Datasets:

id
int64
0
7.97k
query
stringlengths
1.29k
1.31k
answer
stringclasses
2 values
choices
sequence
gold
int64
0
1
text
stringlengths
374
399
600
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.509, V2: 1.302, V3: 1.362, V4: -1.355, V5: -0.434, V6: -0.860, V7: 0.351, V8: 0.267, V9: 0.408, V10: -0.051, V11: 0.004, V12: 0.169, V13: -0.168, V14: -0.051, V15: 0.780, V16: 0.205, V17: -0.232, V18: -0.918, V19: -1.218, V20: 0.150, V21: -0.098, V22: -0.043, V23: 0.087, V24: 0.421, V25: -0.362, V26: 0.702, V27: 0.077, V28: -0.005, Amount: 0.910.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.509, V2: 1.302, V3: 1.362, V4: -1.355, V5: -0.434, V6: -0.860, V7: 0.351, V8: 0.267, V9: 0.408, V10: -0.051, V11: 0.004, V12: 0.169, V13: -0.168, V14: -0.051, V15: 0.780, V16: 0.205, V17: -0.232, V18: -0.918, V19: -1.218, V20: 0.150, V21: -0.098, V22: -0.043, V23: 0.087, V24: 0.421, V25: -0.362, V26: 0.702, V27: 0.077, V28: -0.005, Amount: 0.910.
601
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.602, V2: 0.963, V3: 1.749, V4: -0.870, V5: 0.394, V6: -0.218, V7: 1.195, V8: -0.675, V9: 1.779, V10: 1.774, V11: -0.228, V12: -0.451, V13: -0.526, V14: -1.330, V15: 0.517, V16: -0.160, V17: -0.878, V18: -0.515, V19: -0.494, V20: 0.767, V21: -0.609, V22: -0.402, V23: 0.045, V24: 1.042, V25: -0.207, V26: -0.114, V27: 0.247, V28: -0.287, Amount: 29.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.602, V2: 0.963, V3: 1.749, V4: -0.870, V5: 0.394, V6: -0.218, V7: 1.195, V8: -0.675, V9: 1.779, V10: 1.774, V11: -0.228, V12: -0.451, V13: -0.526, V14: -1.330, V15: 0.517, V16: -0.160, V17: -0.878, V18: -0.515, V19: -0.494, V20: 0.767, V21: -0.609, V22: -0.402, V23: 0.045, V24: 1.042, V25: -0.207, V26: -0.114, V27: 0.247, V28: -0.287, Amount: 29.990.
602
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.950, V2: -0.072, V3: -0.904, V4: 1.946, V5: 0.205, V6: 0.017, V7: -0.034, V8: -0.127, V9: -0.472, V10: 1.021, V11: -1.121, V12: 0.312, V13: 0.923, V14: -0.345, V15: -1.347, V16: 0.526, V17: -0.271, V18: -1.197, V19: -0.690, V20: -0.038, V21: 0.015, V22: 0.141, V23: 0.179, V24: 0.822, V25: -0.322, V26: 2.305, V27: -0.200, V28: -0.071, Amount: 41.180.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.950, V2: -0.072, V3: -0.904, V4: 1.946, V5: 0.205, V6: 0.017, V7: -0.034, V8: -0.127, V9: -0.472, V10: 1.021, V11: -1.121, V12: 0.312, V13: 0.923, V14: -0.345, V15: -1.347, V16: 0.526, V17: -0.271, V18: -1.197, V19: -0.690, V20: -0.038, V21: 0.015, V22: 0.141, V23: 0.179, V24: 0.822, V25: -0.322, V26: 2.305, V27: -0.200, V28: -0.071, Amount: 41.180.
603
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.767, V2: -0.706, V3: 2.472, V4: 0.103, V5: -0.640, V6: 0.392, V7: -1.338, V8: 0.433, V9: -0.439, V10: 0.496, V11: -0.226, V12: -0.846, V13: -0.956, V14: -0.649, V15: 0.680, V16: -0.658, V17: 2.063, V18: -2.076, V19: 1.915, V20: 0.099, V21: 0.160, V22: 0.693, V23: -0.092, V24: 0.130, V25: -0.557, V26: 0.004, V27: 0.148, V28: 0.122, Amount: 0.760.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.767, V2: -0.706, V3: 2.472, V4: 0.103, V5: -0.640, V6: 0.392, V7: -1.338, V8: 0.433, V9: -0.439, V10: 0.496, V11: -0.226, V12: -0.846, V13: -0.956, V14: -0.649, V15: 0.680, V16: -0.658, V17: 2.063, V18: -2.076, V19: 1.915, V20: 0.099, V21: 0.160, V22: 0.693, V23: -0.092, V24: 0.130, V25: -0.557, V26: 0.004, V27: 0.148, V28: 0.122, Amount: 0.760.
604
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.025, V2: 0.306, V3: 0.243, V4: 0.884, V5: 1.884, V6: -0.308, V7: 1.118, V8: -0.070, V9: -0.822, V10: -0.385, V11: -1.909, V12: -1.098, V13: -1.302, V14: 0.714, V15: 0.083, V16: -0.877, V17: 0.036, V18: 0.181, V19: 1.264, V20: 0.317, V21: 0.086, V22: -0.031, V23: -0.357, V24: 0.063, V25: 1.255, V26: -0.179, V27: -0.022, V28: 0.067, Amount: 77.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.025, V2: 0.306, V3: 0.243, V4: 0.884, V5: 1.884, V6: -0.308, V7: 1.118, V8: -0.070, V9: -0.822, V10: -0.385, V11: -1.909, V12: -1.098, V13: -1.302, V14: 0.714, V15: 0.083, V16: -0.877, V17: 0.036, V18: 0.181, V19: 1.264, V20: 0.317, V21: 0.086, V22: -0.031, V23: -0.357, V24: 0.063, V25: 1.255, V26: -0.179, V27: -0.022, V28: 0.067, Amount: 77.000.
605
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.846, V2: -0.321, V3: -0.428, V4: 1.424, V5: -0.255, V6: 0.225, V7: -0.335, V8: 0.165, V9: 0.980, V10: 0.146, V11: 0.100, V12: 1.181, V13: -0.527, V14: -0.020, V15: -1.810, V16: -0.176, V17: -0.344, V18: -0.330, V19: 0.545, V20: -0.235, V21: -0.473, V22: -1.173, V23: 0.368, V24: -0.487, V25: -0.341, V26: -1.102, V27: 0.046, V28: -0.039, Amount: 38.490.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.846, V2: -0.321, V3: -0.428, V4: 1.424, V5: -0.255, V6: 0.225, V7: -0.335, V8: 0.165, V9: 0.980, V10: 0.146, V11: 0.100, V12: 1.181, V13: -0.527, V14: -0.020, V15: -1.810, V16: -0.176, V17: -0.344, V18: -0.330, V19: 0.545, V20: -0.235, V21: -0.473, V22: -1.173, V23: 0.368, V24: -0.487, V25: -0.341, V26: -1.102, V27: 0.046, V28: -0.039, Amount: 38.490.
606
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -2.237, V2: 1.359, V3: 0.140, V4: 2.450, V5: 0.344, V6: -0.893, V7: 0.537, V8: 0.120, V9: -1.460, V10: 0.963, V11: -0.723, V12: 0.053, V13: 0.597, V14: 0.592, V15: 0.334, V16: 0.097, V17: -0.092, V18: -0.309, V19: -0.041, V20: -0.451, V21: 0.166, V22: 0.308, V23: -0.226, V24: 0.435, V25: -0.256, V26: -0.043, V27: -1.091, V28: -0.082, Amount: 3.480.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -2.237, V2: 1.359, V3: 0.140, V4: 2.450, V5: 0.344, V6: -0.893, V7: 0.537, V8: 0.120, V9: -1.460, V10: 0.963, V11: -0.723, V12: 0.053, V13: 0.597, V14: 0.592, V15: 0.334, V16: 0.097, V17: -0.092, V18: -0.309, V19: -0.041, V20: -0.451, V21: 0.166, V22: 0.308, V23: -0.226, V24: 0.435, V25: -0.256, V26: -0.043, V27: -1.091, V28: -0.082, Amount: 3.480.
607
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.363, V2: 0.545, V3: -0.182, V4: -1.862, V5: -0.296, V6: -1.103, V7: 0.170, V8: 0.342, V9: -1.538, V10: 0.382, V11: 0.466, V12: -0.796, V13: -1.309, V14: 0.724, V15: -0.981, V16: 1.362, V17: -0.064, V18: -0.699, V19: 0.357, V20: -0.080, V21: 0.382, V22: 0.917, V23: -0.027, V24: -0.004, V25: -0.645, V26: -0.414, V27: 0.293, V28: 0.200, Amount: 10.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.363, V2: 0.545, V3: -0.182, V4: -1.862, V5: -0.296, V6: -1.103, V7: 0.170, V8: 0.342, V9: -1.538, V10: 0.382, V11: 0.466, V12: -0.796, V13: -1.309, V14: 0.724, V15: -0.981, V16: 1.362, V17: -0.064, V18: -0.699, V19: 0.357, V20: -0.080, V21: 0.382, V22: 0.917, V23: -0.027, V24: -0.004, V25: -0.645, V26: -0.414, V27: 0.293, V28: 0.200, Amount: 10.000.
608
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.714, V2: 0.169, V3: 0.386, V4: -0.082, V5: -0.282, V6: 0.158, V7: -0.487, V8: -0.747, V9: 1.049, V10: -0.494, V11: -1.252, V12: 0.254, V13: -0.011, V14: -0.077, V15: 0.379, V16: 0.048, V17: -0.502, V18: 0.368, V19: -0.130, V20: -0.272, V21: 1.017, V22: 0.660, V23: 0.033, V24: 0.687, V25: -0.126, V26: -0.251, V27: 0.346, V28: 0.363, Amount: 12.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 0.714, V2: 0.169, V3: 0.386, V4: -0.082, V5: -0.282, V6: 0.158, V7: -0.487, V8: -0.747, V9: 1.049, V10: -0.494, V11: -1.252, V12: 0.254, V13: -0.011, V14: -0.077, V15: 0.379, V16: 0.048, V17: -0.502, V18: 0.368, V19: -0.130, V20: -0.272, V21: 1.017, V22: 0.660, V23: 0.033, V24: 0.687, V25: -0.126, V26: -0.251, V27: 0.346, V28: 0.363, Amount: 12.990.
609
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.439, V2: -1.869, V3: -1.515, V4: 4.259, V5: -0.416, V6: 0.042, V7: 1.143, V8: -0.235, V9: -1.344, V10: 1.383, V11: 0.568, V12: 0.012, V13: -0.596, V14: 0.894, V15: -0.821, V16: 1.243, V17: -1.094, V18: 0.521, V19: -1.748, V20: 1.210, V21: 0.750, V22: 0.391, V23: -0.595, V24: 0.087, V25: -0.231, V26: 0.036, V27: -0.193, V28: 0.070, Amount: 758.580.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 0.439, V2: -1.869, V3: -1.515, V4: 4.259, V5: -0.416, V6: 0.042, V7: 1.143, V8: -0.235, V9: -1.344, V10: 1.383, V11: 0.568, V12: 0.012, V13: -0.596, V14: 0.894, V15: -0.821, V16: 1.243, V17: -1.094, V18: 0.521, V19: -1.748, V20: 1.210, V21: 0.750, V22: 0.391, V23: -0.595, V24: 0.087, V25: -0.231, V26: 0.036, V27: -0.193, V28: 0.070, Amount: 758.580.
610
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.967, V2: -0.573, V3: -0.362, V4: 0.364, V5: -0.472, V6: 0.340, V7: -0.873, V8: 0.167, V9: 1.380, V10: 0.010, V11: -1.575, V12: -0.021, V13: 0.127, V14: -0.297, V15: 0.842, V16: 0.868, V17: -0.925, V18: 0.347, V19: -0.117, V20: -0.097, V21: -0.013, V22: 0.009, V23: 0.243, V24: 0.087, V25: -0.443, V26: 0.172, V27: -0.004, V28: -0.029, Amount: 37.310.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.967, V2: -0.573, V3: -0.362, V4: 0.364, V5: -0.472, V6: 0.340, V7: -0.873, V8: 0.167, V9: 1.380, V10: 0.010, V11: -1.575, V12: -0.021, V13: 0.127, V14: -0.297, V15: 0.842, V16: 0.868, V17: -0.925, V18: 0.347, V19: -0.117, V20: -0.097, V21: -0.013, V22: 0.009, V23: 0.243, V24: 0.087, V25: -0.443, V26: 0.172, V27: -0.004, V28: -0.029, Amount: 37.310.
611
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.289, V2: 0.621, V3: 1.052, V4: -0.639, V5: 0.299, V6: -0.702, V7: 1.576, V8: -0.507, V9: -0.653, V10: -0.488, V11: -0.518, V12: 0.135, V13: 0.901, V14: -0.082, V15: 0.613, V16: 0.053, V17: -0.524, V18: -0.771, V19: 0.606, V20: 0.342, V21: -0.381, V22: -1.142, V23: 0.173, V24: -0.100, V25: -0.255, V26: 0.578, V27: -0.241, V28: -0.175, Amount: 104.940.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.289, V2: 0.621, V3: 1.052, V4: -0.639, V5: 0.299, V6: -0.702, V7: 1.576, V8: -0.507, V9: -0.653, V10: -0.488, V11: -0.518, V12: 0.135, V13: 0.901, V14: -0.082, V15: 0.613, V16: 0.053, V17: -0.524, V18: -0.771, V19: 0.606, V20: 0.342, V21: -0.381, V22: -1.142, V23: 0.173, V24: -0.100, V25: -0.255, V26: 0.578, V27: -0.241, V28: -0.175, Amount: 104.940.
