code
stringlengths
501
4.91M
package
stringlengths
2
88
path
stringlengths
11
291
filename
stringlengths
4
197
parsed_code
stringlengths
0
4.91M
quality_prob
float64
0
0.99
learning_prob
float64
0.02
1
from __future__ import annotations from copy import deepcopy from enum import Enum from typing import Any, NamedTuple, Optional import matplotlib.pyplot as plt from skdecide import DeterministicPlanningDomain, Space, Value from skdecide.builders.domain import Renderable, UnrestrictedActions from skdecide.hub.space.gym import EnumSpace, ListSpace, MultiDiscreteSpace DEFAULT_MAZE = """ +-+-+-+-+o+-+-+-+-+-+ | | | | + + + +-+-+-+ +-+ + + | | | | | | | | + +-+-+ +-+ + + + +-+ | | | | | | | + + + + + + + +-+ +-+ | | | | | | +-+-+-+-+-+-+-+ +-+ + | | | | + +-+-+-+-+ + +-+-+ + | | | | + + + +-+ +-+ +-+-+-+ | | | | | | + +-+-+ + +-+ + +-+ + | | | | | | | | +-+ +-+ + + + +-+ + + | | | | | | | + +-+ +-+-+-+-+ + + + | | | | | +-+-+-+-+-+x+-+-+-+-+ """ class State(NamedTuple): x: int y: int class Action(Enum): up = 0 down = 1 left = 2 right = 3 class D(DeterministicPlanningDomain, UnrestrictedActions, Renderable): T_state = State # Type of states T_observation = T_state # Type of observations T_event = Action # Type of events T_value = float # Type of transition values (rewards or costs) T_predicate = bool # Type of logical checks T_info = ( None # Type of additional information given as part of an environment outcome ) class Maze(D): def __init__(self, maze_str: str = DEFAULT_MAZE): maze = [] for y, line in enumerate(maze_str.strip().split("\n")): line = line.rstrip() row = [] for x, c in enumerate(line): if c in {" ", "o", "x"}: row.append(1) # spaces are 1s if c == "o": self._start = State(x, y) if c == "x": self._goal = State(x, y) else: row.append(0) # walls are 0s maze.append(row) # self._render_maze = deepcopy(self._maze) self._maze = maze self._num_cols = len(maze[0]) self._num_rows = len(maze) self._ax = None self._image = None def _get_next_state( self, memory: D.T_memory[D.T_state], action: D.T_agent[D.T_concurrency[D.T_event]], ) -> D.T_state: if action == Action.left: next_state = State(memory.x - 1, memory.y) if action == Action.right: next_state = State(memory.x + 1, memory.y) if action == Action.up: next_state = State(memory.x, memory.y - 1) if action == Action.down: next_state = State(memory.x, memory.y + 1) # If candidate next state is valid if ( 0 <= next_state.x < self._num_cols and 0 <= next_state.y < self._num_rows and self._maze[next_state.y][next_state.x] == 1 ): return next_state else: return memory def _get_transition_value( self, memory: D.T_memory[D.T_state], action: D.T_agent[D.T_concurrency[D.T_event]], next_state: Optional[D.T_state] = None, ) -> D.T_agent[Value[D.T_value]]: if next_state.x == memory.x and next_state.y == memory.y: cost = 2 # big penalty when hitting a wall else: cost = abs(next_state.x - memory.x) + abs( next_state.y - memory.y ) # every move costs 1 return Value(cost=cost) def _is_terminal(self, state: D.T_state) -> D.T_agent[D.T_predicate]: return self._is_goal(state) def _get_action_space_(self) -> D.T_agent[Space[D.T_event]]: return EnumSpace(Action) def _get_goals_(self) -> D.T_agent[Space[D.T_observation]]: return ListSpace([self._goal]) def _get_initial_state_(self) -> D.T_state: return self._start def _get_observation_space_(self) -> D.T_agent[Space[D.T_observation]]: return MultiDiscreteSpace([self._num_cols, self._num_rows]) def _render_from(self, memory: D.T_memory[D.T_state], **kwargs: Any) -> Any: if self._ax is None: # fig = plt.gcf() fig, ax = plt.subplots(1) # ax = plt.axes() ax.set_aspect("equal") # set the x and y axes to the same scale plt.xticks([]) # remove the tick marks by setting to an empty list plt.yticks([]) # remove the tick marks by setting to an empty list ax.invert_yaxis() # invert the y-axis so the first row of data is at the top self._ax = ax plt.ion() maze = deepcopy(self._maze) maze[self._goal.y][self._goal.x] = 0.7 maze[memory.y][memory.x] = 0.3 if self._image is None: self._image = self._ax.imshow(maze) else: self._image.set_data(maze) # self._ax.pcolormesh(maze) # plt.draw() plt.pause(0.001)
scikit-decide
/scikit_decide-0.9.6-cp310-cp310-macosx_10_15_x86_64.whl/skdecide/hub/domain/maze/maze.py
maze.py
from __future__ import annotations from copy import deepcopy from enum import Enum from typing import Any, NamedTuple, Optional import matplotlib.pyplot as plt from skdecide import DeterministicPlanningDomain, Space, Value from skdecide.builders.domain import Renderable, UnrestrictedActions from skdecide.hub.space.gym import EnumSpace, ListSpace, MultiDiscreteSpace DEFAULT_MAZE = """ +-+-+-+-+o+-+-+-+-+-+ | | | | + + + +-+-+-+ +-+ + + | | | | | | | | + +-+-+ +-+ + + + +-+ | | | | | | | + + + + + + + +-+ +-+ | | | | | | +-+-+-+-+-+-+-+ +-+ + | | | | + +-+-+-+-+ + +-+-+ + | | | | + + + +-+ +-+ +-+-+-+ | | | | | | + +-+-+ + +-+ + +-+ + | | | | | | | | +-+ +-+ + + + +-+ + + | | | | | | | + +-+ +-+-+-+-+ + + + | | | | | +-+-+-+-+-+x+-+-+-+-+ """ class State(NamedTuple): x: int y: int class Action(Enum): up = 0 down = 1 left = 2 right = 3 class D(DeterministicPlanningDomain, UnrestrictedActions, Renderable): T_state = State # Type of states T_observation = T_state # Type of observations T_event = Action # Type of events T_value = float # Type of transition values (rewards or costs) T_predicate = bool # Type of logical checks T_info = ( None # Type of additional information given as part of an environment outcome ) class Maze(D): def __init__(self, maze_str: str = DEFAULT_MAZE): maze = [] for y, line in enumerate(maze_str.strip().split("\n")): line = line.rstrip() row = [] for x, c in enumerate(line): if c in {" ", "o", "x"}: row.append(1) # spaces are 1s if c == "o": self._start = State(x, y) if c == "x": self._goal = State(x, y) else: row.append(0) # walls are 0s maze.append(row) # self._render_maze = deepcopy(self._maze) self._maze = maze self._num_cols = len(maze[0]) self._num_rows = len(maze) self._ax = None self._image = None def _get_next_state( self, memory: D.T_memory[D.T_state], action: D.T_agent[D.T_concurrency[D.T_event]], ) -> D.T_state: if action == Action.left: next_state = State(memory.x - 1, memory.y) if action == Action.right: next_state = State(memory.x + 1, memory.y) if action == Action.up: next_state = State(memory.x, memory.y - 1) if action == Action.down: next_state = State(memory.x, memory.y + 1) # If candidate next state is valid if ( 0 <= next_state.x < self._num_cols and 0 <= next_state.y < self._num_rows and self._maze[next_state.y][next_state.x] == 1 ): return next_state else: return memory def _get_transition_value( self, memory: D.T_memory[D.T_state], action: D.T_agent[D.T_concurrency[D.T_event]], next_state: Optional[D.T_state] = None, ) -> D.T_agent[Value[D.T_value]]: if next_state.x == memory.x and next_state.y == memory.y: cost = 2 # big penalty when hitting a wall else: cost = abs(next_state.x - memory.x) + abs( next_state.y - memory.y ) # every move costs 1 return Value(cost=cost) def _is_terminal(self, state: D.T_state) -> D.T_agent[D.T_predicate]: return self._is_goal(state) def _get_action_space_(self) -> D.T_agent[Space[D.T_event]]: return EnumSpace(Action) def _get_goals_(self) -> D.T_agent[Space[D.T_observation]]: return ListSpace([self._goal]) def _get_initial_state_(self) -> D.T_state: return self._start def _get_observation_space_(self) -> D.T_agent[Space[D.T_observation]]: return MultiDiscreteSpace([self._num_cols, self._num_rows]) def _render_from(self, memory: D.T_memory[D.T_state], **kwargs: Any) -> Any: if self._ax is None: # fig = plt.gcf() fig, ax = plt.subplots(1) # ax = plt.axes() ax.set_aspect("equal") # set the x and y axes to the same scale plt.xticks([]) # remove the tick marks by setting to an empty list plt.yticks([]) # remove the tick marks by setting to an empty list ax.invert_yaxis() # invert the y-axis so the first row of data is at the top self._ax = ax plt.ion() maze = deepcopy(self._maze) maze[self._goal.y][self._goal.x] = 0.7 maze[memory.y][memory.x] = 0.3 if self._image is None: self._image = self._ax.imshow(maze) else: self._image.set_data(maze) # self._ax.pcolormesh(maze) # plt.draw() plt.pause(0.001)
0.890065
0.342709
from __future__ import annotations import os import sys from typing import Callable, Optional from skdecide import Domain, Solver, hub from skdecide.builders.domain import ( Actions, DeterministicTransitions, FullyObservable, Goals, Markovian, PositiveCosts, Sequential, SingleAgent, ) from skdecide.builders.solver import DeterministicPolicies, ParallelSolver, Utilities from skdecide.core import Value record_sys_path = sys.path skdecide_cpp_extension_lib_path = os.path.abspath(hub.__path__[0]) if skdecide_cpp_extension_lib_path not in sys.path: sys.path.append(skdecide_cpp_extension_lib_path) try: from __skdecide_hub_cpp import _AStarSolver_ as astar_solver # TODO: remove Markovian req? class D( Domain, SingleAgent, Sequential, DeterministicTransitions, Actions, Goals, Markovian, FullyObservable, PositiveCosts, ): pass class Astar(ParallelSolver, Solver, DeterministicPolicies, Utilities): T_domain = D def __init__( self, domain_factory: Callable[[], Domain] = None, heuristic: Optional[ Callable[[Domain, D.T_state], D.T_agent[Value[D.T_value]]] ] = None, parallel: bool = False, shared_memory_proxy=None, debug_logs: bool = False, ) -> None: ParallelSolver.__init__( self, domain_factory=domain_factory, parallel=parallel, shared_memory_proxy=shared_memory_proxy, ) self._solver = None self._debug_logs = debug_logs if heuristic is None: self._heuristic = lambda d, s: Value(cost=0) else: self._heuristic = heuristic self._lambdas = [self._heuristic] self._ipc_notify = True def close(self): """Joins the parallel domains' processes. Not calling this method (or not using the 'with' context statement) results in the solver forever waiting for the domain processes to exit. """ if self._parallel: self._solver.close() ParallelSolver.close(self) def _init_solve(self, domain_factory: Callable[[], Domain]) -> None: self._domain_factory = domain_factory self._solver = astar_solver( domain=self.get_domain(), goal_checker=lambda d, s: d.is_goal(s), heuristic=lambda d, s: self._heuristic(d, s) if not self._parallel else d.call(None, 0, s), parallel=self._parallel, debug_logs=self._debug_logs, ) self._solver.clear() def _solve_domain(self, domain_factory: Callable[[], D]) -> None: self._init_solve(domain_factory) def _solve_from(self, memory: D.T_memory[D.T_state]) -> None: self._solver.solve(memory) def _is_solution_defined_for( self, observation: D.T_agent[D.T_observation] ) -> bool: return self._solver.is_solution_defined_for(observation) def _get_next_action( self, observation: D.T_agent[D.T_observation] ) -> D.T_agent[D.T_concurrency[D.T_event]]: if not self._is_solution_defined_for(observation): self._solve_from(observation) return self._solver.get_next_action(observation) def _get_utility(self, observation: D.T_agent[D.T_observation]) -> D.T_value: return self._solver.get_utility(observation) except ImportError: sys.path = record_sys_path print( 'Scikit-decide C++ hub library not found. Please check it is installed in "skdecide/hub".' ) raise
scikit-decide
/scikit_decide-0.9.6-cp310-cp310-macosx_10_15_x86_64.whl/skdecide/hub/solver/astar/astar.py
astar.py
from __future__ import annotations import os import sys from typing import Callable, Optional from skdecide import Domain, Solver, hub from skdecide.builders.domain import ( Actions, DeterministicTransitions, FullyObservable, Goals, Markovian, PositiveCosts, Sequential, SingleAgent, ) from skdecide.builders.solver import DeterministicPolicies, ParallelSolver, Utilities from skdecide.core import Value record_sys_path = sys.path skdecide_cpp_extension_lib_path = os.path.abspath(hub.__path__[0]) if skdecide_cpp_extension_lib_path not in sys.path: sys.path.append(skdecide_cpp_extension_lib_path) try: from __skdecide_hub_cpp import _AStarSolver_ as astar_solver # TODO: remove Markovian req? class D( Domain, SingleAgent, Sequential, DeterministicTransitions, Actions, Goals, Markovian, FullyObservable, PositiveCosts, ): pass class Astar(ParallelSolver, Solver, DeterministicPolicies, Utilities): T_domain = D def __init__( self, domain_factory: Callable[[], Domain] = None, heuristic: Optional[ Callable[[Domain, D.T_state], D.T_agent[Value[D.T_value]]] ] = None, parallel: bool = False, shared_memory_proxy=None, debug_logs: bool = False, ) -> None: ParallelSolver.__init__( self, domain_factory=domain_factory, parallel=parallel, shared_memory_proxy=shared_memory_proxy, ) self._solver = None self._debug_logs = debug_logs if heuristic is None: self._heuristic = lambda d, s: Value(cost=0) else: self._heuristic = heuristic self._lambdas = [self._heuristic] self._ipc_notify = True def close(self): """Joins the parallel domains' processes. Not calling this method (or not using the 'with' context statement) results in the solver forever waiting for the domain processes to exit. """ if self._parallel: self._solver.close() ParallelSolver.close(self) def _init_solve(self, domain_factory: Callable[[], Domain]) -> None: self._domain_factory = domain_factory self._solver = astar_solver( domain=self.get_domain(), goal_checker=lambda d, s: d.is_goal(s), heuristic=lambda d, s: self._heuristic(d, s) if not self._parallel else d.call(None, 0, s), parallel=self._parallel, debug_logs=self._debug_logs, ) self._solver.clear() def _solve_domain(self, domain_factory: Callable[[], D]) -> None: self._init_solve(domain_factory) def _solve_from(self, memory: D.T_memory[D.T_state]) -> None: self._solver.solve(memory) def _is_solution_defined_for( self, observation: D.T_agent[D.T_observation] ) -> bool: return self._solver.is_solution_defined_for(observation) def _get_next_action( self, observation: D.T_agent[D.T_observation] ) -> D.T_agent[D.T_concurrency[D.T_event]]: if not self._is_solution_defined_for(observation): self._solve_from(observation) return self._solver.get_next_action(observation) def _get_utility(self, observation: D.T_agent[D.T_observation]) -> D.T_value: return self._solver.get_utility(observation) except ImportError: sys.path = record_sys_path print( 'Scikit-decide C++ hub library not found. Please check it is installed in "skdecide/hub".' ) raise
