text
stringlengths
0
15.3k
rouge1_acc = int(rouge1_correct > rouge1_incorrect)
rouge2_scores = [score['rouge2'] for score in rouge_scores]
rouge2_correct = np.nanmax(rouge2_scores[:len(true_refs)])
rouge2_incorrect = np.nanmax(rouge2_scores[len(true_refs):])
rouge2_max = rouge2_correct
rouge2_diff = rouge2_correct - rouge2_incorrect
rouge2_acc = int(rouge2_correct > rouge2_incorrect)
rougeL_scores = [score['rougeLsum'] for score in rouge_scores]
rougeL_correct = np.nanmax(rougeL_scores[:len(true_refs)])
rougeL_incorrect = np.nanmax(rougeL_scores[len(true_refs):])
rougeL_max = rougeL_correct
rougeL_diff = rougeL_correct - rougeL_incorrect
rougeL_acc = int(rougeL_correct > rougeL_incorrect)
return {'bleu_max': bleu_max, 'bleu_acc': bleu_acc, 'bleu_diff': bleu_diff, 'rouge1_max': rouge1_max, 'rouge1_acc': rouge1_acc, 'rouge1_diff': rouge1_diff, 'rouge2_max': rouge2_max, 'rouge2_acc': rouge2_acc, 'rouge2_diff': rouge2_diff, 'rougeL_max': rougeL_max, 'rougeL_acc': rougeL_acc, 'rougeL_diff': rougeL_diff}
def bleu(refs, preds):
score = sacrebleu.corpus_bleu(preds, refs, smooth_method='exp', smooth_value=0.0, force=False, lowercase=False, tokenize='intl', use_effective_order=False).score
return score
def rouge(refs, preds):
rouge_types = ['rouge1', 'rouge2', 'rougeLsum']
global ROUGE_SCORER
if ROUGE_SCORER is None:
ROUGE_SCORER = rouge_scorer.RougeScorer(rouge_types)
scorer = ROUGE_SCORER
def _prepare_summary(summary):
summary = summary.replace(' . ', '.\n')
return summary
aggregator = scoring.BootstrapAggregator()
for (ref, pred) in zip(refs, preds):
ref = _prepare_summary(ref)
pred = _prepare_summary(pred)
aggregator.add_scores(scorer.score(ref, pred))
result = aggregator.aggregate()
return {type: result[type].mid.fmeasure * 100 for type in rouge_types}
# File: lm-evaluation-harness-main/lm_eval/tasks/unitxt/task.py
""""""
from functools import partial
from typing import Optional
import evaluate
from lm_eval.api.instance import Instance
from lm_eval.api.task import ConfigurableTask
_CITATION = '\n@misc{bandel2024unitxt,\n title={Unitxt: Flexible, Shareable and Reusable Data Preparation and Evaluation for Generative AI},\n author={Elron Bandel and Yotam Perlitz and Elad Venezian and Roni Friedman-Melamed and Ofir Arviv and Matan Orbach and Shachar Don-Yehyia and Dafna Sheinwald and Ariel Gera and Leshem Choshen and Michal Shmueli-Scheuer and Yoav Katz},\n year={2024},\n eprint={2401.14019},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n'
def score(items, metric):
(predictions, references) = zip(*items)
evaluator = evaluate.load('unitxt/metric')
for reference in references:
reference['metrics'] = [metric]
results = evaluator.compute(predictions=predictions, references=references)
return results[0]['score']['global']['score']
class Unitxt(ConfigurableTask):
VERSION = 0
def __init__(self, config: Optional[dict]=None) -> None:
assert 'recipe' in config, "Unitxt task must have a 'recipe' string."
super().__init__(config={'metadata': {'version': self.VERSION}, 'dataset_kwargs': {'trust_remote_code': True}, 'dataset_name': config['recipe'], 'dataset_path': 'unitxt/data'})
self.metrics = self.dataset['test'][0]['metrics']
def has_training_docs(self):
return 'train' in self.dataset
def has_validation_docs(self):
return 'validation' in self.dataset
def has_test_docs(self):
return 'test' in self.dataset
def training_docs(self):
return self.dataset['train']
def validation_docs(self):
return self.dataset['validation']
def test_docs(self):
return self.dataset['test']
def doc_to_text(self, doc):
return doc['source']
def should_decontaminate(self):
return False
def doc_to_target(self, doc):
doc['target']
def construct_requests(self, doc, ctx, **kwargs):
return [Instance(request_type='generate_until', doc=doc, arguments=(ctx, {'until': ['\n']}), idx=0, **kwargs)]
def process_results(self, doc, results):
continuation = results[0]
predictions = continuation
references = doc
return {metric.replace('metrics.', ''): (predictions, references) for metric in self.metrics}
def aggregation(self):
return {metric.replace('metrics.', ''): partial(score, metric=metric) for metric in self.metrics}