612
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.317, V2: -0.982, V3: 1.211, V4: -0.541, V5: -1.916, V6: -0.371, V7: -1.459, V8: 0.309, V9: 0.073, V10: 0.767, V11: 0.822, V12: -1.262, V13: -2.803, V14: 0.074, V15: -0.038, V16: 1.456, V17: 0.303, V18: -0.242, V19: 0.695, V20: -0.130, V21: 0.333, V22: 0.881, V23: -0.047, V24: 0.507, V25: 0.304, V26: -0.065, V27: 0.029, V28: 0.009, Amount: 0.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.317, V2: -0.982, V3: 1.211, V4: -0.541, V5: -1.916, V6: -0.371, V7: -1.459, V8: 0.309, V9: 0.073, V10: 0.767, V11: 0.822, V12: -1.262, V13: -2.803, V14: 0.074, V15: -0.038, V16: 1.456, V17: 0.303, V18: -0.242, V19: 0.695, V20: -0.130, V21: 0.333, V22: 0.881, V23: -0.047, V24: 0.507, V25: 0.304, V26: -0.065, V27: 0.029, V28: 0.009, Amount: 0.000.
613
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.814, V2: 0.727, V3: 1.621, V4: 0.727, V5: 0.564, V6: -0.279, V7: 0.710, V8: 0.021, V9: -1.143, V10: -0.223, V11: 1.003, V12: 0.600, V13: 0.376, V14: 0.446, V15: 0.440, V16: -0.060, V17: -0.512, V18: 0.686, V19: 0.925, V20: 0.263, V21: 0.170, V22: 0.328, V23: -0.286, V24: 0.028, V25: 0.571, V26: -0.195, V27: 0.045, V28: 0.071, Amount: 46.080.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.814, V2: 0.727, V3: 1.621, V4: 0.727, V5: 0.564, V6: -0.279, V7: 0.710, V8: 0.021, V9: -1.143, V10: -0.223, V11: 1.003, V12: 0.600, V13: 0.376, V14: 0.446, V15: 0.440, V16: -0.060, V17: -0.512, V18: 0.686, V19: 0.925, V20: 0.263, V21: 0.170, V22: 0.328, V23: -0.286, V24: 0.028, V25: 0.571, V26: -0.195, V27: 0.045, V28: 0.071, Amount: 46.080.
614
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.229, V2: -1.519, V3: -0.693, V4: -1.619, V5: -1.428, V6: -0.414, V7: -1.343, V8: -0.048, V9: -1.244, V10: 1.723, V11: 0.359, V12: -0.278, V13: 0.246, V14: -0.327, V15: -0.728, V16: -0.143, V17: 0.088, V18: 0.632, V19: 0.186, V20: -0.400, V21: -0.106, V22: 0.154, V23: 0.198, V24: -0.360, V25: -0.283, V26: -0.177, V27: 0.019, V28: -0.056, Amount: 30.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.229, V2: -1.519, V3: -0.693, V4: -1.619, V5: -1.428, V6: -0.414, V7: -1.343, V8: -0.048, V9: -1.244, V10: 1.723, V11: 0.359, V12: -0.278, V13: 0.246, V14: -0.327, V15: -0.728, V16: -0.143, V17: 0.088, V18: 0.632, V19: 0.186, V20: -0.400, V21: -0.106, V22: 0.154, V23: 0.198, V24: -0.360, V25: -0.283, V26: -0.177, V27: 0.019, V28: -0.056, Amount: 30.000.
615
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.322, V2: -1.673, V3: -0.604, V4: -0.359, V5: -1.065, V6: -0.581, V7: 0.235, V8: -0.037, V9: 1.447, V10: -1.546, V11: 1.120, V12: 0.416, V13: -1.402, V14: -0.626, V15: 0.703, V16: 0.103, V17: 0.600, V18: 1.400, V19: 0.742, V20: 0.809, V21: 0.234, V22: -0.239, V23: -0.576, V24: -0.087, V25: 0.472, V26: -0.669, V27: -0.016, V28: 0.119, Amount: 477.490.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 0.322, V2: -1.673, V3: -0.604, V4: -0.359, V5: -1.065, V6: -0.581, V7: 0.235, V8: -0.037, V9: 1.447, V10: -1.546, V11: 1.120, V12: 0.416, V13: -1.402, V14: -0.626, V15: 0.703, V16: 0.103, V17: 0.600, V18: 1.400, V19: 0.742, V20: 0.809, V21: 0.234, V22: -0.239, V23: -0.576, V24: -0.087, V25: 0.472, V26: -0.669, V27: -0.016, V28: 0.119, Amount: 477.490.
616
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.413, V2: -0.213, V3: 1.520, V4: -0.788, V5: -0.611, V6: 0.104, V7: 0.115, V8: 0.111, V9: -1.847, V10: 0.464, V11: 1.726, V12: 0.175, V13: 0.701, V14: -0.059, V15: 0.575, V16: 0.629, V17: 0.579, V18: -1.261, V19: 1.639, V20: 0.541, V21: 0.185, V22: 0.226, V23: 0.342, V24: 0.015, V25: -0.664, V26: -0.411, V27: 0.138, V28: 0.154, Amount: 115.550.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.413, V2: -0.213, V3: 1.520, V4: -0.788, V5: -0.611, V6: 0.104, V7: 0.115, V8: 0.111, V9: -1.847, V10: 0.464, V11: 1.726, V12: 0.175, V13: 0.701, V14: -0.059, V15: 0.575, V16: 0.629, V17: 0.579, V18: -1.261, V19: 1.639, V20: 0.541, V21: 0.185, V22: 0.226, V23: 0.342, V24: 0.015, V25: -0.664, V26: -0.411, V27: 0.138, V28: 0.154, Amount: 115.550.
617
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.733, V2: 1.204, V3: 1.613, V4: 1.572, V5: -1.289, V6: 0.905, V7: -0.947, V8: 1.501, V9: 0.588, V10: -0.242, V11: 0.068, V12: 0.486, V13: -2.515, V14: 0.375, V15: -1.865, V16: -1.188, V17: 1.433, V18: -0.306, V19: 1.497, V20: -0.156, V21: -0.279, V22: -0.551, V23: 0.110, V24: 0.171, V25: -0.086, V26: -0.394, V27: 0.167, V28: 0.092, Amount: 11.900.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.733, V2: 1.204, V3: 1.613, V4: 1.572, V5: -1.289, V6: 0.905, V7: -0.947, V8: 1.501, V9: 0.588, V10: -0.242, V11: 0.068, V12: 0.486, V13: -2.515, V14: 0.375, V15: -1.865, V16: -1.188, V17: 1.433, V18: -0.306, V19: 1.497, V20: -0.156, V21: -0.279, V22: -0.551, V23: 0.110, V24: 0.171, V25: -0.086, V26: -0.394, V27: 0.167, V28: 0.092, Amount: 11.900.
618
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.024, V2: -0.429, V3: -0.691, V4: -0.201, V5: -0.162, V6: 0.284, V7: -0.675, V8: 0.192, V9: 1.124, V10: -0.038, V11: 0.309, V12: 0.875, V13: -0.010, V14: 0.116, V15: 0.087, V16: 0.628, V17: -0.998, V18: 0.483, V19: 0.576, V20: -0.171, V21: -0.195, V22: -0.478, V23: 0.341, V24: 0.059, V25: -0.431, V26: -0.297, V27: -0.000, V28: -0.047, Amount: 0.770.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.024, V2: -0.429, V3: -0.691, V4: -0.201, V5: -0.162, V6: 0.284, V7: -0.675, V8: 0.192, V9: 1.124, V10: -0.038, V11: 0.309, V12: 0.875, V13: -0.010, V14: 0.116, V15: 0.087, V16: 0.628, V17: -0.998, V18: 0.483, V19: 0.576, V20: -0.171, V21: -0.195, V22: -0.478, V23: 0.341, V24: 0.059, V25: -0.431, V26: -0.297, V27: -0.000, V28: -0.047, Amount: 0.770.
619
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.046, V2: -0.035, V3: 1.573, V4: 2.957, V5: -0.948, V6: 0.631, V7: -0.796, V8: 0.420, V9: 0.694, V10: 0.390, V11: -1.139, V12: -0.395, V13: -1.922, V14: -0.334, V15: -1.070, V16: -0.277, V17: 0.499, V18: -0.654, V19: -1.036, V20: -0.341, V21: 0.050, V22: 0.456, V23: -0.038, V24: 0.409, V25: 0.443, V26: 0.228, V27: 0.054, V28: 0.023, Amount: 0.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.046, V2: -0.035, V3: 1.573, V4: 2.957, V5: -0.948, V6: 0.631, V7: -0.796, V8: 0.420, V9: 0.694, V10: 0.390, V11: -1.139, V12: -0.395, V13: -1.922, V14: -0.334, V15: -1.070, V16: -0.277, V17: 0.499, V18: -0.654, V19: -1.036, V20: -0.341, V21: 0.050, V22: 0.456, V23: -0.038, V24: 0.409, V25: 0.443, V26: 0.228, V27: 0.054, V28: 0.023, Amount: 0.000.
620
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.220, V2: 0.826, V3: 1.949, V4: -0.820, V5: -0.594, V6: -0.628, V7: 0.135, V8: 0.511, V9: 0.265, V10: -1.557, V11: -1.023, V12: 0.068, V13: -0.565, V14: 0.096, V15: -0.087, V16: 0.195, V17: -0.307, V18: 0.224, V19: -1.037, V20: -0.274, V21: 0.324, V22: 0.866, V23: -0.434, V24: 0.418, V25: 0.767, V26: -0.134, V27: -0.076, V28: -0.010, Amount: 16.320.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.220, V2: 0.826, V3: 1.949, V4: -0.820, V5: -0.594, V6: -0.628, V7: 0.135, V8: 0.511, V9: 0.265, V10: -1.557, V11: -1.023, V12: 0.068, V13: -0.565, V14: 0.096, V15: -0.087, V16: 0.195, V17: -0.307, V18: 0.224, V19: -1.037, V20: -0.274, V21: 0.324, V22: 0.866, V23: -0.434, V24: 0.418, V25: 0.767, V26: -0.134, V27: -0.076, V28: -0.010, Amount: 16.320.
621
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.822, V2: -0.272, V3: -1.809, V4: 0.099, V5: 1.093, V6: 1.415, V7: -0.372, V8: 0.415, V9: 0.412, V10: -0.475, V11: 1.370, V12: 1.149, V13: 0.713, V14: -1.106, V15: 0.469, V16: 0.027, V17: 0.866, V18: -0.547, V19: -0.790, V20: -0.062, V21: -0.002, V22: 0.130, V23: 0.187, V24: -1.005, V25: -0.375, V26: 0.475, V27: -0.001, V28: -0.038, Amount: 52.900.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.822, V2: -0.272, V3: -1.809, V4: 0.099, V5: 1.093, V6: 1.415, V7: -0.372, V8: 0.415, V9: 0.412, V10: -0.475, V11: 1.370, V12: 1.149, V13: 0.713, V14: -1.106, V15: 0.469, V16: 0.027, V17: 0.866, V18: -0.547, V19: -0.790, V20: -0.062, V21: -0.002, V22: 0.130, V23: 0.187, V24: -1.005, V25: -0.375, V26: 0.475, V27: -0.001, V28: -0.038, Amount: 52.900.
622
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.247, V2: -1.214, V3: 1.718, V4: -0.130, V5: -2.119, V6: 0.358, V7: -1.764, V8: 0.453, V9: 0.987, V10: 0.276, V11: -0.988, V12: -0.961, V13: -2.053, V14: -0.950, V15: -0.926, V16: 0.265, V17: 1.403, V18: -1.675, V19: 0.522, V20: -0.144, V21: 0.164, V22: 0.777, V23: 0.005, V24: 0.429, V25: 0.297, V26: -0.030, V27: 0.090, V28: 0.023, Amount: 2.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.247, V2: -1.214, V3: 1.718, V4: -0.130, V5: -2.119, V6: 0.358, V7: -1.764, V8: 0.453, V9: 0.987, V10: 0.276, V11: -0.988, V12: -0.961, V13: -2.053, V14: -0.950, V15: -0.926, V16: 0.265, V17: 1.403, V18: -1.675, V19: 0.522, V20: -0.144, V21: 0.164, V22: 0.777, V23: 0.005, V24: 0.429, V25: 0.297, V26: -0.030, V27: 0.090, V28: 0.023, Amount: 2.000.
623
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.866, V2: -0.301, V3: -1.226, V4: 0.194, V5: 0.668, V6: 0.855, V7: -0.159, V8: 0.280, V9: 0.563, V10: -0.114, V11: 0.122, V12: 0.666, V13: -0.237, V14: 0.441, V15: 1.161, V16: -1.341, V17: 0.907, V18: -2.763, V19: -1.382, V20: -0.360, V21: -0.172, V22: -0.238, V23: 0.457, V24: -1.378, V25: -0.616, V26: 0.328, V27: -0.002, V28: -0.075, Amount: 8.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.866, V2: -0.301, V3: -1.226, V4: 0.194, V5: 0.668, V6: 0.855, V7: -0.159, V8: 0.280, V9: 0.563, V10: -0.114, V11: 0.122, V12: 0.666, V13: -0.237, V14: 0.441, V15: 1.161, V16: -1.341, V17: 0.907, V18: -2.763, V19: -1.382, V20: -0.360, V21: -0.172, V22: -0.238, V23: 0.457, V24: -1.378, V25: -0.616, V26: 0.328, V27: -0.002, V28: -0.075, Amount: 8.990.
624
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.883, V2: 1.417, V3: -0.573, V4: -0.535, V5: -0.397, V6: -1.284, V7: 0.210, V8: 0.727, V9: 0.007, V10: -0.514, V11: -1.412, V12: -0.220, V13: -1.166, V14: 0.933, V15: -0.322, V16: 0.192, V17: -0.004, V18: -0.532, V19: -0.118, V20: -0.217, V21: -0.222, V22: -0.723, V23: 0.197, V24: -0.000, V25: -0.437, V26: 0.152, V27: 0.104, V28: 0.018, Amount: 10.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.883, V2: 1.417, V3: -0.573, V4: -0.535, V5: -0.397, V6: -1.284, V7: 0.210, V8: 0.727, V9: 0.007, V10: -0.514, V11: -1.412, V12: -0.220, V13: -1.166, V14: 0.933, V15: -0.322, V16: 0.192, V17: -0.004, V18: -0.532, V19: -0.118, V20: -0.217, V21: -0.222, V22: -0.723, V23: 0.197, V24: -0.000, V25: -0.437, V26: 0.152, V27: 0.104, V28: 0.018, Amount: 10.990.
