Datasets:

Modalities:
Image
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
COLO / README.md
poissonfish's picture
Update README.md
0ff8de9 verified
metadata
dataset_info:
  - config_name: 0_all
    features:
      - name: image
        dtype: image
      - name: width
        dtype: int64
      - name: height
        dtype: int64
      - name: n_cows
        dtype: int64
      - name: annotations
        sequence:
          - name: id
            dtype: int64
          - name: image_id
            dtype: int64
          - name: category_id
            dtype: int64
          - name: iscrowd
            dtype: int64
          - name: area
            dtype: float64
          - name: bbox
            sequence: float64
            length: 4
          - name: segmentation
            sequence:
              sequence: int64
      - name: image_id
        dtype: int64
      - name: filename
        dtype: string
    splits:
      - name: train
        num_bytes: 130320762
        num_examples: 904
      - name: test
        num_bytes: 13928675
        num_examples: 100
    download_size: 143829012
    dataset_size: 144249437
  - config_name: 1_top
    features:
      - name: image
        dtype: image
      - name: width
        dtype: int64
      - name: height
        dtype: int64
      - name: n_cows
        dtype: int64
      - name: annotations
        sequence:
          - name: id
            dtype: int64
          - name: image_id
            dtype: int64
          - name: category_id
            dtype: int64
          - name: iscrowd
            dtype: int64
          - name: area
            dtype: float64
          - name: bbox
            sequence: float64
            length: 4
          - name: segmentation
            sequence:
              sequence: int64
      - name: image_id
        dtype: int64
      - name: filename
        dtype: string
    splits:
      - name: daylight
        num_bytes: 53998347
        num_examples: 296
      - name: indoorlight
        num_bytes: 23086697
        num_examples: 118
      - name: infrared
        num_bytes: 11752283
        num_examples: 90
      - name: train
        num_bytes: 80432409
        num_examples: 454
      - name: test
        num_bytes: 8404918
        num_examples: 50
    download_size: 177400440
    dataset_size: 177674654
  - config_name: 2_side
    features:
      - name: image
        dtype: image
      - name: width
        dtype: int64
      - name: height
        dtype: int64
      - name: n_cows
        dtype: int64
      - name: annotations
        sequence:
          - name: id
            dtype: int64
          - name: image_id
            dtype: int64
          - name: category_id
            dtype: int64
          - name: iscrowd
            dtype: int64
          - name: area
            dtype: float64
          - name: bbox
            sequence: float64
            length: 4
          - name: segmentation
            sequence:
              sequence: int64
      - name: image_id
        dtype: int64
      - name: filename
        dtype: string
    splits:
      - name: daylight
        num_bytes: 36621130
        num_examples: 290
      - name: indoorlight
        num_bytes: 14910133
        num_examples: 113
      - name: infrared
        num_bytes: 3880850
        num_examples: 97
      - name: train
        num_bytes: 49888354
        num_examples: 450
      - name: test
        num_bytes: 5523758
        num_examples: 50
    download_size: 110254324
    dataset_size: 110824225
  - config_name: 3_external
    features:
      - name: image
        dtype: image
      - name: width
        dtype: int64
      - name: height
        dtype: int64
      - name: n_cows
        dtype: int64
      - name: annotations
        sequence:
          - name: id
            dtype: int64
          - name: image_id
            dtype: int64
          - name: category_id
            dtype: int64
          - name: iscrowd
            dtype: int64
          - name: area
            dtype: float64
          - name: bbox
            sequence: float64
            length: 4
          - name: segmentation
            sequence:
              sequence: int64
      - name: image_id
        dtype: int64
      - name: filename
        dtype: string
    splits:
      - name: train
        num_bytes: 30382759
        num_examples: 200
      - name: test
        num_bytes: 7430774
        num_examples: 50
    download_size: 37623678
    dataset_size: 37813533
  - config_name: a1_t2s
    features:
      - name: image
        dtype: image
      - name: width
        dtype: int64
      - name: height
        dtype: int64
      - name: n_cows
        dtype: int64
      - name: annotations
        sequence:
          - name: id
            dtype: int64
          - name: image_id
            dtype: int64
          - name: category_id
            dtype: int64
          - name: iscrowd
            dtype: int64
          - name: area
            dtype: float64
          - name: bbox
            sequence: float64
            length: 4
          - name: segmentation
            sequence:
              sequence: int64
      - name: image_id
        dtype: int64
      - name: filename
        dtype: string
    splits:
      - name: train
        num_bytes: 88837326
        num_examples: 504
      - name: test
        num_bytes: 5523758
        num_examples: 50
    download_size: 94192043
    dataset_size: 94361084
  - config_name: a2_s2t
    features:
      - name: image
        dtype: image
      - name: width
        dtype: int64
      - name: height
        dtype: int64
      - name: n_cows
        dtype: int64
      - name: annotations
        sequence:
          - name: id
            dtype: int64
          - name: image_id
            dtype: int64
          - name: category_id
            dtype: int64
          - name: iscrowd
            dtype: int64
          - name: area
            dtype: float64
          - name: bbox
            sequence: float64
            length: 4
          - name: segmentation
            sequence:
              sequence: int64
      - name: image_id
        dtype: int64
      - name: filename
        dtype: string
    splits:
      - name: train
        num_bytes: 55412111
        num_examples: 500
      - name: test
        num_bytes: 8404918
        num_examples: 50
    download_size: 63528042
    dataset_size: 63817029
  - config_name: b_light
    features:
      - name: image
        dtype: image
      - name: width
        dtype: int64
      - name: height
        dtype: int64
      - name: n_cows
        dtype: int64
      - name: annotations
        sequence:
          - name: id
            dtype: int64
          - name: image_id
            dtype: int64
          - name: category_id
            dtype: int64
          - name: iscrowd
            dtype: int64
          - name: area
            dtype: float64
          - name: bbox
            sequence: float64
            length: 4
          - name: segmentation
            sequence:
              sequence: int64
      - name: image_id
        dtype: int64
      - name: filename
        dtype: string
    splits:
      - name: train
        num_bytes: 76120383
        num_examples: 500
      - name: test
        num_bytes: 6280763
        num_examples: 50
    download_size: 82127375
    dataset_size: 82401146
  - config_name: c_external
    features:
      - name: image
        dtype: image
      - name: width
        dtype: int64
      - name: height
        dtype: int64
      - name: n_cows
        dtype: int64
      - name: annotations
        sequence:
          - name: id
            dtype: int64
          - name: image_id
            dtype: int64
          - name: category_id
            dtype: int64
          - name: iscrowd
            dtype: int64
          - name: area
            dtype: float64
          - name: bbox
            sequence: float64
            length: 4
          - name: segmentation
            sequence:
              sequence: int64
      - name: image_id
        dtype: int64
      - name: filename
        dtype: string
    splits:
      - name: train
        num_bytes: 144104201.292
        num_examples: 1004
      - name: test
        num_bytes: 7430774
        num_examples: 50
    download_size: 151218220
    dataset_size: 151534975.292
configs:
  - config_name: 0_all
    data_files:
      - split: train
        path: 0_all/train-*
      - split: test
        path: 0_all/test-*
  - config_name: 1_top
    data_files:
      - split: daylight
        path: 1_top/daylight-*
      - split: indoorlight
        path: 1_top/indoorlight-*
      - split: infrared
        path: 1_top/infrared-*
      - split: train
        path: 1_top/train-*
      - split: test
        path: 1_top/test-*
  - config_name: 2_side
    data_files:
      - split: daylight
        path: 2_side/daylight-*
      - split: indoorlight
        path: 2_side/indoorlight-*
      - split: infrared
        path: 2_side/infrared-*
      - split: train
        path: 2_side/train-*
      - split: test
        path: 2_side/test-*
  - config_name: 3_external
    data_files:
      - split: train
        path: 3_external/train-*
      - split: test
        path: 3_external/test-*
  - config_name: a1_t2s
    data_files:
      - split: train
        path: a1_t2s/train-*
      - split: test
        path: a1_t2s/test-*
  - config_name: a2_s2t
    data_files:
      - split: train
        path: a2_s2t/train-*
      - split: test
        path: a2_s2t/test-*
  - config_name: b_light
    data_files:
      - split: train
        path: b_light/train-*
      - split: test
        path: b_light/test-*
  - config_name: c_external
    data_files:
      - split: train
        path: c_external/train-*
      - split: test
        path: c_external/test-*
license: mit
task_categories:
  - object-detection
tags:
  - biology
pretty_name: COLO
size_categories:
  - 1K<n<10K

