metadata
task_categories:
- automatic-speech-recognition
language:
- ms
- en
- zh
- ta
- id
Malaysian STT Whisper format
Up to 15k hours annotated, we done heavy postprocessing and post-translation to improve pseudolabeled Whisper Large V3.
Also include word level timestamp.
Postprocessing
- Check repetitive trigrams.
- Verify Voice Activity using Silero-VAD.
- Verify scores using Force Alignment.
Post-translation
We use mesolitica/nanot5-base-malaysian-translation-v2.1.
Dataset involved
- Malaysian context v1
- Malaysian context v2
- Malay audiobook
- Singaporean context
- Indonesian context
- Mandarin audio
- Tamil audio
- Science context
- Malay sarawak
- Scripted Malay Daily Use Speech Corpus
- Malay Conversational Speech Corpus
- Iban
- Malay dialects
Word level timestamp
- Malaysian context v1, 658.54 hours.
{"audio_filename": "prepared-pseudolabel-malaya-chunks/2-0.mp3", "new_text": "<|startoftranscript|><|ms|><|transcribeprecise|><|0.00|> luar<|0.34|><|0.42|> kan<|0.60|><|1.78|> sebab<|2.06|><|2.24|> benda<|2.42|><|2.52|> ni<|2.58|><|2.70|> berlaku<|3.08|><|3.20|> contoh<|3.50|><|3.56|> kita<|3.72|><|3.80|> pergi<|3.98|><|4.10|> ke<|4.16|><|4.40|> ATM<|4.76|><|5.70|> yang<|5.80|><|5.84|> bukan<|6.02|><|6.10|> Islam,<|6.34|><|6.96|> siang<|7.12|><|7.18|> hari<|7.42|><|endoftext|>"}
- Malaysian context v2, 8058.17 hours.
{"audio_filename": "prepared-pseudolabel-chunks/0-0.mp3", "new_text": "<|startoftranscript|><|ms|><|transcribeprecise|><|0.00|> tu<|0.04|><|0.20|> So<|0.26|><|0.70|> gaji<|0.96|><|1.06|> berbeza<|1.42|><|2.46|> Gaji<|2.86|><|endoftext|>"}
- Singaporean context, 1829.21 hours.
{"audio_filename": "prepared-imda-chunks/0-0.mp3", "new_text": "<|startoftranscript|><|en|><|transcribeprecise|><|0.00|> Households<|0.58|><|0.64|> with<|0.76|><|0.86|> target<|1.16|><|1.24|> sets<|1.50|><|1.70|> were<|1.82|><|1.90|> encouraged<|2.40|><|2.44|> to<|2.48|><|2.62|> try<|2.80|><|2.90|> keeping<|3.24|><|endoftext|>"}
- Science context, 4992.42 hours.
{"audio_filename": "prepared-science-chunks/0-0.mp3", "new_text": "<|startoftranscript|><|en|><|transcribeprecise|><|0.00|> Visual<|0.24|><|0.30|> Studio<|0.60|><|0.76|> Code<|1.00|><|1.06|> integration.<|1.68|><|3.46|> Here's<|3.70|><|3.76|> what<|3.88|><|3.94|> will<|4.06|><|4.10|> be<|4.14|><|4.28|> new.<|4.44|><|5.36|> You<|5.42|><|5.46|> will<|5.58|><|5.62|> have<|5.74|><|5.82|> more<|5.96|><|6.08|> choice<|6.40|><|6.48|> on<|6.52|><|6.60|> runtime<|6.96|><|7.02|> experiences.<|7.82|><|8.78|> Java<|9.06|><|9.16|> interoperability<|10.04|><|10.22|> will<|10.32|><|10.36|> be<|10.40|><|10.48|> available<|10.90|><|10.96|> on<|11.00|><|11.08|> all<|11.14|><|11.22|> platforms.<|11.78|><|12.22|> Objective<|12.68|><|12.78|> C<|12.78|><|13.00|> and<|13.06|><|13.16|> Swift<|13.42|><|13.48|> interoperability<|14.38|><|14.92|> will<|15.04|><|15.08|> be<|15.12|><|15.26|> supported<|15.70|><|15.78|> on<|15.82|><|15.90|> multiple<|16.26|><|16.34|> operating<|16.78|><|16.86|> systems.<|17.28|><|18.28|> Core<|18.62|><|18.74|> FX<|18.98|><|19.20|> will<|19.30|><|19.34|> be<|19.38|><|19.46|> extended<|19.96|><|20.30|> to<|20.34|><|20.42|> support<|20.74|><|20.84|> static<|21.16|><|21.22|> compilation<|22.04|><|endoftext|>"}
- IMDA Part 2, 931 hours.