625
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.951, V2: 0.387, V3: 1.961, V4: -0.233, V5: -0.277, V6: -0.499, V7: 0.867, V8: 0.021, V9: 0.061, V10: -1.044, V11: -1.154, V12: -0.378, V13: -1.116, V14: -0.147, V15: -0.845, V16: -0.164, V17: -0.053, V18: -0.341, V19: -0.252, V20: 0.042, V21: 0.003, V22: -0.063, V23: -0.173, V24: 0.401, V25: 0.576, V26: 0.465, V27: -0.045, V28: 0.056, Amount: 88.240.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.951, V2: 0.387, V3: 1.961, V4: -0.233, V5: -0.277, V6: -0.499, V7: 0.867, V8: 0.021, V9: 0.061, V10: -1.044, V11: -1.154, V12: -0.378, V13: -1.116, V14: -0.147, V15: -0.845, V16: -0.164, V17: -0.053, V18: -0.341, V19: -0.252, V20: 0.042, V21: 0.003, V22: -0.063, V23: -0.173, V24: 0.401, V25: 0.576, V26: 0.465, V27: -0.045, V28: 0.056, Amount: 88.240.
626
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.204, V2: -0.075, V3: 0.495, V4: 0.153, V5: -0.747, V6: -1.053, V7: -0.057, V8: -0.159, V9: 0.348, V10: -0.190, V11: -0.294, V12: -0.035, V13: -0.477, V14: 0.345, V15: 1.241, V16: 0.397, V17: -0.325, V18: -0.542, V19: 0.082, V20: -0.041, V21: -0.310, V22: -1.030, V23: 0.176, V24: 0.383, V25: 0.002, V26: 0.473, V27: -0.070, V28: 0.020, Amount: 40.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.204, V2: -0.075, V3: 0.495, V4: 0.153, V5: -0.747, V6: -1.053, V7: -0.057, V8: -0.159, V9: 0.348, V10: -0.190, V11: -0.294, V12: -0.035, V13: -0.477, V14: 0.345, V15: 1.241, V16: 0.397, V17: -0.325, V18: -0.542, V19: 0.082, V20: -0.041, V21: -0.310, V22: -1.030, V23: 0.176, V24: 0.383, V25: 0.002, V26: 0.473, V27: -0.070, V28: 0.020, Amount: 40.000.
627
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.537, V2: -0.632, V3: 0.122, V4: -1.180, V5: 0.396, V6: -2.051, V7: 0.506, V8: -0.268, V9: 0.610, V10: -0.851, V11: -0.071, V12: 0.546, V13: 0.265, V14: 0.404, V15: 1.648, V16: -0.876, V17: 0.178, V18: -0.493, V19: 1.879, V20: -0.645, V21: -0.485, V22: -0.542, V23: 1.261, V24: 0.391, V25: -0.144, V26: -0.265, V27: -0.160, V28: -0.484, Amount: 17.270.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.537, V2: -0.632, V3: 0.122, V4: -1.180, V5: 0.396, V6: -2.051, V7: 0.506, V8: -0.268, V9: 0.610, V10: -0.851, V11: -0.071, V12: 0.546, V13: 0.265, V14: 0.404, V15: 1.648, V16: -0.876, V17: 0.178, V18: -0.493, V19: 1.879, V20: -0.645, V21: -0.485, V22: -0.542, V23: 1.261, V24: 0.391, V25: -0.144, V26: -0.265, V27: -0.160, V28: -0.484, Amount: 17.270.
628
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.236, V2: -0.168, V3: 0.570, V4: 0.129, V5: -0.923, V6: -1.015, V7: -0.278, V8: -0.076, V9: 0.556, V10: -0.114, V11: -0.508, V12: -0.619, V13: -1.409, V14: 0.441, V15: 1.380, V16: 0.520, V17: -0.296, V18: -0.222, V19: -0.037, V20: -0.126, V21: -0.138, V22: -0.513, V23: 0.098, V24: 0.403, V25: 0.061, V26: 0.875, V27: -0.083, V28: 0.011, Amount: 22.820.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.236, V2: -0.168, V3: 0.570, V4: 0.129, V5: -0.923, V6: -1.015, V7: -0.278, V8: -0.076, V9: 0.556, V10: -0.114, V11: -0.508, V12: -0.619, V13: -1.409, V14: 0.441, V15: 1.380, V16: 0.520, V17: -0.296, V18: -0.222, V19: -0.037, V20: -0.126, V21: -0.138, V22: -0.513, V23: 0.098, V24: 0.403, V25: 0.061, V26: 0.875, V27: -0.083, V28: 0.011, Amount: 22.820.
629
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.050, V2: 0.164, V3: -1.678, V4: 0.443, V5: 0.641, V6: -0.352, V7: -0.050, V8: -0.121, V9: 1.621, V10: -0.565, V11: 1.721, V12: -2.058, V13: 1.129, V14: 0.878, V15: -1.151, V16: 0.596, V17: 0.879, V18: 0.625, V19: 0.254, V20: -0.208, V21: -0.487, V22: -1.119, V23: 0.307, V24: 0.110, V25: -0.291, V26: 0.135, V27: -0.098, V28: -0.051, Amount: 4.490.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.050, V2: 0.164, V3: -1.678, V4: 0.443, V5: 0.641, V6: -0.352, V7: -0.050, V8: -0.121, V9: 1.621, V10: -0.565, V11: 1.721, V12: -2.058, V13: 1.129, V14: 0.878, V15: -1.151, V16: 0.596, V17: 0.879, V18: 0.625, V19: 0.254, V20: -0.208, V21: -0.487, V22: -1.119, V23: 0.307, V24: 0.110, V25: -0.291, V26: 0.135, V27: -0.098, V28: -0.051, Amount: 4.490.
630
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.369, V2: 0.851, V3: 0.217, V4: -0.078, V5: 0.111, V6: -0.097, V7: 0.325, V8: 0.484, V9: -0.368, V10: -0.620, V11: -1.374, V12: -0.730, V13: -0.942, V14: 0.741, V15: 1.059, V16: 0.193, V17: -0.174, V18: -0.157, V19: -0.173, V20: -0.201, V21: 0.121, V22: 0.158, V23: -0.017, V24: -0.773, V25: -0.232, V26: 0.376, V27: -0.116, V28: -0.043, Amount: 39.320.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.369, V2: 0.851, V3: 0.217, V4: -0.078, V5: 0.111, V6: -0.097, V7: 0.325, V8: 0.484, V9: -0.368, V10: -0.620, V11: -1.374, V12: -0.730, V13: -0.942, V14: 0.741, V15: 1.059, V16: 0.193, V17: -0.174, V18: -0.157, V19: -0.173, V20: -0.201, V21: 0.121, V22: 0.158, V23: -0.017, V24: -0.773, V25: -0.232, V26: 0.376, V27: -0.116, V28: -0.043, Amount: 39.320.
631
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.789, V2: 1.413, V3: 1.938, V4: 1.713, V5: 0.946, V6: 0.197, V7: 1.054, V8: -0.038, V9: -0.880, V10: -0.749, V11: -0.374, V12: -0.168, V13: 0.155, V14: -2.164, V15: -1.114, V16: 0.343, V17: 0.956, V18: -0.302, V19: -1.717, V20: -0.046, V21: -0.131, V22: -0.040, V23: -0.436, V24: -0.027, V25: 0.557, V26: -0.011, V27: -0.101, V28: -0.130, Amount: 6.050.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.789, V2: 1.413, V3: 1.938, V4: 1.713, V5: 0.946, V6: 0.197, V7: 1.054, V8: -0.038, V9: -0.880, V10: -0.749, V11: -0.374, V12: -0.168, V13: 0.155, V14: -2.164, V15: -1.114, V16: 0.343, V17: 0.956, V18: -0.302, V19: -1.717, V20: -0.046, V21: -0.131, V22: -0.040, V23: -0.436, V24: -0.027, V25: 0.557, V26: -0.011, V27: -0.101, V28: -0.130, Amount: 6.050.
632
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.870, V2: 0.741, V3: 1.482, V4: -1.206, V5: 1.011, V6: -0.315, V7: 1.078, V8: -0.352, V9: 1.305, V10: -1.239, V11: 1.231, V12: -1.814, V13: 1.509, V14: 1.231, V15: -2.426, V16: -0.329, V17: -0.014, V18: 0.456, V19: -0.051, V20: -0.146, V21: -0.083, V22: 0.298, V23: -0.733, V24: -0.326, V25: 1.024, V26: 0.154, V27: -0.321, V28: -0.222, Amount: 9.800.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.870, V2: 0.741, V3: 1.482, V4: -1.206, V5: 1.011, V6: -0.315, V7: 1.078, V8: -0.352, V9: 1.305, V10: -1.239, V11: 1.231, V12: -1.814, V13: 1.509, V14: 1.231, V15: -2.426, V16: -0.329, V17: -0.014, V18: 0.456, V19: -0.051, V20: -0.146, V21: -0.083, V22: 0.298, V23: -0.733, V24: -0.326, V25: 1.024, V26: 0.154, V27: -0.321, V28: -0.222, Amount: 9.800.
633
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.171, V2: 0.106, V3: 0.588, V4: 0.573, V5: -0.596, V6: -0.795, V7: -0.059, V8: -0.039, V9: -0.132, V10: 0.114, V11: 1.555, V12: 0.781, V13: -0.451, V14: 0.581, V15: 0.390, V16: 0.472, V17: -0.562, V18: -0.031, V19: 0.093, V20: -0.097, V21: -0.190, V22: -0.656, V23: 0.143, V24: 0.513, V25: 0.132, V26: 0.065, V27: -0.040, V28: 0.012, Amount: 17.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.171, V2: 0.106, V3: 0.588, V4: 0.573, V5: -0.596, V6: -0.795, V7: -0.059, V8: -0.039, V9: -0.132, V10: 0.114, V11: 1.555, V12: 0.781, V13: -0.451, V14: 0.581, V15: 0.390, V16: 0.472, V17: -0.562, V18: -0.031, V19: 0.093, V20: -0.097, V21: -0.190, V22: -0.656, V23: 0.143, V24: 0.513, V25: 0.132, V26: 0.065, V27: -0.040, V28: 0.012, Amount: 17.990.
634
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -3.474, V2: 2.800, V3: -2.776, V4: 0.695, V5: -0.249, V6: -0.345, V7: -0.687, V8: 2.050, V9: -0.534, V10: 0.702, V11: -0.723, V12: 0.588, V13: -1.010, V14: 2.009, V15: -0.917, V16: -0.181, V17: 0.491, V18: 0.651, V19: 1.270, V20: -0.393, V21: 0.116, V22: 0.418, V23: 0.284, V24: 0.166, V25: 0.452, V26: -0.378, V27: -0.086, V28: 0.193, Amount: 5.400.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -3.474, V2: 2.800, V3: -2.776, V4: 0.695, V5: -0.249, V6: -0.345, V7: -0.687, V8: 2.050, V9: -0.534, V10: 0.702, V11: -0.723, V12: 0.588, V13: -1.010, V14: 2.009, V15: -0.917, V16: -0.181, V17: 0.491, V18: 0.651, V19: 1.270, V20: -0.393, V21: 0.116, V22: 0.418, V23: 0.284, V24: 0.166, V25: 0.452, V26: -0.378, V27: -0.086, V28: 0.193, Amount: 5.400.
635
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.953, V2: -0.044, V3: -1.881, V4: 0.376, V5: 0.283, V6: -0.937, V7: 0.138, V8: -0.159, V9: 0.490, V10: -0.301, V11: 0.947, V12: 0.167, V13: -0.965, V14: -0.351, V15: 0.376, V16: 0.485, V17: 0.138, V18: 1.136, V19: -0.097, V20: -0.173, V21: 0.244, V22: 0.720, V23: -0.089, V24: -0.483, V25: 0.206, V26: -0.096, V27: -0.017, V28: -0.040, Amount: 42.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.953, V2: -0.044, V3: -1.881, V4: 0.376, V5: 0.283, V6: -0.937, V7: 0.138, V8: -0.159, V9: 0.490, V10: -0.301, V11: 0.947, V12: 0.167, V13: -0.965, V14: -0.351, V15: 0.376, V16: 0.485, V17: 0.138, V18: 1.136, V19: -0.097, V20: -0.173, V21: 0.244, V22: 0.720, V23: -0.089, V24: -0.483, V25: 0.206, V26: -0.096, V27: -0.017, V28: -0.040, Amount: 42.000.
636
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -2.264, V2: -0.860, V3: 0.977, V4: -1.018, V5: -1.273, V6: 1.010, V7: 2.293, V8: -0.316, V9: 0.549, V10: -1.438, V11: -1.124, V12: -0.191, V13: 0.139, V14: -0.562, V15: 0.208, V16: 0.543, V17: -0.825, V18: 0.209, V19: -0.588, V20: -0.768, V21: -0.092, V22: 0.665, V23: 0.340, V24: 0.681, V25: 0.944, V26: 0.179, V27: 0.292, V28: -0.200, Amount: 500.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -2.264, V2: -0.860, V3: 0.977, V4: -1.018, V5: -1.273, V6: 1.010, V7: 2.293, V8: -0.316, V9: 0.549, V10: -1.438, V11: -1.124, V12: -0.191, V13: 0.139, V14: -0.562, V15: 0.208, V16: 0.543, V17: -0.825, V18: 0.209, V19: -0.588, V20: -0.768, V21: -0.092, V22: 0.665, V23: 0.340, V24: 0.681, V25: 0.944, V26: 0.179, V27: 0.292, V28: -0.200, Amount: 500.000.
