|
--- |
|
dataset_info: |
|
- config_name: 0_all |
|
features: |
|
- name: image |
|
dtype: image |
|
- name: width |
|
dtype: int64 |
|
- name: height |
|
dtype: int64 |
|
- name: n_cows |
|
dtype: int64 |
|
- name: annotations |
|
sequence: |
|
- name: id |
|
dtype: int64 |
|
- name: image_id |
|
dtype: int64 |
|
- name: category_id |
|
dtype: int64 |
|
- name: iscrowd |
|
dtype: int64 |
|
- name: area |
|
dtype: float64 |
|
- name: bbox |
|
sequence: float64 |
|
length: 4 |
|
- name: segmentation |
|
sequence: |
|
sequence: int64 |
|
- name: image_id |
|
dtype: int64 |
|
- name: filename |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 130320762 |
|
num_examples: 904 |
|
- name: test |
|
num_bytes: 13928675 |
|
num_examples: 100 |
|
download_size: 143829012 |
|
dataset_size: 144249437 |
|
- config_name: 1_top |
|
features: |
|
- name: image |
|
dtype: image |
|
- name: width |
|
dtype: int64 |
|
- name: height |
|
dtype: int64 |
|
- name: n_cows |
|
dtype: int64 |
|
- name: annotations |
|
sequence: |
|
- name: id |
|
dtype: int64 |
|
- name: image_id |
|
dtype: int64 |
|
- name: category_id |
|
dtype: int64 |
|
- name: iscrowd |
|
dtype: int64 |
|
- name: area |
|
dtype: float64 |
|
- name: bbox |
|
sequence: float64 |
|
length: 4 |
|
- name: segmentation |
|
sequence: |
|
sequence: int64 |
|
- name: image_id |
|
dtype: int64 |
|
- name: filename |
|
dtype: string |
|
splits: |
|
- name: daylight |
|
num_bytes: 53998347 |
|
num_examples: 296 |
|
- name: indoorlight |
|
num_bytes: 23086697 |
|
num_examples: 118 |
|
- name: infrared |
|
num_bytes: 11752283 |
|
num_examples: 90 |
|
- name: train |
|
num_bytes: 80432409 |
|
num_examples: 454 |
|
- name: test |
|
num_bytes: 8404918 |
|
num_examples: 50 |
|
download_size: 177400440 |
|
dataset_size: 177674654 |
|
- config_name: 2_side |
|
features: |
|
- name: image |
|
dtype: image |
|
- name: width |
|
dtype: int64 |
|
- name: height |
|
dtype: int64 |
|
- name: n_cows |
|
dtype: int64 |
|
- name: annotations |
|
sequence: |
|
- name: id |
|
dtype: int64 |
|
- name: image_id |
|
dtype: int64 |
|
- name: category_id |
|
dtype: int64 |
|
- name: iscrowd |
|
dtype: int64 |
|
- name: area |
|
dtype: float64 |
|
- name: bbox |
|
sequence: float64 |
|
length: 4 |
|
- name: segmentation |
|
sequence: |
|
sequence: int64 |
|
- name: image_id |
|
dtype: int64 |
|
- name: filename |
|
dtype: string |
|
splits: |
|
- name: daylight |
|
num_bytes: 36621130 |
|
num_examples: 290 |
|
- name: indoorlight |
|
num_bytes: 14910133 |
|
num_examples: 113 |
|
- name: infrared |
|
num_bytes: 3880850 |
|
num_examples: 97 |
|
- name: train |
|
num_bytes: 49888354 |
|
num_examples: 450 |
|
- name: test |
|
num_bytes: 5523758 |
|
num_examples: 50 |
|
download_size: 110254324 |
|
dataset_size: 110824225 |
|
- config_name: 3_external |
|
features: |
|
- name: image |
|
dtype: image |
|
- name: width |
|
dtype: int64 |
|
- name: height |
|
dtype: int64 |
|
- name: n_cows |
|
dtype: int64 |
|
- name: annotations |
|
sequence: |
|
- name: id |
|
dtype: int64 |
|
- name: image_id |
|
dtype: int64 |
|
- name: category_id |
|
dtype: int64 |
|
- name: iscrowd |
|
dtype: int64 |
|
- name: area |
|
dtype: float64 |
|
- name: bbox |
|
sequence: float64 |
|
length: 4 |
|
- name: segmentation |
|
sequence: |
|
sequence: int64 |
|
- name: image_id |
|
dtype: int64 |
|
- name: filename |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 30382759 |
|
num_examples: 200 |
|
- name: test |
|
num_bytes: 7430774 |
|
num_examples: 50 |
|
download_size: 37623678 |
|
dataset_size: 37813533 |
|