0.541894
0.132543
import random as rnd import sys import numpy as np class CGP: class CGPFunc: def __init__(self, f, name, arity): self.function = f self.name = name self.arity = arity class CGPNode: def __init__(self, args, f): self.args = args self.function = f def __init__( self, genome, num_inputs, num_outputs, num_cols, num_rows, library, recurrency_distance=1.0, ): self.genome = genome.copy() self.num_inputs = num_inputs self.num_outputs = num_outputs self.num_cols = num_cols self.num_rows = num_rows self.max_graph_length = num_cols * num_rows self.library = library self.max_arity = 0 self.recurrency_distance = recurrency_distance for f in self.library: self.max_arity = np.maximum(self.max_arity, f.arity) self.graph_created = False def create_graph(self): self.to_evaluate = np.zeros(self.max_graph_length, dtype=bool) self.node_output = np.zeros( self.max_graph_length + self.num_inputs, dtype=np.float64 ) self.nodes_used = [] self.output_genes = np.zeros(self.num_outputs, dtype=np.int) self.nodes = np.empty(0, dtype=self.CGPNode) for i in range(0, self.num_outputs): self.output_genes[i] = self.genome[len(self.genome) - self.num_outputs + i] i = 0 # building node list while i < len(self.genome) - self.num_outputs: f = self.genome[i] args = np.empty(0, dtype=int) for j in range(self.max_arity): args = np.append(args, self.genome[i + j + 1]) i += self.max_arity + 1 self.nodes = np.append(self.nodes, self.CGPNode(args, f)) self.node_to_evaluate() self.graph_created = True def node_to_evaluate(self): p = 0 while p < self.num_outputs: if self.output_genes[p] - self.num_inputs >= 0: self.to_evaluate[self.output_genes[p] - self.num_inputs] = True p = p + 1 p = self.max_graph_length - 1 while p >= 0: if self.to_evaluate[p]: for i in range(0, len(self.nodes[p].args)): arg = self.nodes[p].args[i] if arg - self.num_inputs >= 0: self.to_evaluate[arg - self.num_inputs] = True self.nodes_used.append(p) p = p - 1 self.nodes_used = np.array(self.nodes_used) def load_input_data(self, input_data): for p in range(self.num_inputs): self.node_output[p] = input_data[p] def compute_graph(self): self.node_output_old = self.node_output.copy() p = len(self.nodes_used) - 1 while p >= 0: args = np.zeros(self.max_arity) for i in range(0, self.max_arity): args[i] = self.node_output_old[self.nodes[self.nodes_used[p]].args[i]] f = self.library[self.nodes[self.nodes_used[p]].function].function self.node_output[self.nodes_used[p] + self.num_inputs] = f(args) if ( self.node_output[self.nodes_used[p] + self.num_inputs] != self.node_output[self.nodes_used[p] + self.num_inputs] ): print( self.library[self.nodes[self.nodes_used[p]].function].name, " returned NaN with ", args, ) if ( self.node_output[self.nodes_used[p] + self.num_inputs] < -1.0 or self.node_output[self.nodes_used[p] + self.num_inputs] > 1.0 ): print( self.library[self.nodes[self.nodes_used[p]].function].name, " returned ", self.node_output[self.nodes_used[p] + self.num_inputs], " with ", args, ) p = p - 1 def run(self, inputData): if not self.graph_created: self.create_graph() self.load_input_data(inputData) self.compute_graph() return self.read_output() def read_output(self): output = np.zeros(self.num_outputs) for p in range(0, self.num_outputs): output[p] = self.node_output[self.output_genes[p]] return output def clone(self): return CGP( self.genome, self.num_inputs, self.num_outputs, self.num_cols, self.num_rows, self.library, ) def mutate(self, num_mutationss): for i in range(0, num_mutationss): index = rnd.randint(0, len(self.genome) - 1) if index < self.num_cols * self.num_rows * (self.max_arity + 1): # this is an internal node if index % (self.max_arity + 1) == 0: # mutate function self.genome[index] = rnd.randint(0, len(self.library) - 1) else: # mutate connection self.genome[index] = rnd.randint( 0, self.num_inputs + (int(index / (self.max_arity + 1)) - 1) * self.num_rows, ) else: # this is an output node self.genome[index] = rnd.randint( 0, self.num_inputs + self.num_cols * self.num_rows - 1 ) def mutate_per_gene(self, mutation_rate_nodes, mutation_rate_outputs): for index in range(0, len(self.genome)): if index < self.num_cols * self.num_rows * (self.max_arity + 1): # this is an internal node if rnd.random() < mutation_rate_nodes: if index % (self.max_arity + 1) == 0: # mutate function self.genome[index] = rnd.randint(0, len(self.library) - 1) else: # mutate connection self.genome[index] = rnd.randint( 0, min( self.max_graph_length + self.num_inputs - 1, ( self.num_inputs + (int(index / (self.max_arity + 1)) - 1) * self.num_rows ) * self.recurrency_distance, ), ) # self.genome[index] = rnd.randint(0, self.num_inputs + (int(index / (self.max_arity + 1)) - 1) * self.num_rows) else: # this is an output node if rnd.random() < mutation_rate_outputs: # this is an output node self.genome[index] = rnd.randint( 0, self.num_inputs + self.num_cols * self.num_rows - 1 ) def to_dot(self, file_name, input_names, output_names): if not self.graph_created: self.create_graph() out = open(file_name, "w") out.write("digraph cgp {\n") out.write('\tsize = "4,4";\n') self.dot_rec_visited_nodes = np.empty(1) for i in range(self.num_outputs): out.write("\t" + output_names[i] + " [shape=oval];\n") self._write_dot_from_gene( output_names[i], self.output_genes[i], out, 0, input_names, output_names ) out.write("}") out.close() def _write_dot_from_gene(self, to_name, pos, out, a, input_names, output_names): if pos < self.num_inputs: out.write("\t" + input_names[pos] + " [shape=polygon,sides=6];\n") out.write( "\t" + input_names[pos] + " -> " + to_name + ' [label="' + str(a) + '"];\n' ) self.dot_rec_visited_nodes = np.append(self.dot_rec_visited_nodes, [pos]) else: pos -= self.num_inputs out.write( "\t" + self.library[self.nodes[pos].function].name + "_" + str(pos) + " -> " + to_name + ' [label="' + str(a) + '"];\n' ) if pos + self.num_inputs not in self.dot_rec_visited_nodes: out.write( "\t" + self.library[self.nodes[pos].function].name + "_" + str(pos) + " [shape=none];\n" ) for a in range(self.library[self.nodes[pos].function].arity): self._write_dot_from_gene( self.library[self.nodes[pos].function].name + "_" + str(pos), self.nodes[pos].args[a], out, a, input_names, output_names, ) self.dot_rec_visited_nodes = np.append( self.dot_rec_visited_nodes, [pos + self.num_inputs] ) def to_function_string(self, input_names, output_names): if not self.graph_created: self.create_graph() for o in range(self.num_outputs): print(output_names[o] + " = ", end="") self._write_from_gene(self.output_genes[o], input_names, output_names) print(";") print("") def _write_from_gene(self, pos, input_names, output_names): if pos < self.num_inputs: print(input_names[pos], end="") else: pos -= self.num_inputs print(self.library[self.nodes[pos].function].name + "(", end="") for a in range(self.library[self.nodes[pos].function].arity): # print(' ', end='') self._write_from_gene( self.nodes[pos].args[a], input_names, output_names ) if a != self.library[self.nodes[pos].function].arity - 1: print(", ", end="") # else: # print(')', end='') print(")", end="") @classmethod def random( cls, num_inputs, num_outputs, num_cols, num_rows, library, recurrency_distance ): max_arity = 0 for f in library: max_arity = np.maximum(max_arity, f.arity) genome = np.zeros( num_cols * num_rows * (max_arity + 1) + num_outputs, dtype=int ) gPos = 0 for c in range(0, num_cols): for r in range(0, num_rows): genome[gPos] = rnd.randint(0, len(library) - 1) for a in range(max_arity): genome[gPos + a + 1] = rnd.randint(0, num_inputs + c * num_rows - 1) gPos = gPos + max_arity + 1 for o in range(0, num_outputs): genome[gPos] = rnd.randint(0, num_inputs + num_cols * num_rows - 1) gPos = gPos + 1 return CGP( genome, num_inputs, num_outputs, num_cols, num_rows, library, recurrency_distance, ) def save(self, file_name): out = open(file_name, "w") out.write(str(self.num_inputs) + " ") out.write(str(self.num_outputs) + " ") out.write(str(self.num_cols) + " ") out.write(str(self.num_rows) + "\n") for g in self.genome: out.write(str(g) + " ") out.write("\n") for f in self.library: out.write(f.name + " ") out.close() @classmethod def load_from_file(cls, file_name, library): inp = open(file_name, "r") pams = inp.readline().split() genes = inp.readline().split() funcs = inp.readline().split() inp.close() params = np.empty(0, dtype=int) for p in pams: params = np.append(params, int(p)) genome = np.empty(0, dtype=int) for g in genes: genome = np.append(genome, int(g)) return CGP(genome, params[0], params[1], params[2], params[3], library) @classmethod def test(cls, num): c = CGP.random(2, 1, 2, 2, 2) for i in range(0, num): c.mutate(1) print(c.genome) print(c.run([1, 2]))
scikit-decide
/scikit_decide-0.9.6-cp310-cp310-macosx_10_15_x86_64.whl/skdecide/hub/solver/cgp/pycgp/cgp.py
cgp.py
import random as rnd import sys import numpy as np class CGP: class CGPFunc: def __init__(self, f, name, arity): self.function = f self.name = name self.arity = arity class CGPNode: def __init__(self, args, f): self.args = args self.function = f def __init__( self, genome, num_inputs, num_outputs, num_cols, num_rows, library, recurrency_distance=1.0, ): self.genome = genome.copy() self.num_inputs = num_inputs self.num_outputs = num_outputs self.num_cols = num_cols self.num_rows = num_rows self.max_graph_length = num_cols * num_rows self.library = library self.max_arity = 0 self.recurrency_distance = recurrency_distance for f in self.library: self.max_arity = np.maximum(self.max_arity, f.arity) self.graph_created = False def create_graph(self): self.to_evaluate = np.zeros(self.max_graph_length, dtype=bool) self.node_output = np.zeros( self.max_graph_length + self.num_inputs, dtype=np.float64 ) self.nodes_used = [] self.output_genes = np.zeros(self.num_outputs, dtype=np.int) self.nodes = np.empty(0, dtype=self.CGPNode) for i in range(0, self.num_outputs): self.output_genes[i] = self.genome[len(self.genome) - self.num_outputs + i] i = 0 # building node list while i < len(self.genome) - self.num_outputs: f = self.genome[i] args = np.empty(0, dtype=int) for j in range(self.max_arity): args = np.append(args, self.genome[i + j + 1]) i += self.max_arity + 1 self.nodes = np.append(self.nodes, self.CGPNode(args, f)) self.node_to_evaluate() self.graph_created = True def node_to_evaluate(self): p = 0 while p < self.num_outputs: if self.output_genes[p] - self.num_inputs >= 0: self.to_evaluate[self.output_genes[p] - self.num_inputs] = True p = p + 1 p = self.max_graph_length - 1 while p >= 0: if self.to_evaluate[p]: for i in range(0, len(self.nodes[p].args)): arg = self.nodes[p].args[i] if arg - self.num_inputs >= 0: self.to_evaluate[arg - self.num_inputs] = True self.nodes_used.append(p) p = p - 1 self.nodes_used = np.array(self.nodes_used) def load_input_data(self, input_data): for p in range(self.num_inputs): self.node_output[p] = input_data[p] def compute_graph(self): self.node_output_old = self.node_output.copy() p = len(self.nodes_used) - 1 while p >= 0: args = np.zeros(self.max_arity) for i in range(0, self.max_arity): args[i] = self.node_output_old[self.nodes[self.nodes_used[p]].args[i]] f = self.library[self.nodes[self.nodes_used[p]].function].function self.node_output[self.nodes_used[p] + self.num_inputs] = f(args) if ( self.node_output[self.nodes_used[p] + self.num_inputs] != self.node_output[self.nodes_used[p] + self.num_inputs] ): print( self.library[self.nodes[self.nodes_used[p]].function].name, " returned NaN with ", args, ) if ( self.node_output[self.nodes_used[p] + self.num_inputs] < -1.0 or self.node_output[self.nodes_used[p] + self.num_inputs] > 1.0 ): print( self.library[self.nodes[self.nodes_used[p]].function].name, " returned ", self.node_output[self.nodes_used[p] + self.num_inputs], " with ", args, ) p = p - 1 def run(self, inputData): if not self.graph_created: self.create_graph() self.load_input_data(inputData) self.compute_graph() return self.read_output() def read_output(self): output = np.zeros(self.num_outputs) for p in range(0, self.num_outputs): output[p] = self.node_output[self.output_genes[p]] return output def clone(self): return CGP( self.genome, self.num_inputs, self.num_outputs, self.num_cols, self.num_rows, self.library, ) def mutate(self, num_mutationss): for i in range(0, num_mutationss): index = rnd.randint(0, len(self.genome) - 1) if index < self.num_cols * self.num_rows * (self.max_arity + 1): # this is an internal node if index % (self.max_arity + 1) == 0: # mutate function self.genome[index] = rnd.randint(0, len(self.library) - 1) else: # mutate connection self.genome[index] = rnd.randint( 0, self.num_inputs + (int(index / (self.max_arity + 1)) - 1) * self.num_rows, ) else: # this is an output node self.genome[index] = rnd.randint( 0, self.num_inputs + self.num_cols * self.num_rows - 1 ) def mutate_per_gene(self, mutation_rate_nodes, mutation_rate_outputs): for index in range(0, len(self.genome)): if index < self.num_cols * self.num_rows * (self.max_arity + 1): # this is an internal node if rnd.random() < mutation_rate_nodes: if index % (self.max_arity + 1) == 0: # mutate function self.genome[index] = rnd.randint(0, len(self.library) - 1) else: # mutate connection