File size: 4,379 Bytes
f48e76f a63f83e f48e76f 9734235 f48e76f a63f83e f48e76f a63f83e f48e76f 9734235 f48e76f 9734235 a63f83e f48e76f 9734235 f48e76f 9734235 f48e76f 9734235 f48e76f 9734235 a63f83e 9734235 f48e76f a63f83e 9734235 a63f83e 9734235 a63f83e 9734235 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
import os
import json
import datasets
import logging
logger = logging.getLogger(__name__)
_CITATION = ""
_DESCRIPTION = ""
_BASE_URL = "https://huggingface.co/datasets/JesseLiu/MedQA_Maze/resolve/main"
class MedQaMazeConfig(datasets.BuilderConfig):
def __init__(self, **kwargs):
super().__init__(version=datasets.Version("1.0.0"), **kwargs)
class MedQaMaze(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
MedQaMazeConfig(name="default", description="A default config"),
MedQaMazeConfig(name="advance", description="Advanced-level test data"),
MedQaMazeConfig(name="all", description="Full dataset with train and test"),
MedQaMazeConfig(name="basic", description="Basic-level test data"),
MedQaMazeConfig(name="challenge", description="Challenge-level test data"),
]
DEFAULT_CONFIG_NAME = "all"
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features({
"context": datasets.Value("string"),
"question": datasets.Value("string"),
"prerequisit": datasets.Value("string"),
"groundtruth_zoo": datasets.Sequence(datasets.Value("string")),
"answer": datasets.Value("string"),
}),
supervised_keys=None,
homepage="https://huggingface.co/datasets/JesseLiu/MedQA_Maze",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
config_name = self.config.name if self.config.name != "default" else "all"
urls = {}
if config_name == "all":
urls = {
"train": f"{_BASE_URL}/all/train.jsonl",
"test": f"{_BASE_URL}/all/test.jsonl"
}
elif config_name in ["basic", "advance", "challenge"]:
urls = {
"test": f"{_BASE_URL}/{config_name}/test.jsonl"
}
else:
raise ValueError(f"Unsupported config: {config_name}")
try:
data_files = dl_manager.download(urls)
logger.info(f"Downloaded files: {data_files}")
except Exception as e:
raise ValueError(f"Failed to download files: {e}")
splits = []
if "train" in data_files:
splits.append(
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"filepath": data_files["train"]}
)
)
if "test" in data_files:
splits.append(
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"filepath": data_files["test"]}
)
)
if not splits:
raise ValueError(f"No valid splits found for config {config_name}")
return splits
def _generate_examples(self, filepath):
"""Yields examples."""
logger.info(f"Generating examples from {filepath}")
if not os.path.exists(filepath):
raise ValueError(f"File not found: {filepath}")
with open(filepath, 'r', encoding='utf-8') as f:
content = f.read().strip()
# Split by newlines and filter out empty lines
lines = [line.strip() for line in content.split('\n') if line.strip()]
for idx, line in enumerate(lines):
try:
data = json.loads(line)
example = {
"context": str(data.get("context", "")),
"question": str(data.get("question", "")),
"prerequisit": str(data.get("prerequisit", "")),
"groundtruth_zoo": [str(x) for x in data.get("groundtruth_zoo", [])],
"answer": str(data.get("answer", "")),
}
yield idx, example
except json.JSONDecodeError as e:
logger.error(f"Error parsing JSON at line {idx} in {filepath}: {e}\nLine content: {line[:100]}...")
continue
except Exception as e:
logger.error(f"Unexpected error processing line {idx} in {filepath}: {e}")
continue |