- config_name: a1_t2s |
|
features: |
|
- name: image |
|
dtype: image |
|
- name: width |
|
dtype: int64 |
|
- name: height |
|
dtype: int64 |
|
- name: n_cows |
|
dtype: int64 |
|
- name: annotations |
|
sequence: |
|
- name: id |
|
dtype: int64 |
|
- name: image_id |
|
dtype: int64 |
|
- name: category_id |
|
dtype: int64 |
|
- name: iscrowd |
|
dtype: int64 |
|
- name: area |
|
dtype: float64 |
|
- name: bbox |
|
sequence: float64 |
|
length: 4 |
|
- name: segmentation |
|
sequence: |
|
sequence: int64 |
|
- name: image_id |
|
dtype: int64 |
|
- name: filename |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 88837326 |
|
num_examples: 504 |
|
- name: test |
|
num_bytes: 5523758 |
|
num_examples: 50 |
|
download_size: 94192043 |
|
dataset_size: 94361084 |
|
- config_name: a2_s2t |
|
features: |
|
- name: image |
|
dtype: image |
|
- name: width |
|
dtype: int64 |
|
- name: height |
|
dtype: int64 |
|
- name: n_cows |
|
dtype: int64 |
|
- name: annotations |
|
sequence: |
|
- name: id |
|
dtype: int64 |
|
- name: image_id |
|
dtype: int64 |
|
- name: category_id |
|
dtype: int64 |
|
- name: iscrowd |
|
dtype: int64 |
|
- name: area |
|
dtype: float64 |
|
- name: bbox |
|
sequence: float64 |
|
length: 4 |
|
- name: segmentation |
|
sequence: |
|
sequence: int64 |
|
- name: image_id |
|
dtype: int64 |
|
- name: filename |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 55412111 |
|
num_examples: 500 |
|
- name: test |
|
num_bytes: 8404918 |
|
num_examples: 50 |
|
download_size: 63528042 |
|
dataset_size: 63817029 |
|
- config_name: b_light |
|
features: |
|
- name: image |
|
dtype: image |
|
- name: width |
|
dtype: int64 |
|
- name: height |
|
dtype: int64 |
|
- name: n_cows |
|
dtype: int64 |
|
- name: annotations |
|
sequence: |
|
- name: id |
|
dtype: int64 |
|
- name: image_id |
|
dtype: int64 |
|
- name: category_id |
|
dtype: int64 |
|
- name: iscrowd |
|
dtype: int64 |
|
- name: area |
|
dtype: float64 |
|
- name: bbox |
|
sequence: float64 |
|
length: 4 |
|
- name: segmentation |
|
sequence: |
|
sequence: int64 |
|
- name: image_id |
|
dtype: int64 |
|
- name: filename |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 76120383 |
|
num_examples: 500 |
|
- name: test |
|
num_bytes: 6280763 |
|
num_examples: 50 |
|
download_size: 82127375 |
|
dataset_size: 82401146 |
|
- config_name: c_external |
|
features: |
|
- name: image |
|
dtype: image |
|
- name: width |
|
dtype: int64 |
|
- name: height |
|
dtype: int64 |
|
- name: n_cows |
|
dtype: int64 |
|
- name: annotations |
|
sequence: |
|
- name: id |
|
dtype: int64 |
|
- name: image_id |
|
dtype: int64 |
|
- name: category_id |
|
dtype: int64 |
|
- name: iscrowd |
|
dtype: int64 |
|
- name: area |
|
dtype: float64 |
|
- name: bbox |
|
sequence: float64 |
|
length: 4 |
|
- name: segmentation |
|
sequence: |
|
sequence: int64 |
|
- name: image_id |
|
dtype: int64 |
|
- name: filename |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 144104201.292 |
|
num_examples: 1004 |
|
- name: test |
|
num_bytes: 7430774 |
|
num_examples: 50 |
|
download_size: 151218220 |
|
dataset_size: 151534975.292 |
|
configs: |
|
- config_name: 0_all |
|
data_files: |
|
- split: train |
|
path: 0_all/train-* |
|
- split: test |
|
path: 0_all/test-* |
|
- config_name: 1_top |
|
data_files: |
|
- split: daylight |
|
path: 1_top/daylight-* |
|
- split: indoorlight |
|
path: 1_top/indoorlight-* |
|
- split: infrared |
|
path: 1_top/infrared-* |
|
- split: train |
|
path: 1_top/train-* |
|
- split: test |
|
path: 1_top/test-* |
|
- config_name: 2_side |
|
data_files: |
