, V22: -0.033, V23: -0.073, V24: -0.048, V25: 0.520, V26: -0.293, V27: 0.021, V28: 0.057, Amount: 119.900.
587
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.644, V2: 0.852, V3: 1.107, V4: -2.064, V5: 0.151, V6: -1.237, V7: 1.094, V8: -0.314, V9: 0.997, V10: -0.887, V11: 0.194, V12: 0.426, V13: -0.295, V14: 0.058, V15: 1.126, V16: -0.990, V17: -0.182, V18: -0.529, V19: -0.613, V20: 0.118, V21: 0.081, V22: 0.707, V23: -0.214, V24: 0.402, V25: 0.008, V26: -0.825, V27: 0.361, V28: 0.046, Amount: 1.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.644, V2: 0.852, V3: 1.107, V4: -2.064, V5: 0.151, V6: -1.237, V7: 1.094, V8: -0.314, V9: 0.997, V10: -0.887, V11: 0.194, V12: 0.426, V13: -0.295, V14: 0.058, V15: 1.126, V16: -0.990, V17: -0.182, V18: -0.529, V19: -0.613, V20: 0.118, V21: 0.081, V22: 0.707, V23: -0.214, V24: 0.402, V25: 0.008, V26: -0.825, V27: 0.361, V28: 0.046, Amount: 1.000.
588
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -2.741, V2: -6.157, V3: -1.912, V4: 2.632, V5: -1.904, V6: 0.944, V7: 2.584, V8: -0.209, V9: -0.402, V10: -0.765, V11: 1.594, V12: 0.282, V13: -1.611, V14: 1.524, V15: 1.083, V16: 0.107, V17: 0.065, V18: -0.486, V19: -1.202, V20: 3.732, V21: 0.818, V22: -2.271, V23: -1.456, V24: -0.322, V25: -0.719, V26: -1.000, V27: -0.347, V28: 0.355, Amount: 1993.320.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -2.741, V2: -6.157, V3: -1.912, V4: 2.632, V5: -1.904, V6: 0.944, V7: 2.584, V8: -0.209, V9: -0.402, V10: -0.765, V11: 1.594, V12: 0.282, V13: -1.611, V14: 1.524, V15: 1.083, V16: 0.107, V17: 0.065, V18: -0.486, V19: -1.202, V20: 3.732, V21: 0.818, V22: -2.271, V23: -1.456, V24: -0.322, V25: -0.719, V26: -1.000, V27: -0.347, V28: 0.355, Amount: 1993.320.
589
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.508, V2: 0.804, V3: -0.585, V4: -0.429, V5: 0.359, V6: -0.204, V7: -0.505, V8: -2.901, V9: -0.252, V10: -1.016, V11: -1.376, V12: 0.764, V13: 0.716, V14: 0.480, V15: -0.379, V16: 0.365, V17: -0.602, V18: -0.733, V19: -0.201, V20: 0.521, V21: -1.603, V22: -0.512, V23: 0.084, V24: -0.645, V25: 0.534, V26: 0.257, V27: -0.038, V28: 0.134, Amount: 1.980.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 0.508, V2: 0.804, V3: -0.585, V4: -0.429, V5: 0.359, V6: -0.204, V7: -0.505, V8: -2.901, V9: -0.252, V10: -1.016, V11: -1.376, V12: 0.764, V13: 0.716, V14: 0.480, V15: -0.379, V16: 0.365, V17: -0.602, V18: -0.733, V19: -0.201, V20: 0.521, V21: -1.603, V22: -0.512, V23: 0.084, V24: -0.645, V25: 0.534, V26: 0.257, V27: -0.038, V28: 0.134, Amount: 1.980.
590
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.912, V2: 0.481, V3: 2.778, V4: 0.463, V5: 0.553, V6: 0.347, V7: 0.299, V8: 0.043, V9: -0.289, V10: -0.282, V11: -1.649, V12: -0.154, V13: 0.714, V14: -1.023, V15: -0.939, V16: 1.052, V17: -1.058, V18: -0.188, V19: -0.995, V20: 0.088, V21: -0.147, V22: -0.278, V23: -0.335, V24: -0.410, V25: 0.260, V26: 0.782, V27: -0.191, V28: -0.164, Amount: 5.750.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.912, V2: 0.481, V3: 2.778, V4: 0.463, V5: 0.553, V6: 0.347, V7: 0.299, V8: 0.043, V9: -0.289, V10: -0.282, V11: -1.649, V12: -0.154, V13: 0.714, V14: -1.023, V15: -0.939, V16: 1.052, V17: -1.058, V18: -0.188, V19: -0.995, V20: 0.088, V21: -0.147, V22: -0.278, V23: -0.335, V24: -0.410, V25: 0.260, V26: 0.782, V27: -0.191, V28: -0.164, Amount: 5.750.