637
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.070, V2: 0.279, V3: 0.990, V4: 2.646, V5: -0.498, V6: -0.018, V7: -0.178, V8: 0.183, V9: -0.400, V10: 0.722, V11: 0.803, V12: 0.338, V13: -1.341, V14: 0.336, V15: -1.239, V16: 0.447, V17: -0.344, V18: -0.108, V19: -0.367, V20: -0.210, V21: -0.215, V22: -0.632, V23: 0.086, V24: 0.490, V25: 0.300, V26: -0.189, V27: -0.006, V28: 0.018, Amount: 19.120.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.070, V2: 0.279, V3: 0.990, V4: 2.646, V5: -0.498, V6: -0.018, V7: -0.178, V8: 0.183, V9: -0.400, V10: 0.722, V11: 0.803, V12: 0.338, V13: -1.341, V14: 0.336, V15: -1.239, V16: 0.447, V17: -0.344, V18: -0.108, V19: -0.367, V20: -0.210, V21: -0.215, V22: -0.632, V23: 0.086, V24: 0.490, V25: 0.300, V26: -0.189, V27: -0.006, V28: 0.018, Amount: 19.120.
638
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.039, V2: -0.043, V3: -3.056, V4: 0.246, V5: 2.945, V6: 3.298, V7: -0.005, V8: 0.675, V9: 0.046, V10: 0.286, V11: -0.255, V12: 0.325, V13: -0.406, V14: 0.721, V15: -0.149, V16: -0.754, V17: -0.271, V18: -0.696, V19: -0.274, V20: -0.231, V21: 0.037, V22: 0.229, V23: 0.037, V24: 0.707, V25: 0.514, V26: -0.471, V27: 0.003, V28: -0.069, Amount: 1.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.039, V2: -0.043, V3: -3.056, V4: 0.246, V5: 2.945, V6: 3.298, V7: -0.005, V8: 0.675, V9: 0.046, V10: 0.286, V11: -0.255, V12: 0.325, V13: -0.406, V14: 0.721, V15: -0.149, V16: -0.754, V17: -0.271, V18: -0.696, V19: -0.274, V20: -0.231, V21: 0.037, V22: 0.229, V23: 0.037, V24: 0.707, V25: 0.514, V26: -0.471, V27: 0.003, V28: -0.069, Amount: 1.000.
639
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.611, V2: -2.356, V3: -0.175, V4: -1.212, V5: -0.999, V6: 0.886, V7: 1.281, V8: -0.102, V9: -0.784, V10: 0.077, V11: 0.102, V12: -0.567, V13: -0.364, V14: -0.348, V15: -1.067, V16: 1.312, V17: -0.081, V18: -0.755, V19: 1.769, V20: 0.291, V21: -0.071, V22: -0.280, V23: 1.083, V24: 0.153, V25: -0.911, V26: -0.632, V27: 0.247, V28: 0.283, Amount: 549.760.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.611, V2: -2.356, V3: -0.175, V4: -1.212, V5: -0.999, V6: 0.886, V7: 1.281, V8: -0.102, V9: -0.784, V10: 0.077, V11: 0.102, V12: -0.567, V13: -0.364, V14: -0.348, V15: -1.067, V16: 1.312, V17: -0.081, V18: -0.755, V19: 1.769, V20: 0.291, V21: -0.071, V22: -0.280, V23: 1.083, V24: 0.153, V25: -0.911, V26: -0.632, V27: 0.247, V28: 0.283, Amount: 549.760.
640
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.001, V2: -0.507, V3: -0.258, V4: 0.251, V5: -0.945, V6: -0.708, V7: -0.682, V8: -0.038, V9: 1.619, V10: -0.188, V11: -1.058, V12: 0.129, V13: -0.545, V14: -0.088, V15: 0.574, V16: 0.121, V17: -0.414, V18: 0.194, V19: -0.124, V20: -0.260, V21: 0.170, V22: 0.727, V23: 0.149, V24: 0.072, V25: -0.192, V26: 0.125, V27: 0.013, V28: -0.044, Amount: 3.690.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.001, V2: -0.507, V3: -0.258, V4: 0.251, V5: -0.945, V6: -0.708, V7: -0.682, V8: -0.038, V9: 1.619, V10: -0.188, V11: -1.058, V12: 0.129, V13: -0.545, V14: -0.088, V15: 0.574, V16: 0.121, V17: -0.414, V18: 0.194, V19: -0.124, V20: -0.260, V21: 0.170, V22: 0.727, V23: 0.149, V24: 0.072, V25: -0.192, V26: 0.125, V27: 0.013, V28: -0.044, Amount: 3.690.
641
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -2.194, V2: 2.040, V3: -0.842, V4: -1.758, V5: -0.143, V6: 0.404, V7: -0.811, V8: 1.821, V9: -0.915, V10: -1.158, V11: -0.504, V12: 1.335, V13: 1.441, V14: 1.131, V15: -0.192, V16: 1.256, V17: -0.624, V18: 0.187, V19: -0.086, V20: -0.355, V21: 0.150, V22: -0.147, V23: -0.084, V24: -1.633, V25: -0.063, V26: 0.849, V27: -0.646, V28: -0.105, Amount: 0.770.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -2.194, V2: 2.040, V3: -0.842, V4: -1.758, V5: -0.143, V6: 0.404, V7: -0.811, V8: 1.821, V9: -0.915, V10: -1.158, V11: -0.504, V12: 1.335, V13: 1.441, V14: 1.131, V15: -0.192, V16: 1.256, V17: -0.624, V18: 0.187, V19: -0.086, V20: -0.355, V21: 0.150, V22: -0.147, V23: -0.084, V24: -1.633, V25: -0.063, V26: 0.849, V27: -0.646, V28: -0.105, Amount: 0.770.
642
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.111, V2: -0.501, V3: 1.244, V4: 0.831, V5: -0.656, V6: 1.524, V7: -1.082, V8: 0.551, V9: 1.385, V10: -0.366, V11: -0.082, V12: 1.578, V13: 0.351, V14: -0.964, V15: -2.095, V16: -0.461, V17: 0.157, V18: -0.347, V19: 0.752, V20: -0.104, V21: -0.184, V22: -0.011, V23: -0.105, V24: -0.728, V25: 0.411, V26: 0.450, V27: 0.060, V28: 0.004, Amount: 6.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.111, V2: -0.501, V3: 1.244, V4: 0.831, V5: -0.656, V6: 1.524, V7: -1.082, V8: 0.551, V9: 1.385, V10: -0.366, V11: -0.082, V12: 1.578, V13: 0.351, V14: -0.964, V15: -2.095, V16: -0.461, V17: 0.157, V18: -0.347, V19: 0.752, V20: -0.104, V21: -0.184, V22: -0.011, V23: -0.105, V24: -0.728, V25: 0.411, V26: 0.450, V27: 0.060, V28: 0.004, Amount: 6.000.
643
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.258, V2: 0.365, V3: 0.307, V4: 0.691, V5: -0.358, V6: -1.067, V7: 0.094, V8: -0.210, V9: 0.014, V10: -0.286, V11: -0.050, V12: 0.298, V13: 0.349, V14: -0.312, V15: 1.081, V16: 0.474, V17: -0.014, V18: -0.313, V19: -0.197, V20: -0.074, V21: -0.287, V22: -0.821, V23: 0.128, V24: 0.343, V25: 0.221, V26: 0.094, V27: -0.022, V28: 0.031, Amount: 1.290.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.258, V2: 0.365, V3: 0.307, V4: 0.691, V5: -0.358, V6: -1.067, V7: 0.094, V8: -0.210, V9: 0.014, V10: -0.286, V11: -0.050, V12: 0.298, V13: 0.349, V14: -0.312, V15: 1.081, V16: 0.474, V17: -0.014, V18: -0.313, V19: -0.197, V20: -0.074, V21: -0.287, V22: -0.821, V23: 0.128, V24: 0.343, V25: 0.221, V26: 0.094, V27: -0.022, V28: 0.031, Amount: 1.290.
644
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.528, V2: -0.631, V3: -1.328, V4: 1.976, V5: -0.227, V6: -0.376, V7: 0.142, V8: -0.165, V9: 1.100, V10: -0.561, V11: -1.118, V12: 0.532, V13: 0.164, V14: -1.585, V15: -1.245, V16: -0.372, V17: 0.984, V18: 0.298, V19: -0.427, V20: 0.199, V21: 0.319, V22: 0.944, V23: -0.326, V24: -0.109, V25: 0.402, V26: -0.263, V27: 0.025, V28: 0.014, Amount: 223.080.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.528, V2: -0.631, V3: -1.328, V4: 1.976, V5: -0.227, V6: -0.376, V7: 0.142, V8: -0.165, V9: 1.100, V10: -0.561, V11: -1.118, V12: 0.532, V13: 0.164, V14: -1.585, V15: -1.245, V16: -0.372, V17: 0.984, V18: 0.298, V19: -0.427, V20: 0.199, V21: 0.319, V22: 0.944, V23: -0.326, V24: -0.109, V25: 0.402, V26: -0.263, V27: 0.025, V28: 0.014, Amount: 223.080.
645
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.537, V2: 0.177, V3: 2.650, V4: 0.419, V5: -0.520, V6: -0.085, V7: -0.019, V8: -0.081, V9: -1.827, V10: 0.913, V11: 1.328, V12: 0.367, V13: 0.711, V14: -0.151, V15: 0.746, V16: -1.515, V17: -0.242, V18: 2.195, V19: 0.019, V20: -0.108, V21: -0.139, V22: 0.165, V23: -0.205, V24: 0.510, V25: 0.123, V26: -0.179, V27: -0.041, V28: -0.130, Amount: 25.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.537, V2: 0.177, V3: 2.650, V4: 0.419, V5: -0.520, V6: -0.085, V7: -0.019, V8: -0.081, V9: -1.827, V10: 0.913, V11: 1.328, V12: 0.367, V13: 0.711, V14: -0.151, V15: 0.746, V16: -1.515, V17: -0.242, V18: 2.195, V19: 0.019, V20: -0.108, V21: -0.139, V22: 0.165, V23: -0.205, V24: 0.510, V25: 0.123, V26: -0.179, V27: -0.041, V28: -0.130, Amount: 25.000.
646
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.997, V2: -0.117, V3: -3.003, V4: 0.261, V5: 2.881, V6: 3.339, V7: -0.027, V8: 0.691, V9: 0.077, V10: 0.269, V11: -0.246, V12: 0.340, V13: -0.388, V14: 0.699, V15: -0.110, V16: -0.702, V17: -0.289, V18: -0.699, V19: -0.279, V20: -0.191, V21: 0.014, V22: 0.112, V23: 0.054, V24: 0.700, V25: 0.446, V26: -0.519, V27: 0.003, V28: -0.064, Amount: 19.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.997, V2: -0.117, V3: -3.003, V4: 0.261, V5: 2.881, V6: 3.339, V7: -0.027, V8: 0.691, V9: 0.077, V10: 0.269, V11: -0.246, V12: 0.340, V13: -0.388, V14: 0.699, V15: -0.110, V16: -0.702, V17: -0.289, V18: -0.699, V19: -0.279, V20: -0.191, V21: 0.014, V22: 0.112, V23: 0.054, V24: 0.700, V25: 0.446, V26: -0.519, V27: 0.003, V28: -0.064, Amount: 19.990.
647
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.105, V2: 0.042, V3: 1.022, V4: 1.715, V5: -0.975, V6: -0.095, V7: -0.802, V8: 0.235, V9: 1.365, V10: -0.912, V11: -0.738, V12: 0.080, V13: -0.610, V14: -2.149, V15: -0.341, V16: 0.347, V17: 1.169, V18: 0.691, V19: -0.291, V20: -0.128, V21: -0.092, V22: 0.076, V23: -0.090, V24: 0.283, V25: 0.475, V26: -0.283, V27: 0.109, V28: 0.072, Amount: 11.220.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.105, V2: 0.042, V3: 1.022, V4: 1.715, V5: -0.975, V6: -0.095, V7: -0.802, V8: 0.235, V9: 1.365, V10: -0.912, V11: -0.738, V12: 0.080, V13: -0.610, V14: -2.149, V15: -0.341, V16: 0.347, V17: 1.169, V18: 0.691, V19: -0.291, V20: -0.128, V21: -0.092, V22: 0.076, V23: -0.090, V24: 0.283, V25: 0.475, V26: -0.283, V27: 0.109, V28: 0.072, Amount: 11.220.
648
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.135, V2: -0.103, V3: 1.073, V4: -1.662, V5: -0.245, V6: -0.827, V7: 0.168, V8: -0.156, V9: -1.171, V10: 0.119, V11: -1.037, V12: 0.160, V13: 1.527, V14: -0.370, V15: 0.170, V16: -0.749, V17: -0.726, V18: 0.971, V19: -1.248, V20: -0.365, V21: -0.407, V22: -0.802, V23: 0.388, V24: -0.122, V25: -1.485, V26: 0.415, V27: 0.164, V28: 0.237, Amount: 35.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.135, V2: -0.103, V3: 1.073, V4: -1.662, V5: -0.245, V6: -0.827, V7: 0.168, V8: -0.156, V9: -1.171, V10: 0.119, V11: -1.037, V12: 0.160, V13: 1.527, V14: -0.370, V15: 0.170, V16: -0.749, V17: -0.726, V18: 0.971, V19: -1.248, V20: -0.365, V21: -0.407, V22: -0.802, V23: 0.388, V24: -0.122, V25: -1.485, V26: 0.415, V27: 0.164, V28: 0.237, Amount: 35.000.
649
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.210, V2: 0.154, V3: 0.283, V4: 0.597, V5: -0.493, V6: -0.794, V7: -0.151, V8: 0.057, V9: 0.077, V10: -0.055, V11: 1.288, V12: -0.146, V13: -1.867, V14: 0.309, V15: 0.614, V16: 0.770, V17: -0.142, V18: 0.444, V19: 0.105, V20: -0.196, V21: -0.258, V22: -0.883, V23: 0.140, V24: 0.234, V25: 0.118, V26: 0.084, V27: -0.040, V28: 0.017, Amount: 2.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.210, V2: 0.154, V3: 0.283, V4: 0.597, V5: -0.493, V6: -0.794, V7: -0.151, V8: 0.057, V9: 0.077, V10: -0.055, V11: 1.288, V12: -0.146, V13: -1.867, V14: 0.309, V15: 0.614, V16: 0.770, V17: -0.142, V18: 0.444, V19: 0.105, V20: -0.196, V21: -0.258, V22: -0.883, V23: 0.140, V24: 0.234, V25: 0.118, V26: 0.084, V27: -0.040, V28: 0.017, Amount: 2.990.
