File size: 6,838 Bytes
5753b4a
 
 
ae98cf6
 
 
5753b4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae98cf6
 
 
 
5753b4a
 
c79a262
 
 
 
 
 
 
 
 
 
 
5753b4a
 
 
c79a262
 
 
5753b4a
 
 
 
 
 
c79a262
 
ae98cf6
 
c79a262
ae98cf6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5753b4a
 
 
c79a262
5753b4a
 
 
 
c79a262
ae98cf6
 
 
 
c7e902c
ae98cf6
5753b4a
 
ae98cf6
 
 
5753b4a
 
 
ae98cf6
c7e902c
ae98cf6
 
 
c7e902c
 
 
 
 
 
c79a262
c7e902c
 
 
 
5753b4a
c79a262
f5d9f91
c7e902c
f5d9f91
acd0763
 
74372b4
 
acd0763
c79a262
acd0763
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import datasets


logger = datasets.logging.get_logger(__name__)


_CITATION = """\
@InProceedings{mutinda2022pico,
  title = {PICO Corpus: A Publicly Available Corpus to Support Automatic Data Extraction from Biomedical Literature},
  author = {Mutinda, Faith and Liew, Kongmeng and Yada, Shuntaro and Wakamiya, Shoko and Aramaki, Eiji},
  booktitle = {Proceedings of the first Workshop on Information Extraction from Scientific Publications},
  pages = {26--31},
  year = {2022}
}
"""

_DESCRIPTION = """\
The corpus consists of about 1,011 PubMed abstracts which are RCTs related
to breast cancer. For each abstract, text snippets that identify the
Participants, Intervention, Control, and Outcome (PICO elements) are annotated.
The abstracts were annotated using BRAT (https://brat.nlplab.org/) and later
converted to CoNLL-2003.
"""

_URL = "https://raw.githubusercontent.com/Martin-Masson/pico-breast-cancer/main/pico_conll/"
_TRAINING_FILE = "train.txt"
_DEV_FILE = "dev.txt"
_TEST_FILE = "test.txt"


class PicoBreastCancerConfig(datasets.BuilderConfig):
    """BuilderConfig for PicoBreastCancer"""

    def __init__(self, **kwargs):
        """BuilderConfig for PicoBreastCancer.
        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(PicoBreastCancerConfig, self).__init__(**kwargs)


class PicoBreastCancer(datasets.GeneratorBasedBuilder):
    """A corpus of about 1,011 PubMed abstracts from RCTs related to breast cancer."""

    BUILDER_CONFIGS = [
        PicoBreastCancerConfig(name="pico-breast-cancer", version=datasets.Version("1.0.0"), description="A corpus of about 1,011 PubMed abstracts from RCTs related to breast cancer."),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "tokens": datasets.Sequence(datasets.Value("string")),
                    "ner_tags": datasets.Sequence(
                        datasets.features.ClassLabel(
                            names=[
                                "O",
                                "B-total-participants",
                                "I-total-participants",
                                "B-intervention-participants",
                                "I-intervention-participants",
                                "B-control-participants",
                                "I-control-participants",
                                "B-age",
                                "I-age",
                                "B-eligibility",
                                "I-eligibility",
                                "B-ethinicity",
                                "I-ethinicity",
                                "B-condition",
                                "I-condition",
                                "B-location",
                                "I-location",
                                "B-intervention",
                                "I-intervention",
                                "B-control",
                                "I-control",
                                "B-outcome",
                                "I-outcome",
                                "B-outcome-measure",
                                "I-outcome-measure",
                                "B-iv-bin-abs",
                                "I-iv-bin-abs",
                                "B-cv-bin-abs",
                                "I-cv-bin-abs",
                                "B-iv-bin-percent",
                                "I-iv-bin-percent",
                                "B-cv-bin-percent",
                                "I-cv-bin-percent",
                                "B-iv-cont-mean",
                                "I-iv-cont-mean",
                                "B-cv-cont-mean",
                                "I-cv-cont-mean",
                                "B-iv-cont-median",
                                "I-iv-cont-median",
                                "B-cv-cont-median",
                                "I-cv-cont-median",
                                "B-iv-cont-sd",
                                "I-iv-cont-sd",
                                "B-cv-cont-sd",
                                "I-cv-cont-sd",
                                "B-iv-cont-q1",
                                "I-iv-cont-q1",
                                "B-cv-cont-q1",
                                "I-cv-cont-q1",
                                "B-iv-cont-q3",
                                "I-iv-cont-q3",
                                "B-cv-cont-q3",
                                "I-cv-cont-q3",
                            ]
                        )
                    ),
                }
            ),
            supervised_keys=None,
            homepage="https://github.com/Martin-Masson/pico-corpus",
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        urls_to_download = {
            "train": f"{_URL}{_TRAINING_FILE}",
            "dev": f"{_URL}{_DEV_FILE}",
            "test": f"{_URL}{_TEST_FILE}",
        }
        downloaded_files = dl_manager.download_and_extract(urls_to_download)

        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
            datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
            datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
        ]

    def _generate_examples(self, filepath):
        logger.info("⏳ Generating examples from = %s", filepath)
        with open(filepath, encoding="utf-8") as f:
            idx = 0
            tokens = []
            ner_tags = []
            for line in f:
                if line.startswith("-DOCSTART-") or line == "" or line == "\n":
                    if tokens:
                        yield idx, {
                            "id": str(idx),
                            "tokens": tokens,
                            "ner_tags": ner_tags,
                        }
                        idx += 1
                        tokens = []
                        ner_tags = []
                else:
                    # conll2003 tokens are space separated
                    splits = line.rstrip().rsplit(" ", 1)
                    tokens.append(splits[0])
                    ner_tags.append(splits[1])
            # last example
            if tokens:
                yield idx, {
                    "id": str(idx),
                    "tokens": tokens,
                    "ner_tags": ner_tags,
                }