File size: 6,920 Bytes
dcc0999
3710fa2
11062c2
 
 
8ebf26b
 
 
11062c2
 
 
 
 
 
 
 
 
 
 
 
 
 
aac3684
a6c98d3
f32b608
aac3684
 
 
599430d
5678eb1
aac3684
 
 
f32b608
aac3684
f32b608
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aac3684
 
 
 
 
 
b787f82
aac3684
 
268abe7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de6a021
 
268abe7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aac3684
 
 
cd31756
 
 
 
6a6361f
cd31756
 
 
 
 
aac3684
 
 
f32b608
aac3684
040fedf
 
 
 
aac3684
7a63387
aac3684
bcea0d0
dd25cf4
 
 
 
 
 
 
 
 
7a63387
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bcea0d0
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
---
license: cc-by-4.0
task_categories:
- image-segmentation
- object-detection
task_ids:
- semantic-segmentation
- instance-segmentation
tags:
- automotive
- autonomous driving
- synthetic
- safe ai
- validation
- pedestrian detection
- 2d object-detection
- 3d object-detection
- semantic-segmentation
- instance-segmentation
pretty_name: VALERIE22
size_categories:
- 1K<n<10K
---
# VALERIE22 - A photorealistic, richly metadata annotated dataset of urban environments
<img src="https://huggingface.co/datasets/Intel/VALERIE22/resolve/main/images/teaser_c.png">

## Dataset Description

- **Paper:** https://arxiv.org/abs/2308.09632
- **Point of Contact:** [email protected]

### Dataset Summary

The VALERIE22 dataset was generated with the VALERIE procedural tools pipeline (see image below) providing a photorealistic sensor simulation rendered from automatically synthesized scenes. The dataset provides a uniquely rich set of metadata, allowing extraction of specific scene and semantic features (like pixel-accurate occlusion rates, positions in the scene and distance + angle to the camera). This enables a multitude of possible tests on the data and we hope to stimulate research on understanding performance of DNNs.

<img src="https://huggingface.co/datasets/Intel/VALERIE22/resolve/main/images/VALERIE_overview1.png">

Each sequence of the dataset contains for each scene two rendered images. One is rendered with the default Blender tonemapping (/png) whereas the second is renderd with our photorealistic sensor simulation (see hagn2022optimized). The image below shows the difference of the two methods.

<img src="https://huggingface.co/datasets/Intel/VALERIE22/resolve/main/images/SensorSimulation.png">

Following are some example images showing the unique characteristics of the different sequences.

|Sequence0052|Sequence0054|Sequence0057|Sequence0058|
|:---:|:---:|:---:|:---:|
|<img src="https://huggingface.co/datasets/Intel/VALERIE22/resolve/main/images/seq52_1.jpg" width="500">|<img src="https://huggingface.co/datasets/Intel/VALERIE22/resolve/main/images/seq54_1.jpg" width="500">|<img src="https://huggingface.co/datasets/Intel/VALERIE22/resolve/main/images/seq57_1.jpg" width="500">|<img src="https://huggingface.co/datasets/Intel/VALERIE22/resolve/main/images/seq58_1.png" width="500">|

|Sequence0059|Sequence0060|Sequence0062|
|:---:|:---:|:---:|
|<img src="https://huggingface.co/datasets/Intel/VALERIE22/resolve/main/images/seq59_1.jpg" width="500">|<img src="https://huggingface.co/datasets/Intel/VALERIE22/resolve/main/images/seq60_1.jpg" width="500">|<img src="https://huggingface.co/datasets/Intel/VALERIE22/resolve/main/images/seq62_1.jpg" width="500">|



### Supported Tasks

- pedestrian detection
- 2d object-detection
- 3d object-detection
- semantic-segmentation
- instance-segmentation
- ai-validation