self.genome[index] = rnd.randint( 0, min( self.max_graph_length + self.num_inputs - 1, ( self.num_inputs + (int(index / (self.max_arity + 1)) - 1) * self.num_rows ) * self.recurrency_distance, ), ) # self.genome[index] = rnd.randint(0, self.num_inputs + (int(index / (self.max_arity + 1)) - 1) * self.num_rows) else: # this is an output node if rnd.random() < mutation_rate_outputs: # this is an output node self.genome[index] = rnd.randint( 0, self.num_inputs + self.num_cols * self.num_rows - 1 ) def to_dot(self, file_name, input_names, output_names): if not self.graph_created: self.create_graph() out = open(file_name, "w") out.write("digraph cgp {\n") out.write('\tsize = "4,4";\n') self.dot_rec_visited_nodes = np.empty(1) for i in range(self.num_outputs): out.write("\t" + output_names[i] + " [shape=oval];\n") self._write_dot_from_gene( output_names[i], self.output_genes[i], out, 0, input_names, output_names ) out.write("}") out.close() def _write_dot_from_gene(self, to_name, pos, out, a, input_names, output_names): if pos < self.num_inputs: out.write("\t" + input_names[pos] + " [shape=polygon,sides=6];\n") out.write( "\t" + input_names[pos] + " -> " + to_name + ' [label="' + str(a) + '"];\n' ) self.dot_rec_visited_nodes = np.append(self.dot_rec_visited_nodes, [pos]) else: pos -= self.num_inputs out.write( "\t" + self.library[self.nodes[pos].function].name + "_" + str(pos) + " -> " + to_name + ' [label="' + str(a) + '"];\n' ) if pos + self.num_inputs not in self.dot_rec_visited_nodes: out.write( "\t" + self.library[self.nodes[pos].function].name + "_" + str(pos) + " [shape=none];\n" ) for a in range(self.library[self.nodes[pos].function].arity): self._write_dot_from_gene( self.library[self.nodes[pos].function].name + "_" + str(pos), self.nodes[pos].args[a], out, a, input_names, output_names, ) self.dot_rec_visited_nodes = np.append( self.dot_rec_visited_nodes, [pos + self.num_inputs] ) def to_function_string(self, input_names, output_names): if not self.graph_created: self.create_graph() for o in range(self.num_outputs): print(output_names[o] + " = ", end="") self._write_from_gene(self.output_genes[o], input_names, output_names) print(";") print("") def _write_from_gene(self, pos, input_names, output_names): if pos < self.num_inputs: print(input_names[pos], end="") else: pos -= self.num_inputs print(self.library[self.nodes[pos].function].name + "(", end="") for a in range(self.library[self.nodes[pos].function].arity): # print(' ', end='') self._write_from_gene( self.nodes[pos].args[a], input_names, output_names ) if a != self.library[self.nodes[pos].function].arity - 1: print(", ", end="") # else: # print(')', end='') print(")", end="") @classmethod def random( cls, num_inputs, num_outputs, num_cols, num_rows, library, recurrency_distance ): max_arity = 0 for f in library: max_arity = np.maximum(max_arity, f.arity) genome = np.zeros( num_cols * num_rows * (max_arity + 1) + num_outputs, dtype=int ) gPos = 0 for c in range(0, num_cols): for r in range(0, num_rows): genome[gPos] = rnd.randint(0, len(library) - 1) for a in range(max_arity): genome[gPos + a + 1] = rnd.randint(0, num_inputs + c * num_rows - 1) gPos = gPos + max_arity + 1 for o in range(0, num_outputs): genome[gPos] = rnd.randint(0, num_inputs + num_cols * num_rows - 1) gPos = gPos + 1 return CGP( genome, num_inputs, num_outputs, num_cols, num_rows, library, recurrency_distance, ) def save(self, file_name): out = open(file_name, "w") out.write(str(self.num_inputs) + " ") out.write(str(self.num_outputs) + " ") out.write(str(self.num_cols) + " ") out.write(str(self.num_rows) + "\n") for g in self.genome: out.write(str(g) + " ") out.write("\n") for f in self.library: out.write(f.name + " ") out.close() @classmethod def load_from_file(cls, file_name, library): inp = open(file_name, "r") pams = inp.readline().split() genes = inp.readline().split() funcs = inp.readline().split() inp.close() params = np.empty(0, dtype=int) for p in pams: params = np.append(params, int(p)) genome = np.empty(0, dtype=int) for g in genes: genome = np.append(genome, int(g)) return CGP(genome, params[0], params[1], params[2], params[3], library) @classmethod def test(cls, num): c = CGP.random(2, 1, 2, 2, 2) for i in range(0, num): c.mutate(1) print(c.genome) print(c.run([1, 2]))
0.267408
0.212375
import os import numpy as np from joblib import Parallel, delayed from .cgp import CGP from .evaluator import Evaluator class CGPES: def __init__( self, num_offsprings, mutation_rate_nodes, mutation_rate_outputs, father, evaluator, folder="genomes", num_cpus=1, ): self.num_offsprings = num_offsprings self.mutation_rate_nodes = mutation_rate_nodes self.mutation_rate_outputs = mutation_rate_outputs self.father = father # self.num_mutations = int(len(self.father.genome) * self.mutation_rate) self.evaluator = evaluator self.num_cpus = num_cpus self.folder = folder if self.num_cpus > 1: self.evaluator_pool = [] for i in range(self.num_offsprings): self.evaluator_pool.append(self.evaluator.clone()) def run(self, num_iteration): if not os.path.isdir(self.folder): os.mkdir(self.folder) self.logfile = open(self.folder + "/out.txt", "w") self.current_fitness = self.evaluator.evaluate(self.father, 0) self.father.save( self.folder + "/cgp_genome_0_" + str(self.current_fitness) + ".txt" ) self.offsprings = np.empty(self.num_offsprings, dtype=CGP) self.offspring_fitnesses = np.zeros(self.num_offsprings, dtype=float) for self.it in range(1, num_iteration + 1): # generate offsprings if self.num_cpus == 1: for i in range(0, self.num_offsprings): self.offsprings[i] = self.father.clone() # self.offsprings[i].mutate(self.num_mutations) self.offsprings[i].mutate_per_gene( self.mutation_rate_nodes, self.mutation_rate_outputs ) self.offspring_fitnesses[i] = self.evaluator.evaluate( self.offsprings[i], self.it ) else: for i in range(self.num_offsprings): self.offsprings[i] = self.father.clone() # self.offsprings[i].mutate(self.num_mutations) self.offsprings[i].mutate_per_gene( self.mutation_rate_nodes, self.mutation_rate_outputs ) def offspring_eval_task(offspring_id): return self.evaluator_pool[offspring_id].evaluate( self.offsprings[offspring_id], self.it ) self.offspring_fitnesses = Parallel(n_jobs=self.num_cpus)( delayed(offspring_eval_task)(i) for i in range(self.num_offsprings) ) # get the best fitness best_offspring = np.argmax(self.offspring_fitnesses) # compare to father self.father_was_updated = False if self.offspring_fitnesses[best_offspring] >= self.current_fitness: self.current_fitness = self.offspring_fitnesses[best_offspring] self.father = self.offsprings[best_offspring] self.father_was_updated = True # display stats print( self.it, "\t", self.current_fitness, "\t", self.father_was_updated, "\t", self.offspring_fitnesses, ) self.logfile.write( str(self.it) + "\t" + str(self.current_fitness) + "\t" + str(self.father_was_updated) + "\t" + str(self.offspring_fitnesses) + "\n" ) self.logfile.flush() print("====================================================") if self.father_was_updated: # print(self.father.genome) self.father.save( self.folder + "/cgp_genome_" + str(self.it) + "_" + str(self.current_fitness) + ".txt" )
scikit-decide
/scikit_decide-0.9.6-cp310-cp310-macosx_10_15_x86_64.whl/skdecide/hub/solver/cgp/pycgp/cgpes.py
cgpes.py
import os import numpy as np from joblib import Parallel, delayed from .cgp import CGP from .evaluator import Evaluator class CGPES: def __init__( self, num_offsprings, mutation_rate_nodes, mutation_rate_outputs, father, evaluator, folder="genomes", num_cpus=1, ): self.num_offsprings = num_offsprings self.mutation_rate_nodes = mutation_rate_nodes self.mutation_rate_outputs = mutation_rate_outputs self.father = father # self.num_mutations = int(len(self.father.genome) * self.mutation_rate) self.evaluator = evaluator self.num_cpus = num_cpus self.folder = folder if self.num_cpus > 1: self.evaluator_pool = [] for i in range(self.num_offsprings): self.evaluator_pool.append(self.evaluator.clone()) def run(self, num_iteration): if not os.path.isdir(self.folder): os.mkdir(self.folder) self.logfile = open(self.folder + "/out.txt", "w") self.current_fitness = self.evaluator.evaluate(self.father, 0) self.father.save( self.folder + "/cgp_genome_0_" + str(self.current_fitness) + ".txt" ) self.offsprings = np.empty(self.num_offsprings, dtype=CGP) self.offspring_fitnesses = np.zeros(self.num_offsprings, dtype=float) for self.it in range(1, num_iteration + 1): # generate offsprings if self.num_cpus == 1: for i in range(0, self.num_offsprings): self.offsprings[i] = self.father.clone() # self.offsprings[i].mutate(self.num_mutations) self.offsprings[i].mutate_per_gene( self.mutation_rate_nodes, self.mutation_rate_outputs ) self.offspring_fitnesses[i] = self.evaluator.evaluate( self.offsprings[i], self.it ) else: for i in range(self.num_offsprings): self.offsprings[i] = self.father.clone() # self.offsprings[i].mutate(self.num_mutations) self.offsprings[i].mutate_per_gene( self.mutation_rate_nodes, self.mutation_rate_outputs ) def offspring_eval_task(offspring_id): return self.evaluator_pool[offspring_id].evaluate( self.offsprings[offspring_id], self.it ) self.offspring_fitnesses = Parallel(n_jobs=self.num_cpus)( delayed(offspring_eval_task)(i) for i in range(self.num_offsprings) ) # get the best fitness best_offspring = np.argmax(self.offspring_fitnesses) # compare to father self.father_was_updated = False if self.offspring_fitnesses[best_offspring] >= self.current_fitness: self.current_fitness = self.offspring_fitnesses[best_offspring] self.father = self.offsprings[best_offspring] self.father_was_updated = True # display stats print( self.it, "\t", self.current_fitness, "\t", self.father_was_updated, "\t", self.offspring_fitnesses, ) self.logfile.write( str(self.it) + "\t" + str(self.current_fitness) + "\t" + str(self.father_was_updated) + "\t" + str(self.offspring_fitnesses) + "\n" ) self.logfile.flush() print("====================================================") if self.father_was_updated: # print(self.father.genome) self.father.save( self.folder + "/cgp_genome_" + str(self.it) + "_" + str(self.current_fitness) + ".txt" )
0.221519
0.223271
from __future__ import annotations from typing import Any, Callable, Set, Tuple from skdecide import Domain, Solver from skdecide.builders.domain import MultiAgent, Sequential, SingleAgent from skdecide.builders.solver import DeterministicPolicies, Utilities from skdecide.core import Value # TODO: remove Markovian req? class D(Domain, MultiAgent, Sequential): pass class MAHD(Solver, DeterministicPolicies, Utilities): T_domain = D def __init__( self, multiagent_solver_class, singleagent_solver_class, multiagent_domain_class, singleagent_domain_class, multiagent_domain_factory: Callable[[], Domain] = None, singleagent_domain_factory: Callable[[Domain, Any], Domain] = None, multiagent_solver_kwargs=None, singleagent_solver_kwargs=None, ) -> None: if multiagent_solver_kwargs is None: multiagent_solver_kwargs = {} if "heuristic" in multiagent_solver_kwargs: print( "\x1b[3;33;40m" + "Multi-agent solver heuristic will be overwritten by MAHD!" + "\x1b[0m" ) multiagent_solver_kwargs["heuristic"] = lambda d, o: self._multiagent_heuristic( o ) self._multiagent_solver = multiagent_solver_class(**multiagent_solver_kwargs) self._multiagent_domain_class = multiagent_domain_class self._multiagent_domain_factory = multiagent_domain_factory self._multiagent_domain = self._multiagent_domain_factory() self._singleagent_solver_class = singleagent_solver_class self._singleagent_solver_kwargs = singleagent_solver_kwargs self._singleagent_domain_class = singleagent_domain_class self._singleagent_domain_factory = singleagent_domain_factory self._singleagent_domains = {} self._singleagent_solvers = {} if self._singleagent_solver_kwargs is None: self._singleagent_solver_kwargs = {} for a in self._multiagent_domain.get_agents(): self._singleagent_solvers[a] = self._singleagent_solver_class( **self._singleagent_solver_kwargs ) self._singleagent_domain_class.solve_with( solver=self._singleagent_solvers[a], domain_factory=lambda: self._singleagent_domain_factory( self._multiagent_domain, a ) if self._singleagent_domain_factory is not None else None, ) self._singleagent_solutions = { a: {} for a in self._multiagent_domain.get_agents() } def _solve_domain(self, domain_factory: Callable[[], D]) -> None: self._multiagent_domain_class.solve_with( solver=self._multiagent_solver, domain_factory=domain_factory ) def _get_next_action( self, observation: D.T_agent[D.T_observation] ) -> D.T_agent[D.T_concurrency[D.T_event]]: return self._multiagent_solver._get_next_action(observation) def _get_utility(self, observation: D.T_agent[D.T_observation]) -> D.T_value: return self._multiagent_solver._get_utility(observation) def _multiagent_heuristic( self, observation: D.T_agent[D.T_observation] ) -> Tuple[D.T_agent[Value[D.T_value]], D.T_agent[D.T_concurrency[D.T_event]]]: h = {} for a, s in self._singleagent_solvers.items(): if observation[a] not in self._singleagent_solutions[a]: undefined_solution = False s.solve_from(observation[a]) if hasattr(self._singleagent_solvers[a], "get_policy"): p = self._singleagent_solvers[a].get_policy() for ps, pav in p.items(): self._singleagent_solutions[a][ps] = pav[::-1] undefined_solution = ( observation[a] not in self._singleagent_solutions[a] ) else: if not s.is_solution_defined_for(observation[a]): undefined_solution = True else: self._singleagent_solutions[a][observation[a]] = ( s.get_utility(observation[a]), s.get_next_action(observation[a]), ) if undefined_solution: is_terminal = ( hasattr(self._get_singleagent_domain(a), "is_goal") and self._get_singleagent_domain(a).is_goal(observation[a]) ) or ( hasattr(self._get_singleagent_domain(a), "is_terminal") and self._get_singleagent_domain(a).is_terminal(observation[a]) ) if not is_terminal: print( "\x1b[3;33;40m" + "/!\ Solution not defined for agent {} in non terminal state {}".format( a, observation[a] ) + ": Assigning default action! (is it a terminal state without no-op action?)" "\x1b[0m" ) try: self._singleagent_solutions[a][observation[a]] = ( 0, self._get_singleagent_domain(a) .get_applicable_actions(observation[a]) .sample(), ) except Exception as err: terminal_str = "terminal " if is_terminal else "" raise RuntimeError( "Cannot sample applicable action " "for agent {} in {}state {} " "(original exception is: {})".format( a, terminal_str, observation[a], err ) ) if issubclass(self._multiagent_solver.T_domain, SingleAgent): h = ( Value( cost=sum( p[observation[a]][0] for a, p in self._singleagent_solutions.items() ) ), { a: p[observation[a]][1] for a, p in self._singleagent_solutions.items() }, ) else: h = ( { a: Value(cost=p[observation[a]][0]) for a, p in self._singleagent_solutions.items() }, { a: p[observation[a]][1] for a, p in self._singleagent_solutions.items() }, ) return h def _get_singleagent_domain(self, agent): if agent not in self._singleagent_domains: self._singleagent_domains[agent] = self._singleagent_domain_factory( self._multiagent_domain, agent ) return self._singleagent_domains[agent] def _initialize(self): self._multiagent_solver._initialize() for a, s in self._singleagent_solvers.items(): s._initialize() def _cleanup(self): self._multiagent_solver._cleanup() for a, s in self._singleagent_solvers.items(): s._cleanup()
