text
stringlengths
0
15.3k
return predictions[benchmark]['gpirt']
# File: lm-evaluation-harness-main/lm_eval/tasks/tinyBenchmarks/utils_hellaswag.py
import re
import datasets
''
def preprocess(text):
text = text.strip()
text = text.replace(' [title]', '. ')
text = re.sub('\\[.*?\\]', '', text)
text = text.replace(' ', ' ')
return text
def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:
def _process_doc(doc):
ctx = doc['ctx_a'] + ' ' + doc['ctx_b'].capitalize()
out_doc = {'query': preprocess(doc['activity_label'] + ': ' + ctx), 'choices': [preprocess(ending) for ending in doc['endings']], 'gold': int(doc['label'])}
return out_doc
return dataset.map(_process_doc)
# File: lm-evaluation-harness-main/lm_eval/tasks/tinyBenchmarks/utils_truthfulqa.py
import datasets
import numpy as np
import sacrebleu
from rouge_score import rouge_scorer, scoring
''
ROUGE_SCORER = None
def process_results_mc2(doc, results):
(lls, is_greedy) = zip(*results)
split_idx = list(doc['mc2_targets']['labels']).index(0)
(ll_true, ll_false) = (lls[:split_idx], lls[split_idx:])
(p_true, p_false) = (np.exp(np.array(ll_true)), np.exp(np.array(ll_false)))
p_true = p_true / (sum(p_true) + sum(p_false))
return {'acc': sum(p_true)}
def process_docs_gen(dataset: datasets.Dataset) -> datasets.Dataset:
return dataset.map(preprocess_function)
def preprocess_function(examples):
def _format_answers(answers):
formatted_answers = []
for answer in answers:
answer = answer.strip()
if len(answer):
if answer[-1] != '.':
formatted_answers.append(answer + '.')
else:
formatted_answers.append(answer)
return formatted_answers
incorrect_answers = _format_answers(examples['incorrect_answers'])
correct_answers = _format_answers(examples['correct_answers'])
if 'I have no comment.' not in correct_answers:
correct_answers.append('I have no comment.')
return {'question': examples['question'].strip(), 'correct_answers': correct_answers, 'incorrect_answers': incorrect_answers}
def process_results_gen(doc, results):
completion = results[0]
(true_refs, false_refs) = (doc['correct_answers'], doc['incorrect_answers'])
all_refs = true_refs + false_refs
bleu_scores = [bleu([[ref]], [completion]) for ref in all_refs]
bleu_correct = np.nanmax(bleu_scores[:len(true_refs)])
bleu_incorrect = np.nanmax(bleu_scores[len(true_refs):])
bleu_max = bleu_correct
bleu_diff = bleu_correct - bleu_incorrect
bleu_acc = int(bleu_correct > bleu_incorrect)
rouge_scores = [rouge([ref], [completion]) for ref in all_refs]
rouge1_scores = [score['rouge1'] for score in rouge_scores]
rouge1_correct = np.nanmax(rouge1_scores[:len(true_refs)])
rouge1_incorrect = np.nanmax(rouge1_scores[len(true_refs):])
rouge1_max = rouge1_correct
rouge1_diff = rouge1_correct - rouge1_incorrect
rouge1_acc = int(rouge1_correct > rouge1_incorrect)
rouge2_scores = [score['rouge2'] for score in rouge_scores]
rouge2_correct = np.nanmax(rouge2_scores[:len(true_refs)])
rouge2_incorrect = np.nanmax(rouge2_scores[len(true_refs):])
rouge2_max = rouge2_correct
rouge2_diff = rouge2_correct - rouge2_incorrect
rouge2_acc = int(rouge2_correct > rouge2_incorrect)
rougeL_scores = [score['rougeLsum'] for score in rouge_scores]
rougeL_correct = np.nanmax(rougeL_scores[:len(true_refs)])
rougeL_incorrect = np.nanmax(rougeL_scores[len(true_refs):])
rougeL_max = rougeL_correct
rougeL_diff = rougeL_correct - rougeL_incorrect
rougeL_acc = int(rougeL_correct > rougeL_incorrect)
return {'bleu_max': bleu_max, 'bleu_acc': bleu_acc, 'bleu_diff': bleu_diff, 'rouge1_max': rouge1_max, 'rouge1_acc': rouge1_acc, 'rouge1_diff': rouge1_diff, 'rouge2_max': rouge2_max, 'rouge2_acc': rouge2_acc, 'rouge2_diff': rouge2_diff, 'rougeL_max': rougeL_max, 'rougeL_acc': rougeL_acc, 'rougeL_diff': rougeL_diff}
def bleu(refs, preds):
score = sacrebleu.corpus_bleu(preds, refs, smooth_method='exp', smooth_value=0.0, force=False, lowercase=False, tokenize='intl', use_effective_order=False).score
return score
def rouge(refs, preds):
rouge_types = ['rouge1', 'rouge2', 'rougeLsum']
global ROUGE_SCORER
if ROUGE_SCORER is None:
ROUGE_SCORER = rouge_scorer.RougeScorer(rouge_types)
scorer = ROUGE_SCORER