650
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.279, V2: -0.568, V3: 0.146, V4: -0.617, V5: -0.837, V6: -0.843, V7: -0.184, V8: -0.318, V9: -1.070, V10: 0.603, V11: -0.580, V12: 0.398, V13: 1.549, V14: -0.106, V15: 0.767, V16: -1.190, V17: -0.220, V18: 0.681, V19: -0.561, V20: -0.239, V21: -0.555, V22: -1.258, V23: 0.067, V24: 0.067, V25: 0.121, V26: 0.827, V27: -0.067, V28: 0.022, Amount: 81.940.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.279, V2: -0.568, V3: 0.146, V4: -0.617, V5: -0.837, V6: -0.843, V7: -0.184, V8: -0.318, V9: -1.070, V10: 0.603, V11: -0.580, V12: 0.398, V13: 1.549, V14: -0.106, V15: 0.767, V16: -1.190, V17: -0.220, V18: 0.681, V19: -0.561, V20: -0.239, V21: -0.555, V22: -1.258, V23: 0.067, V24: 0.067, V25: 0.121, V26: 0.827, V27: -0.067, V28: 0.022, Amount: 81.940.
651
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -3.784, V2: -1.836, V3: 1.270, V4: -0.126, V5: -0.085, V6: -0.383, V7: -1.148, V8: 1.086, V9: 0.369, V10: -1.273, V11: -1.441, V12: 0.201, V13: 0.550, V14: -0.030, V15: 0.809, V16: 1.212, V17: -0.517, V18: 0.671, V19: -0.388, V20: -0.145, V21: 0.280, V22: 0.477, V23: 0.330, V24: 0.737, V25: 0.460, V26: 0.700, V27: -0.440, V28: -0.174, Amount: 13.500.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -3.784, V2: -1.836, V3: 1.270, V4: -0.126, V5: -0.085, V6: -0.383, V7: -1.148, V8: 1.086, V9: 0.369, V10: -1.273, V11: -1.441, V12: 0.201, V13: 0.550, V14: -0.030, V15: 0.809, V16: 1.212, V17: -0.517, V18: 0.671, V19: -0.388, V20: -0.145, V21: 0.280, V22: 0.477, V23: 0.330, V24: 0.737, V25: 0.460, V26: 0.700, V27: -0.440, V28: -0.174, Amount: 13.500.
652
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.436, V2: 0.968, V3: -0.796, V4: 4.246, V5: 2.130, V6: 0.250, V7: 0.668, V8: -0.075, V9: -2.194, V10: 2.506, V11: -0.001, V12: -0.886, V13: -0.980, V14: 1.110, V15: -0.010, V16: -0.144, V17: -0.270, V18: 0.661, V19: 1.643, V20: -0.069, V21: 0.187, V22: 0.747, V23: -0.170, V24: 0.207, V25: -1.206, V26: 0.281, V27: 0.383, V28: 0.345, Amount: 47.140.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.436, V2: 0.968, V3: -0.796, V4: 4.246, V5: 2.130, V6: 0.250, V7: 0.668, V8: -0.075, V9: -2.194, V10: 2.506, V11: -0.001, V12: -0.886, V13: -0.980, V14: 1.110, V15: -0.010, V16: -0.144, V17: -0.270, V18: 0.661, V19: 1.643, V20: -0.069, V21: 0.187, V22: 0.747, V23: -0.170, V24: 0.207, V25: -1.206, V26: 0.281, V27: 0.383, V28: 0.345, Amount: 47.140.
653
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.999, V2: 1.820, V3: 2.066, V4: 4.565, V5: -0.331, V6: 0.719, V7: -0.250, V8: 0.810, V9: -1.247, V10: 2.006, V11: -0.468, V12: -0.131, V13: -0.024, V14: -0.023, V15: 0.551, V16: -0.555, V17: 1.007, V18: -0.836, V19: 0.848, V20: 0.384, V21: -0.422, V22: -0.637, V23: 0.440, V24: 0.339, V25: 0.059, V26: 0.171, V27: 0.631, V28: 0.321, Amount: 4.130.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.999, V2: 1.820, V3: 2.066, V4: 4.565, V5: -0.331, V6: 0.719, V7: -0.250, V8: 0.810, V9: -1.247, V10: 2.006, V11: -0.468, V12: -0.131, V13: -0.024, V14: -0.023, V15: 0.551, V16: -0.555, V17: 1.007, V18: -0.836, V19: 0.848, V20: 0.384, V21: -0.422, V22: -0.637, V23: 0.440, V24: 0.339, V25: 0.059, V26: 0.171, V27: 0.631, V28: 0.321, Amount: 4.130.
654
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.995, V2: 1.073, V3: 1.465, V4: -1.213, V5: -0.446, V6: -0.830, V7: 0.228, V8: 0.467, V9: -0.286, V10: -1.010, V11: -0.034, V12: 0.574, V13: 0.477, V14: 0.213, V15: 0.641, V16: 0.310, V17: -0.137, V18: -0.928, V19: -1.175, V20: -0.098, V21: 0.012, V22: 0.019, V23: 0.038, V24: 0.447, V25: -0.420, V26: 0.729, V27: 0.154, V28: 0.113, Amount: 0.920.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.995, V2: 1.073, V3: 1.465, V4: -1.213, V5: -0.446, V6: -0.830, V7: 0.228, V8: 0.467, V9: -0.286, V10: -1.010, V11: -0.034, V12: 0.574, V13: 0.477, V14: 0.213, V15: 0.641, V16: 0.310, V17: -0.137, V18: -0.928, V19: -1.175, V20: -0.098, V21: 0.012, V22: 0.019, V23: 0.038, V24: 0.447, V25: -0.420, V26: 0.729, V27: 0.154, V28: 0.113, Amount: 0.920.
655
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.426, V2: 1.051, V3: 1.472, V4: 0.144, V5: -0.108, V6: -0.822, V7: 0.625, V8: 0.061, V9: -0.354, V10: -0.544, V11: 0.392, V12: -0.110, V13: -0.541, V14: -0.260, V15: 1.167, V16: -0.039, V17: 0.511, V18: -0.693, V19: -0.647, V20: 0.037, V21: -0.205, V22: -0.522, V23: 0.095, V24: 0.540, V25: -0.321, V26: 0.070, V27: 0.258, V28: 0.099, Amount: 7.140.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.426, V2: 1.051, V3: 1.472, V4: 0.144, V5: -0.108, V6: -0.822, V7: 0.625, V8: 0.061, V9: -0.354, V10: -0.544, V11: 0.392, V12: -0.110, V13: -0.541, V14: -0.260, V15: 1.167, V16: -0.039, V17: 0.511, V18: -0.693, V19: -0.647, V20: 0.037, V21: -0.205, V22: -0.522, V23: 0.095, V24: 0.540, V25: -0.321, V26: 0.070, V27: 0.258, V28: 0.099, Amount: 7.140.
656
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.259, V2: 1.320, V3: 1.550, V4: -0.715, V5: 0.255, V6: -0.238, V7: 0.705, V8: 0.252, V9: -0.372, V10: -0.304, V11: 1.493, V12: 0.105, V13: -1.113, V14: -0.136, V15: 0.214, V16: 0.545, V17: -0.151, V18: -0.057, V19: -0.812, V20: 0.089, V21: -0.234, V22: -0.695, V23: -0.139, V24: -0.070, V25: 0.188, V26: 0.035, V27: 0.216, V28: 0.175, Amount: 9.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.259, V2: 1.320, V3: 1.550, V4: -0.715, V5: 0.255, V6: -0.238, V7: 0.705, V8: 0.252, V9: -0.372, V10: -0.304, V11: 1.493, V12: 0.105, V13: -1.113, V14: -0.136, V15: 0.214, V16: 0.545, V17: -0.151, V18: -0.057, V19: -0.812, V20: 0.089, V21: -0.234, V22: -0.695, V23: -0.139, V24: -0.070, V25: 0.188, V26: 0.035, V27: 0.216, V28: 0.175, Amount: 9.990.
657
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.845, V2: 0.360, V3: 2.569, V4: -2.068, V5: -0.382, V6: -0.074, V7: 0.281, V8: 0.184, V9: 1.196, V10: -1.326, V11: 1.476, V12: 0.941, V13: -0.777, V14: -0.221, V15: 0.298, V16: -0.512, V17: -0.348, V18: 0.273, V19: -0.129, V20: 0.036, V21: 0.024, V22: 0.488, V23: -0.354, V24: 0.224, V25: 0.401, V26: -0.784, V27: 0.201, V28: -0.098, Amount: 1.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.845, V2: 0.360, V3: 2.569, V4: -2.068, V5: -0.382, V6: -0.074, V7: 0.281, V8: 0.184, V9: 1.196, V10: -1.326, V11: 1.476, V12: 0.941, V13: -0.777, V14: -0.221, V15: 0.298, V16: -0.512, V17: -0.348, V18: 0.273, V19: -0.129, V20: 0.036, V21: 0.024, V22: 0.488, V23: -0.354, V24: 0.224, V25: 0.401, V26: -0.784, V27: 0.201, V28: -0.098, Amount: 1.000.
658
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.973, V2: -0.469, V3: -0.241, V4: 0.543, V5: -0.910, V6: -0.648, V7: -0.657, V8: -0.016, V9: 1.601, V10: -0.140, V11: -1.129, V12: 0.023, V13: -0.763, V14: -0.023, V15: 0.569, V16: 0.111, V17: -0.444, V18: 0.300, V19: -0.232, V20: -0.278, V21: 0.185, V22: 0.749, V23: 0.131, V24: 0.048, V25: -0.128, V26: -0.213, V27: 0.036, V28: -0.038, Amount: 9.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.973, V2: -0.469, V3: -0.241, V4: 0.543, V5: -0.910, V6: -0.648, V7: -0.657, V8: -0.016, V9: 1.601, V10: -0.140, V11: -1.129, V12: 0.023, V13: -0.763, V14: -0.023, V15: 0.569, V16: 0.111, V17: -0.444, V18: 0.300, V19: -0.232, V20: -0.278, V21: 0.185, V22: 0.749, V23: 0.131, V24: 0.048, V25: -0.128, V26: -0.213, V27: 0.036, V28: -0.038, Amount: 9.990.
659
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.994, V2: 0.323, V3: -1.302, V4: 0.734, V5: -0.174, V6: -2.009, V7: 0.375, V8: -0.521, V9: 0.350, V10: -0.508, V11: 0.652, V12: 0.991, V13: 1.029, V14: -0.912, V15: 0.702, V16: -0.113, V17: 0.653, V18: 0.063, V19: -0.777, V20: -0.158, V21: 0.268, V22: 1.003, V23: 0.075, V24: 0.900, V25: 0.174, V26: -0.163, V27: 0.006, V28: -0.019, Amount: 3.940.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.994, V2: 0.323, V3: -1.302, V4: 0.734, V5: -0.174, V6: -2.009, V7: 0.375, V8: -0.521, V9: 0.350, V10: -0.508, V11: 0.652, V12: 0.991, V13: 1.029, V14: -0.912, V15: 0.702, V16: -0.113, V17: 0.653, V18: 0.063, V19: -0.777, V20: -0.158, V21: 0.268, V22: 1.003, V23: 0.075, V24: 0.900, V25: 0.174, V26: -0.163, V27: 0.006, V28: -0.019, Amount: 3.940.
660
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.254, V2: -1.514, V3: -1.034, V4: -1.300, V5: -1.077, V6: -0.284, V7: -0.966, V8: -0.219, V9: -0.783, V10: 1.314, V11: -1.988, V12: -0.156, V13: 1.086, V14: -1.062, V15: -2.142, V16: -1.264, V17: 0.897, V18: -0.723, V19: 0.819, V20: -0.349, V21: -0.544, V22: -0.829, V23: 0.190, V24: -0.654, V25: -0.059, V26: -0.287, V27: 0.022, V28: -0.053, Amount: 46.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.254, V2: -1.514, V3: -1.034, V4: -1.300, V5: -1.077, V6: -0.284, V7: -0.966, V8: -0.219, V9: -0.783, V10: 1.314, V11: -1.988, V12: -0.156, V13: 1.086, V14: -1.062, V15: -2.142, V16: -1.264, V17: 0.897, V18: -0.723, V19: 0.819, V20: -0.349, V21: -0.544, V22: -0.829, V23: 0.190, V24: -0.654, V25: -0.059, V26: -0.287, V27: 0.022, V28: -0.053, Amount: 46.000.
661
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.388, V2: -1.028, V3: -2.403, V4: 0.151, V5: 0.956, V6: 1.360, V7: 0.058, V8: 0.361, V9: 0.796, V10: -0.925, V11: 1.174, V12: 0.865, V13: -0.319, V14: -1.116, V15: 0.085, V16: -0.423, V17: 1.403, V18: -0.493, V19: -0.467, V20: 0.318, V21: -0.004, V22: -0.336, V23: -0.026, V24: -1.054, V25: -0.305, V26: -0.035, V27: -0.019, V28: 0.004, Amount: 279.650.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.388, V2: -1.028, V3: -2.403, V4: 0.151, V5: 0.956, V6: 1.360, V7: 0.058, V8: 0.361, V9: 0.796, V10: -0.925, V11: 1.174, V12: 0.865, V13: -0.319, V14: -1.116, V15: 0.085, V16: -0.423, V17: 1.403, V18: -0.493, V19: -0.467, V20: 0.318, V21: -0.004, V22: -0.336, V23: -0.026, V24: -1.054, V25: -0.305, V26: -0.035, V27: -0.019, V28: 0.004, Amount: 279.650.
