text
stringlengths
0
15.3k
def _prepare_summary(summary):
summary = summary.replace(' . ', '.\n')
return summary
aggregator = scoring.BootstrapAggregator()
for (ref, pred) in zip(refs, preds):
ref = _prepare_summary(ref)
pred = _prepare_summary(pred)
aggregator.add_scores(scorer.score(ref, pred))
result = aggregator.aggregate()
return {type: result[type].mid.fmeasure * 100 for type in rouge_types}
# File: lm-evaluation-harness-main/lm_eval/tasks/tinyBenchmarks/utils_winogrande.py
""""""
def doc_to_text(doc):
answer_to_num = {'1': 0, '2': 1}
return answer_to_num[doc['answer']]
def doc_to_target(doc):
idx = doc['sentence'].index('_') + 1
return doc['sentence'][idx:].strip()
def doc_to_choice(doc):
idx = doc['sentence'].index('_')
options = [doc['option1'], doc['option2']]
return [doc['sentence'][:idx] + opt for opt in options]
# File: lm-evaluation-harness-main/lm_eval/tasks/tmmluplus/default/_generate_configs.py
""""""
import argparse
import os
import pandas as pd
import yaml
from tqdm import tqdm
categories = {'STEM': ['physics', 'chemistry', 'biology', 'computer science', 'math', 'engineering'], 'humanities': ['history', 'philosophy', 'law'], 'social_sciences': ['politics', 'culture', 'economics', 'geography', 'psychology', 'education'], 'other': ['other', 'business', 'health']}
task_list = ['engineering_math', 'dentistry', 'traditional_chinese_medicine_clinical_medicine', 'clinical_psychology', 'technical', 'culinary_skills', 'mechanical', 'logic_reasoning', 'real_estate', 'general_principles_of_law', 'finance_banking', 'anti_money_laundering', 'ttqav2', 'marketing_management', 'business_management', 'organic_chemistry', 'advance_chemistry', 'physics', 'secondary_physics', 'human_behavior', 'national_protection', 'jce_humanities', 'politic_science', 'agriculture', 'official_document_management', 'financial_analysis', 'pharmacy', 'educational_psychology', 'statistics_and_machine_learning', 'management_accounting', 'introduction_to_law', 'computer_science', 'veterinary_pathology', 'accounting', 'fire_science', 'optometry', 'insurance_studies', 'pharmacology', 'taxation', 'education_(profession_level)', 'economics', 'veterinary_pharmacology', 'nautical_science', 'occupational_therapy_for_psychological_disorders', 'trust_practice', 'geography_of_taiwan', 'physical_education', 'auditing', 'administrative_law', 'basic_medical_science', 'macroeconomics', 'trade', 'chinese_language_and_literature', 'tve_design', 'junior_science_exam', 'junior_math_exam', 'junior_chinese_exam', 'junior_social_studies', 'tve_mathematics', 'tve_chinese_language', 'tve_natural_sciences', 'junior_chemistry', 'music', 'education', 'three_principles_of_people', 'taiwanese_hokkien']
subject2name = {}
SUBJECTS = {}
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--base_yaml_path', required=True)
parser.add_argument('--save_prefix_path', default='tmmluplus')
parser.add_argument('--cot_prompt_path', default=None)
parser.add_argument('--task_prefix', default='')
parser.add_argument('--group_prefix', default='')
parser.add_argument('--subject_file', default='subject.tsv')
return parser.parse_args()
if __name__ == '__main__':
args = parse_args()
from pathlib import Path
SUBJECT_FILE = Path(__file__).parent / Path(args.subject_file)
df = pd.read_csv(SUBJECT_FILE, delimiter='\t')
for (_, row) in df.iterrows():
for _c in categories:
if row['subject'] in SUBJECTS:
raise ValueError('Duplicate tasks.')
if row['category'] in categories[_c]:
SUBJECTS[row['subject']] = _c
subject2name[row['subject']] = row['name']
break
base_yaml_name = os.path.split(args.base_yaml_path)[-1]
with open(args.base_yaml_path) as f:
base_yaml = yaml.full_load(f)
if args.cot_prompt_path is not None:
import json
with open(args.cot_prompt_path) as f:
cot_file = json.load(f)
ALL_CATEGORIES = []
for (subject, category) in tqdm(SUBJECTS.items()):
if category not in ALL_CATEGORIES:
ALL_CATEGORIES.append(category)
if args.cot_prompt_path is not None:
description = cot_file[subject]
else:
name_of_subject = subject2name[subject].replace('_', ' ')
description = f'以下為{name_of_subject}的單選題,請提供正確答案的選項。\n\n'
yaml_dict = {'include': base_yaml_name, 'group': f'tmmluplus_{args.task_prefix}_{category}' if args.task_prefix != '' else f'tmmluplus_{category}', 'group_alias': category.replace('_', ' '), 'task': f'tmmluplus_{args.task_prefix}_{subject}' if args.task_prefix != '' else f'tmmluplus_{subject}', 'task_alias': subject.replace('_', ' '), 'dataset_name': subject, 'description': description}
file_save_path = args.save_prefix_path + f'_{subject}.yaml'
with open(file_save_path, 'w') as yaml_file:
yaml.dump(yaml_dict, yaml_file, allow_unicode=True, default_style='"')
if args.task_prefix != '':
mmlu_subcategories = [f'tmmluplus_{args.task_prefix}_{category}' for category in ALL_CATEGORIES]
else:
mmlu_subcategories = [f'tmmluplus_{category}' for category in ALL_CATEGORIES]
if args.group_prefix != '':
file_save_path = args.group_prefix + '.yaml'
else:
file_save_path = args.save_prefix_path + '.yaml'
with open(file_save_path, 'w') as yaml_file:
yaml.dump({'group': f'tmmluplus_{args.task_prefix}' if args.task_prefix != '' else 'tmmluplus', 'task': mmlu_subcategories}, yaml_file, indent=4, default_flow_style=False)
# File: lm-evaluation-harness-main/lm_eval/tasks/tmmluplus/default/utils.py
import datasets
def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:
def _helper(doc):
answer_list = ['A', 'B', 'C', 'D']