Datasets:
Tasks:
Token Classification
Modalities:
Text
Sub-tasks:
named-entity-recognition
Languages:
Spanish
Size:
10K - 100K
License:
metadata
annotations_creators:
- expert-generated
languages:
- es
multilinguality:
- monolingual
task_categories:
- text-classification
- multi-label-text-classification
task_ids:
- named-entity-recognition
PharmaCoNER Corpus
BibTeX citation
If you use these resources in your work, please cite the following paper:
TO DO
Digital Object Identifier (DOI) and access to dataset files
https://zenodo.org/record/4270158#.YTnXP0MzY0F
Introduction
TO DO: This is a dataset for Named Entity Recognition (NER) from...
Supported Tasks and Leaderboards
Named Entities Recognition, Language Model
Languages
ES - Spanish
Directory structure
- pharmaconer.py
- dev.conll
- test.conll
- train.conll
- README.md
Dataset Structure
Data Instances
Three four-column files, one for each split.
Data Fields
Every file has four columns:
- 1st column: Word form or punctuation symbol
- 2nd column: Original BRAT file name
- 3rd column: Spans
- 4th column: IOB tag
Example:
La S0004-06142006000900008-1 123_125 O paciente S0004-06142006000900008-1 126_134 O tenía S0004-06142006000900008-1 135_140 O antecedentes S0004-06142006000900008-1 141_153 O de S0004-06142006000900008-1 154_156 O hipotiroidismo S0004-06142006000900008-1 157_171 O , S0004-06142006000900008-1 171_172 O hipertensión S0004-06142006000900008-1 173_185 O arterial S0004-06142006000900008-1 186_194 O en S0004-06142006000900008-1 195_197 O tratamiento S0004-06142006000900008-1 198_209 O habitual S0004-06142006000900008-1 210_218 O con S0004-06142006000900008-1 219-222 O atenolol S0004-06142006000900008-1 223_231 B-NORMALIZABLES y S0004-06142006000900008-1 232_233 O enalapril S0004-06142006000900008-1 234_243 B-NORMALIZABLES
Data Splits
- train: 8,074 tokens
- development: 3,764 tokens
- test: 3,931 tokens
Dataset Creation
Methodology
TO DO
Curation Rationale
For compatibility with similar datasets in other languages, we followed as close as possible existing curation guidelines.
Source Data
Initial Data Collection and Normalization
TO DO
Who are the source language producers?
TO DO
Annotations
Annotation process
TO DO
Who are the annotators?
TO DO
Dataset Curators
TO DO: Martin?
Personal and Sensitive Information
No personal or sensitive information included.
Contact
TO DO: Casimiro?
License
This work is licensed under a Attribution 4.0 International License.