cross_ner / README.md
phucdev's picture
Upload dataloading script and README.md
f3c058a
metadata
annotations_creators:
  - expert-generated
language:
  - en
language_creators:
  - found
license: []
multilinguality:
  - monolingual
pretty_name: CrossNER is a cross-domain dataset for named entity recognition
size_categories:
  - 10K<n<100K
source_datasets:
  - extended|conll2003
tags:
  - cross domain
  - ai
  - news
  - music
  - literature
  - politics
  - science
task_categories:
  - token-classification
task_ids:
  - named-entity-recognition
dataset_info:
  - config_name: ai
    features:
      - name: id
        dtype: string
      - name: tokens
        sequence: string
      - name: ner_tags
        sequence:
          class_label:
            names:
              '0': O
              '1': B-academicjournal
              '2': I-academicjournal
              '3': B-album
              '4': I-album
              '5': B-algorithm
              '6': I-algorithm
              '7': B-astronomicalobject
              '8': I-astronomicalobject
              '9': B-award
              '10': I-award
              '11': B-band
              '12': I-band
              '13': B-book
              '14': I-book
              '15': B-chemicalcompound
              '16': I-chemicalcompound
              '17': B-chemicalelement
              '18': I-chemicalelement
              '19': B-conference
              '20': I-conference
              '21': B-country
              '22': I-country
              '23': B-discipline
              '24': I-discipline
              '25': B-election
              '26': I-election
              '27': B-enzyme
              '28': I-enzyme
              '29': B-event
              '30': I-event
              '31': B-field
              '32': I-field
              '33': B-literarygenre
              '34': I-literarygenre
              '35': B-location
              '36': I-location
              '37': B-magazine
              '38': I-magazine
              '39': B-metrics
              '40': I-metrics
              '41': B-misc
              '42': I-misc
              '43': B-musicalartist
              '44': I-musicalartist
              '45': B-musicalinstrument
              '46': I-musicalinstrument
              '47': B-musicgenre
              '48': I-musicgenre
              '49': B-organisation
              '50': I-organisation
              '51': B-person
              '52': I-person
              '53': B-poem
              '54': I-poem
              '55': B-politicalparty
              '56': I-politicalparty
              '57': B-politician
              '58': I-politician
              '59': B-product
              '60': I-product
              '61': B-programlang
              '62': I-programlang
              '63': B-protein
              '64': I-protein
              '65': B-researcher
              '66': I-researcher
              '67': B-scientist
              '68': I-scientist
              '69': B-song
              '70': I-song
              '71': B-task
              '72': I-task
              '73': B-theory
              '74': I-theory
              '75': B-university
              '76': I-university
              '77': B-writer
              '78': I-writer
    splits:
      - name: train
        num_bytes: 65080
        num_examples: 100
      - name: validation
        num_bytes: 189453
        num_examples: 350
      - name: test
        num_bytes: 225691
        num_examples: 431
    download_size: 289173
    dataset_size: 480224
  - config_name: literature
    features:
      - name: id
        dtype: string
      - name: tokens
        sequence: string
      - name: ner_tags
        sequence:
          class_label:
            names:
              '0': O
              '1': B-academicjournal
              '2': I-academicjournal
              '3': B-album
              '4': I-album
              '5': B-algorithm
              '6': I-algorithm
              '7': B-astronomicalobject
              '8': I-astronomicalobject
              '9': B-award
              '10': I-award
              '11': B-band
              '12': I-band
              '13': B-book
              '14': I-book
              '15': B-chemicalcompound
              '16': I-chemicalcompound
              '17': B-chemicalelement
              '18': I-chemicalelement
              '19': B-conference
              '20': I-conference
              '21': B-country
              '22': I-country
              '23': B-discipline
              '24': I-discipline
              '25': B-election
              '26': I-election
