|
--- |
|
configs: |
|
- config_name: crag_task_1_and_2_subset_1 |
|
data_files: subset/crag_task_1_and_2/crag_task_1_and_2_dev_v4_subset_1.jsonl.bz2 |
|
- config_name: crag_task_1_and_2_subset_2 |
|
data_files: subset/crag_task_1_and_2/crag_task_1_and_2_dev_v4_subset_2.jsonl.bz2 |
|
- config_name: crag_task_1_and_2_subset_3 |
|
data_files: subset/crag_task_1_and_2/crag_task_1_and_2_dev_v4_subset_3.jsonl.bz2 |
|
- config_name: crag_task_1_and_2_subset_4 |
|
data_files: subset/crag_task_1_and_2/crag_task_1_and_2_dev_v4_subset_4.jsonl.bz2 |
|
- config_name: crag_task_1_and_2_subset_5 |
|
data_files: subset/crag_task_1_and_2/crag_task_1_and_2_dev_v4_subset_5.jsonl.bz2 |
|
- config_name: crag_task_1_and_2_subset_6 |
|
data_files: subset/crag_task_1_and_2/crag_task_1_and_2_dev_v4_subset_6.jsonl.bz2 |
|
- config_name: crag_task_1_and_2_subset_7 |
|
data_files: subset/crag_task_1_and_2/crag_task_1_and_2_dev_v4_subset_7.jsonl.bz2 |
|
- config_name: crag_task_1_and_2_subset_8 |
|
data_files: subset/crag_task_1_and_2/crag_task_1_and_2_dev_v4_subset_8.jsonl.bz2 |
|
- config_name: crag_task_1_and_2_subset_9 |
|
data_files: subset/crag_task_1_and_2/crag_task_1_and_2_dev_v4_subset_9.jsonl.bz2 |
|
- config_name: crag_task_1_and_2_subset_10 |
|
data_files: subset/crag_task_1_and_2/crag_task_1_and_2_dev_v4_subset_10.jsonl.bz2 |
|
- config_name: crag_task_1_and_2_subset_11 |
|
data_files: subset/crag_task_1_and_2/crag_task_1_and_2_dev_v4_subset_11.jsonl.bz2 |
|
- config_name: crag_task_1_and_2_subset_12 |
|
data_files: subset/crag_task_1_and_2/crag_task_1_and_2_dev_v4_subset_12.jsonl.bz2 |
|
- config_name: crag_task_1_and_2_subset_13 |
|
data_files: subset/crag_task_1_and_2/crag_task_1_and_2_dev_v4_subset_13.jsonl.bz2 |
|
- config_name: crag_task_1_and_2_subset_14 |
|
data_files: subset/crag_task_1_and_2/crag_task_1_and_2_dev_v4_subset_14.jsonl.bz2 |
|
- config_name: crag_task_1_and_2_subset_15 |
|
data_files: subset/crag_task_1_and_2/crag_task_1_and_2_dev_v4_subset_15.jsonl.bz2 |
|
- config_name: crag_task_1_and_2_subset_16 |
|
data_files: subset/crag_task_1_and_2/crag_task_1_and_2_dev_v4_subset_16.jsonl.bz2 |
|
- config_name: crag_task_1_and_2_subset_17 |
|
data_files: subset/crag_task_1_and_2/crag_task_1_and_2_dev_v4_subset_17.jsonl.bz2 |
|
- config_name: crag_task_1_and_2_subset_18 |
|
data_files: subset/crag_task_1_and_2/crag_task_1_and_2_dev_v4_subset_18.jsonl.bz2 |
|
- config_name: crag_task_1_and_2_subset_19 |
|
data_files: subset/crag_task_1_and_2/crag_task_1_and_2_dev_v4_subset_19.jsonl.bz2 |
|
- config_name: crag_task_1_and_2_subset_20 |
|
data_files: subset/crag_task_1_and_2/crag_task_1_and_2_dev_v4_subset_20.jsonl.bz2 |
|
license: cc-by-nc-4.0 |
|
task_categories: |
|
- question-answering |
|
- summarization |
|
language: |
|
- en |
|
tags: |
|
- music |
|
- finance |
|
size_categories: |
|
- 1K<n<10K |
|
pretty_name: CRA |
|
--- |
|
|
|
Datasets are taken from Facebook's [CRAG: Comprehensive RAG Benchmark](https://github.com/facebookresearch/CRAG), see their [arXiv paper](https://arxiv.org/abs/2406.04744) for details about the dataset construction. |
|
|
|
# CRAG Sampler |
|
|
|
We have added a simple Python tool for performing stratified sampling on CRAG data. |
|
|
|
## Installation |
|
|
|
### Local Development Install (Recommended) |
|
```bash |
|
git clone https://huggingface.co/Quivr/CRAG.git |
|
cd CRAG |
|
pip install -r requirements.txt # Install dependencies |
|
pip install -e . # Install package in development mode |
|
``` |
|
|
|
## Quick Start |
|
|
|
### Running the example |
|
|
|