662
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.172, V2: 0.254, V3: 0.311, V4: 1.189, V5: -0.208, V6: -0.569, V7: 0.128, V8: 0.027, V9: 0.117, V10: 0.038, V11: -0.388, V12: -0.654, V13: -2.003, V14: 0.879, V15: 1.295, V16: -0.045, V17: -0.019, V18: -0.912, V19: -0.493, V20: -0.289, V21: -0.463, V22: -1.467, V23: 0.273, V24: -0.066, V25: 0.108, V26: -0.801, V27: 0.013, V28: 0.023, Amount: 12.890.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.172, V2: 0.254, V3: 0.311, V4: 1.189, V5: -0.208, V6: -0.569, V7: 0.128, V8: 0.027, V9: 0.117, V10: 0.038, V11: -0.388, V12: -0.654, V13: -2.003, V14: 0.879, V15: 1.295, V16: -0.045, V17: -0.019, V18: -0.912, V19: -0.493, V20: -0.289, V21: -0.463, V22: -1.467, V23: 0.273, V24: -0.066, V25: 0.108, V26: -0.801, V27: 0.013, V28: 0.023, Amount: 12.890.
663
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.456, V2: 0.793, V3: -0.344, V4: -0.392, V5: 0.950, V6: -1.491, V7: 1.270, V8: -0.410, V9: -0.168, V10: -1.129, V11: -0.497, V12: -0.097, V13: 0.327, V14: -1.028, V15: 0.383, V16: 0.187, V17: 0.318, V18: 0.670, V19: -0.567, V20: -0.165, V21: 0.333, V22: 1.122, V23: 0.007, V24: -0.018, V25: -0.376, V26: -0.248, V27: 0.131, V28: 0.226, Amount: 40.080.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.456, V2: 0.793, V3: -0.344, V4: -0.392, V5: 0.950, V6: -1.491, V7: 1.270, V8: -0.410, V9: -0.168, V10: -1.129, V11: -0.497, V12: -0.097, V13: 0.327, V14: -1.028, V15: 0.383, V16: 0.187, V17: 0.318, V18: 0.670, V19: -0.567, V20: -0.165, V21: 0.333, V22: 1.122, V23: 0.007, V24: -0.018, V25: -0.376, V26: -0.248, V27: 0.131, V28: 0.226, Amount: 40.080.
664
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.449, V2: -0.371, V3: 1.387, V4: 0.538, V5: 0.435, V6: -0.050, V7: 1.095, V8: 0.162, V9: -0.590, V10: -0.768, V11: 1.112, V12: 1.121, V13: -0.085, V14: 0.143, V15: -1.480, V16: -0.414, V17: -0.195, V18: -0.377, V19: -0.764, V20: 0.440, V21: 0.250, V22: 0.286, V23: 0.431, V24: 0.198, V25: 0.162, V26: -0.539, V27: 0.032, V28: 0.145, Amount: 222.570.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.449, V2: -0.371, V3: 1.387, V4: 0.538, V5: 0.435, V6: -0.050, V7: 1.095, V8: 0.162, V9: -0.590, V10: -0.768, V11: 1.112, V12: 1.121, V13: -0.085, V14: 0.143, V15: -1.480, V16: -0.414, V17: -0.195, V18: -0.377, V19: -0.764, V20: 0.440, V21: 0.250, V22: 0.286, V23: 0.431, V24: 0.198, V25: 0.162, V26: -0.539, V27: 0.032, V28: 0.145, Amount: 222.570.
665
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.205, V2: -0.631, V3: -1.199, V4: -0.782, V5: -0.274, V6: -0.638, V7: -0.494, V8: -0.285, V9: 0.698, V10: 0.548, V11: 1.477, V12: -2.255, V13: 1.858, V14: 1.426, V15: -1.929, V16: 0.891, V17: 0.750, V18: -1.023, V19: 1.162, V20: -0.068, V21: -0.161, V22: -0.167, V23: 0.169, V24: -0.545, V25: -0.057, V26: -0.357, V27: -0.061, V28: -0.082, Amount: 10.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.205, V2: -0.631, V3: -1.199, V4: -0.782, V5: -0.274, V6: -0.638, V7: -0.494, V8: -0.285, V9: 0.698, V10: 0.548, V11: 1.477, V12: -2.255, V13: 1.858, V14: 1.426, V15: -1.929, V16: 0.891, V17: 0.750, V18: -1.023, V19: 1.162, V20: -0.068, V21: -0.161, V22: -0.167, V23: 0.169, V24: -0.545, V25: -0.057, V26: -0.357, V27: -0.061, V28: -0.082, Amount: 10.000.
666
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.316, V2: -1.799, V3: 1.156, V4: -1.378, V5: -0.468, V6: 0.427, V7: 0.159, V8: 0.383, V9: -0.983, V10: -0.133, V11: 1.197, V12: -0.232, V13: -0.737, V14: -0.170, V15: -0.705, V16: 0.794, V17: 0.467, V18: -1.434, V19: -0.479, V20: 0.751, V21: 0.655, V22: 1.140, V23: 0.837, V24: -0.310, V25: -0.629, V26: -0.390, V27: 0.083, V28: 0.206, Amount: 306.960.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.316, V2: -1.799, V3: 1.156, V4: -1.378, V5: -0.468, V6: 0.427, V7: 0.159, V8: 0.383, V9: -0.983, V10: -0.133, V11: 1.197, V12: -0.232, V13: -0.737, V14: -0.170, V15: -0.705, V16: 0.794, V17: 0.467, V18: -1.434, V19: -0.479, V20: 0.751, V21: 0.655, V22: 1.140, V23: 0.837, V24: -0.310, V25: -0.629, V26: -0.390, V27: 0.083, V28: 0.206, Amount: 306.960.
667
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.147, V2: -0.027, V3: -0.250, V4: 1.114, V5: 0.469, V6: 0.641, V7: 0.113, V8: 0.063, V9: 0.391, V10: -0.149, V11: -1.801, V12: 0.031, V13: 0.051, V14: 0.010, V15: 0.024, V16: -0.303, V17: -0.239, V18: -0.500, V19: 0.141, V20: -0.027, V21: -0.158, V22: -0.352, V23: -0.287, V24: -1.306, V25: 0.825, V26: -0.232, V27: 0.026, V28: 0.012, Amount: 68.690.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.147, V2: -0.027, V3: -0.250, V4: 1.114, V5: 0.469, V6: 0.641, V7: 0.113, V8: 0.063, V9: 0.391, V10: -0.149, V11: -1.801, V12: 0.031, V13: 0.051, V14: 0.010, V15: 0.024, V16: -0.303, V17: -0.239, V18: -0.500, V19: 0.141, V20: -0.027, V21: -0.158, V22: -0.352, V23: -0.287, V24: -1.306, V25: 0.825, V26: -0.232, V27: 0.026, V28: 0.012, Amount: 68.690.
668
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.286, V2: -0.338, V3: 1.771, V4: -2.224, V5: 1.140, V6: 0.786, V7: -0.203, V8: 0.695, V9: 0.495, V10: -1.718, V11: 2.292, V12: 1.540, V13: -0.058, V14: 0.394, V15: 1.575, V16: -1.157, V17: 0.330, V18: -1.295, V19: -1.448, V20: -0.062, V21: 0.205, V22: 0.513, V23: 0.064, V24: -1.050, V25: -0.177, V26: -0.888, V27: 0.166, V28: 0.099, Amount: 15.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.286, V2: -0.338, V3: 1.771, V4: -2.224, V5: 1.140, V6: 0.786, V7: -0.203, V8: 0.695, V9: 0.495, V10: -1.718, V11: 2.292, V12: 1.540, V13: -0.058, V14: 0.394, V15: 1.575, V16: -1.157, V17: 0.330, V18: -1.295, V19: -1.448, V20: -0.062, V21: 0.205, V22: 0.513, V23: 0.064, V24: -1.050, V25: -0.177, V26: -0.888, V27: 0.166, V28: 0.099, Amount: 15.000.
669
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.004, V2: -0.247, V3: 1.274, V4: 1.378, V5: -1.107, V6: -0.050, V7: -0.637, V8: 0.231, V9: 0.552, V10: 0.086, V11: 1.039, V12: 0.684, V13: -0.777, V14: 0.111, V15: -0.043, V16: 0.464, V17: -0.553, V18: 0.735, V19: -0.285, V20: -0.067, V21: 0.213, V22: 0.591, V23: -0.114, V24: 0.546, V25: 0.403, V26: -0.276, V27: 0.049, V28: 0.036, Amount: 60.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.004, V2: -0.247, V3: 1.274, V4: 1.378, V5: -1.107, V6: -0.050, V7: -0.637, V8: 0.231, V9: 0.552, V10: 0.086, V11: 1.039, V12: 0.684, V13: -0.777, V14: 0.111, V15: -0.043, V16: 0.464, V17: -0.553, V18: 0.735, V19: -0.285, V20: -0.067, V21: 0.213, V22: 0.591, V23: -0.114, V24: 0.546, V25: 0.403, V26: -0.276, V27: 0.049, V28: 0.036, Amount: 60.000.
670
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.075, V2: 0.317, V3: -1.295, V4: -1.783, V5: 2.199, V6: 3.641, V7: -0.534, V8: 1.481, V9: 0.319, V10: -0.815, V11: -0.644, V12: 0.323, V13: -0.153, V14: 0.356, V15: -0.166, V16: 0.675, V17: -0.903, V18: -0.318, V19: -1.156, V20: -0.324, V21: 0.087, V22: 0.074, V23: 0.616, V24: 0.666, V25: -2.339, V26: -0.449, V27: 0.245, V28: 0.297, Amount: 19.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.075, V2: 0.317, V3: -1.295, V4: -1.783, V5: 2.199, V6: 3.641, V7: -0.534, V8: 1.481, V9: 0.319, V10: -0.815, V11: -0.644, V12: 0.323, V13: -0.153, V14: 0.356, V15: -0.166, V16: 0.675, V17: -0.903, V18: -0.318, V19: -1.156, V20: -0.324, V21: 0.087, V22: 0.074, V23: 0.616, V24: 0.666, V25: -2.339, V26: -0.449, V27: 0.245, V28: 0.297, Amount: 19.990.
671
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.267, V2: 1.247, V3: 0.600, V4: -1.363, V5: -0.444, V6: -0.778, V7: -0.043, V8: 0.833, V9: -0.733, V10: -1.052, V11: 0.574, V12: 0.697, V13: -0.194, V14: 0.916, V15: -0.345, V16: 0.995, V17: -0.643, V18: 0.286, V19: -0.209, V20: -0.353, V21: 0.123, V22: -0.064, V23: -0.044, V24: 0.053, V25: -0.306, V26: 0.741, V27: -0.379, V28: -0.034, Amount: 2.260.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.267, V2: 1.247, V3: 0.600, V4: -1.363, V5: -0.444, V6: -0.778, V7: -0.043, V8: 0.833, V9: -0.733, V10: -1.052, V11: 0.574, V12: 0.697, V13: -0.194, V14: 0.916, V15: -0.345, V16: 0.995, V17: -0.643, V18: 0.286, V19: -0.209, V20: -0.353, V21: 0.123, V22: -0.064, V23: -0.044, V24: 0.053, V25: -0.306, V26: 0.741, V27: -0.379, V28: -0.034, Amount: 2.260.
672
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.777, V2: 0.264, V3: -0.577, V4: 4.007, V5: 0.169, V6: -0.115, V7: 0.237, V8: -0.138, V9: -0.662, V10: 1.345, V11: -1.464, V12: -0.039, V13: 0.019, V14: -0.017, V15: -1.537, V16: 0.446, V17: -0.508, V18: -0.533, V19: -1.371, V20: -0.163, V21: 0.119, V22: 0.381, V23: 0.021, V24: 0.050, V25: 0.111, V26: 0.087, V27: -0.039, V28: -0.038, Amount: 75.100.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.777, V2: 0.264, V3: -0.577, V4: 4.007, V5: 0.169, V6: -0.115, V7: 0.237, V8: -0.138, V9: -0.662, V10: 1.345, V11: -1.464, V12: -0.039, V13: 0.019, V14: -0.017, V15: -1.537, V16: 0.446, V17: -0.508, V18: -0.533, V19: -1.371, V20: -0.163, V21: 0.119, V22: 0.381, V23: 0.021, V24: 0.050, V25: 0.111, V26: 0.087, V27: -0.039, V28: -0.038, Amount: 75.100.
673
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.763, V2: 0.786, V3: 2.589, V4: -0.228, V5: -0.069, V6: 0.136, V7: 0.414, V8: 0.131, V9: -0.388, V10: -0.119, V11: 1.746, V12: 0.601, V13: -0.094, V14: -0.044, V15: 0.742, V16: 0.191, V17: -0.481, V18: -0.000, V19: -0.246, V20: 0.207, V21: -0.038, V22: 0.117, V23: -0.190, V24: 0.226, V25: -0.021, V26: 0.235, V27: 0.125, V28: -0.098, Amount: 6.470.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.763, V2: 0.786, V3: 2.589, V4: -0.228, V5: -0.069, V6: 0.136, V7: 0.414, V8: 0.131, V9: -0.388, V10: -0.119, V11: 1.746, V12: 0.601, V13: -0.094, V14: -0.044, V15: 0.742, V16: 0.191, V17: -0.481, V18: -0.000, V19: -0.246, V20: 0.207, V21: -0.038, V22: 0.117, V23: -0.190, V24: 0.226, V25: -0.021, V26: 0.235, V27: 0.125, V28: -0.098, Amount: 6.470.
674
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.454, V2: -0.111, V3: 1.128, V4: -2.785, V5: -0.259, V6: -0.378, V7: 0.393, V8: -0.093, V9: -3.064, V10: 0.809, V11: 0.330, V12: -0.849, V13: 0.149, V14: -0.013, V15: -0.907, V16: -0.056, V17: -0.107, V18: 0.328, V19: 0.135, V20: -0.239, V21: -0.444, V22: -1.125, V23: -0.179, V24: -0.579, V25: 0.442, V26: -0.500, V27: 0.002, V28: 0.039, Amount: 44.980.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.454, V2: -0.111, V3: 1.128, V4: -2.785, V5: -0.259, V6: -0.378, V7: 0.393, V8: -0.093, V9: -3.064, V10: 0.809, V11: 0.330, V12: -0.849, V13: 0.149, V14: -0.013, V15: -0.907, V16: -0.056, V17: -0.107, V18: 0.328, V19: 0.135, V20: -0.239, V21: -0.444, V22: -1.125, V23: -0.179, V24: -0.579, V25: 0.442, V26: -0.500, V27: 0.002, V28: 0.039, Amount: 44.980.