591
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -3.532, V2: -4.778, V3: 0.899, V4: -0.342, V5: 2.696, V6: -0.815, V7: -1.299, V8: 0.492, V9: -1.140, V10: 0.104, V11: -0.261, V12: 0.788, V13: 1.467, V14: -0.237, V15: -0.731, V16: -1.003, V17: -0.706, V18: 1.755, V19: -1.017, V20: 1.333, V21: 0.237, V22: -0.487, V23: 1.404, V24: -1.385, V25: -0.056, V26: 0.340, V27: -0.121, V28: 0.227, Amount: 384.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -3.532, V2: -4.778, V3: 0.899, V4: -0.342, V5: 2.696, V6: -0.815, V7: -1.299, V8: 0.492, V9: -1.140, V10: 0.104, V11: -0.261, V12: 0.788, V13: 1.467, V14: -0.237, V15: -0.731, V16: -1.003, V17: -0.706, V18: 1.755, V19: -1.017, V20: 1.333, V21: 0.237, V22: -0.487, V23: 1.404, V24: -1.385, V25: -0.056, V26: 0.340, V27: -0.121, V28: 0.227, Amount: 384.990.
592
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.787, V2: 0.537, V3: 1.359, V4: -0.038, V5: 0.574, V6: -0.302, V7: 0.637, V8: -0.021, V9: -0.357, V10: -0.040, V11: 1.741, V12: 0.393, V13: -0.390, V14: -0.377, V15: 0.554, V16: 0.230, V17: -0.063, V18: -0.063, V19: -0.119, V20: 0.083, V21: -0.247, V22: -0.443, V23: 0.292, V24: -0.050, V25: -0.234, V26: 0.058, V27: 0.002, V28: -0.169, Amount: 14.900.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.787, V2: 0.537, V3: 1.359, V4: -0.038, V5: 0.574, V6: -0.302, V7: 0.637, V8: -0.021, V9: -0.357, V10: -0.040, V11: 1.741, V12: 0.393, V13: -0.390, V14: -0.377, V15: 0.554, V16: 0.230, V17: -0.063, V18: -0.063, V19: -0.119, V20: 0.083, V21: -0.247, V22: -0.443, V23: 0.292, V24: -0.050, V25: -0.234, V26: 0.058, V27: 0.002, V28: -0.169, Amount: 14.900.
593
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.241, V2: 0.068, V3: 0.328, V4: 0.731, V5: -0.274, V6: -0.414, V7: 0.029, V8: -0.144, V9: 0.404, V10: -0.217, V11: -1.003, V12: 0.639, V13: 0.667, V14: -0.218, V15: -0.241, V16: -0.165, V17: -0.183, V18: -0.625, V19: 0.397, V20: -0.037, V21: -0.249, V22: -0.533, V23: -0.068, V24: -0.065, V25: 0.536, V26: 0.297, V27: -0.021, V28: 0.011, Amount: 20.530.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.241, V2: 0.068, V3: 0.328, V4: 0.731, V5: -0.274, V6: -0.414, V7: 0.029, V8: -0.144, V9: 0.404, V10: -0.217, V11: -1.003, V12: 0.639, V13: 0.667, V14: -0.218, V15: -0.241, V16: -0.165, V17: -0.183, V18: -0.625, V19: 0.397, V20: -0.037, V21: -0.249, V22: -0.533, V23: -0.068, V24: -0.065, V25: 0.536, V26: 0.297, V27: -0.021, V28: 0.011, Amount: 20.530.
594
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.006, V2: 0.711, V3: 0.974, V4: 1.136, V5: -0.107, V6: 1.002, V7: -1.519, V8: -2.429, V9: -0.680, V10: -0.465, V11: 1.131, V12: 1.567, V13: 0.454, V14: 0.561, V15: 0.097, V16: -0.778, V17: 0.662, V18: -0.432, V19: 1.694, V20: 0.825, V21: -1.418, V22: 0.094, V23: -0.458, V24: -0.208, V25: 0.557, V26: 0.702, V27: 0.100, V28: 0.224, Amount: 15.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.006, V2: 0.711, V3: 0.974, V4: 1.136, V5: -0.107, V6: 1.002, V7: -1.519, V8: -2.429, V9: -0.680, V10: -0.465, V11: 1.131, V12: 1.567, V13: 0.454, V14: 0.561, V15: 0.097, V16: -0.778, V17: 0.662, V18: -0.432, V19: 1.694, V20: 0.825, V21: -1.418, V22: 0.094, V23: -0.458, V24: -0.208, V25: 0.557, V26: 0.702, V27: 0.100, V28: 0.224, Amount: 15.000.
595
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.142, V2: -1.021, V3: 0.980, V4: -0.427, V5: -1.569, V6: -0.277, V7: -0.950, V8: 0.050, V9: -0.452, V10: 0.589, V11: 1.279, V12: 0.637, V13: 0.535, V14: -0.606, V15: -0.969, V16: 0.967, V17: 0.329, V18: -0.855, V19: 0.839, V20: 0.270, V21: 0.393, V22: 1.071, V23: -0.218, V24: 0.618, V25: 0.525, V26: -0.044, V27: 0.025, V28: 0.027, Amount: 95.560.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.142, V2: -1.021, V3: 0.980, V4: -0.427, V5: -1.569, V6: -0.277, V7: -0.950, V8: 0.050, V9: -0.452, V10: 0.589, V11: 1.279, V12: 0.637, V13: 0.535, V14: -0.606, V15: -0.969, V16: 0.967, V17: 0.329, V18: -0.855, V19: 0.839, V20: 0.270, V21: 0.393, V22: 1.071, V23: -0.218, V24: 0.618, V25: 0.525, V26: -0.044, V27: 0.025, V28: 0.027, Amount: 95.560.