              '27': B-enzyme
              '28': I-enzyme
              '29': B-event
              '30': I-event
              '31': B-field
              '32': I-field
              '33': B-literarygenre
              '34': I-literarygenre
              '35': B-location
              '36': I-location
              '37': B-magazine
              '38': I-magazine
              '39': B-metrics
              '40': I-metrics
              '41': B-misc
              '42': I-misc
              '43': B-musicalartist
              '44': I-musicalartist
              '45': B-musicalinstrument
              '46': I-musicalinstrument
              '47': B-musicgenre
              '48': I-musicgenre
              '49': B-organisation
              '50': I-organisation
              '51': B-person
              '52': I-person
              '53': B-poem
              '54': I-poem
              '55': B-politicalparty
              '56': I-politicalparty
              '57': B-politician
              '58': I-politician
              '59': B-product
              '60': I-product
              '61': B-programlang
              '62': I-programlang
              '63': B-protein
              '64': I-protein
              '65': B-researcher
              '66': I-researcher
              '67': B-scientist
              '68': I-scientist
              '69': B-song
              '70': I-song
              '71': B-task
              '72': I-task
              '73': B-theory
              '74': I-theory
              '75': B-university
              '76': I-university
              '77': B-writer
              '78': I-writer
    splits:
      - name: train
        num_bytes: 63181
        num_examples: 100
      - name: validation
        num_bytes: 244076
        num_examples: 400
      - name: test
        num_bytes: 270092
        num_examples: 416
    download_size: 334380
    dataset_size: 577349
  - config_name: music
    features:
      - name: id
        dtype: string
      - name: tokens
        sequence: string
      - name: ner_tags
        sequence:
          class_label:
            names:
              '0': O
              '1': B-academicjournal
              '2': I-academicjournal
              '3': B-album
              '4': I-album
              '5': B-algorithm
              '6': I-algorithm
              '7': B-astronomicalobject
              '8': I-astronomicalobject
              '9': B-award
              '10': I-award
              '11': B-band
              '12': I-band
              '13': B-book
              '14': I-book
              '15': B-chemicalcompound
              '16': I-chemicalcompound
              '17': B-chemicalelement
              '18': I-chemicalelement
              '19': B-conference
              '20': I-conference
              '21': B-country
              '22': I-country
              '23': B-discipline
              '24': I-discipline
              '25': B-election
              '26': I-election
              '27': B-enzyme
              '28': I-enzyme
              '29': B-event
              '30': I-event
              '31': B-field
              '32': I-field
              '33': B-literarygenre
              '34': I-literarygenre
              '35': B-location
              '36': I-location
              '37': B-magazine
              '38': I-magazine
              '39': B-metrics
              '40': I-metrics
              '41': B-misc
              '42': I-misc
              '43': B-musicalartist
              '44': I-musicalartist
              '45': B-musicalinstrument
              '46': I-musicalinstrument
              '47': B-musicgenre
              '48': I-musicgenre
              '49': B-organisation
              '50': I-organisation
              '51': B-person
              '52': I-person
              '53': B-poem
              '54': I-poem
              '55': B-politicalparty
              '56': I-politicalparty
              '57': B-politician
              '58': I-politician
              '59': B-product
              '60': I-product
              '61': B-programlang
              '62': I-programlang
              '63': B-protein
              '64': I-protein
              '65': B-researcher
              '66': I-researcher
              '67': B-scientist
              '68': I-scientist
              '69': B-song
              '70': I-song
              '71': B-task
              '72': I-task
              '73': B-theory
              '74': I-theory
              '75': B-university
              '76': I-university
              '77': B-writer
              '78': I-writer
    splits:
      - name: train
        num_bytes: 65077
        num_examples: 100
      - name: validation
        num_bytes: 259702
        num_examples: 380
      - name: test
        num_bytes: 327195
        num_examples: 465
    download_size: 414065
    dataset_size: 651974
  - config_name: conll2003
    features:
      - name: id
        dtype: string
      - name: tokens
        sequence: string
      - name: ner_tags
        sequence:
          class_label:
            names:
              '0': O
              '1': B-academicjournal
              '2': I-academicjournal
              '3': B-album
              '4': I-album
              '5': B-algorithm
              '6': I-algorithm
              '7': B-astronomicalobject
              '8': I-astronomicalobject
              '9': B-award
              '10': I-award
              '11': B-band
              '12': I-band
              '13': B-book
              '14': I-book
              '15': B-chemicalcompound
              '16': I-chemicalcompound
              '17': B-chemicalelement
              '18': I-chemicalelement
              '19': B-conference
              '20': I-conference
              '21': B-country
              '22': I-country
              '23': B-discipline
              '24': I-discipline
              '25': B-election
              '26': I-election
              '27': B-enzyme
              '28': I-enzyme
              '29': B-event
              '30': I-event
              '31': B-field
              '32': I-field
              '33': B-literarygenre
              '34': I-literarygenre
              '35': B-location
              '36': I-location
              '37': B-magazine
              '38': I-magazine
              '39': B-metrics
              '40': I-metrics
              '41': B-misc
              '42': I-misc
              '43': B-musicalartist
              '44': I-musicalartist
              '45': B-musicalinstrument
              '46': I-musicalinstrument
              '47': B-musicgenre
              '48': I-musicgenre
              '49': B-organisation
              '50': I-organisation
              '51': B-person
              '52': I-person
              '53': B-poem
              '54': I-poem
              '55': B-politicalparty
              '56': I-politicalparty
              '57': B-politician
              '58': I-politician
              '59': B-product
              '60': I-product
              '61': B-programlang
              '62': I-programlang
              '63': B-protein
              '64': I-protein
              '65': B-researcher
              '66': I-researcher
              '67': B-scientist
              '68': I-scientist
              '69': B-song
              '70': I-song
              '71': B-task
              '72': I-task
              '73': B-theory
              '74': I-theory
              '75': B-university
              '76': I-university
              '77': B-writer
              '78': I-writer
    splits:
      - name: train
        num_bytes: 3561081
        num_examples: 14041
      - name: validation
        num_bytes: 891431
        num_examples: 3250
      - name: test
        num_bytes: 811470
        num_examples: 3453
    download_size: 2694794
    dataset_size: 5263982
  - config_name: politics
    features:
      - name: id
        dtype: string
      - name: tokens
        sequence: string
      - name: ner_tags
        sequence:
          class_label:
            names:
              '0': O
              '1': B-academicjournal
              '2': I-academicjournal
              '3': B-album
              '4': I-album
              '5': B-algorithm
              '6': I-algorithm
              '7': B-astronomicalobject
              '8': I-astronomicalobject
              '9': B-award
              '10': I-award
              '11': B-band
              '12': I-band
              '13': B-book
              '14': I-book
              '15': B-chemicalcompound
              '16': I-chemicalcompound
              '17': B-chemicalelement
              '18': I-chemicalelement
              '19': B-conference
              '20': I-conference
              '21': B-country
              '22': I-country
              '23': B-discipline
              '24': I-discipline
              '25': B-election
              '26': I-election
              '27': B-enzyme
              '28': I-enzyme
              '29': B-event
              '30': I-event
              '31': B-field
              '32': I-field
              '33': B-literarygenre
              '34': I-literarygenre
              '35': B-location