## Dataset Structure
 
```
VALERIE22
└───intel_results_sequence_0050
β”‚   └───ground-truth
β”‚   β”‚   └───2d-bounding-box_json   
β”‚   β”‚   β”‚   └───car-camera000-0000-{UUID}-0000.json
β”‚   β”‚   └───3d-bounding-box_json
β”‚   β”‚   β”‚   └───car-camera000-0000-{UUID}-0000.json
β”‚   β”‚   └───class-id_png
β”‚   β”‚   β”‚   └───car-camera000-0000-{UUID}-0000.png
β”‚   β”‚   └───general-globally-per-frame-analysis_json
β”‚   β”‚   β”‚   └───car-camera000-0000-{UUID}-0000.json
β”‚   β”‚   β”‚   └───car-camera000-0000-{UUID}-0000.csv
β”‚   β”‚   └───semantic-group-segmentation_png
β”‚   β”‚   β”‚   └───car-camera000-0000-{UUID}-0000.png
β”‚   β”‚   └───semantic-instance-segmentation_png
β”‚   β”‚   β”‚   └───car-camera000-0000-{UUID}-0000.png
β”‚   β”‚   β”‚   └───car-camera000-0000-{UUID}-0000
β”‚   β”‚   β”‚   β”‚   └───{Entity-ID}
β”‚   └───sensor
β”‚   β”‚   └───camera
β”‚   β”‚   β”‚   └───left
β”‚   β”‚   β”‚   β”‚   └───png
β”‚   β”‚   β”‚   β”‚   β”‚   └───car-camera000-0000-{UUID}-0000.png
β”‚   β”‚   β”‚   β”‚   └───png_distorted
β”‚   β”‚   β”‚   β”‚   β”‚   └───car-camera000-0000-{UUID}-0000.png
└───intel_results_sequence_0052
└───intel_results_sequence_0054
└───intel_results_sequence_0057
└───intel_results_sequence_0058
└───intel_results_sequence_0059
└───intel_results_sequence_0060
└───intel_results_sequence_0062
```

### Data Splits

13476 images for trainining:
```
dataset = load_dataset("Intel/VALERIE22", split="train")
```

8406 images for validation and test:
```
dataset = load_dataset("Intel/VALERIE22", split="validation")
dataset = load_dataset("Intel/VALERIE22", split="test")
```

### Licensing Information

CC BY 4.0

## Grant Information

Generated within project KI-Abischerung with funding of the German Federal Ministry of Industry and Energy under grant number 19A19005M.

### Citation Information
Relevant publications:

```
@misc{grau2023valerie22,
    title={VALERIE22 -- A photorealistic, richly metadata annotated dataset of urban environments},
    author={Oliver Grau and Korbinian Hagn},
    year={2023},
    eprint={2308.09632},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}

@inproceedings{hagn2022increasing,
  title={Increasing pedestrian detection performance through weighting of detection impairing factors},
  author={Hagn, Korbinian and Grau, Oliver},
  booktitle={Proceedings of the 6th ACM Computer Science in Cars Symposium},
  pages={1--10},
  year={2022}
}

@inproceedings{hagn2022validation,
  title={Validation of Pedestrian Detectors by Classification of Visual Detection Impairing Factors},
  author={Hagn, Korbinian and Grau, Oliver},
  booktitle={European Conference on Computer Vision},
  pages={476--491},
  year={2022},
  organization={Springer}
}

@incollection{grau2022variational,
  title={A variational deep synthesis approach for perception validation},
  author={Grau, Oliver and Hagn, Korbinian and Syed Sha, Qutub},
  booktitle={Deep Neural Networks and Data for Automated Driving: Robustness, Uncertainty Quantification, and Insights Towards Safety},
  pages={359--381},
  year={2022},
  publisher={Springer International Publishing Cham}
}

@incollection{hagn2022optimized,
  title={Optimized data synthesis for DNN training and validation by sensor artifact simulation},
  author={Hagn, Korbinian and Grau, Oliver},
  booktitle={Deep Neural Networks and Data for Automated Driving: Robustness, Uncertainty Quantification, and Insights Towards Safety},
  pages={127--147},
  year={2022},
  publisher={Springer International Publishing Cham}
}

@inproceedings{syed2020dnn,
  title={DNN analysis through synthetic data variation},
  author={Syed Sha, Qutub and Grau, Oliver and Hagn, Korbinian},
  booktitle={Proceedings of the 4th ACM Computer Science in Cars Symposium},
  pages={1--10},
  year={2020}
}
```