scikit-decide
/scikit_decide-0.9.6-cp310-cp310-macosx_10_15_x86_64.whl/skdecide/hub/solver/mahd/mahd.py
mahd.py
from __future__ import annotations from typing import Any, Callable, Set, Tuple from skdecide import Domain, Solver from skdecide.builders.domain import MultiAgent, Sequential, SingleAgent from skdecide.builders.solver import DeterministicPolicies, Utilities from skdecide.core import Value # TODO: remove Markovian req? class D(Domain, MultiAgent, Sequential): pass class MAHD(Solver, DeterministicPolicies, Utilities): T_domain = D def __init__( self, multiagent_solver_class, singleagent_solver_class, multiagent_domain_class, singleagent_domain_class, multiagent_domain_factory: Callable[[], Domain] = None, singleagent_domain_factory: Callable[[Domain, Any], Domain] = None, multiagent_solver_kwargs=None, singleagent_solver_kwargs=None, ) -> None: if multiagent_solver_kwargs is None: multiagent_solver_kwargs = {} if "heuristic" in multiagent_solver_kwargs: print( "\x1b[3;33;40m" + "Multi-agent solver heuristic will be overwritten by MAHD!" + "\x1b[0m" ) multiagent_solver_kwargs["heuristic"] = lambda d, o: self._multiagent_heuristic( o ) self._multiagent_solver = multiagent_solver_class(**multiagent_solver_kwargs) self._multiagent_domain_class = multiagent_domain_class self._multiagent_domain_factory = multiagent_domain_factory self._multiagent_domain = self._multiagent_domain_factory() self._singleagent_solver_class = singleagent_solver_class self._singleagent_solver_kwargs = singleagent_solver_kwargs self._singleagent_domain_class = singleagent_domain_class self._singleagent_domain_factory = singleagent_domain_factory self._singleagent_domains = {} self._singleagent_solvers = {} if self._singleagent_solver_kwargs is None: self._singleagent_solver_kwargs = {} for a in self._multiagent_domain.get_agents(): self._singleagent_solvers[a] = self._singleagent_solver_class( **self._singleagent_solver_kwargs ) self._singleagent_domain_class.solve_with( solver=self._singleagent_solvers[a], domain_factory=lambda: self._singleagent_domain_factory( self._multiagent_domain, a ) if self._singleagent_domain_factory is not None else None, ) self._singleagent_solutions = { a: {} for a in self._multiagent_domain.get_agents() } def _solve_domain(self, domain_factory: Callable[[], D]) -> None: self._multiagent_domain_class.solve_with( solver=self._multiagent_solver, domain_factory=domain_factory ) def _get_next_action( self, observation: D.T_agent[D.T_observation] ) -> D.T_agent[D.T_concurrency[D.T_event]]: return self._multiagent_solver._get_next_action(observation) def _get_utility(self, observation: D.T_agent[D.T_observation]) -> D.T_value: return self._multiagent_solver._get_utility(observation) def _multiagent_heuristic( self, observation: D.T_agent[D.T_observation] ) -> Tuple[D.T_agent[Value[D.T_value]], D.T_agent[D.T_concurrency[D.T_event]]]: h = {} for a, s in self._singleagent_solvers.items(): if observation[a] not in self._singleagent_solutions[a]: undefined_solution = False s.solve_from(observation[a]) if hasattr(self._singleagent_solvers[a], "get_policy"): p = self._singleagent_solvers[a].get_policy() for ps, pav in p.items(): self._singleagent_solutions[a][ps] = pav[::-1] undefined_solution = ( observation[a] not in self._singleagent_solutions[a] ) else: if not s.is_solution_defined_for(observation[a]): undefined_solution = True else: self._singleagent_solutions[a][observation[a]] = ( s.get_utility(observation[a]), s.get_next_action(observation[a]), ) if undefined_solution: is_terminal = ( hasattr(self._get_singleagent_domain(a), "is_goal") and self._get_singleagent_domain(a).is_goal(observation[a]) ) or ( hasattr(self._get_singleagent_domain(a), "is_terminal") and self._get_singleagent_domain(a).is_terminal(observation[a]) ) if not is_terminal: print( "\x1b[3;33;40m" + "/!\ Solution not defined for agent {} in non terminal state {}".format( a, observation[a] ) + ": Assigning default action! (is it a terminal state without no-op action?)" "\x1b[0m" ) try: self._singleagent_solutions[a][observation[a]] = ( 0, self._get_singleagent_domain(a) .get_applicable_actions(observation[a]) .sample(), ) except Exception as err: terminal_str = "terminal " if is_terminal else "" raise RuntimeError( "Cannot sample applicable action " "for agent {} in {}state {} " "(original exception is: {})".format( a, terminal_str, observation[a], err ) ) if issubclass(self._multiagent_solver.T_domain, SingleAgent): h = ( Value( cost=sum( p[observation[a]][0] for a, p in self._singleagent_solutions.items() ) ), { a: p[observation[a]][1] for a, p in self._singleagent_solutions.items() }, ) else: h = ( { a: Value(cost=p[observation[a]][0]) for a, p in self._singleagent_solutions.items() }, { a: p[observation[a]][1] for a, p in self._singleagent_solutions.items() }, ) return h def _get_singleagent_domain(self, agent): if agent not in self._singleagent_domains: self._singleagent_domains[agent] = self._singleagent_domain_factory( self._multiagent_domain, agent ) return self._singleagent_domains[agent] def _initialize(self): self._multiagent_solver._initialize() for a, s in self._singleagent_solvers.items(): s._initialize() def _cleanup(self): self._multiagent_solver._cleanup() for a, s in self._singleagent_solvers.items(): s._cleanup()
0.617051
0.123418
from __future__ import annotations import random from enum import Enum from typing import Callable import networkx as nx import numpy as np from skdecide.builders.domain.scheduling.scheduling_domains import SchedulingDomain from skdecide.builders.domain.scheduling.scheduling_domains_modelling import ( SchedulingAction, SchedulingActionEnum, State, ) from skdecide.solvers import DeterministicPolicies, Solver D = SchedulingDomain class GreedyChoice(Enum): MOST_SUCCESSORS = 1 SAMPLE_MOST_SUCCESSORS = 2 FASTEST = 3 TOTALLY_RANDOM = 4 class PilePolicy(Solver, DeterministicPolicies): T_domain = D def __init__(self, greedy_method: GreedyChoice = GreedyChoice.MOST_SUCCESSORS): self.greedy_method = greedy_method def _solve_domain(self, domain_factory: Callable[[], D]) -> None: self.domain = domain_factory() self.graph = self.domain.graph self.nx_graph: nx.DiGraph = self.graph.to_networkx() self.successors_map = {} self.predecessors_map = {} # successors = nx.dfs_successors(self.nx_graph, 1, self.n_jobs+2) self.successors = { n: list(nx.algorithms.descendants(self.nx_graph, n)) for n in self.nx_graph.nodes() } self.source = 1 for k in self.successors: self.successors_map[k] = { "succs": self.successors[k], "nb": len(self.successors[k]), } self.predecessors = { n: list(nx.algorithms.ancestors(self.nx_graph, n)) for n in self.nx_graph.nodes() } for k in self.predecessors: self.predecessors_map[k] = { "succs": self.predecessors[k], "nb": len(self.predecessors[k]), } def _get_next_action( self, observation: D.T_agent[D.T_observation] ) -> D.T_agent[D.T_concurrency[D.T_event]]: s: State = observation predecessors = { n: nx.algorithms.ancestors(self.nx_graph, n) for n in self.nx_graph.nodes() } for k in predecessors: self.predecessors_map[k] = { "succs": predecessors[k], "nb": len(predecessors[k]), } greedy_choice = self.greedy_method possible_task_to_launch = self.domain.task_possible_to_launch_precedence( state=s ) possible_task_to_launch = [ t for t in possible_task_to_launch if self.domain.check_if_action_can_be_started( state=s, action=SchedulingAction( task=t, action=SchedulingActionEnum.START, time_progress=False, mode=1, ), )[0] ] if len(possible_task_to_launch) > 0: if greedy_choice == GreedyChoice.MOST_SUCCESSORS: next_activity = max( possible_task_to_launch, key=lambda x: self.successors_map[x]["nb"] ) if greedy_choice == GreedyChoice.SAMPLE_MOST_SUCCESSORS: prob = np.array( [ self.successors_map[possible_task_to_launch[i]]["nb"] for i in range(len(possible_task_to_launch)) ] ) s = np.sum(prob) if s != 0: prob = prob / s else: prob = ( 1.0 / len(possible_task_to_launch) * np.ones((len(possible_task_to_launch))) ) next_activity = np.random.choice( np.arange(0, len(possible_task_to_launch)), size=1, p=prob )[0] next_activity = possible_task_to_launch[next_activity] if greedy_choice == GreedyChoice.FASTEST: next_activity = min( possible_task_to_launch, key=lambda x: self.domain.sample_task_duration(x, 1, 0.0), ) if greedy_choice == GreedyChoice.TOTALLY_RANDOM: next_activity = random.choice(possible_task_to_launch) return SchedulingAction( task=next_activity, mode=1, action=SchedulingActionEnum.START, time_progress=False, ) else: return SchedulingAction( task=None, mode=1, action=SchedulingActionEnum.TIME_PR, time_progress=True, ) def _is_policy_defined_for(self, observation: D.T_agent[D.T_observation]) -> bool: return True
scikit-decide
/scikit_decide-0.9.6-cp310-cp310-macosx_10_15_x86_64.whl/skdecide/hub/solver/pile_policy/pile_policy.py
pile_policy.py
from __future__ import annotations import random from enum import Enum from typing import Callable import networkx as nx import numpy as np from skdecide.builders.domain.scheduling.scheduling_domains import SchedulingDomain from skdecide.builders.domain.scheduling.scheduling_domains_modelling import ( SchedulingAction, SchedulingActionEnum, State, ) from skdecide.solvers import DeterministicPolicies, Solver D = SchedulingDomain class GreedyChoice(Enum): MOST_SUCCESSORS = 1 SAMPLE_MOST_SUCCESSORS = 2 FASTEST = 3 TOTALLY_RANDOM = 4 class PilePolicy(Solver, DeterministicPolicies): T_domain = D def __init__(self, greedy_method: GreedyChoice = GreedyChoice.MOST_SUCCESSORS): self.greedy_method = greedy_method def _solve_domain(self, domain_factory: Callable[[], D]) -> None: self.domain = domain_factory() self.graph = self.domain.graph self.nx_graph: nx.DiGraph = self.graph.to_networkx() self.successors_map = {} self.predecessors_map = {} # successors = nx.dfs_successors(self.nx_graph, 1, self.n_jobs+2) self.successors = { n: list(nx.algorithms.descendants(self.nx_graph, n)) for n in self.nx_graph.nodes() } self.source = 1 for k in self.successors: self.successors_map[k] = { "succs": self.successors[k], "nb": len(self.successors[k]), } self.predecessors = { n: list(nx.algorithms.ancestors(self.nx_graph, n)) for n in self.nx_graph.nodes() } for k in self.predecessors: self.predecessors_map[k] = { "succs": self.predecessors[k], "nb": len(self.predecessors[k]), } def _get_next_action( self, observation: D.T_agent[D.T_observation] ) -> D.T_agent[D.T_concurrency[D.T_event]]: s: State = observation predecessors = { n: nx.algorithms.ancestors(self.nx_graph, n) for n in self.nx_graph.nodes() } for k in predecessors: self.predecessors_map[k] = { "succs": predecessors[k], "nb": len(predecessors[k]), } greedy_choice = self.greedy_method possible_task_to_launch = self.domain.task_possible_to_launch_precedence( state=s ) possible_task_to_launch = [ t for t in possible_task_to_launch if self.domain.check_if_action_can_be_started( state=s, action=SchedulingAction( task=t, action=SchedulingActionEnum.START, time_progress=False, mode=1, ), )[0] ] if len(possible_task_to_launch) > 0: if greedy_choice == GreedyChoice.MOST_SUCCESSORS: next_activity = max( possible_task_to_launch, key=lambda x: self.successors_map[x]["nb"] ) if greedy_choice == GreedyChoice.SAMPLE_MOST_SUCCESSORS: prob = np.array( [ self.successors_map[possible_task_to_launch[i]]["nb"] for i in range(len(possible_task_to_launch)) ] ) s = np.sum(prob) if s != 0: prob = prob / s else: prob = ( 1.0 / len(possible_task_to_launch) * np.ones((len(possible_task_to_launch))) ) next_activity = np.random.choice( np.arange(0, len(possible_task_to_launch)), size=1, p=prob )[0] next_activity = possible_task_to_launch[next_activity] if greedy_choice == GreedyChoice.FASTEST: next_activity = min( possible_task_to_launch, key=lambda x: self.domain.sample_task_duration(x, 1, 0.0), ) if greedy_choice == GreedyChoice.TOTALLY_RANDOM: next_activity = random.choice(possible_task_to_launch) return SchedulingAction( task=next_activity, mode=1, action=SchedulingActionEnum.START, time_progress=False, ) else: return SchedulingAction( task=None, mode=1, action=SchedulingActionEnum.TIME_PR, time_progress=True, ) def _is_policy_defined_for(self, observation: D.T_agent[D.T_observation]) -> bool: return True