              '36': I-location
              '37': B-magazine
              '38': I-magazine
              '39': B-metrics
              '40': I-metrics
              '41': B-misc
              '42': I-misc
              '43': B-musicalartist
              '44': I-musicalartist
              '45': B-musicalinstrument
              '46': I-musicalinstrument
              '47': B-musicgenre
              '48': I-musicgenre
              '49': B-organisation
              '50': I-organisation
              '51': B-person
              '52': I-person
              '53': B-poem
              '54': I-poem
              '55': B-politicalparty
              '56': I-politicalparty
              '57': B-politician
              '58': I-politician
              '59': B-product
              '60': I-product
              '61': B-programlang
              '62': I-programlang
              '63': B-protein
              '64': I-protein
              '65': B-researcher
              '66': I-researcher
              '67': B-scientist
              '68': I-scientist
              '69': B-song
              '70': I-song
              '71': B-task
              '72': I-task
              '73': B-theory
              '74': I-theory
              '75': B-university
              '76': I-university
              '77': B-writer
              '78': I-writer
    splits:
      - name: train
        num_bytes: 143507
        num_examples: 200
      - name: validation
        num_bytes: 422760
        num_examples: 541
      - name: test
        num_bytes: 472690
        num_examples: 651
    download_size: 724168
    dataset_size: 1038957
  - config_name: science
    features:
      - name: id
        dtype: string
      - name: tokens
        sequence: string
      - name: ner_tags
        sequence:
          class_label:
            names:
              '0': O
              '1': B-academicjournal
              '2': I-academicjournal
              '3': B-album
              '4': I-album
              '5': B-algorithm
              '6': I-algorithm
              '7': B-astronomicalobject
              '8': I-astronomicalobject
              '9': B-award
              '10': I-award
              '11': B-band
              '12': I-band
              '13': B-book
              '14': I-book
              '15': B-chemicalcompound
              '16': I-chemicalcompound
              '17': B-chemicalelement
              '18': I-chemicalelement
              '19': B-conference
              '20': I-conference
              '21': B-country
              '22': I-country
              '23': B-discipline
              '24': I-discipline
              '25': B-election
              '26': I-election
              '27': B-enzyme
              '28': I-enzyme
              '29': B-event
              '30': I-event
              '31': B-field
              '32': I-field
              '33': B-literarygenre
              '34': I-literarygenre
              '35': B-location
              '36': I-location
              '37': B-magazine
              '38': I-magazine
              '39': B-metrics
              '40': I-metrics
              '41': B-misc
              '42': I-misc
              '43': B-musicalartist
              '44': I-musicalartist
              '45': B-musicalinstrument
              '46': I-musicalinstrument
              '47': B-musicgenre
              '48': I-musicgenre
              '49': B-organisation
              '50': I-organisation
              '51': B-person
              '52': I-person
              '53': B-poem
              '54': I-poem
              '55': B-politicalparty
              '56': I-politicalparty
              '57': B-politician
              '58': I-politician
              '59': B-product
              '60': I-product
              '61': B-programlang
              '62': I-programlang
              '63': B-protein
              '64': I-protein
              '65': B-researcher
              '66': I-researcher
              '67': B-scientist
              '68': I-scientist
              '69': B-song
              '70': I-song
              '71': B-task
              '72': I-task
              '73': B-theory
              '74': I-theory
              '75': B-university
              '76': I-university
              '77': B-writer
              '78': I-writer
    splits:
      - name: train
        num_bytes: 121928
        num_examples: 200
      - name: validation
        num_bytes: 276118
        num_examples: 450
      - name: test
        num_bytes: 334181
        num_examples: 543
    download_size: 485191
    dataset_size: 732227