|
- split: daylight |
|
path: 2_side/daylight-* |
|
- split: indoorlight |
|
path: 2_side/indoorlight-* |
|
- split: infrared |
|
path: 2_side/infrared-* |
|
- split: train |
|
path: 2_side/train-* |
|
- split: test |
|
path: 2_side/test-* |
|
- config_name: 3_external |
|
data_files: |
|
- split: train |
|
path: 3_external/train-* |
|
- split: test |
|
path: 3_external/test-* |
|
- config_name: a1_t2s |
|
data_files: |
|
- split: train |
|
path: a1_t2s/train-* |
|
- split: test |
|
path: a1_t2s/test-* |
|
- config_name: a2_s2t |
|
data_files: |
|
- split: train |
|
path: a2_s2t/train-* |
|
- split: test |
|
path: a2_s2t/test-* |
|
- config_name: b_light |
|
data_files: |
|
- split: train |
|
path: b_light/train-* |
|
- split: test |
|
path: b_light/test-* |
|
- config_name: c_external |
|
data_files: |
|
- split: train |
|
path: c_external/train-* |
|
- split: test |
|
path: c_external/test-* |
|
license: mit |
|
task_categories: |
|
- object-detection |
|
tags: |
|
- biology |
|
pretty_name: COLO |
|
size_categories: |
|
- 1K<n<10K |
|
--- |
|
|
|
# COw LOcalization (COLO) Dataset |
|
|
|
The COw LOcalization (COLO) dataset is designed to localize cows in various indoor environments using different lighting conditions and view angles. This dataset offers 1,254 images and 11,818 cow instances, serving as a benchmark for the precision livestock farming community. |
|
|
|
![COLO](figure_1.jpg) |
|
|
|
## Dataset Configurations |
|
|
|
<style> |
|
table { |
|
width: 50%; |
|
margin-left: auto; |
|
margin-right: auto; |
|
} |
|
</style> |
|
|
|
|
|
| **Configuration** | **Training Split** | **Testing Split** | |
|
|:------------------|:-------------------|:---------------------| |
|
| _0_all_ | Top-View + Side-View | Top-View + Side-View| |
|
| _1_top_ | Top-View | Top-View | |
|
| _2_side_ | Side-View | Side-View | |
|
| _3_external_ | External | External | |
|
| _a1_t2s_ | Top-View | Side-View | |
|
| _a2_s2t_ | Side-View | Top-View | |
|
| _b_light_ | Daylight | Indoor + NIR | |
|
| _c_external_ | Top-View + Side-View | External | |
|
|
|
|
|
## Download the Dataset |
|
|
|
To download the dataset, you need to have the required Python dependencies installed. You can install them using either of the following commands: |
|
|
|
```sh |
|
python -m pip install pyniche |
|
``` |
|
or |
|
|
|
```sh |
|
pip install pyniche |
|
``` |
|
|
|
Once the dependencies are installed, use the Python console to provide the download destination folder in the `root` parameter and specify the export data format in the `format` parameter: |
|
|
|
```python |
|
from pyniche.data.download import COLO |
|
|
|
# Example: Download COLO in the YOLO format |
|
COLO( |
|
root="download/yolo", # Destination folder |
|
format="yolo", # Data format |
|
) |
|
|
|
# Example: Download COLO in the COCO format |
|
COLO( |
|
root="download/coco", # Destination folder |
|
format="coco", # Data format |
|
) |
|
``` |
|
|
|
## Citation |
|
|
|
|
|
[The page of the arXiv article](https://arxiv.org/abs/2407.20372) |
|
|
|
```bibtex |
|
@misc{das2024model, |
|
title={A Model Generalization Study in Localizing Indoor Cows with COw LOcalization (COLO) dataset}, |
|
author={Mautushi Das and Gonzalo Ferreira and C. P. James Chen}, |
|
year={2024}, |
|
eprint={2407.20372}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CV} |
|
} |
|
``` |
|
|
|
or |
|
|
|
Das, M., Ferreira, G., & Chen, C. P. J. (2024). A Model Generalization Study in Localizing Indoor Cows with COw LOcalization (COLO) dataset. arXiv preprint arXiv:2407.20372 |
|
|
|
--- |
|
|
|
|
|
|