COw LOcalization (COLO) Dataset

The COw LOcalization (COLO) dataset is designed to localize cows in various indoor environments using different lighting conditions and view angles. This dataset offers 1,254 images and 11,818 cow instances, serving as a benchmark for the precision livestock farming community.

COLO

Dataset Configurations

Configuration Training Split Testing Split
0_all Top-View + Side-View Top-View + Side-View
1_top Top-View Top-View
2_side Side-View Side-View
3_external External External
a1_t2s Top-View Side-View
a2_s2t Side-View Top-View
b_light Daylight Indoor + NIR
c_external Top-View + Side-View External

Download the Dataset

To download the dataset, you need to have the required Python dependencies installed. You can install them using either of the following commands:

python -m pip install pyniche

or

pip install pyniche

Once the dependencies are installed, use the Python console to provide the download destination folder in the root parameter and specify the export data format in the format parameter:

from pyniche.data.download import COLO

# Example: Download COLO in the YOLO format
COLO(
    root="download/yolo",  # Destination folder
    format="yolo",  # Data format
)

# Example: Download COLO in the COCO format
COLO(
    root="download/coco",  # Destination folder
    format="coco",  # Data format
)

Citation

The page of the arXiv article

@misc{das2024model,
    title={A Model Generalization Study in Localizing Indoor Cows with COw LOcalization (COLO) dataset},
    author={Mautushi Das and Gonzalo Ferreira and C. P. James Chen},
    year={2024},
    eprint={2407.20372},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}

or

Das, M., Ferreira, G., & Chen, C. P. J. (2024). A Model Generalization Study in Localizing Indoor Cows with COw LOcalization (COLO) dataset. arXiv preprint arXiv:2407.20372