Dataset Card for CrossRE

Table of Contents

Dataset Description

Dataset Summary

CrossNER is a fully-labeled collected of named entity recognition (NER) data spanning over five diverse domains (Politics, Natural Science, Music, Literature, and Artificial Intelligence) with specialized entity categories for different domains. Additionally, CrossNER also includes unlabeled domain-related corpora for the corresponding five domains.

For details, see the paper: CrossNER: Evaluating Cross-Domain Named Entity Recognition

Supported Tasks and Leaderboards

More Information Needed

Languages

The language data in CrossNER is in English (BCP-47 en)

Dataset Structure

Data Instances

conll2003

  • Size of downloaded dataset files: 2.69 MB
  • Size of the generated dataset: 5.26 MB

An example of 'train' looks as follows:

{
  "id": "0", 
  "tokens": ["EU", "rejects", "German", "call", "to", "boycott", "British", "lamb", "."], 
  "ner_tags": [49, 0, 41, 0, 0, 0, 41, 0, 0]
}

politics

  • Size of downloaded dataset files: 0.72 MB
  • Size of the generated dataset: 1.04 MB

An example of 'train' looks as follows:

{
  "id": "0", 
  "tokens": ["Parties", "with", "mainly", "Eurosceptic", "views", "are", "the", "ruling", "United", "Russia", ",", "and", "opposition", "parties", "the", "Communist", "Party", "of", "the", "Russian", "Federation", "and", "Liberal", "Democratic", "Party", "of", "Russia", "."], 
  "ner_tags": [0, 0, 0, 0, 0, 0, 0, 0, 55, 56, 0, 0, 0, 0, 0, 55, 56, 56, 56, 56, 56, 0, 55, 56, 56, 56, 56, 0]
}

science

  • Size of downloaded dataset files: 0.49 MB
  • Size of the generated dataset: 0.73 MB

An example of 'train' looks as follows:

{
  "id": "0", 
  "tokens": ["They", "may", "also", "use", "Adenosine", "triphosphate", ",", "Nitric", "oxide", ",", "and", "ROS", "for", "signaling", "in", "the", "same", "ways", "that", "animals", "do", "."], 
  "ner_tags": [0, 0, 0, 0, 15, 16, 0, 15, 16, 0, 0, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
}

music

  • Size of downloaded dataset files: 0.41 MB
  • Size of the generated dataset: 0.65 MB

An example of 'train' looks as follows:

{
  "id": "0", 
  "tokens": ["In", "2003", ",", "the", "Stade", "de", "France", "was", "the", "primary", "site", "of", "the", "2003", "World", "Championships", "in", "Athletics", "."], 
  "ner_tags": [0, 0, 0, 0, 35, 36, 36, 0, 0, 0, 0, 0, 0, 29, 30, 30, 30, 30, 0]
}

literature

  • Size of downloaded dataset files: 0.33 MB
  • Size of the generated dataset: 0.58 MB

An example of 'train' looks as follows:

{
  "id": "0",
  "tokens": ["In", "1351", ",", "during", "the", "reign", "of", "Emperor", "Toghon", "Temür", "of", "the", "Yuan", "dynasty", ",", "93rd-generation", "descendant", "Kong", "Huan", "(", "孔浣", ")", "'", "s", "2nd", "son", "Kong", "Shao", "(", "孔昭", ")", "moved", "from", "China", "to", "Korea", "during", "the", "Goryeo", ",", "and", "was", "received", "courteously", "by", "Princess", "Noguk", "(", "the", "Mongolian-born", "wife", "of", "the", "future", "king", "Gongmin", ")", "."], 
  "ner_tags": [0, 0, 0, 0, 0, 0, 0, 51, 52, 52, 0, 0, 21, 22, 0, 0, 0, 77, 78, 0, 77, 0, 0, 0, 0, 0, 77, 78, 0, 77, 0, 0, 0, 21, 0, 21, 0, 0, 41, 0, 0, 0, 0, 0, 0, 51, 52, 0, 0, 41, 0, 0, 0, 0, 0, 51, 0, 0]
}

ai

  • Size of downloaded dataset files: 0.29 MB
  • Size of the generated dataset: 0.48 MB

An example of 'train' looks as follows:

