|
--- |
|
dataset_info: |
|
features: |
|
- name: text |
|
dtype: string |
|
- name: label |
|
dtype: string |
|
- name: source |
|
dtype: string |
|
- name: domain |
|
dtype: string |
|
- name: language |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 1364685913 |
|
num_examples: 3147478 |
|
- name: validation |
|
num_bytes: 170841288 |
|
num_examples: 393435 |
|
- name: test |
|
num_bytes: 170338153 |
|
num_examples: 393436 |
|
download_size: 988308759 |
|
dataset_size: 1705865354 |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
- split: validation |
|
path: data/validation-* |
|
- split: test |
|
path: data/test-* |
|
license: apache-2.0 |
|
task_categories: |
|
- text-classification |
|
language: |
|
- ar |
|
- de |
|
- en |
|
- es |
|
- fr |
|
- hi |
|
- id |
|
- it |
|
- ko |
|
- ms |
|
- pt |
|
- ru |
|
- tr |
|
- vi |
|
- zh |
|
- ja |
|
tags: |
|
- sentiment |
|
- multilingual |
|
- emotion |
|
- review |
|
- classification |
|
pretty_name: text |
|
size_categories: |
|
- 1M<n<10M |
|
--- |
|
## Overview |
|
**MultilingualSentiment** is a sentiment classification dataset that encompasses three sentiment labels: **Positive**, **Neutral**, **Negative** |
|
|
|
The dataset spans multiple languages and covers a wide range of domains, making it ideal for multilingual sentiment analysis tasks. |
|
|
|
|
|
## Dataset Information |
|
The dataset was meticulously collected and aggregated from various sources, including Hugging Face and Kaggle. These sources provide diverse languages and domains to ensure a comprehensive and balanced dataset. |
|
|
|
- **Total records**: 3,934,349 |
|
- The dataset is divided into three subsets: train, validation, and test, with a ratio of 8:1:1: |
|
+ Train: 3,147,478 |
|
+ Validation: 393,435 |
|
+ Test: 393,436 |
|
|
|
### Number of Records per Language |
|
| Language | Count | |
|
|---------------|---------| |
|
| Arabic (ar) | 208,375 | |
|
| German (de) | 212,853 | |
|
| English (en) | 1,519,860 | |
|
| Spanish (es) | 222,911 | |
|
| French (fr) | 262,645 | |
|
| Hindi (hi) | 9,423 | |
|
| Indonesian (id) | 12,536 | |
|
| Italian (it) | 3,020 | |
|
| Japanese (ja) | 335,656 | |
|
| Korean (ko) | 259,998 | |
|
| Malay (ms) | 6,661 | |
|
| Multilingual | 9,391 | |
|
| Portuguese (pt) | 49,188 | |
|
| Russian (ru) | 205,186 | |
|
| Turkish (tr) | 44,743 | |
|
| Vietnamese (vi) | 127,068 | |
|
| Chinese (zh) | 444,835 | |
|
|
|
### Number of Records per Label |
|
| Label | Count | |
|
|-----------|----------| |
|
| Negative | 1,436,539 | |
|
| Neutral | 1,041,512 | |
|
| Positive | 1,456,298 | |
|
|
|
## Applications |
|
This dataset is well-suited for training and evaluating models in multilingual sentiment analysis, natural language processing (NLP), and domain-specific sentiment classification tasks. |
|
|
|
## Loading dataset |
|
```python |
|
from datasets import load_dataset |
|
|
|
# Load the MultilingualSentiment dataset |
|
dataset = load_dataset("clapAI/MultiLingualSentiment") |
|
|
|
print(dataset) |
|
|
|
``` |
|
|
|
``` |
|
DatasetDict({ |
|
train: Dataset({ |
|
features: ['text', 'label', 'source', 'domain', 'language'], |
|
num_rows: 3147478 |
|
}) |
|
validation: Dataset({ |
|
features: ['text', 'label', 'source', 'domain', 'language'], |
|
num_rows: 393435 |
|
}) |
|
test: Dataset({ |
|
features: ['text', 'label', 'source', 'domain', 'language'], |
|
num_rows: 393436 |
|
}) |
|
}) |
|
``` |
|
|
|
## Citation |
|
|
|
```bibtex |
|
@dataset{clapAI2024multilingualsentiment, |
|
title = {MultilingualSentiment: A Multilingual Sentiment Classification Dataset}, |
|
author = {clapAI}, |
|
year = {2024}, |
|
url = {https://huggingface.co/datasets/clapAI/MultiLingualSentiment}, |
|
description = {A multilingual dataset for sentiment analysis with labels: positive, neutral, negative, covering diverse languages and domains.}, |
|
} |
|
``` |