```bash |
|
python -m examples.basic_sampling |
|
``` |
|
|
|
# CRAG dataset |
|
|
|
CRAG (Comprehensive RAG Benchmark) is a rich and comprehensive factual question answering benchmark designed to advance research in RAG. The public version of the dataset includes: |
|
- 2706 Question-Answer pairs |
|
- 5 domains: Finance, Sports, Music, Movie, and Open domain |
|
- 8 types of questions (see image below): simple, simple with condition, set, comparison, aggregation, multi-hop, post-processing heavy, and false premise |
|
|
|
 |
|
|
|
The datasets `crag_task_1_and_2_dev_v4_subsample_*.json.bz2` have been created from the dataset [crag_task_1_and_2_dev_v4.jsonl.bz2](https://github.com/facebookresearch/CRAG/raw/refs/heads/main/data/crag_task_1_and_2_dev_v4.jsonl.bz2?download=) available on CRAG's GitHub repository. |
|
For an easier handling and download of the dataset, we have used our CRAG sampler to split the 2706 rows of the original file in 5 subsamples, following the procedure below: |
|
1. We have created a new label `answer_type`, classifying the answers in 3 categories: |
|
- `invalid` for any answer == "invalid question" |
|
- `no_answer` for any answer == "i don't know" |
|
- `valid` for any other answer |
|
2. We have considered the labels `answer_type`, `domain`, `question_type` and `static_or_dynamic` and performed stratified sampling, splitting the datasets in 5 subsamples. Each subsample has thus the same statistical properties of the full dataset. |
|
|
|
We report below the data schema as provided in [CRAG's GitHub repository](https://github.com/facebookresearch/CRAG/blob/main/docs/dataset.md). |
|
|
|
## Data Schema |
|
|
|
| Field Name | Type | Description | |
|
|------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| `interaction_id` | string | A unique identifier for each example. | |
|
| `query_time` | string | Date and time when the query and the web search occurred. | |
|
| `domain` | string | Domain label for the query. Possible values: "finance", "music", "movie", "sports", "open". "Open" includes any factual queries not among the previous four domains. | |
|
| `question_type` | string | Type label about the query. Possible values include: "simple", "simple_w_condition", "comparison", "aggregation", "set", "false_premise", "post-processing", "multi-hop". | |
|
| `static_or_dynamic` | string | Indicates whether the answer to a question changes and the expected rate of change. Possible values: "static", "slow-changing", "fast-changing", and "real-time". | |
|
| `query` | string | The question for RAG to answer. | |
|
| `answer` | string | The gold standard answer to the question. | |
|
| `alt_ans` | list | Other valid gold standard answers to the question. | |
|
| `split` | integer | Data split indicator, where 0 is for validation and 1 is for the public test. | |
|
| `search_results` | list of JSON | Contains up to `k` HTML pages for each query (`k=5` for Task #1 and `k=50` for Task #3), including page name, URL, snippet, full HTML, and last modified time. | |
|
|
|
### Search Results Detail |
|
|
|
| Key | Type | Description | |
|
|----------------------|--------|---------------------------------------------------------| |
|
| `page_name` | string | The name of the webpage. | |
|
| `page_url` | string | The URL of the webpage. | |
|
| `page_snippet` | string | A short paragraph describing the major content of the page. | |
|
| `page_result` | string | The full HTML of the webpage. | |
|
| `page_last_modified` | string | The time when the page was last modified. | |