0.750187
0.239816
from __future__ import annotations import os import sys from typing import Callable, Optional from skdecide import Domain, Solver, hub from skdecide.builders.domain import ( Actions, EnumerableTransitions, FullyObservable, Goals, Markovian, PositiveCosts, Sequential, SingleAgent, ) from skdecide.builders.solver import DeterministicPolicies, ParallelSolver, Utilities from skdecide.core import Value record_sys_path = sys.path skdecide_cpp_extension_lib_path = os.path.abspath(hub.__path__[0]) if skdecide_cpp_extension_lib_path not in sys.path: sys.path.append(skdecide_cpp_extension_lib_path) try: from __skdecide_hub_cpp import _AOStarSolver_ as aostar_solver # TODO: remove Markovian req? class D( Domain, SingleAgent, Sequential, EnumerableTransitions, Actions, Goals, Markovian, FullyObservable, PositiveCosts, ): pass class AOstar(ParallelSolver, Solver, DeterministicPolicies, Utilities): T_domain = D def __init__( self, domain_factory: Callable[[], Domain], heuristic: Optional[ Callable[[Domain, D.T_state], D.T_agent[Value[D.T_value]]] ] = None, discount: float = 1.0, max_tip_expanions: int = 1, parallel: bool = False, shared_memory_proxy=None, detect_cycles: bool = False, debug_logs: bool = False, ) -> None: ParallelSolver.__init__( self, domain_factory=domain_factory, parallel=parallel, shared_memory_proxy=shared_memory_proxy, ) self._solver = None self._discount = discount self._max_tip_expansions = max_tip_expanions self._detect_cycles = detect_cycles self._debug_logs = debug_logs if heuristic is None: self._heuristic = lambda d, s: Value(cost=0) else: self._heuristic = heuristic self._lambdas = [self._heuristic] self._ipc_notify = True def close(self): """Joins the parallel domains' processes. Not calling this method (or not using the 'with' context statement) results in the solver forever waiting for the domain processes to exit. """ if self._parallel: self._solver.close() ParallelSolver.close(self) def _init_solve(self, domain_factory: Callable[[], Domain]) -> None: self._domain_factory = domain_factory self._solver = aostar_solver( domain=self.get_domain(), goal_checker=lambda d, s: d.is_goal(s), heuristic=lambda d, s: self._heuristic(d, s) if not self._parallel else d.call(None, 0, s), discount=self._discount, max_tip_expansions=self._max_tip_expansions, detect_cycles=self._detect_cycles, parallel=self._parallel, debug_logs=self._debug_logs, ) self._solver.clear() def _solve_domain(self, domain_factory: Callable[[], D]) -> None: self._init_solve(domain_factory) def _solve_from(self, memory: D.T_memory[D.T_state]) -> None: self._solver.solve(memory) def _is_solution_defined_for( self, observation: D.T_agent[D.T_observation] ) -> bool: return self._solver.is_solution_defined_for(observation) def _get_next_action( self, observation: D.T_agent[D.T_observation] ) -> D.T_agent[D.T_concurrency[D.T_event]]: if not self._is_solution_defined_for(observation): self._solve_from(observation) return self._solver.get_next_action(observation) def _get_utility(self, observation: D.T_agent[D.T_observation]) -> D.T_value: return self._solver.get_utility(observation) except ImportError: sys.path = record_sys_path print( 'Scikit-decide C++ hub library not found. Please check it is installed in "skdecide/hub".' ) raise
scikit-decide
/scikit_decide-0.9.6-cp310-cp310-macosx_10_15_x86_64.whl/skdecide/hub/solver/aostar/aostar.py
aostar.py
from __future__ import annotations import os import sys from typing import Callable, Optional from skdecide import Domain, Solver, hub from skdecide.builders.domain import ( Actions, EnumerableTransitions, FullyObservable, Goals, Markovian, PositiveCosts, Sequential, SingleAgent, ) from skdecide.builders.solver import DeterministicPolicies, ParallelSolver, Utilities from skdecide.core import Value record_sys_path = sys.path skdecide_cpp_extension_lib_path = os.path.abspath(hub.__path__[0]) if skdecide_cpp_extension_lib_path not in sys.path: sys.path.append(skdecide_cpp_extension_lib_path) try: from __skdecide_hub_cpp import _AOStarSolver_ as aostar_solver # TODO: remove Markovian req? class D( Domain, SingleAgent, Sequential, EnumerableTransitions, Actions, Goals, Markovian, FullyObservable, PositiveCosts, ): pass class AOstar(ParallelSolver, Solver, DeterministicPolicies, Utilities): T_domain = D def __init__( self, domain_factory: Callable[[], Domain], heuristic: Optional[ Callable[[Domain, D.T_state], D.T_agent[Value[D.T_value]]] ] = None, discount: float = 1.0, max_tip_expanions: int = 1, parallel: bool = False, shared_memory_proxy=None, detect_cycles: bool = False, debug_logs: bool = False, ) -> None: ParallelSolver.__init__( self, domain_factory=domain_factory, parallel=parallel, shared_memory_proxy=shared_memory_proxy, ) self._solver = None self._discount = discount self._max_tip_expansions = max_tip_expanions self._detect_cycles = detect_cycles self._debug_logs = debug_logs if heuristic is None: self._heuristic = lambda d, s: Value(cost=0) else: self._heuristic = heuristic self._lambdas = [self._heuristic] self._ipc_notify = True def close(self): """Joins the parallel domains' processes. Not calling this method (or not using the 'with' context statement) results in the solver forever waiting for the domain processes to exit. """ if self._parallel: self._solver.close() ParallelSolver.close(self) def _init_solve(self, domain_factory: Callable[[], Domain]) -> None: self._domain_factory = domain_factory self._solver = aostar_solver( domain=self.get_domain(), goal_checker=lambda d, s: d.is_goal(s), heuristic=lambda d, s: self._heuristic(d, s) if not self._parallel else d.call(None, 0, s), discount=self._discount, max_tip_expansions=self._max_tip_expansions, detect_cycles=self._detect_cycles, parallel=self._parallel, debug_logs=self._debug_logs, ) self._solver.clear() def _solve_domain(self, domain_factory: Callable[[], D]) -> None: self._init_solve(domain_factory) def _solve_from(self, memory: D.T_memory[D.T_state]) -> None: self._solver.solve(memory) def _is_solution_defined_for( self, observation: D.T_agent[D.T_observation] ) -> bool: return self._solver.is_solution_defined_for(observation) def _get_next_action( self, observation: D.T_agent[D.T_observation] ) -> D.T_agent[D.T_concurrency[D.T_event]]: if not self._is_solution_defined_for(observation): self._solve_from(observation) return self._solver.get_next_action(observation) def _get_utility(self, observation: D.T_agent[D.T_observation]) -> D.T_value: return self._solver.get_utility(observation) except ImportError: sys.path = record_sys_path print( 'Scikit-decide C++ hub library not found. Please check it is installed in "skdecide/hub".' ) raise
0.579876
0.135976
from __future__ import annotations from enum import Enum from typing import Any, Callable, Dict, Union from discrete_optimization.rcpsp.rcpsp_model import ( MultiModeRCPSPModel, RCPSPModel, RCPSPModelCalendar, RCPSPSolution, SingleModeRCPSPModel, ) from discrete_optimization.rcpsp_multiskill.rcpsp_multiskill import ( MS_RCPSPModel, MS_RCPSPSolution, MS_RCPSPSolution_Variant, ) from skdecide.builders.domain.scheduling.scheduling_domains import SchedulingDomain from skdecide.hub.solver.do_solver.sk_to_do_binding import build_do_domain from skdecide.hub.solver.sgs_policies.sgs_policies import ( BasePolicyMethod, PolicyMethodParams, PolicyRCPSP, ) from skdecide.solvers import DeterministicPolicies, Solver class D(SchedulingDomain): pass class SolvingMethod(Enum): PILE = 0 GA = 1 LS = 2 LP = 3 CP = 4 LNS_LP = 5 LNS_CP = 6 LNS_CP_CALENDAR = 7 # New algorithm, similar to lns, adding iterativelyu constraint to fulfill calendar constraints.. def build_solver(solving_method: SolvingMethod, do_domain): if isinstance(do_domain, (RCPSPModelCalendar, RCPSPModel, MultiModeRCPSPModel)): from discrete_optimization.rcpsp.rcpsp_solvers import ( look_for_solver, solvers_map, ) available = look_for_solver(do_domain) solving_method_to_str = { SolvingMethod.PILE: "greedy", SolvingMethod.GA: "ga", SolvingMethod.LS: "ls", SolvingMethod.LP: "lp", SolvingMethod.CP: "cp", SolvingMethod.LNS_LP: "lns-lp", SolvingMethod.LNS_CP: "lns-cp", SolvingMethod.LNS_CP_CALENDAR: "lns-cp-calendar", } smap = [ (av, solvers_map[av]) for av in available if solvers_map[av][0] == solving_method_to_str[solving_method] ] if len(smap) > 0: return smap[0] if isinstance(do_domain, (MS_RCPSPModel, MS_RCPSPModel, MultiModeRCPSPModel)): from discrete_optimization.rcpsp_multiskill.rcpsp_multiskill_solvers import ( look_for_solver, solvers_map, ) available = look_for_solver(do_domain) solving_method_to_str = { SolvingMethod.PILE: "greedy", SolvingMethod.GA: "ga", SolvingMethod.LS: "ls", SolvingMethod.LP: "lp", SolvingMethod.CP: "cp", SolvingMethod.LNS_LP: "lns-lp", SolvingMethod.LNS_CP: "lns-cp", SolvingMethod.LNS_CP_CALENDAR: "lns-cp-calendar", } smap = [ (av, solvers_map[av]) for av in available if solvers_map[av][0] == solving_method_to_str[solving_method] ] if len(smap) > 0: return smap[0] return None def from_solution_to_policy( solution: Union[RCPSPSolution, MS_RCPSPSolution, MS_RCPSPSolution_Variant], domain, policy_method_params: PolicyMethodParams, ): permutation_task = None modes_dictionnary = None schedule = None resource_allocation = None resource_allocation_priority = None if isinstance(solution, RCPSPSolution): permutation_task = sorted( solution.rcpsp_schedule, key=lambda x: (solution.rcpsp_schedule[x]["start_time"], x), ) schedule = solution.rcpsp_schedule modes_dictionnary = {} # set modes for start and end (dummy) jobs modes_dictionnary[1] = 1 modes_dictionnary[solution.problem.n_jobs_non_dummy + 2] = 1 for i in range(len(solution.rcpsp_modes)): modes_dictionnary[i + 2] = solution.rcpsp_modes[i] elif isinstance(solution, MS_RCPSPSolution): permutation_task = sorted( solution.schedule, key=lambda x: (solution.schedule[x]["start_time"], x) ) schedule = solution.schedule employees = sorted(domain.get_resource_units_names()) resource_allocation = { task: [ employees[i] for i in solution.employee_usage[task].keys() ] # warning here... for task in solution.employee_usage } if isinstance(solution, MS_RCPSPSolution_Variant): resource_allocation_priority = solution.priority_worker_per_task modes_dictionnary = {} # set modes for start and end (dummy) jobs modes_dictionnary[1] = 1 modes_dictionnary[solution.problem.n_jobs_non_dummy + 2] = 1 for i in range(len(solution.modes_vector)): modes_dictionnary[i + 2] = solution.modes_vector[i] else: modes_dictionnary = solution.modes return PolicyRCPSP( domain=domain, policy_method_params=policy_method_params, permutation_task=permutation_task, modes_dictionnary=modes_dictionnary, schedule=schedule, resource_allocation=resource_allocation, resource_allocation_priority=resource_allocation_priority, ) class DOSolver(Solver, DeterministicPolicies): T_domain = D def __init__( self, policy_method_params: PolicyMethodParams, method: SolvingMethod = SolvingMethod.PILE, dict_params: Dict[Any, Any] = None, ): self.method = method self.policy_method_params = policy_method_params self.dict_params = dict_params if self.dict_params is None: self.dict_params = {} def get_available_methods(self, domain: SchedulingDomain): do_domain = build_do_domain(domain) if isinstance(do_domain, (MS_RCPSPModel)): from discrete_optimization.rcpsp_multiskill.rcpsp_multiskill_solvers import ( look_for_solver, solvers_map, ) available = look_for_solver(do_domain) elif isinstance( do_domain, (SingleModeRCPSPModel, RCPSPModel, MultiModeRCPSPModel) ): from discrete_optimization.rcpsp.rcpsp_solvers import ( look_for_solver, solvers_map, ) available = look_for_solver(do_domain) smap = [(av, solvers_map[av]) for av in available] return smap def _solve_domain(self, domain_factory: Callable[[], D]) -> None: self.domain = domain_factory() self.do_domain = build_do_domain(self.domain) solvers = build_solver(solving_method=self.method, do_domain=self.do_domain) solver_class = solvers[0] key, params = solvers[1] for k in params: if k not in self.dict_params: self.dict_params[k] = params[k] self.solver = solver_class(self.do_domain, **self.dict_params) if hasattr(self.solver, "init_model") and callable(self.solver.init_model): self.solver.init_model(**self.dict_params) result_storage = self.solver.solve(**self.dict_params) best_solution: RCPSPSolution = result_storage.get_best_solution() assert best_solution is not None fits = self.do_domain.evaluate(best_solution) self.best_solution = best_solution self.policy_object = from_solution_to_policy( solution=best_solution, domain=self.domain, policy_method_params=self.policy_method_params, ) def get_external_policy(self) -> PolicyRCPSP: return self.policy_object def compute_external_policy(self, policy_method_params: PolicyMethodParams): return from_solution_to_policy( solution=self.best_solution, domain=self.domain, policy_method_params=policy_method_params, ) def _get_next_action( self, observation: D.T_agent[D.T_observation] ) -> D.T_agent[D.T_concurrency[D.T_event]]: return self.policy_object.get_next_action(observation=observation) def _is_policy_defined_for(self, observation: D.T_agent[D.T_observation]) -> bool: return self.policy_object.is_policy_defined_for(observation=observation)
scikit-decide
/scikit_decide-0.9.6-cp310-cp310-macosx_10_15_x86_64.whl/skdecide/hub/solver/do_solver/do_solver_scheduling.py
do_solver_scheduling.py