{"text": "<|startoftranscript|><|en|><|transcribeprecise|><|0.54|> Mimosa<|1.00|><|1.14|> Walk<|1.36|><|1.72|> Mount<|2.00|><|2.06|> Sophia<|2.42|><|2.90|> and<|3.00|><|3.08|> Jalan<|3.38|><|3.50|> Ilmu.<|4.38|><|endoftext|>", "audio_filename": "filter-imda-part2/train-00387-of-00727-6.mp3"}
how to prepare the dataset
wget https://www.7-zip.org/a/7z2301-linux-x64.tar.xz
tar -xf 7z2301-linux-x64.tar.xz
# Malaysian context
wget https://huggingface.co/datasets/mesolitica/Malaysian-STT-Whisper/resolve/main/malaysian-stt.jsonl
huggingface-cli download --repo-type dataset \
--include 'output-audio-malaya.z*' \
--local-dir './' \
mesolitica/pseudolabel-malaya-speech-stt-train-whisper-large-v3-timestamp
./7zz x output-audio-malaya.zip -y -mmt40
huggingface-cli download --repo-type dataset \
--include 'output-audio.z*' \
--local-dir './' \
mesolitica/pseudolabel-malaysian-youtube-whisper-large-v3-timestamp
./7zz x output-audio.zip -y -mmt40
# Malay audiobook
wget https://huggingface.co/datasets/mesolitica/pseudolabel-nusantara-large-v3-timestamp/resolve/main/split-nusantara.zip
wget https://huggingface.co/datasets/mesolitica/pseudolabel-nusantara-large-v3-timestamp/resolve/main/prepared-nusantara.jsonl
unzip split-nusantara.zip
# Singaporean context
wget https://huggingface.co/datasets/mesolitica/pseudolabel-imda-large-v3-timestamp/resolve/main/prepared-imda.jsonl
wget https://huggingface.co/datasets/mesolitica/pseudolabel-imda-large-v3-timestamp/resolve/main/prepared-imda-ms.jsonl
huggingface-cli download --repo-type dataset \
--include '*.7z*' \
--local-dir './' \
mesolitica/IMDA-STT
./7zz x part1-mp3.7z.001 -y -mmt40
./7zz x part2-mp3.7z.001 -y -mmt40
./7zz x part3-same-audio-mp3.7z.001 -y -mmt40
./7zz x part3-separate-audio-mp3.7z.001 -y -mmt40
./7zz x part4-same-audio-mp3.7z.001 -y -mmt40
./7zz x part4-separate-audio-mp3.7z.001 -y -mmt40
./7zz x part5-same-audio-mp3.7z.001 -y -mmt40
./7zz x part5-separate-audio-mp3.7z.001 -y -mmt40
./7zz x part6-1-audio-mp3.7z.001 -y -mmt40
./7zz x part6-2-audio-mp3.7z.001 -y -mmt40
./7zz x part6-3-audio-mp3.7z.001 -y -mmt40
# Indonesian context
huggingface-cli download --repo-type dataset \
--include 'split-indonesian.z*' \
--local-dir './' \
mesolitica/pseudolabel-indonesian-large-v3-timestamp
./7zz x split-indonesian.zip -y -mmt40
# Science context
wget https://huggingface.co/datasets/mesolitica/Malaysian-STT-Whisper/resolve/main/science-en-stt.jsonl
wget https://huggingface.co/datasets/mesolitica/Malaysian-STT-Whisper/resolve/main/science-ms-stt.jsonl
huggingface-cli download --repo-type dataset \
--include 'audio-chunk.z*' \
--local-dir './' \
mesolitica/pseudolabel-science-large-v3-timestamp
./7zz x audio-chunk.zip -y -mmt40
# Malay sarawak
wget https://huggingface.co/datasets/malaysia-ai/sarawakmalay-whisper-format/resolve/main/sarawakmalay.zip
wget https://huggingface.co/datasets/malaysia-ai/sarawakmalay-whisper-format/resolve/main/dataset.json -O sarawakmalay.json
unzip sarawakmalay.zip
# for Scripted Malay Daily Use Speech Corpus
wget https://huggingface.co/datasets/malaysia-ai/scripted-malay-daily-use-speech-corpus-whisper-format/resolve/main/scripted-malay-daily-use-speech-corpus-whisper-format.zip
wget https://huggingface.co/datasets/malaysia-ai/scripted-malay-daily-use-speech-corpus-whisper-format/resolve/main/scripted-malay-daily-use-speech-corpus-whisper-format.json
unzip scripted-malay-daily-use-speech-corpus-whisper-format.zip
# Malay Conversational Speech Corpus
wget https://huggingface.co/datasets/malaysia-ai/malay-conversational-speech-corpus-whisper-format/resolve/main/malay-conversational-speech-corpus-whisper-format.zip
wget https://huggingface.co/datasets/malaysia-ai/malay-conversational-speech-corpus-whisper-format/resolve/main/malay-conversational-speech-corpus-whisper-format.json
unzip malay-conversational-speech-corpus-whisper-format.zip
# Iban
wget https://huggingface.co/datasets/malaysia-ai/iban-whisper-format/resolve/main/iban-wav.zip
wget https://huggingface.co/datasets/malaysia-ai/iban-whisper-format/resolve/main/iban-dataset.json
unzip iban-wav.zip
Source code
Source code at https://github.com/mesolitica/malaysian-dataset/tree/master/speech-to-text-semisupervised/distilled-malaysian-whisper