596
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.274, V2: -0.758, V3: 0.708, V4: -0.494, V5: -1.323, V6: -0.551, V7: -0.752, V8: 0.037, V9: -0.550, V10: 0.651, V11: 1.185, V12: 0.080, V13: -0.741, V14: -0.164, V15: -1.054, V16: 0.846, V17: 0.508, V18: -1.263, V19: 1.150, V20: 0.064, V21: -0.014, V22: -0.096, V23: 0.028, V24: 0.543, V25: 0.350, V26: -0.364, V27: 0.008, V28: 0.013, Amount: 37.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.274, V2: -0.758, V3: 0.708, V4: -0.494, V5: -1.323, V6: -0.551, V7: -0.752, V8: 0.037, V9: -0.550, V10: 0.651, V11: 1.185, V12: 0.080, V13: -0.741, V14: -0.164, V15: -1.054, V16: 0.846, V17: 0.508, V18: -1.263, V19: 1.150, V20: 0.064, V21: -0.014, V22: -0.096, V23: 0.028, V24: 0.543, V25: 0.350, V26: -0.364, V27: 0.008, V28: 0.013, Amount: 37.000.
597
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.155, V2: -1.244, V3: 2.699, V4: -1.828, V5: 0.131, V6: 0.224, V7: -0.318, V8: -0.314, V9: -0.292, V10: 0.961, V11: 1.314, V12: -0.559, V13: 0.099, V14: -1.259, V15: 0.416, V16: 1.621, V17: -0.737, V18: -0.455, V19: -0.276, V20: 0.057, V21: 0.389, V22: 1.727, V23: 0.204, V24: -0.273, V25: -0.229, V26: -0.272, V27: -0.555, V28: -0.467, Amount: 13.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.155, V2: -1.244, V3: 2.699, V4: -1.828, V5: 0.131, V6: 0.224, V7: -0.318, V8: -0.314, V9: -0.292, V10: 0.961, V11: 1.314, V12: -0.559, V13: 0.099, V14: -1.259, V15: 0.416, V16: 1.621, V17: -0.737, V18: -0.455, V19: -0.276, V20: 0.057, V21: 0.389, V22: 1.727, V23: 0.204, V24: -0.273, V25: -0.229, V26: -0.272, V27: -0.555, V28: -0.467, Amount: 13.000.
598
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.080, V2: 0.324, V3: -2.074, V4: 1.228, V5: 1.387, V6: -0.013, V7: 0.579, V8: -0.406, V9: 1.368, V10: -0.163, V11: -0.831, V12: -1.960, V13: 2.777, V14: 1.657, V15: -1.258, V16: -0.471, V17: 0.112, V18: -0.131, V19: -0.012, V20: -0.160, V21: -0.153, V22: 0.013, V23: -0.124, V24: -0.400, V25: 0.634, V26: -0.500, V27: -0.044, V28: -0.066, Amount: 29.700.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.080, V2: 0.324, V3: -2.074, V4: 1.228, V5: 1.387, V6: -0.013, V7: 0.579, V8: -0.406, V9: 1.368, V10: -0.163, V11: -0.831, V12: -1.960, V13: 2.777, V14: 1.657, V15: -1.258, V16: -0.471, V17: 0.112, V18: -0.131, V19: -0.012, V20: -0.160, V21: -0.153, V22: 0.013, V23: -0.124, V24: -0.400, V25: 0.634, V26: -0.500, V27: -0.044, V28: -0.066, Amount: 29.700.
599
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.126, V2: -0.574, V3: -0.230, V4: 0.032, V5: 0.045, V6: 0.740, V7: -0.227, V8: 0.075, V9: -1.368, V10: 0.847, V11: 0.290, V12: 0.733, V13: 1.311, V14: 0.227, V15: 0.407, V16: -1.071, V17: -0.710, V18: 1.428, V19: -0.652, V20: -0.228, V21: -0.469, V22: -1.104, V23: -0.131, V24: -1.395, V25: 0.410, V26: -0.480, V27: 0.039, V28: 0.026, Amount: 123.580.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.126, V2: -0.574, V3: -0.230, V4: 0.032, V5: 0.045, V6: 0.740, V7: -0.227, V8: 0.075, V9: -1.368, V10: 0.847, V11: 0.290, V12: 0.733, V13: 1.311, V14: 0.227, V15: 0.407, V16: -1.071, V17: -0.710, V18: 1.428, V19: -0.652, V20: -0.228, V21: -0.469, V22: -1.104, V23: -0.131, V24: -1.395, V25: 0.410, V26: -0.480, V27: 0.039, V28: 0.026, Amount: 123.580.