hungnm's picture
Update README
08b1866 verified
---
dataset_info:
features:
- name: text
dtype: string
- name: label
dtype: string
- name: source
dtype: string
- name: domain
dtype: string
- name: language
dtype: string
splits:
- name: train
num_bytes: 1364685913
num_examples: 3147478
- name: validation
num_bytes: 170841288
num_examples: 393435
- name: test
num_bytes: 170338153
num_examples: 393436
download_size: 988308759
dataset_size: 1705865354
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
license: apache-2.0
task_categories:
- text-classification
language:
- ar
- de
- en
- es
- fr
- hi
- id
- it
- ko
- ms
- pt
- ru
- tr
- vi
- zh
- ja
tags:
- sentiment
- multilingual
- emotion
- review
- classification
pretty_name: text
size_categories:
- 1M<n<10M
---
## Overview
**MultilingualSentiment** is a sentiment classification dataset that encompasses three sentiment labels: **Positive**, **Neutral**, **Negative**
The dataset spans multiple languages and covers a wide range of domains, making it ideal for multilingual sentiment analysis tasks.
## Dataset Information
The dataset was meticulously collected and aggregated from various sources, including Hugging Face and Kaggle. These sources provide diverse languages and domains to ensure a comprehensive and balanced dataset.
- **Total records**: 3,934,349
- The dataset is divided into three subsets: train, validation, and test, with a ratio of 8:1:1:
+ Train: 3,147,478
+ Validation: 393,435
+ Test: 393,436
### Number of Records per Language
| Language | Count |
|---------------|---------|
| Arabic (ar) | 208,375 |
| German (de) | 212,853 |
| English (en) | 1,519,860 |
| Spanish (es) | 222,911 |
| French (fr) | 262,645 |
| Hindi (hi) | 9,423 |
| Indonesian (id) | 12,536 |
| Italian (it) | 3,020 |
| Japanese (ja) | 335,656 |
| Korean (ko) | 259,998 |
| Malay (ms) | 6,661 |
| Multilingual | 9,391 |
| Portuguese (pt) | 49,188 |
| Russian (ru) | 205,186 |
| Turkish (tr) | 44,743 |
| Vietnamese (vi) | 127,068 |
| Chinese (zh) | 444,835 |
### Number of Records per Label
| Label | Count |
|-----------|----------|
| Negative | 1,436,539 |
| Neutral | 1,041,512 |
| Positive | 1,456,298 |
## Applications
This dataset is well-suited for training and evaluating models in multilingual sentiment analysis, natural language processing (NLP), and domain-specific sentiment classification tasks.
## Loading dataset
```python
from datasets import load_dataset
# Load the MultilingualSentiment dataset
dataset = load_dataset("clapAI/MultiLingualSentiment")
print(dataset)
```
```
DatasetDict({
train: Dataset({
features: ['text', 'label', 'source', 'domain', 'language'],
num_rows: 3147478
})
validation: Dataset({
features: ['text', 'label', 'source', 'domain', 'language'],
num_rows: 393435
})
test: Dataset({
features: ['text', 'label', 'source', 'domain', 'language'],
num_rows: 393436
})
})
```
## Citation
```bibtex
@dataset{clapAI2024multilingualsentiment,
title = {MultilingualSentiment: A Multilingual Sentiment Classification Dataset},
author = {clapAI},
year = {2024},
url = {https://huggingface.co/datasets/clapAI/MultiLingualSentiment},
description = {A multilingual dataset for sentiment analysis with labels: positive, neutral, negative, covering diverse languages and domains.},
}
```