675
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -2.280, V2: -2.983, V3: 1.258, V4: -1.054, V5: 1.735, V6: -1.372, V7: -1.212, V8: 0.336, V9: -0.874, V10: 0.130, V11: -0.025, V12: -0.370, V13: -0.548, V14: -0.233, V15: -1.559, V16: 1.221, V17: -0.073, V18: -0.698, V19: 1.027, V20: 0.988, V21: 0.319, V22: -0.124, V23: 0.616, V24: -0.539, V25: 0.026, V26: -0.477, V27: -0.023, V28: 0.176, Amount: 153.950.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -2.280, V2: -2.983, V3: 1.258, V4: -1.054, V5: 1.735, V6: -1.372, V7: -1.212, V8: 0.336, V9: -0.874, V10: 0.130, V11: -0.025, V12: -0.370, V13: -0.548, V14: -0.233, V15: -1.559, V16: 1.221, V17: -0.073, V18: -0.698, V19: 1.027, V20: 0.988, V21: 0.319, V22: -0.124, V23: 0.616, V24: -0.539, V25: 0.026, V26: -0.477, V27: -0.023, V28: 0.176, Amount: 153.950.
676
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.248, V2: 1.260, V3: -0.994, V4: -1.588, V5: 1.913, V6: -0.630, V7: 1.959, V8: -0.659, V9: 0.002, V10: 0.718, V11: 0.474, V12: 0.297, V13: -0.026, V14: 0.257, V15: -0.730, V16: -0.479, V17: -1.145, V18: 0.235, V19: 0.351, V20: 0.397, V21: 0.090, V22: 0.897, V23: -0.368, V24: 0.144, V25: -0.178, V26: 0.025, V27: 0.271, V28: -0.066, Amount: 1.510.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.248, V2: 1.260, V3: -0.994, V4: -1.588, V5: 1.913, V6: -0.630, V7: 1.959, V8: -0.659, V9: 0.002, V10: 0.718, V11: 0.474, V12: 0.297, V13: -0.026, V14: 0.257, V15: -0.730, V16: -0.479, V17: -1.145, V18: 0.235, V19: 0.351, V20: 0.397, V21: 0.090, V22: 0.897, V23: -0.368, V24: 0.144, V25: -0.178, V26: 0.025, V27: 0.271, V28: -0.066, Amount: 1.510.
677
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.496, V2: -0.201, V3: 1.698, V4: -1.560, V5: -0.005, V6: -1.095, V7: 0.437, V8: -0.373, V9: -1.073, V10: 0.084, V11: -0.542, V12: -0.494, V13: 0.477, V14: -0.748, V15: -0.784, V16: 0.773, V17: 0.149, V18: -1.670, V19: 0.254, V20: 0.255, V21: 0.107, V22: 0.338, V23: -0.103, V24: 0.405, V25: -0.030, V26: -0.476, V27: -0.077, V28: -0.092, Amount: 29.900.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.496, V2: -0.201, V3: 1.698, V4: -1.560, V5: -0.005, V6: -1.095, V7: 0.437, V8: -0.373, V9: -1.073, V10: 0.084, V11: -0.542, V12: -0.494, V13: 0.477, V14: -0.748, V15: -0.784, V16: 0.773, V17: 0.149, V18: -1.670, V19: 0.254, V20: 0.255, V21: 0.107, V22: 0.338, V23: -0.103, V24: 0.405, V25: -0.030, V26: -0.476, V27: -0.077, V28: -0.092, Amount: 29.900.
678
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.571, V2: -0.153, V3: 1.949, V4: -2.107, V5: -0.740, V6: -0.191, V7: -0.126, V8: -0.025, V9: 1.858, V10: -1.221, V11: 1.706, V12: 1.093, V13: -0.619, V14: -0.130, V15: 1.612, V16: -1.587, V17: 0.367, V18: 0.711, V19: 2.016, V20: 0.016, V21: 0.311, V22: 1.359, V23: -0.153, V24: 0.273, V25: -0.307, V26: -0.616, V27: -0.152, V28: -0.073, Amount: 12.190.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.571, V2: -0.153, V3: 1.949, V4: -2.107, V5: -0.740, V6: -0.191, V7: -0.126, V8: -0.025, V9: 1.858, V10: -1.221, V11: 1.706, V12: 1.093, V13: -0.619, V14: -0.130, V15: 1.612, V16: -1.587, V17: 0.367, V18: 0.711, V19: 2.016, V20: 0.016, V21: 0.311, V22: 1.359, V23: -0.153, V24: 0.273, V25: -0.307, V26: -0.616, V27: -0.152, V28: -0.073, Amount: 12.190.
679
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.090, V2: -0.203, V3: 0.796, V4: 1.511, V5: 0.067, V6: 1.753, V7: -0.720, V8: 0.426, V9: 2.355, V10: -0.630, V11: 0.338, V12: -1.238, V13: 1.614, V14: 0.796, V15: -3.049, V16: -0.584, V17: 0.758, V18: -0.148, V19: 0.765, V20: -0.144, V21: -0.588, V22: -1.048, V23: -0.107, V24: -1.405, V25: 0.548, V26: -0.484, V27: 0.055, V28: 0.003, Amount: 34.400.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.090, V2: -0.203, V3: 0.796, V4: 1.511, V5: 0.067, V6: 1.753, V7: -0.720, V8: 0.426, V9: 2.355, V10: -0.630, V11: 0.338, V12: -1.238, V13: 1.614, V14: 0.796, V15: -3.049, V16: -0.584, V17: 0.758, V18: -0.148, V19: 0.765, V20: -0.144, V21: -0.588, V22: -1.048, V23: -0.107, V24: -1.405, V25: 0.548, V26: -0.484, V27: 0.055, V28: 0.003, Amount: 34.400.
680
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.918, V2: 0.476, V3: 0.980, V4: 1.199, V5: 0.269, V6: 1.100, V7: 1.962, V8: -0.702, V9: 1.388, V10: -0.048, V11: -0.057, V12: -2.335, V13: 2.614, V14: 0.646, V15: -0.612, V16: -0.979, V17: 0.590, V18: -0.346, V19: 0.564, V20: -0.075, V21: -0.429, V22: 0.155, V23: 0.116, V24: -0.764, V25: -0.054, V26: -0.343, V27: 0.090, V28: -0.383, Amount: 247.790.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.918, V2: 0.476, V3: 0.980, V4: 1.199, V5: 0.269, V6: 1.100, V7: 1.962, V8: -0.702, V9: 1.388, V10: -0.048, V11: -0.057, V12: -2.335, V13: 2.614, V14: 0.646, V15: -0.612, V16: -0.979, V17: 0.590, V18: -0.346, V19: 0.564, V20: -0.075, V21: -0.429, V22: 0.155, V23: 0.116, V24: -0.764, V25: -0.054, V26: -0.343, V27: 0.090, V28: -0.383, Amount: 247.790.
681
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.209, V2: -0.029, V3: 1.082, V4: -1.697, V5: -0.900, V6: 0.487, V7: -1.701, V8: -2.309, V9: -1.220, V10: -0.311, V11: 0.878, V12: -0.829, V13: -2.196, V14: 0.779, V15: 0.128, V16: 1.852, V17: 0.048, V18: -1.046, V19: -0.355, V20: 0.574, V21: -1.236, V22: 0.120, V23: -0.015, V24: -0.385, V25: 0.698, V26: -0.432, V27: 0.036, V28: 0.195, Amount: 24.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.209, V2: -0.029, V3: 1.082, V4: -1.697, V5: -0.900, V6: 0.487, V7: -1.701, V8: -2.309, V9: -1.220, V10: -0.311, V11: 0.878, V12: -0.829, V13: -2.196, V14: 0.779, V15: 0.128, V16: 1.852, V17: 0.048, V18: -1.046, V19: -0.355, V20: 0.574, V21: -1.236, V22: 0.120, V23: -0.015, V24: -0.385, V25: 0.698, V26: -0.432, V27: 0.036, V28: 0.195, Amount: 24.000.
682
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.395, V2: 1.110, V3: 1.408, V4: -0.009, V5: 0.013, V6: -0.771, V7: 0.627, V8: 0.047, V9: -0.707, V10: -0.349, V11: 1.713, V12: 0.813, V13: 0.253, V14: -0.272, V15: 0.150, V16: 0.507, V17: -0.183, V18: 0.258, V19: 0.120, V20: 0.131, V21: -0.197, V22: -0.518, V23: -0.009, V24: 0.491, V25: -0.210, V26: 0.041, V27: 0.244, V28: 0.091, Amount: 1.790.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.395, V2: 1.110, V3: 1.408, V4: -0.009, V5: 0.013, V6: -0.771, V7: 0.627, V8: 0.047, V9: -0.707, V10: -0.349, V11: 1.713, V12: 0.813, V13: 0.253, V14: -0.272, V15: 0.150, V16: 0.507, V17: -0.183, V18: 0.258, V19: 0.120, V20: 0.131, V21: -0.197, V22: -0.518, V23: -0.009, V24: 0.491, V25: -0.210, V26: 0.041, V27: 0.244, V28: 0.091, Amount: 1.790.
683
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.236, V2: -0.997, V3: -1.656, V4: -2.235, V5: -0.529, V6: -1.008, V7: -0.379, V8: -0.379, V9: 0.632, V10: -0.088, V11: -0.995, V12: 0.705, V13: 1.100, V14: -0.054, V15: 0.594, V16: -2.420, V17: 0.023, V18: 1.349, V19: 0.020, V20: -0.513, V21: -0.062, V22: 0.608, V23: -0.016, V24: 0.650, V25: 0.340, V26: 0.068, V27: 0.013, V28: -0.052, Amount: 15.130.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.236, V2: -0.997, V3: -1.656, V4: -2.235, V5: -0.529, V6: -1.008, V7: -0.379, V8: -0.379, V9: 0.632, V10: -0.088, V11: -0.995, V12: 0.705, V13: 1.100, V14: -0.054, V15: 0.594, V16: -2.420, V17: 0.023, V18: 1.349, V19: 0.020, V20: -0.513, V21: -0.062, V22: 0.608, V23: -0.016, V24: 0.650, V25: 0.340, V26: 0.068, V27: 0.013, V28: -0.052, Amount: 15.130.
684
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.047, V2: 1.395, V3: 0.214, V4: 1.265, V5: 1.019, V6: 0.191, V7: 0.612, V8: 0.070, V9: -1.005, V10: -0.484, V11: 0.593, V12: -0.371, V13: -0.080, V14: -1.148, V15: 1.190, V16: 0.437, V17: 0.798, V18: 1.920, V19: 1.936, V20: 0.200, V21: 0.016, V22: 0.136, V23: -0.398, V24: -1.090, V25: -0.114, V26: -0.094, V27: 0.201, V28: 0.170, Amount: 1.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.047, V2: 1.395, V3: 0.214, V4: 1.265, V5: 1.019, V6: 0.191, V7: 0.612, V8: 0.070, V9: -1.005, V10: -0.484, V11: 0.593, V12: -0.371, V13: -0.080, V14: -1.148, V15: 1.190, V16: 0.437, V17: 0.798, V18: 1.920, V19: 1.936, V20: 0.200, V21: 0.016, V22: 0.136, V23: -0.398, V24: -1.090, V25: -0.114, V26: -0.094, V27: 0.201, V28: 0.170, Amount: 1.000.
685
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.592, V2: 0.101, V3: -0.495, V4: -0.370, V5: 0.557, V6: 1.668, V7: 1.398, V8: -0.997, V9: 1.516, V10: -0.780, V11: 1.039, V12: -1.739, V13: 2.050, V14: 1.372, V15: -0.317, V16: -1.474, V17: 1.484, V18: -2.526, V19: -1.901, V20: -0.302, V21: 0.465, V22: -0.404, V23: -0.692, V24: -1.347, V25: -1.260, V26: 0.206, V27: 0.430, V28: -0.195, Amount: 427.010.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.592, V2: 0.101, V3: -0.495, V4: -0.370, V5: 0.557, V6: 1.668, V7: 1.398, V8: -0.997, V9: 1.516, V10: -0.780, V11: 1.039, V12: -1.739, V13: 2.050, V14: 1.372, V15: -0.317, V16: -1.474, V17: 1.484, V18: -2.526, V19: -1.901, V20: -0.302, V21: 0.465, V22: -0.404, V23: -0.692, V24: -1.347, V25: -1.260, V26: 0.206, V27: 0.430, V28: -0.195, Amount: 427.010.
686
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -4.592, V2: 3.111, V3: -2.727, V4: -0.533, V5: -1.984, V6: -1.725, V7: -1.461, V8: 2.638, V9: 0.097, V10: 0.726, V11: 0.550, V12: 2.158, V13: 0.374, V14: 1.749, V15: -1.206, V16: 0.632, V17: 0.508, V18: -0.357, V19: -0.152, V20: -0.374, V21: -0.310, V22: -0.483, V23: 0.858, V24: 0.531, V25: 0.011, V26: 0.130, V27: 0.063, V28: -0.296, Amount: 8.920.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -4.592, V2: 3.111, V3: -2.727, V4: -0.533, V5: -1.984, V6: -1.725, V7: -1.461, V8: 2.638, V9: 0.097, V10: 0.726, V11: 0.550, V12: 2.158, V13: 0.374, V14: 1.749, V15: -1.206, V16: 0.632, V17: 0.508, V18: -0.357, V19: -0.152, V20: -0.374, V21: -0.310, V22: -0.483, V23: 0.858, V24: 0.531, V25: 0.011, V26: 0.130, V27: 0.063, V28: -0.296, Amount: 8.920.
