configs:
- config_name: crag_task_1_and_2_subset_1
data_files: subset/crag_task_1_and_2/crag_task_1_and_2_dev_v4_subset_1.jsonl.bz2
- config_name: crag_task_1_and_2_subset_2
data_files: subset/crag_task_1_and_2/crag_task_1_and_2_dev_v4_subset_2.jsonl.bz2
- config_name: crag_task_1_and_2_subset_3
data_files: subset/crag_task_1_and_2/crag_task_1_and_2_dev_v4_subset_3.jsonl.bz2
- config_name: crag_task_1_and_2_subset_4
data_files: subset/crag_task_1_and_2/crag_task_1_and_2_dev_v4_subset_4.jsonl.bz2
- config_name: crag_task_1_and_2_subset_5
data_files: subset/crag_task_1_and_2/crag_task_1_and_2_dev_v4_subset_5.jsonl.bz2
- config_name: crag_task_1_and_2_subset_6
data_files: subset/crag_task_1_and_2/crag_task_1_and_2_dev_v4_subset_6.jsonl.bz2
- config_name: crag_task_1_and_2_subset_7
data_files: subset/crag_task_1_and_2/crag_task_1_and_2_dev_v4_subset_7.jsonl.bz2
- config_name: crag_task_1_and_2_subset_8
data_files: subset/crag_task_1_and_2/crag_task_1_and_2_dev_v4_subset_8.jsonl.bz2
- config_name: crag_task_1_and_2_subset_9
data_files: subset/crag_task_1_and_2/crag_task_1_and_2_dev_v4_subset_9.jsonl.bz2
- config_name: crag_task_1_and_2_subset_10
data_files: subset/crag_task_1_and_2/crag_task_1_and_2_dev_v4_subset_10.jsonl.bz2
- config_name: crag_task_1_and_2_subset_11
data_files: subset/crag_task_1_and_2/crag_task_1_and_2_dev_v4_subset_11.jsonl.bz2
- config_name: crag_task_1_and_2_subset_12
data_files: subset/crag_task_1_and_2/crag_task_1_and_2_dev_v4_subset_12.jsonl.bz2
- config_name: crag_task_1_and_2_subset_13
data_files: subset/crag_task_1_and_2/crag_task_1_and_2_dev_v4_subset_13.jsonl.bz2
- config_name: crag_task_1_and_2_subset_14
data_files: subset/crag_task_1_and_2/crag_task_1_and_2_dev_v4_subset_14.jsonl.bz2
- config_name: crag_task_1_and_2_subset_15
data_files: subset/crag_task_1_and_2/crag_task_1_and_2_dev_v4_subset_15.jsonl.bz2
- config_name: crag_task_1_and_2_subset_16
data_files: subset/crag_task_1_and_2/crag_task_1_and_2_dev_v4_subset_16.jsonl.bz2
- config_name: crag_task_1_and_2_subset_17
data_files: subset/crag_task_1_and_2/crag_task_1_and_2_dev_v4_subset_17.jsonl.bz2
- config_name: crag_task_1_and_2_subset_18
data_files: subset/crag_task_1_and_2/crag_task_1_and_2_dev_v4_subset_18.jsonl.bz2
- config_name: crag_task_1_and_2_subset_19
data_files: subset/crag_task_1_and_2/crag_task_1_and_2_dev_v4_subset_19.jsonl.bz2
- config_name: crag_task_1_and_2_subset_20
data_files: subset/crag_task_1_and_2/crag_task_1_and_2_dev_v4_subset_20.jsonl.bz2
license: cc-by-nc-4.0
task_categories:
- question-answering
- summarization
language:
- en
tags:
- music
- finance
size_categories:
- 1K<n<10K
pretty_name: CRA
Datasets are taken from Facebook's CRAG: Comprehensive RAG Benchmark, see their arXiv paper for details about the dataset construction.
CRAG Sampler
We have added a simple Python tool for performing stratified sampling on CRAG data.
Installation
Local Development Install (Recommended)
git clone https://huggingface.co/Quivr/CRAG.git
cd CRAG
pip install -r requirements.txt # Install dependencies
pip install -e . # Install package in development mode
Quick Start
Running the example
python -m examples.basic_sampling
CRAG dataset
CRAG (Comprehensive RAG Benchmark) is a rich and comprehensive factual question answering benchmark designed to advance research in RAG. The public version of the dataset includes:
- 2706 Question-Answer pairs
- 5 domains: Finance, Sports, Music, Movie, and Open domain
- 8 types of questions (see image below): simple, simple with condition, set, comparison, aggregation, multi-hop, post-processing heavy, and false premise
The datasets crag_task_1_and_2_dev_v4_subsample_*.json.bz2
have been created from the dataset crag_task_1_and_2_dev_v4.jsonl.bz2 available on CRAG's GitHub repository.
For an easier handling and download of the dataset, we have used our CRAG sampler to split the 2706 rows of the original file in 5 subsamples, following the procedure below:
- We have created a new label
answer_type
, classifying the answers in 3 categories:invalid
for any answer == "invalid question"no_answer
for any answer == "i don't know"valid
for any other answer
- We have considered the labels
answer_type
,domain
,question_type
andstatic_or_dynamic
and performed stratified sampling, splitting the datasets in 5 subsamples. Each subsample has thus the same statistical properties of the full dataset.
We report below the data schema as provided in CRAG's GitHub repository.
Data Schema
Field Name | Type | Description |
---|---|---|
interaction_id |
string | A unique identifier for each example. |
query_time |
string | Date and time when the query and the web search occurred. |
domain |
string | Domain label for the query. Possible values: "finance", "music", "movie", "sports", "open". "Open" includes any factual queries not among the previous four domains. |
question_type |
string | Type label about the query. Possible values include: "simple", "simple_w_condition", "comparison", "aggregation", "set", "false_premise", "post-processing", "multi-hop". |
static_or_dynamic |
string | Indicates whether the answer to a question changes and the expected rate of change. Possible values: "static", "slow-changing", "fast-changing", and "real-time". |
query |
string | The question for RAG to answer. |
answer |
string | The gold standard answer to the question. |
alt_ans |
list | Other valid gold standard answers to the question. |
split |
integer | Data split indicator, where 0 is for validation and 1 is for the public test. |
search_results |
list of JSON | Contains up to k HTML pages for each query (k=5 for Task #1 and k=50 for Task #3), including page name, URL, snippet, full HTML, and last modified time. |
Search Results Detail
Key | Type | Description |
---|---|---|
page_name |
string | The name of the webpage. |
page_url |
string | The URL of the webpage. |
page_snippet |
string | A short paragraph describing the major content of the page. |
page_result |
string | The full HTML of the webpage. |
page_last_modified |
string | The time when the page was last modified. |