from __future__ import annotations from enum import Enum from typing import Any, Callable, Dict, Union from discrete_optimization.rcpsp.rcpsp_model import ( MultiModeRCPSPModel, RCPSPModel, RCPSPModelCalendar, RCPSPSolution, SingleModeRCPSPModel, ) from discrete_optimization.rcpsp_multiskill.rcpsp_multiskill import ( MS_RCPSPModel, MS_RCPSPSolution, MS_RCPSPSolution_Variant, ) from skdecide.builders.domain.scheduling.scheduling_domains import SchedulingDomain from skdecide.hub.solver.do_solver.sk_to_do_binding import build_do_domain from skdecide.hub.solver.sgs_policies.sgs_policies import ( BasePolicyMethod, PolicyMethodParams, PolicyRCPSP, ) from skdecide.solvers import DeterministicPolicies, Solver class D(SchedulingDomain): pass class SolvingMethod(Enum): PILE = 0 GA = 1 LS = 2 LP = 3 CP = 4 LNS_LP = 5 LNS_CP = 6 LNS_CP_CALENDAR = 7 # New algorithm, similar to lns, adding iterativelyu constraint to fulfill calendar constraints.. def build_solver(solving_method: SolvingMethod, do_domain): if isinstance(do_domain, (RCPSPModelCalendar, RCPSPModel, MultiModeRCPSPModel)): from discrete_optimization.rcpsp.rcpsp_solvers import ( look_for_solver, solvers_map, ) available = look_for_solver(do_domain) solving_method_to_str = { SolvingMethod.PILE: "greedy", SolvingMethod.GA: "ga", SolvingMethod.LS: "ls", SolvingMethod.LP: "lp", SolvingMethod.CP: "cp", SolvingMethod.LNS_LP: "lns-lp", SolvingMethod.LNS_CP: "lns-cp", SolvingMethod.LNS_CP_CALENDAR: "lns-cp-calendar", } smap = [ (av, solvers_map[av]) for av in available if solvers_map[av][0] == solving_method_to_str[solving_method] ] if len(smap) > 0: return smap[0] if isinstance(do_domain, (MS_RCPSPModel, MS_RCPSPModel, MultiModeRCPSPModel)): from discrete_optimization.rcpsp_multiskill.rcpsp_multiskill_solvers import ( look_for_solver, solvers_map, ) available = look_for_solver(do_domain) solving_method_to_str = { SolvingMethod.PILE: "greedy", SolvingMethod.GA: "ga", SolvingMethod.LS: "ls", SolvingMethod.LP: "lp", SolvingMethod.CP: "cp", SolvingMethod.LNS_LP: "lns-lp", SolvingMethod.LNS_CP: "lns-cp", SolvingMethod.LNS_CP_CALENDAR: "lns-cp-calendar", } smap = [ (av, solvers_map[av]) for av in available if solvers_map[av][0] == solving_method_to_str[solving_method] ] if len(smap) > 0: return smap[0] return None def from_solution_to_policy( solution: Union[RCPSPSolution, MS_RCPSPSolution, MS_RCPSPSolution_Variant], domain, policy_method_params: PolicyMethodParams, ): permutation_task = None modes_dictionnary = None schedule = None resource_allocation = None resource_allocation_priority = None if isinstance(solution, RCPSPSolution): permutation_task = sorted( solution.rcpsp_schedule, key=lambda x: (solution.rcpsp_schedule[x]["start_time"], x), ) schedule = solution.rcpsp_schedule modes_dictionnary = {} # set modes for start and end (dummy) jobs modes_dictionnary[1] = 1 modes_dictionnary[solution.problem.n_jobs_non_dummy + 2] = 1 for i in range(len(solution.rcpsp_modes)): modes_dictionnary[i + 2] = solution.rcpsp_modes[i] elif isinstance(solution, MS_RCPSPSolution): permutation_task = sorted( solution.schedule, key=lambda x: (solution.schedule[x]["start_time"], x) ) schedule = solution.schedule employees = sorted(domain.get_resource_units_names()) resource_allocation = { task: [ employees[i] for i in solution.employee_usage[task].keys() ] # warning here... for task in solution.employee_usage } if isinstance(solution, MS_RCPSPSolution_Variant): resource_allocation_priority = solution.priority_worker_per_task modes_dictionnary = {} # set modes for start and end (dummy) jobs modes_dictionnary[1] = 1 modes_dictionnary[solution.problem.n_jobs_non_dummy + 2] = 1 for i in range(len(solution.modes_vector)): modes_dictionnary[i + 2] = solution.modes_vector[i] else: modes_dictionnary = solution.modes return PolicyRCPSP( domain=domain, policy_method_params=policy_method_params, permutation_task=permutation_task, modes_dictionnary=modes_dictionnary, schedule=schedule, resource_allocation=resource_allocation, resource_allocation_priority=resource_allocation_priority, ) class DOSolver(Solver, DeterministicPolicies): T_domain = D def __init__( self, policy_method_params: PolicyMethodParams, method: SolvingMethod = SolvingMethod.PILE, dict_params: Dict[Any, Any] = None, ): self.method = method self.policy_method_params = policy_method_params self.dict_params = dict_params if self.dict_params is None: self.dict_params = {} def get_available_methods(self, domain: SchedulingDomain): do_domain = build_do_domain(domain) if isinstance(do_domain, (MS_RCPSPModel)): from discrete_optimization.rcpsp_multiskill.rcpsp_multiskill_solvers import ( look_for_solver, solvers_map, ) available = look_for_solver(do_domain) elif isinstance( do_domain, (SingleModeRCPSPModel, RCPSPModel, MultiModeRCPSPModel) ): from discrete_optimization.rcpsp.rcpsp_solvers import ( look_for_solver, solvers_map, ) available = look_for_solver(do_domain) smap = [(av, solvers_map[av]) for av in available] return smap def _solve_domain(self, domain_factory: Callable[[], D]) -> None: self.domain = domain_factory() self.do_domain = build_do_domain(self.domain) solvers = build_solver(solving_method=self.method, do_domain=self.do_domain) solver_class = solvers[0] key, params = solvers[1] for k in params: if k not in self.dict_params: self.dict_params[k] = params[k] self.solver = solver_class(self.do_domain, **self.dict_params) if hasattr(self.solver, "init_model") and callable(self.solver.init_model): self.solver.init_model(**self.dict_params) result_storage = self.solver.solve(**self.dict_params) best_solution: RCPSPSolution = result_storage.get_best_solution() assert best_solution is not None fits = self.do_domain.evaluate(best_solution) self.best_solution = best_solution self.policy_object = from_solution_to_policy( solution=best_solution, domain=self.domain, policy_method_params=self.policy_method_params, ) def get_external_policy(self) -> PolicyRCPSP: return self.policy_object def compute_external_policy(self, policy_method_params: PolicyMethodParams): return from_solution_to_policy( solution=self.best_solution, domain=self.domain, policy_method_params=policy_method_params, ) def _get_next_action( self, observation: D.T_agent[D.T_observation] ) -> D.T_agent[D.T_concurrency[D.T_event]]: return self.policy_object.get_next_action(observation=observation) def _is_policy_defined_for(self, observation: D.T_agent[D.T_observation]) -> bool: return self.policy_object.is_policy_defined_for(observation=observation)
0.8308
0.173656
from __future__ import annotations from typing import Union from discrete_optimization.rcpsp.rcpsp_model import ( MultiModeRCPSPModel, RCPSPModel, RCPSPModelCalendar, RCPSPSolution, SingleModeRCPSPModel, ) from discrete_optimization.rcpsp_multiskill.rcpsp_multiskill import ( Employee, MS_RCPSPModel, MS_RCPSPModel_Variant, SkillDetail, ) from skdecide.builders.domain.scheduling.scheduling_domains import ( MultiModeMultiSkillRCPSP, MultiModeMultiSkillRCPSPCalendar, MultiModeRCPSP, MultiModeRCPSPCalendar, MultiModeRCPSPWithCost, SchedulingDomain, SingleModeRCPSP, SingleModeRCPSP_Stochastic_Durations, SingleModeRCPSPCalendar, State, ) from skdecide.hub.domain.rcpsp.rcpsp_sk import ( MRCPSP, MSRCPSP, RCPSP, MRCPSPCalendar, MSRCPSPCalendar, ) def from_last_state_to_solution(state: State, domain: SchedulingDomain): modes = [state.tasks_mode.get(j, 1) for j in sorted(domain.get_tasks_ids())] modes = modes[1:-1] schedule = { p.value.id: {"start_time": p.value.start, "end_time": p.value.end} for p in state.tasks_complete_details } return RCPSPSolution( problem=build_do_domain(domain), rcpsp_permutation=None, rcpsp_modes=modes, rcpsp_schedule=schedule, ) def build_do_domain( scheduling_domain: Union[ SingleModeRCPSP, SingleModeRCPSPCalendar, MultiModeRCPSP, MultiModeRCPSPWithCost, MultiModeRCPSPCalendar, MultiModeMultiSkillRCPSP, MultiModeMultiSkillRCPSPCalendar, SingleModeRCPSP_Stochastic_Durations, ] ): if isinstance(scheduling_domain, SingleModeRCPSP): modes_details = scheduling_domain.get_tasks_modes().copy() mode_details_do = {} for task in modes_details: mode_details_do[task] = {} for mode in modes_details[task]: mode_details_do[task][mode] = {} for r in modes_details[task][mode].get_ressource_names(): mode_details_do[task][mode][r] = modes_details[task][ mode ].get_resource_need_at_time( r, time=0 ) # should be constant anyway mode_details_do[task][mode][ "duration" ] = scheduling_domain.get_task_duration(task=task, mode=mode) return SingleModeRCPSPModel( resources={ r: scheduling_domain.get_original_quantity_resource(r) for r in scheduling_domain.get_resource_types_names() }, non_renewable_resources=[ r for r in scheduling_domain.get_resource_renewability() if not scheduling_domain.get_resource_renewability()[r] ], mode_details=mode_details_do, successors=scheduling_domain.get_successors(), horizon=scheduling_domain.get_max_horizon(), horizon_multiplier=1, ) if isinstance(scheduling_domain, SingleModeRCPSP_Stochastic_Durations): modes_details = scheduling_domain.get_tasks_modes().copy() mode_details_do = {} for task in modes_details: mode_details_do[task] = {} for mode in modes_details[task]: mode_details_do[task][mode] = {} for r in modes_details[task][mode].get_ressource_names(): mode_details_do[task][mode][r] = modes_details[task][ mode ].get_resource_need_at_time( r, time=0 ) # should be constant anyway mode_details_do[task][mode][ "duration" ] = scheduling_domain.sample_task_duration(task=task, mode=mode) return SingleModeRCPSPModel( resources={ r: scheduling_domain.get_original_quantity_resource(r) for r in scheduling_domain.get_resource_types_names() }, non_renewable_resources=[ r for r in scheduling_domain.get_resource_renewability() if not scheduling_domain.get_resource_renewability()[r] ], mode_details=mode_details_do, successors=scheduling_domain.get_successors(), horizon=scheduling_domain.get_max_horizon(), horizon_multiplier=1, ) if isinstance(scheduling_domain, (MultiModeRCPSP, MultiModeRCPSPWithCost)): modes_details = scheduling_domain.get_tasks_modes().copy() mode_details_do = {} for task in modes_details: mode_details_do[task] = {} for mode in modes_details[task]: mode_details_do[task][mode] = {} for r in modes_details[task][mode].get_ressource_names(): mode_details_do[task][mode][r] = modes_details[task][ mode ].get_resource_need_at_time( r, time=0 ) # should be constant anyway mode_details_do[task][mode][ "duration" ] = scheduling_domain.get_task_duration(task=task, mode=mode) return MultiModeRCPSPModel( resources={ r: scheduling_domain.get_original_quantity_resource(r) for r in scheduling_domain.get_resource_types_names() }, non_renewable_resources=[ r for r in scheduling_domain.get_resource_renewability() if not scheduling_domain.get_resource_renewability()[r] ], mode_details=mode_details_do, successors=scheduling_domain.get_successors(), horizon=scheduling_domain.get_max_horizon(), horizon_multiplier=1, ) if isinstance(scheduling_domain, (MultiModeRCPSPCalendar, SingleModeRCPSPCalendar)): modes_details = scheduling_domain.get_tasks_modes().copy() mode_details_do = {} for task in modes_details: mode_details_do[task] = {} for mode in modes_details[task]: mode_details_do[task][mode] = {} for r in modes_details[task][mode].get_ressource_names(): mode_details_do[task][mode][r] = modes_details[task][ mode ].get_resource_need_at_time( r, time=0 ) # should be constant anyway mode_details_do[task][mode][ "duration" ] = scheduling_domain.get_task_duration(task=task, mode=mode) horizon = scheduling_domain.get_max_horizon() return RCPSPModelCalendar( resources={ r: [ scheduling_domain.get_quantity_resource(r, time=t) for t in range(horizon) ] for r in scheduling_domain.get_resource_types_names() }, non_renewable_resources=[ r for r in scheduling_domain.get_resource_renewability() if not scheduling_domain.get_resource_renewability()[r] ], mode_details=mode_details_do, successors=scheduling_domain.get_successors(), horizon=scheduling_domain.get_max_horizon(), horizon_multiplier=1, ) if isinstance( scheduling_domain, (MultiModeMultiSkillRCPSP, MultiModeMultiSkillRCPSPCalendar) ): modes_details = scheduling_domain.get_tasks_modes().copy() skills_set = set() mode_details_do = {} for task in modes_details: mode_details_do[task] = {} for mode in modes_details[task]: mode_details_do[task][mode] = {} for r in modes_details[task][mode].get_ressource_names(): mode_details_do[task][mode][r] = modes_details[task][ mode ].get_resource_need_at_time( r, time=0 ) # should be constant anyway skills = scheduling_domain.get_skills_of_task(task=task, mode=mode) for s in skills: mode_details_do[task][mode][s] = skills[s] skills_set.add(s) mode_details_do[task][mode][ "duration" ] = scheduling_domain.get_task_duration(task=task, mode=mode) horizon = scheduling_domain.get_max_horizon() employees_dict = {} employees = scheduling_domain.get_resource_units_names() sorted_employees = sorted(employees) for employee, i in zip(sorted_employees, range(len(sorted_employees))): skills = scheduling_domain.get_skills_of_resource(resource=employee) skills_details = { r: SkillDetail(skill_value=skills[r], efficiency_ratio=0, experience=0) for r in skills } employees_dict[i] = Employee( dict_skill=skills_details, calendar_employee=[ bool(scheduling_domain.get_quantity_resource(employee, time=t)) for t in range(horizon + 1) ], ) return MS_RCPSPModel_Variant( skills_set=scheduling_domain.get_skills_names(), resources_set=set(scheduling_domain.get_resource_types_names()), non_renewable_resources=set( [ r for r in scheduling_domain.get_resource_renewability() if not scheduling_domain.get_resource_renewability()[r] ] ), resources_availability={ r: [ scheduling_domain.get_quantity_resource(r, time=t) for t in range(horizon + 1) ] for r in scheduling_domain.get_resource_types_names() }, employees=employees_dict, employees_availability=[ sum( [ scheduling_domain.get_quantity_resource(employee, time=t) for employee in employees ] ) for t in range(horizon + 