{
  "id": "0", 
  "tokens": ["Popular", "approaches", "of", "opinion-based", "recommender", "system", "utilize", "various", "techniques", "including", "text", "mining", ",", "information", "retrieval", ",", "sentiment", "analysis", "(", "see", "also", "Multimodal", "sentiment", "analysis", ")", "and", "deep", "learning", "X.Y.", "Feng", ",", "H.", "Zhang", ",", "Y.J.", "Ren", ",", "P.H.", "Shang", ",", "Y.", "Zhu", ",", "Y.C.", "Liang", ",", "R.C.", "Guan", ",", "D.", "Xu", ",", "(", "2019", ")", ",", ",", "21", "(", "5", ")", ":", "e12957", "."], 
  "ner_tags": [0, 0, 0, 59, 60, 60, 0, 0, 0, 0, 31, 32, 0, 71, 72, 0, 71, 72, 0, 0, 0, 71, 72, 72, 0, 0, 31, 32, 65, 66, 0, 65, 66, 0, 65, 66, 0, 65, 66, 0, 65, 66, 0, 65, 66, 0, 65, 66, 0, 65, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
}

Data Fields

The data fields are the same among all splits.

  • id: the instance id of this sentence, a string feature.
  • tokens: the list of tokens of this sentence, a list of string features.
  • ner_tags: the list of entity tags, a list of classification labels.
{"O": 0, "B-academicjournal": 1, "I-academicjournal": 2, "B-album": 3, "I-album": 4, "B-algorithm": 5, "I-algorithm": 6, "B-astronomicalobject": 7, "I-astronomicalobject": 8, "B-award": 9, "I-award": 10, "B-band": 11, "I-band": 12, "B-book": 13, "I-book": 14, "B-chemicalcompound": 15, "I-chemicalcompound": 16, "B-chemicalelement": 17, "I-chemicalelement": 18, "B-conference": 19, "I-conference": 20, "B-country": 21, "I-country": 22, "B-discipline": 23, "I-discipline": 24, "B-election": 25, "I-election": 26, "B-enzyme": 27, "I-enzyme": 28, "B-event": 29, "I-event": 30, "B-field": 31, "I-field": 32, "B-literarygenre": 33, "I-literarygenre": 34, "B-location": 35, "I-location": 36, "B-magazine": 37, "I-magazine": 38, "B-metrics": 39, "I-metrics": 40, "B-misc": 41, "I-misc": 42, "B-musicalartist": 43, "I-musicalartist": 44, "B-musicalinstrument": 45, "I-musicalinstrument": 46, "B-musicgenre": 47, "I-musicgenre": 48, "B-organisation": 49, "I-organisation": 50, "B-person": 51, "I-person": 52, "B-poem": 53, "I-poem": 54, "B-politicalparty": 55, "I-politicalparty": 56, "B-politician": 57, "I-politician": 58, "B-product": 59, "I-product": 60, "B-programlang": 61, "I-programlang": 62, "B-protein": 63, "I-protein": 64, "B-researcher": 65, "I-researcher": 66, "B-scientist": 67, "I-scientist": 68, "B-song": 69, "I-song": 70, "B-task": 71, "I-task": 72, "B-theory": 73, "I-theory": 74, "B-university": 75, "I-university": 76, "B-writer": 77, "I-writer": 78}

Data Splits

Train Dev Test
conll2003 14,987 3,466 3,684
politics 200 541 651
science 200 450 543
music 100 380 456
literature 100 400 416
ai 100 350 431

Dataset Creation

Curation Rationale

More Information Needed

Source Data

Initial Data Collection and Normalization

More Information Needed

Who are the source language producers?

More Information Needed

Annotations

Annotation process

More Information Needed

Who are the annotators?

More Information Needed

Personal and Sensitive Information

More Information Needed

Considerations for Using the Data

Social Impact of Dataset

More Information Needed

Discussion of Biases

More Information Needed

Other Known Limitations

More Information Needed

Additional Information

Dataset Curators

More Information Needed

Licensing Information

More Information Needed

Citation Information

@article{liu2020crossner,
      title={CrossNER: Evaluating Cross-Domain Named Entity Recognition}, 
      author={Zihan Liu and Yan Xu and Tiezheng Yu and Wenliang Dai and Ziwei Ji and Samuel Cahyawijaya and Andrea Madotto and Pascale Fung},
      year={2020},
      eprint={2012.04373},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

Contributions

Thanks to @phucdev for adding this dataset.