687
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.127, V2: -2.564, V3: -1.713, V4: -0.246, V5: -0.965, V6: 0.252, V7: -0.095, V8: -0.062, V9: -0.388, V10: 0.799, V11: 0.008, V12: 0.065, V13: -0.422, V14: 0.384, V15: -0.343, V16: -0.920, V17: -0.523, V18: 1.794, V19: -0.458, V20: 0.473, V21: -0.094, V22: -0.964, V23: -0.178, V24: 0.188, V25: -0.550, V26: 0.442, V27: -0.151, V28: 0.029, Amount: 538.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.127, V2: -2.564, V3: -1.713, V4: -0.246, V5: -0.965, V6: 0.252, V7: -0.095, V8: -0.062, V9: -0.388, V10: 0.799, V11: 0.008, V12: 0.065, V13: -0.422, V14: 0.384, V15: -0.343, V16: -0.920, V17: -0.523, V18: 1.794, V19: -0.458, V20: 0.473, V21: -0.094, V22: -0.964, V23: -0.178, V24: 0.188, V25: -0.550, V26: 0.442, V27: -0.151, V28: 0.029, Amount: 538.000.
688
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.792, V2: -2.159, V3: -2.260, V4: 0.464, V5: -0.316, V6: -0.459, V7: 1.095, V8: -0.361, V9: 0.294, V10: -0.257, V11: 1.005, V12: 1.242, V13: 0.143, V14: 0.732, V15: -0.501, V16: -0.206, V17: -0.452, V18: -0.075, V19: 0.356, V20: 1.131, V21: 0.301, V22: -0.496, V23: -0.357, V24: 0.813, V25: -0.219, V26: -0.204, V27: -0.181, V28: 0.048, Amount: 652.950.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 0.792, V2: -2.159, V3: -2.260, V4: 0.464, V5: -0.316, V6: -0.459, V7: 1.095, V8: -0.361, V9: 0.294, V10: -0.257, V11: 1.005, V12: 1.242, V13: 0.143, V14: 0.732, V15: -0.501, V16: -0.206, V17: -0.452, V18: -0.075, V19: 0.356, V20: 1.131, V21: 0.301, V22: -0.496, V23: -0.357, V24: 0.813, V25: -0.219, V26: -0.204, V27: -0.181, V28: 0.048, Amount: 652.950.
689
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.502, V2: -1.109, V3: 0.570, V4: -1.419, V5: -1.563, V6: -0.519, V7: -1.194, V8: -0.151, V9: -1.644, V10: 1.411, V11: -0.889, V12: -0.826, V13: 1.157, V14: -0.614, V15: 0.811, V16: -0.050, V17: 0.172, V18: 0.447, V19: -0.279, V20: -0.237, V21: -0.034, V22: 0.312, V23: -0.116, V24: -0.100, V25: 0.466, V26: -0.027, V27: 0.050, V28: 0.025, Amount: 30.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.502, V2: -1.109, V3: 0.570, V4: -1.419, V5: -1.563, V6: -0.519, V7: -1.194, V8: -0.151, V9: -1.644, V10: 1.411, V11: -0.889, V12: -0.826, V13: 1.157, V14: -0.614, V15: 0.811, V16: -0.050, V17: 0.172, V18: 0.447, V19: -0.279, V20: -0.237, V21: -0.034, V22: 0.312, V23: -0.116, V24: -0.100, V25: 0.466, V26: -0.027, V27: 0.050, V28: 0.025, Amount: 30.000.
690
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -3.796, V2: 3.913, V3: -1.572, V4: -1.564, V5: 0.017, V6: -1.104, V7: 1.246, V8: -0.387, V9: 3.523, V10: 5.939, V11: 1.474, V12: 0.492, V13: -0.398, V14: -1.127, V15: 0.167, V16: -0.944, V17: -1.053, V18: 0.213, V19: -0.282, V20: 2.414, V21: -0.281, V22: 1.236, V23: -0.032, V24: -0.022, V25: -0.091, V26: -0.329, V27: 1.049, V28: -0.126, Amount: 0.890.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -3.796, V2: 3.913, V3: -1.572, V4: -1.564, V5: 0.017, V6: -1.104, V7: 1.246, V8: -0.387, V9: 3.523, V10: 5.939, V11: 1.474, V12: 0.492, V13: -0.398, V14: -1.127, V15: 0.167, V16: -0.944, V17: -1.053, V18: 0.213, V19: -0.282, V20: 2.414, V21: -0.281, V22: 1.236, V23: -0.032, V24: -0.022, V25: -0.091, V26: -0.329, V27: 1.049, V28: -0.126, Amount: 0.890.
691
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.228, V2: 1.060, V3: 1.423, V4: 0.825, V5: 0.187, V6: -0.188, V7: 0.417, V8: 0.037, V9: -1.073, V10: -0.141, V11: 1.369, V12: 0.537, V13: 0.508, V14: -0.139, V15: 1.113, V16: 0.011, V17: 0.244, V18: 0.653, V19: 2.022, V20: 0.245, V21: -0.151, V22: -0.430, V23: -0.082, V24: -0.012, V25: -0.469, V26: 0.308, V27: 0.115, V28: 0.129, Amount: 0.890.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.228, V2: 1.060, V3: 1.423, V4: 0.825, V5: 0.187, V6: -0.188, V7: 0.417, V8: 0.037, V9: -1.073, V10: -0.141, V11: 1.369, V12: 0.537, V13: 0.508, V14: -0.139, V15: 1.113, V16: 0.011, V17: 0.244, V18: 0.653, V19: 2.022, V20: 0.245, V21: -0.151, V22: -0.430, V23: -0.082, V24: -0.012, V25: -0.469, V26: 0.308, V27: 0.115, V28: 0.129, Amount: 0.890.
692
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.318, V2: 1.097, V3: 1.136, V4: -0.018, V5: 0.173, V6: -0.783, V7: 0.689, V8: -0.034, V9: -0.326, V10: -0.503, V11: -0.583, V12: -0.356, V13: -0.116, V14: -0.392, V15: 0.953, V16: 0.501, V17: -0.105, V18: 0.015, V19: 0.046, V20: 0.109, V21: -0.290, V22: -0.780, V23: -0.053, V24: -0.034, V25: -0.122, V26: 0.095, V27: 0.243, V28: 0.094, Amount: 4.490.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.318, V2: 1.097, V3: 1.136, V4: -0.018, V5: 0.173, V6: -0.783, V7: 0.689, V8: -0.034, V9: -0.326, V10: -0.503, V11: -0.583, V12: -0.356, V13: -0.116, V14: -0.392, V15: 0.953, V16: 0.501, V17: -0.105, V18: 0.015, V19: 0.046, V20: 0.109, V21: -0.290, V22: -0.780, V23: -0.053, V24: -0.034, V25: -0.122, V26: 0.095, V27: 0.243, V28: 0.094, Amount: 4.490.
693
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.187, V2: 0.948, V3: 1.808, V4: 0.971, V5: -0.312, V6: -0.580, V7: 0.454, V8: -0.074, V9: -0.720, V10: -0.108, V11: -0.266, V12: -0.341, V13: -0.173, V14: 0.336, V15: 1.890, V16: -0.385, V17: 0.262, V18: -0.115, V19: 1.682, V20: 0.182, V21: -0.213, V22: -0.642, V23: -0.074, V24: 0.379, V25: -0.036, V26: 0.384, V27: -0.009, V28: 0.002, Amount: 8.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.187, V2: 0.948, V3: 1.808, V4: 0.971, V5: -0.312, V6: -0.580, V7: 0.454, V8: -0.074, V9: -0.720, V10: -0.108, V11: -0.266, V12: -0.341, V13: -0.173, V14: 0.336, V15: 1.890, V16: -0.385, V17: 0.262, V18: -0.115, V19: 1.682, V20: 0.182, V21: -0.213, V22: -0.642, V23: -0.074, V24: 0.379, V25: -0.036, V26: 0.384, V27: -0.009, V28: 0.002, Amount: 8.990.
694
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -3.672, V2: 2.427, V3: -0.491, V4: -1.307, V5: -1.527, V6: -1.432, V7: -0.547, V8: 1.542, V9: 0.686, V10: 0.568, V11: -0.349, V12: 0.100, V13: -1.332, V14: 1.019, V15: 0.673, V16: 0.332, V17: 0.472, V18: -1.027, V19: -1.268, V20: 0.120, V21: -0.235, V22: -0.512, V23: 0.396, V24: 0.589, V25: -0.114, V26: 0.660, V27: 0.165, V28: -0.012, Amount: 0.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -3.672, V2: 2.427, V3: -0.491, V4: -1.307, V5: -1.527, V6: -1.432, V7: -0.547, V8: 1.542, V9: 0.686, V10: 0.568, V11: -0.349, V12: 0.100, V13: -1.332, V14: 1.019, V15: 0.673, V16: 0.332, V17: 0.472, V18: -1.027, V19: -1.268, V20: 0.120, V21: -0.235, V22: -0.512, V23: 0.396, V24: 0.589, V25: -0.114, V26: 0.660, V27: 0.165, V28: -0.012, Amount: 0.000.
695
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.874, V2: -0.432, V3: -0.512, V4: 0.132, V5: 0.213, V6: 1.308, V7: -0.962, V8: 0.486, V9: 2.553, V10: -0.527, V11: 1.803, V12: -1.868, V13: 0.592, V14: 1.970, V15: 0.559, V16: -0.247, V17: 0.485, V18: -0.221, V19: -0.882, V20: -0.423, V21: -0.191, V22: -0.144, V23: 0.372, V24: -1.782, V25: -0.588, V26: -0.847, V27: 0.070, V28: -0.063, Amount: 1.550.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.874, V2: -0.432, V3: -0.512, V4: 0.132, V5: 0.213, V6: 1.308, V7: -0.962, V8: 0.486, V9: 2.553, V10: -0.527, V11: 1.803, V12: -1.868, V13: 0.592, V14: 1.970, V15: 0.559, V16: -0.247, V17: 0.485, V18: -0.221, V19: -0.882, V20: -0.423, V21: -0.191, V22: -0.144, V23: 0.372, V24: -1.782, V25: -0.588, V26: -0.847, V27: 0.070, V28: -0.063, Amount: 1.550.
696
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.570, V2: -0.742, V3: 2.064, V4: -0.881, V5: -0.141, V6: -0.239, V7: -0.207, V8: -0.389, V9: -1.056, V10: 1.144, V11: 1.079, V12: 0.394, V13: 1.147, V14: -0.640, V15: 0.663, V16: -1.132, V17: -0.604, V18: 1.839, V19: 0.339, V20: -0.240, V21: -0.394, V22: -0.251, V23: -0.075, V24: 0.068, V25: -1.099, V26: 0.820, V27: -0.192, V28: -0.347, Amount: 69.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.570, V2: -0.742, V3: 2.064, V4: -0.881, V5: -0.141, V6: -0.239, V7: -0.207, V8: -0.389, V9: -1.056, V10: 1.144, V11: 1.079, V12: 0.394, V13: 1.147, V14: -0.640, V15: 0.663, V16: -1.132, V17: -0.604, V18: 1.839, V19: 0.339, V20: -0.240, V21: -0.394, V22: -0.251, V23: -0.075, V24: 0.068, V25: -1.099, V26: 0.820, V27: -0.192, V28: -0.347, Amount: 69.000.
697
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.191, V2: 1.320, V3: -1.462, V4: 1.571, V5: 0.873, V6: -1.603, V7: 0.737, V8: -0.303, V9: -0.853, V10: -1.407, V11: 2.852, V12: 0.741, V13: 0.617, V14: -3.344, V15: 0.259, V16: 1.131, V17: 2.481, V18: 1.654, V19: -0.631, V20: 0.024, V21: -0.135, V22: -0.283, V23: -0.206, V24: 0.235, V25: 0.830, V26: -0.327, V27: 0.042, V28: 0.091, Amount: 1.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.191, V2: 1.320, V3: -1.462, V4: 1.571, V5: 0.873, V6: -1.603, V7: 0.737, V8: -0.303, V9: -0.853, V10: -1.407, V11: 2.852, V12: 0.741, V13: 0.617, V14: -3.344, V15: 0.259, V16: 1.131, V17: 2.481, V18: 1.654, V19: -0.631, V20: 0.024, V21: -0.135, V22: -0.283, V23: -0.206, V24: 0.235, V25: 0.830, V26: -0.327, V27: 0.042, V28: 0.091, Amount: 1.000.
698
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.090, V2: 0.057, V3: -2.185, V4: -0.115, V5: 0.640, V6: -1.321, V7: 0.736, V8: -0.470, V9: -0.062, V10: 0.181, V11: 0.821, V12: 0.936, V13: 0.047, V14: 0.961, V15: -0.324, V16: -0.364, V17: -0.627, V18: 0.030, V19: 0.509, V20: -0.189, V21: 0.188, V22: 0.641, V23: -0.106, V24: -0.271, V25: 0.453, V26: 0.239, V27: -0.091, V28: -0.090, Amount: 15.170.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.090, V2: 0.057, V3: -2.185, V4: -0.115, V5: 0.640, V6: -1.321, V7: 0.736, V8: -0.470, V9: -0.062, V10: 0.181, V11: 0.821, V12: 0.936, V13: 0.047, V14: 0.961, V15: -0.324, V16: -0.364, V17: -0.627, V18: 0.030, V19: 0.509, V20: -0.189, V21: 0.188, V22: 0.641, V23: -0.106, V24: -0.271, V25: 0.453, V26: 0.239, V27: -0.091, V28: -0.090, Amount: 15.170.
699
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.358, V2: -1.182, V3: -2.494, V4: 0.488, V5: 0.259, V6: -0.305, V7: 0.533, V8: -0.224, V9: 1.071, V10: -1.009, V11: -1.273, V12: -0.141, V13: -0.214, V14: -1.364, V15: 0.052, V16: 0.304, V17: 0.791, V18: 0.425, V19: 0.322, V20: 0.620, V21: -0.080, V22: -0.871, V23: -0.207, V24: -0.135, V25: -0.086, V26: -0.114, V27: -0.086, V28: 0.043, Amount: 387.500.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.358, V2: -1.182, V3: -2.494, V4: 0.488, V5: 0.259, V6: -0.305, V7: 0.533, V8: -0.224, V9: 1.071, V10: -1.009, V11: -1.273, V12: -0.141, V13: -0.214, V14: -1.364, V15: 0.052, V16: 0.304, V17: 0.791, V18: 0.425, V19: 0.322, V20: 0.620, V21: -0.080, V22: -0.871, V23: -0.207, V24: -0.135, V25: -0.086, V26: -0.114, V27: -0.086, V28: 0.043, Amount: 387.500.