Datasets:
metadata
dataset_info:
features:
- name: text
dtype: string
- name: label
dtype: string
- name: source
dtype: string
- name: domain
dtype: string
- name: language
dtype: string
splits:
- name: train
num_bytes: 1364685913
num_examples: 3147478
- name: validation
num_bytes: 170841288
num_examples: 393435
- name: test
num_bytes: 170338153
num_examples: 393436
download_size: 988308759
dataset_size: 1705865354
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
license: apache-2.0
task_categories:
- text-classification
language:
- ar
- de
- en
- es
- fr
- hi
- id
- it
- ko
- ms
- pt
- ru
- tr
- vi
- zh
- ja
tags:
- sentiment
- multilingual
- emotion
- review
- classification
pretty_name: text
size_categories:
- 1M<n<10M
Overview
MultilingualSentiment is a sentiment classification dataset that encompasses three sentiment labels: Positive, Neutral, Negative
The dataset spans multiple languages and covers a wide range of domains, making it ideal for multilingual sentiment analysis tasks.
Dataset Information
The dataset was meticulously collected and aggregated from various sources, including Hugging Face and Kaggle. These sources provide diverse languages and domains to ensure a comprehensive and balanced dataset.
- Total records: 3,934,349
- The dataset is divided into three subsets: train, validation, and test, with a ratio of 8:1:1:
- Train: 3,147,478
- Validation: 393,435
- Test: 393,436
Number of Records per Language
Language | Count |
---|---|
Arabic (ar) | 208,375 |
German (de) | 212,853 |
English (en) | 1,519,860 |
Spanish (es) | 222,911 |
French (fr) | 262,645 |
Hindi (hi) | 9,423 |
Indonesian (id) | 12,536 |
Italian (it) | 3,020 |
Japanese (ja) | 335,656 |
Korean (ko) | 259,998 |
Malay (ms) | 6,661 |
Multilingual | 9,391 |
Portuguese (pt) | 49,188 |
Russian (ru) | 205,186 |
Turkish (tr) | 44,743 |
Vietnamese (vi) | 127,068 |
Chinese (zh) | 444,835 |
Number of Records per Label
Label | Count |
---|---|
Negative | 1,436,539 |
Neutral | 1,041,512 |
Positive | 1,456,298 |
Applications
This dataset is well-suited for training and evaluating models in multilingual sentiment analysis, natural language processing (NLP), and domain-specific sentiment classification tasks.
Loading dataset
from datasets import load_dataset
# Load the MultilingualSentiment dataset
dataset = load_dataset("clapAI/MultiLingualSentiment")
print(dataset)
DatasetDict({
train: Dataset({
features: ['text', 'label', 'source', 'domain', 'language'],
num_rows: 3147478
})
validation: Dataset({
features: ['text', 'label', 'source', 'domain', 'language'],
num_rows: 393435
})
test: Dataset({
features: ['text', 'label', 'source', 'domain', 'language'],
num_rows: 393436
})
})
Citation
@dataset{clapAI2024multilingualsentiment,
title = {MultilingualSentiment: A Multilingual Sentiment Classification Dataset},
author = {clapAI},
year = {2024},
url = {https://huggingface.co/datasets/clapAI/MultiLingualSentiment},
description = {A multilingual dataset for sentiment analysis with labels: positive, neutral, negative, covering diverse languages and domains.},
}