File size: 6,838 Bytes
5753b4a ae98cf6 5753b4a ae98cf6 5753b4a c79a262 5753b4a c79a262 5753b4a c79a262 ae98cf6 c79a262 ae98cf6 5753b4a c79a262 5753b4a c79a262 ae98cf6 c7e902c ae98cf6 5753b4a ae98cf6 5753b4a ae98cf6 c7e902c ae98cf6 c7e902c c79a262 c7e902c 5753b4a c79a262 f5d9f91 c7e902c f5d9f91 acd0763 74372b4 acd0763 c79a262 acd0763 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
import datasets
logger = datasets.logging.get_logger(__name__)
_CITATION = """\
@InProceedings{mutinda2022pico,
title = {PICO Corpus: A Publicly Available Corpus to Support Automatic Data Extraction from Biomedical Literature},
author = {Mutinda, Faith and Liew, Kongmeng and Yada, Shuntaro and Wakamiya, Shoko and Aramaki, Eiji},
booktitle = {Proceedings of the first Workshop on Information Extraction from Scientific Publications},
pages = {26--31},
year = {2022}
}
"""
_DESCRIPTION = """\
The corpus consists of about 1,011 PubMed abstracts which are RCTs related
to breast cancer. For each abstract, text snippets that identify the
Participants, Intervention, Control, and Outcome (PICO elements) are annotated.
The abstracts were annotated using BRAT (https://brat.nlplab.org/) and later
converted to CoNLL-2003.
"""
_URL = "https://raw.githubusercontent.com/Martin-Masson/pico-breast-cancer/main/pico_conll/"
_TRAINING_FILE = "train.txt"
_DEV_FILE = "dev.txt"
_TEST_FILE = "test.txt"
class PicoBreastCancerConfig(datasets.BuilderConfig):
"""BuilderConfig for PicoBreastCancer"""
def __init__(self, **kwargs):
"""BuilderConfig for PicoBreastCancer.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(PicoBreastCancerConfig, self).__init__(**kwargs)
class PicoBreastCancer(datasets.GeneratorBasedBuilder):
"""A corpus of about 1,011 PubMed abstracts from RCTs related to breast cancer."""
BUILDER_CONFIGS = [
PicoBreastCancerConfig(name="pico-breast-cancer", version=datasets.Version("1.0.0"), description="A corpus of about 1,011 PubMed abstracts from RCTs related to breast cancer."),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("string"),
"tokens": datasets.Sequence(datasets.Value("string")),
"ner_tags": datasets.Sequence(
datasets.features.ClassLabel(
names=[
"O",
"B-total-participants",
"I-total-participants",
"B-intervention-participants",
"I-intervention-participants",
"B-control-participants",
"I-control-participants",
"B-age",
"I-age",
"B-eligibility",
"I-eligibility",
"B-ethinicity",
"I-ethinicity",
"B-condition",
"I-condition",
"B-location",
"I-location",
"B-intervention",
"I-intervention",
"B-control",
"I-control",
"B-outcome",
"I-outcome",
"B-outcome-measure",
"I-outcome-measure",
"B-iv-bin-abs",
"I-iv-bin-abs",
"B-cv-bin-abs",
"I-cv-bin-abs",
"B-iv-bin-percent",
"I-iv-bin-percent",
"B-cv-bin-percent",
"I-cv-bin-percent",
"B-iv-cont-mean",
"I-iv-cont-mean",
"B-cv-cont-mean",
"I-cv-cont-mean",
"B-iv-cont-median",
"I-iv-cont-median",
"B-cv-cont-median",
"I-cv-cont-median",
"B-iv-cont-sd",
"I-iv-cont-sd",
"B-cv-cont-sd",
"I-cv-cont-sd",
"B-iv-cont-q1",
"I-iv-cont-q1",
"B-cv-cont-q1",
"I-cv-cont-q1",
"B-iv-cont-q3",
"I-iv-cont-q3",
"B-cv-cont-q3",
"I-cv-cont-q3",
]
)
),
}
),
supervised_keys=None,
homepage="https://github.com/Martin-Masson/pico-corpus",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
urls_to_download = {
"train": f"{_URL}{_TRAINING_FILE}",
"dev": f"{_URL}{_DEV_FILE}",
"test": f"{_URL}{_TEST_FILE}",
}
downloaded_files = dl_manager.download_and_extract(urls_to_download)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
]
def _generate_examples(self, filepath):
logger.info("⏳ Generating examples from = %s", filepath)
with open(filepath, encoding="utf-8") as f:
idx = 0
tokens = []
ner_tags = []
for line in f:
if line.startswith("-DOCSTART-") or line == "" or line == "\n":
if tokens:
yield idx, {
"id": str(idx),
"tokens": tokens,
"ner_tags": ner_tags,
}
idx += 1
tokens = []
ner_tags = []
else:
# conll2003 tokens are space separated
splits = line.rstrip().rsplit(" ", 1)
tokens.append(splits[0])
ner_tags.append(splits[1])
# last example
if tokens:
yield idx, {
"id": str(idx),
"tokens": tokens,
"ner_tags": ner_tags,
}
|