1) ], mode_details=mode_details_do, successors=scheduling_domain.get_successors(), horizon=horizon, horizon_multiplier=1, sink_task=max(scheduling_domain.get_tasks_ids()), source_task=min(scheduling_domain.get_tasks_ids()), one_unit_per_task_max=False, ) # TODO : for imopse this should be True def build_sk_domain( rcpsp_do_domain: Union[ MS_RCPSPModel, SingleModeRCPSPModel, MultiModeRCPSP, RCPSPModelCalendar ], varying_ressource: bool = False, ): if isinstance(rcpsp_do_domain, RCPSPModelCalendar): if varying_ressource: my_domain = MRCPSPCalendar( resource_names=rcpsp_do_domain.resources_list, task_ids=sorted(rcpsp_do_domain.mode_details.keys()), tasks_mode=rcpsp_do_domain.mode_details, successors=rcpsp_do_domain.successors, max_horizon=rcpsp_do_domain.horizon, resource_availability=rcpsp_do_domain.resources, resource_renewable={ r: r not in rcpsp_do_domain.non_renewable_resources for r in rcpsp_do_domain.resources_list }, ) return my_domain # Even if the DO domain is a calendar one... ignore it. else: my_domain = MRCPSP( resource_names=rcpsp_do_domain.resources_list, task_ids=sorted(rcpsp_do_domain.mode_details.keys()), tasks_mode=rcpsp_do_domain.mode_details, successors=rcpsp_do_domain.successors, max_horizon=rcpsp_do_domain.horizon, resource_availability={ r: max(rcpsp_do_domain.resources[r]) for r in rcpsp_do_domain.resources }, resource_renewable={ r: r not in rcpsp_do_domain.non_renewable_resources for r in rcpsp_do_domain.resources_list }, ) return my_domain if isinstance(rcpsp_do_domain, SingleModeRCPSPModel): my_domain = RCPSP( resource_names=rcpsp_do_domain.resources_list, task_ids=sorted(rcpsp_do_domain.mode_details.keys()), tasks_mode=rcpsp_do_domain.mode_details, successors=rcpsp_do_domain.successors, max_horizon=rcpsp_do_domain.horizon, resource_availability=rcpsp_do_domain.resources, resource_renewable={ r: r not in rcpsp_do_domain.non_renewable_resources for r in rcpsp_do_domain.resources_list }, ) return my_domain elif isinstance(rcpsp_do_domain, (MultiModeRCPSPModel, RCPSPModel)): my_domain = MRCPSP( resource_names=rcpsp_do_domain.resources_list, task_ids=sorted(rcpsp_do_domain.mode_details.keys()), tasks_mode=rcpsp_do_domain.mode_details, successors=rcpsp_do_domain.successors, max_horizon=rcpsp_do_domain.horizon, resource_availability=rcpsp_do_domain.resources, resource_renewable={ r: r not in rcpsp_do_domain.non_renewable_resources for r in rcpsp_do_domain.resources_list }, ) return my_domain elif isinstance(rcpsp_do_domain, MS_RCPSPModel): if not varying_ressource: resource_type_names = list(rcpsp_do_domain.resources_list) resource_skills = {r: {} for r in resource_type_names} resource_availability = { r: rcpsp_do_domain.resources_availability[r][0] for r in rcpsp_do_domain.resources_availability } resource_renewable = { r: r not in rcpsp_do_domain.non_renewable_resources for r in rcpsp_do_domain.resources_list } resource_unit_names = [] for employee in rcpsp_do_domain.employees: resource_unit_names += [str(employee)] resource_skills[resource_unit_names[-1]] = {} resource_availability[resource_unit_names[-1]] = 1 resource_renewable[resource_unit_names[-1]] = True for s in rcpsp_do_domain.employees[employee].dict_skill: resource_skills[resource_unit_names[-1]][s] = ( rcpsp_do_domain.employees[employee].dict_skill[s].skill_value ) return MSRCPSP( skills_names=list(rcpsp_do_domain.skills_set), resource_unit_names=resource_unit_names, resource_type_names=resource_type_names, resource_skills=resource_skills, task_ids=sorted(rcpsp_do_domain.mode_details.keys()), tasks_mode=rcpsp_do_domain.mode_details, successors=rcpsp_do_domain.successors, max_horizon=rcpsp_do_domain.horizon, resource_availability=resource_availability, resource_renewable=resource_renewable, ) else: resource_type_names = list(rcpsp_do_domain.resources_list) resource_skills = {r: {} for r in resource_type_names} resource_availability = { r: rcpsp_do_domain.resources_availability[r] for r in rcpsp_do_domain.resources_availability } resource_renewable = { r: r not in rcpsp_do_domain.non_renewable_resources for r in rcpsp_do_domain.resources_list } resource_unit_names = [] for employee in rcpsp_do_domain.employees: resource_unit_names += [str(employee)] resource_skills[resource_unit_names[-1]] = {} resource_availability[resource_unit_names[-1]] = [ 1 if x else 0 for x in rcpsp_do_domain.employees[employee].calendar_employee ] resource_renewable[resource_unit_names[-1]] = True for s in rcpsp_do_domain.employees[employee].dict_skill: resource_skills[resource_unit_names[-1]][s] = ( rcpsp_do_domain.employees[employee].dict_skill[s].skill_value ) return MSRCPSPCalendar( skills_names=list(rcpsp_do_domain.skills_set), resource_unit_names=resource_unit_names, resource_type_names=resource_type_names, resource_skills=resource_skills, task_ids=sorted(rcpsp_do_domain.mode_details.keys()), tasks_mode=rcpsp_do_domain.mode_details, successors=rcpsp_do_domain.successors, max_horizon=rcpsp_do_domain.horizon, resource_availability=resource_availability, resource_renewable=resource_renewable, )
scikit-decide
/scikit_decide-0.9.6-cp310-cp310-macosx_10_15_x86_64.whl/skdecide/hub/solver/do_solver/sk_to_do_binding.py
sk_to_do_binding.py
from __future__ import annotations from typing import Union from discrete_optimization.rcpsp.rcpsp_model import ( MultiModeRCPSPModel, RCPSPModel, RCPSPModelCalendar, RCPSPSolution, SingleModeRCPSPModel, ) from discrete_optimization.rcpsp_multiskill.rcpsp_multiskill import ( Employee, MS_RCPSPModel, MS_RCPSPModel_Variant, SkillDetail, ) from skdecide.builders.domain.scheduling.scheduling_domains import ( MultiModeMultiSkillRCPSP, MultiModeMultiSkillRCPSPCalendar, MultiModeRCPSP, MultiModeRCPSPCalendar, MultiModeRCPSPWithCost, SchedulingDomain, SingleModeRCPSP, SingleModeRCPSP_Stochastic_Durations, SingleModeRCPSPCalendar, State, ) from skdecide.hub.domain.rcpsp.rcpsp_sk import ( MRCPSP, MSRCPSP, RCPSP, MRCPSPCalendar, MSRCPSPCalendar, ) def from_last_state_to_solution(state: State, domain: SchedulingDomain): modes = [state.tasks_mode.get(j, 1) for j in sorted(domain.get_tasks_ids())] modes = modes[1:-1] schedule = { p.value.id: {"start_time": p.value.start, "end_time": p.value.end} for p in state.tasks_complete_details } return RCPSPSolution( problem=build_do_domain(domain), rcpsp_permutation=None, rcpsp_modes=modes, rcpsp_schedule=schedule, ) def build_do_domain( scheduling_domain: Union[ SingleModeRCPSP, SingleModeRCPSPCalendar, MultiModeRCPSP, MultiModeRCPSPWithCost, MultiModeRCPSPCalendar, MultiModeMultiSkillRCPSP, MultiModeMultiSkillRCPSPCalendar, SingleModeRCPSP_Stochastic_Durations, ] ): if isinstance(scheduling_domain, SingleModeRCPSP): modes_details = scheduling_domain.get_tasks_modes().copy() mode_details_do = {} for task in modes_details: mode_details_do[task] = {} for mode in modes_details[task]: mode_details_do[task][mode] = {} for r in modes_details[task][mode].get_ressource_names(): mode_details_do[task][mode][r] = modes_details[task][ mode ].get_resource_need_at_time( r, time=0 ) # should be constant anyway mode_details_do[task][mode][ "duration" ] = scheduling_domain.get_task_duration(task=task, mode=mode) return SingleModeRCPSPModel( resources={ r: scheduling_domain.get_original_quantity_resource(r) for r in scheduling_domain.get_resource_types_names() }, non_renewable_resources=[ r for r in scheduling_domain.get_resource_renewability() if not scheduling_domain.get_resource_renewability()[r] ], mode_details=mode_details_do, successors=scheduling_domain.get_successors(), horizon=scheduling_domain.get_max_horizon(), horizon_multiplier=1, ) if isinstance(scheduling_domain, SingleModeRCPSP_Stochastic_Durations): modes_details = scheduling_domain.get_tasks_modes().copy() mode_details_do = {} for task in modes_details: mode_details_do[task] = {} for mode in modes_details[task]: mode_details_do[task][mode] = {} for r in modes_details[task][mode].get_ressource_names(): mode_details_do[task][mode][r] = modes_details[task][ mode ].get_resource_need_at_time( r, time=0 ) # should be constant anyway mode_details_do[task][mode][ "duration" ] = scheduling_domain.sample_task_duration(task=task, mode=mode) return SingleModeRCPSPModel( resources={ r: scheduling_domain.get_original_quantity_resource(r) for r in scheduling_domain.get_resource_types_names() }, non_renewable_resources=[ r for r in scheduling_domain.get_resource_renewability() if not scheduling_domain.get_resource_renewability()[r] ], mode_details=mode_details_do, successors=scheduling_domain.get_successors(), horizon=scheduling_domain.get_max_horizon(), horizon_multiplier=1, ) if isinstance(scheduling_domain, (MultiModeRCPSP, MultiModeRCPSPWithCost)): modes_details = scheduling_domain.get_tasks_modes().copy() mode_details_do = {} for task in modes_details: mode_details_do[task] = {} for mode in modes_details[task]: mode_details_do[task][mode] = {} for r in modes_details[task][mode].get_ressource_names(): mode_details_do[task][mode][r] = modes_details[task][ mode ].get_resource_need_at_time( r, time=0 ) # should be constant anyway mode_details_do[task][mode][ "duration" ] = scheduling_domain.get_task_duration(task=task, mode=mode) return MultiModeRCPSPModel( resources={ r: scheduling_domain.get_original_quantity_resource(r) for r in scheduling_domain.get_resource_types_names() }, non_renewable_resources=[ r for r in scheduling_domain.get_resource_renewability() if not scheduling_domain.get_resource_renewability()[r] ], mode_details=mode_details_do, successors=scheduling_domain.get_successors(), horizon=scheduling_domain.get_max_horizon(), horizon_multiplier=1, ) if isinstance(scheduling_domain, (MultiModeRCPSPCalendar, SingleModeRCPSPCalendar)): modes_details = scheduling_domain.get_tasks_modes().copy() mode_details_do = {} for task in modes_details: mode_details_do[task] = {} for mode in modes_details[task]: mode_details_do[task][mode] = {} for r in modes_details[task][mode].get_ressource_names(): mode_details_do[task][mode][r] = modes_details[task][ mode ].get_resource_need_at_time( r, time=0 ) # should be constant anyway mode_details_do[task][mode][ "duration" ] = scheduling_domain.get_task_duration(task=task, mode=mode) horizon = scheduling_domain.get_max_horizon() return RCPSPModelCalendar( resources={ r: [ scheduling_domain.get_quantity_resource(r, time=t) for t in range(horizon) ] for r in scheduling_domain.get_resource_types_names() }, non_renewable_resources=[ r for r in scheduling_domain.get_resource_renewability() if not scheduling_domain.get_resource_renewability()[r] ], mode_details=mode_details_do, successors=scheduling_domain.get_successors(), horizon=scheduling_domain.get_max_horizon(), horizon_multiplier=1, ) if isinstance( scheduling_domain, (MultiModeMultiSkillRCPSP, MultiModeMultiSkillRCPSPCalendar) ): modes_details = scheduling_domain.get_tasks_modes().copy() skills_set = set() mode_details_do = {} for task in modes_details: mode_details_do[task] = {} for mode in modes_details[task]: mode_details_do[task][mode] = {} for r in modes_details[task][mode].get_ressource_names(): mode_details_do[task][mode][r] = modes_details[task][ mode ].get_resource_need_at_time( r, time=0 ) # should be constant anyway skills = scheduling_domain.get_skills_of_task(task=task, mode=mode) for s in skills: mode_details_do[task][mode][s] = skills[s] skills_set.add(s) mode_details_do[task][mode][ "duration" ] = scheduling_domain.get_task_duration(task=task, mode=mode) horizon = scheduling_domain.get_max_horizon() employees_dict = {} employees = scheduling_domain.get_resource_units_names() sorted_employees = sorted(employees) for employee, i in zip(sorted_employees, range(len(sorted_employees))): skills = scheduling_domain.get_skills_of_resource(resource=employee) skills_details = { r: SkillDetail(skill_value=skills[r], efficiency_ratio=0, experience=0) for r in skills } employees_dict[i] = Employee( dict_skill=skills_details, calendar_employee=[ bool(scheduling_domain.get_quantity_resource(employee, time=t)) for t in range(horizon + 1) ], ) return MS_RCPSPModel_Variant( skills_set=scheduling_domain.get_skills_names(), resources_set=set(scheduling_domain.get_resource_types_names()), non_renewable_resources=set( [ r for r in scheduling_domain.get_resource_renewability() if not scheduling_domain.get_resource_renewability()[r] ] ), resources_availability={ r: [ scheduling_domain.get_quantity_resource(r, time=t) for t in range(horizon + 1) ] for r in scheduling_domain.get_resource_types_names() }, employees=employees_dict, employees_availability=[ sum( [ scheduling_domain.get_quantity_resource(employee, time=t) for employee in employees ] ) for t in range(horizon + 1) ], mode_details=mode_details_do, successors=scheduling_domain.get_successors(), horizon=horizon, horizon_multiplier=1, sink_task=max(scheduling_domain.get_tasks_ids()), source_task=min(scheduling_domain.get_tasks_ids()), one_unit_per_task_max=False, ) # TODO : for imopse this should be True def build_sk_domain( rcpsp_do_domain: Union[ MS_RCPSPModel, SingleModeRCPSPModel, MultiModeRCPSP, RCPSPModelCalendar ], varying_ressource: bool = False, ): if isinstance(rcpsp_do_domain, RCPSPModelCalendar): if varying_ressource: my_domain = MRCPSPCalendar( resource_names=rcpsp_do_domain.resources_list, task_ids=sorted(rcpsp_do_domain.mode_details.keys()), tasks_mode=rcpsp_do_domain.mode_details, successors=rcpsp_do_domain.successors, max_horizon=rcpsp_do_domain.horizon, resource_availability=rcpsp_do_domain.resources, resource_renewable={ r: r not in rcpsp_do_domain.non_renewable_resources for r in rcpsp_do_domain.resources_list }, ) return my_domain # Even if the DO domain is a calendar one... ignore it. else: my_domain = MRCPSP( resource_names=rcpsp_do_domain.resources_list, task_ids=sorted(rcpsp_do_domain.mode_details.keys()), tasks_mode=rcpsp_do_domain.mode_details, successors=rcpsp_do_domain.successors, max_horizon=rcpsp_do_domain.horizon, resource_availability={ r: max(rcpsp_do_domain.resources[r]) for r in rcpsp_do_domain.resources }, resource_renewable={ r: r not in rcpsp_do_domain.non_renewable_resources for r in rcpsp_do_domain.resources_list }, ) return my_domain if isinstance(rcpsp_do_domain, SingleModeRCPSPModel): my_domain = RCPSP( resource_names=rcpsp_do_domain.resources_list, task_ids=sorted(rcpsp_do_domain.mode_details.keys()), tasks_mode=rcpsp_do_domain.mode_details, successors=rcpsp_do_domain.successors, max_horizon=rcpsp_do_domain.horizon, resource_availability=rcpsp_do_domain.resources, resource_renewable={ r: r not in rcpsp_do_domain.non_renewable_resources for r in rcpsp_do_domain.resources_list }, ) return my_domain elif isinstance(rcpsp_do_domain, (MultiModeRCPSPModel, RCPSPModel)): my_domain = MRCPSP( resource_names=rcpsp_do_domain.resources_list, task_ids=sorted(rcpsp_do_domain.mode_details.keys()), tasks_mode=rcpsp_do_domain.mode_details, successors=rcpsp_do_domain.successors, max_horizon=rcpsp_do_domain.horizon, resource_availability=rcpsp_do_domain.resources, resource_renewable={ r: r not in rcpsp_do_domain.non_renewable_resources for r in rcpsp_do_domain.resources_list }, ) return my_domain elif isinstance(rcpsp_do_domain, MS_RCPSPModel): if not varying_ressource: resource_type_names = list(rcpsp_do_domain.resources_list) resource_skills = {r: {} for r in resource_type_names} resource_availability = { r: rcpsp_do_domain.resources_availability[r][0] for r in rcpsp_do_domain.resources_availability } resource_renewable = { r: r not in rcpsp_do_domain.non_renewable_resources for r in rcpsp_do_domain.resources_list } resource_unit_names = [] for employee in rcpsp_do_domain.employees: resource_unit_names += [str(employee)] resource_skills[resource_unit_names[-1]] = {} resource_availability[resource_unit_names[-1]] = 1 resource_renewable[resource_unit_names[-1]] = True for s in rcpsp_do_domain.employees[employee].dict_skill: resource_skills[resource_unit_names[-1]][s] = ( rcpsp_do_domain.employees[employee].dict_skill[s].skill_value ) return MSRCPSP( skills_names=list(rcpsp_do_domain.skills_set), resource_unit_names=resource_unit_names, resource_type_names=resource_type_names, resource_skills=resource_skills, task_ids=sorted(rcpsp_do_domain.mode_details.keys()), tasks_mode=rcpsp_do_domain.mode_details, successors=rcpsp_do_domain.successors, max_horizon=rcpsp_do_domain.horizon, resource_availability=resource_availability, resource_renewable=resource_renewable, ) else: resource_type_names = list(rcpsp_do_domain.resources_list) resource_skills = {r: {} for r in resource_type_names} resource_availability = { r: rcpsp_do_domain.resources_availability[r] for r in rcpsp_do_domain.resources_availability } resource_renewable = { r: r not in rcpsp_do_domain.non_renewable_resources for r in rcpsp_do_domain.resources_list } resource_unit_names = [] for employee in rcpsp_do_domain.employees: resource_unit_names += [str(employee)] resource_skills[resource_unit_names[-1]] = {} resource_availability[resource_unit_names[-1]] = [ 1 if x else 0 for x in rcpsp_do_domain.employees[employee].calendar_employee ] resource_renewable[resource_unit_names[-1]] = True for s in rcpsp_do_domain.employees[employee].dict_skill: resource_skills[resource_unit_names[-1]][s] = ( rcpsp_do_domain.employees[employee].dict_skill[s].skill_value ) return MSRCPSPCalendar( skills_names=list(rcpsp_do_domain.skills_set), resource_unit_names=resource_unit_names, resource_type_names=resource_type_names, resource_skills=resource_skills, task_ids=sorted(rcpsp_do_domain.mode_details.keys()), tasks_mode=rcpsp_do_domain.mode_details, successors=rcpsp_do_domain.successors, max_horizon=rcpsp_do_domain.horizon, resource_availability=resource_availability, resource_renewable=resource_renewable, )
0.778733
0.088308
from __future__ import annotations import os import sys from typing import Callable, Dict, Optional, Tuple from skdecide import Domain, Solver, hub from skdecide.builders.domain import ( Actions, EnumerableTransitions, FullyObservable, Goals, Markovian, PositiveCosts, Sequential, SingleAgent, ) from skdecide.builders.solver import DeterministicPolicies, ParallelSolver, Utilities from skdecide.core import Value record_sys_path = sys.path skdecide_cpp_extension_lib_path = os.path.abspath(hub.__path__[0]) if skdecide_cpp_extension_lib_path not in sys.path: sys.path.append(skdecide_cpp_extension_lib_path) try: from __skdecide_hub_cpp import _ILAOStarSolver_ as ilaostar_solver # TODO: remove Markovian req? class D( Domain, SingleAgent, Sequential, EnumerableTransitions, Actions, Goals, Markovian, FullyObservable, PositiveCosts, ): pass class ILAOstar(ParallelSolver, Solver, DeterministicPolicies, Utilities): T_domain = D def __init__( self, domain_factory: Callable[[], Domain], heuristic: Optional[ Callable[[Domain, D.T_state], D.T_agent[Value[D.T_value]]] ] = None, discount: float = 1.0, epsilon: float = 0.001, parallel: bool = False, shared_memory_proxy=None, debug_logs: bool = False, ) -> None: ParallelSolver.__init__( self, domain_factory=domain_factory, parallel=parallel, shared_memory_proxy=shared_memory_proxy, ) self._solver = None self._discount = discount self._epsilon = epsilon self._debug_logs = debug_logs if heuristic is None: self._heuristic = lambda d, s: Value(cost=0) else: self._heuristic = heuristic self._lambdas = [self._heuristic] self._ipc_notify = True def close(self): """Joins the parallel domains' processes. Not calling this method (or not using the 'with' context statement) results in the solver forever waiting for the domain processes to exit. """ if self._parallel: self._solver.close() ParallelSolver.close(self) def _init_solve(self, domain_factory: Callable[[], Domain]) -> None: self._domain_factory = domain_factory self._solver = ilaostar_solver( domain=self.get_domain(), goal_checker=lambda d, s: d.is_goal(s), heuristic=lambda d, s: self._heuristic(d, s) if not self._parallel else d.call(None, 0, s), discount=self._discount, epsilon=self._epsilon, parallel=self._parallel, debug_logs=self._debug_logs, ) self._solver.clear() def _solve_domain(self, domain_factory: Callable[[], D]) -> None: self._init_solve(domain_factory) def _solve_from(self, memory: D.T_memory[D.T_state]) -> None: self._solver.solve(memory) def _is_solution_defined_for( self, observation: D.T_agent[D.T_observation] ) -> bool: return self._solver.is_solution_defined_for(observation) def _get_next_action( self, observation: D.T_agent[D.T_observation] ) -> D.T_agent[D.T_concurrency[D.T_event]]: if not self._is_solution_defined_for(observation): self._solve_from(observation) return self._solver.get_next_action(observation) def _get_utility(self, observation: D.T_agent[D.T_observation]) -> D.T_value: return self._solver.get_utility(observation) def get_nb_of_explored_states(self) -> int: return self._solver.get_nb_of_explored_states() def best_solution_graph_size(self) -> int: return self._solver.best_solution_graph_size() def get_policy( self, ) -> Dict[ D.T_agent[D.T_observation], Tuple[D.T_agent[D.T_concurrency[D.T_event]], float], ]: return self._solver.get_policy() except ImportError: sys.path = record_sys_path print( 'Scikit-decide C++ hub library not found. Please check it is installed in "skdecide/hub".' ) raise
scikit-decide
/scikit_decide-0.9.6-cp310-cp310-macosx_10_15_x86_64.whl/skdecide/hub/solver/ilaostar/ilaostar.py
ilaostar.py
from __future__ import annotations import os import sys from typing import Callable, Dict, Optional, Tuple from skdecide import Domain, Solver, hub from skdecide.builders.domain import ( Actions, EnumerableTransitions, FullyObservable, Goals, Markovian, PositiveCosts, Sequential, SingleAgent, ) from skdecide.builders.solver import DeterministicPolicies, ParallelSolver, Utilities from skdecide.core import Value record_sys_path = sys.path skdecide_cpp_extension_lib_path = os.path.abspath(hub.__path__[0]) if skdecide_cpp_extension_lib_path not in sys.path: sys.path.append(skdecide_cpp_extension_lib_path) try: from __skdecide_hub_cpp import _ILAOStarSolver_ as ilaostar_solver # TODO: remove Markovian req? class D( Domain, SingleAgent, Sequential, EnumerableTransitions, Actions, Goals, Markovian, FullyObservable, PositiveCosts, ): pass class ILAOstar(ParallelSolver, Solver, DeterministicPolicies, Utilities): T_domain = D def __init__( self, domain_factory: Callable[[], Domain], heuristic: Optional[ Callable[[Domain, D.T_state], D.T_agent[Value[D.T_value]]] ] = None, discount: float = 1.0, epsilon: float = 0.001, parallel: bool = False, shared_memory_proxy=None, debug_logs: bool = False, ) -> None: ParallelSolver.__init__( self, domain_factory=domain_factory, parallel=parallel, shared_memory_proxy=shared_memory_proxy, ) self._solver = None self._discount = discount self._epsilon = epsilon self._debug_logs = debug_logs if heuristic is None: self._heuristic = lambda d, s: Value(cost=0) else: self._heuristic = heuristic self._lambdas = [self._heuristic] self._ipc_notify = True def close(self): """Joins the parallel domains' processes. Not calling this method (or not using the 'with' context statement) results in the solver forever waiting for the domain processes to exit. """ if self._parallel: self._solver.close() ParallelSolver.close(self) def _init_solve(self, domain_factory: Callable[[], Domain]) -> None: self._domain_factory = domain_factory self._solver = ilaostar_solver( domain=self.get_domain(), goal_checker=lambda d, s: d.is_goal(s), heuristic=lambda d, s: self._heuristic(d, s) if not self._parallel else d.call(None, 0, s), discount=self._discount, epsilon=self._epsilon, parallel=self._parallel, debug_logs=self._debug_logs, ) self._solver.clear() def _solve_domain(self, domain_factory: Callable[[], D]) -> None: self._init_solve(domain_factory) def _solve_from(self, memory: D.T_memory[D.T_state]) -> None: self._solver.solve(memory) def _is_solution_defined_for( self, observation: D.T_agent[D.T_observation] ) -> bool: return self._solver.is_solution_defined_for(observation) def _get_next_action( self, observation: D.T_agent[D.T_observation] ) -> D.T_agent[D.T_concurrency[D.T_event]]: if not self._is_solution_defined_for(observation): self._solve_from(observation) return self._solver.get_next_action(observation) def _get_utility(self, observation: D.T_agent[D.T_observation]) -> D.T_value: return self._solver.get_utility(observation) def get_nb_of_explored_states(self) -> int: return self._solver.get_nb_of_explored_states() def best_solution_graph_size(self) -> int: return self._solver.best_solution_graph_size() def get_policy( self, ) -> Dict[ D.T_agent[D.T_observation], Tuple[D.T_agent[D.T_concurrency[D.T_event]], float], ]: return self._solver.get_policy() except ImportError: sys.path = record_sys_path print( 'Scikit-decide C++ hub library not found. Please check it is installed in "skdecide/hub".' ) raise
0.58676
0.150559
from __future__ import annotations import os import sys from typing import Callable, Dict, Optional, Tuple from skdecide import Domain, Solver, hub from skdecide.builders.domain import ( Actions, FullyObservable, Goals, Markovian, PositiveCosts, Sequential, SingleAgent, UncertainTransitions, ) from skdecide.builders.solver import DeterministicPolicies, ParallelSolver, Utilities from skdecide.core import Value record_sys_path = sys.path skdecide_cpp_extension_lib_path = os.path.abspath(hub.__path__[0]) if skdecide_cpp_extension_lib_path not in sys.path: sys.path.append(skdecide_cpp_extension_lib_path) try: from __skdecide_hub_cpp import _LRTDPSolver_ as lrtdp_solver # TODO: remove Markovian req? class D( Domain, SingleAgent, Sequential, UncertainTransitions, Actions, Goals, Markovian, FullyObservable, PositiveCosts, ): pass class LRTDP(ParallelSolver, Solver, DeterministicPolicies, Utilities): T_domain = D def __init__( self, domain_factory: Callable[[], Domain] = None, heuristic: Optional[ Callable[[Domain, D.T_state], D.T_agent[Value[D.T_value]]] ] = None, use_labels: bool = True, time_budget: int = 3600000, rollout_budget: int = 100000, max_depth: int = 1000, epsilon_moving_average_window: int = 100, epsilon: float = 0.001, discount: float = 1.0, online_node_garbage: bool = False, continuous_planning: bool = True, parallel: bool = False, shared_memory_proxy=None, debug_logs: bool = False, watchdog: Callable[[int, int, float, float], bool] = None, ) -> None: ParallelSolver.__init__( self, domain_factory=domain_factory, parallel=parallel, shared_memory_proxy=shared_memory_proxy, ) self._solver = None if heuristic is None: self._heuristic = lambda d, s: Value(cost=0) else: self._heuristic = heuristic self._lambdas = [self._heuristic] self._use_labels = use_labels self._time_budget = time_budget self._rollout_budget = rollout_budget self._max_depth = max_depth self._epsilon_moving_average_window = epsilon_moving_average_window self._epsilon = epsilon self._discount = discount self._online_node_garbage = online_node_garbage self._continuous_planning = continuous_planning self._debug_logs = debug_logs if watchdog is None: self._watchdog = ( lambda elapsed_time, number_rollouts, best_value, epsilon_moving_average: True ) else: self._watchdog = watchdog self._ipc_notify = True def close(self): """Joins the parallel domains' processes. Not calling this method (or not using the 'with' context statement) results in the solver forever waiting for the domain processes to exit. """ if self._parallel: self._solver.close() ParallelSolver.close(self) def _init_solve(self, domain_factory: Callable[[], Domain]) -> None: self._domain_factory = domain_factory self._solver = lrtdp_solver( domain=self.get_domain(), goal_checker=lambda d, s, i=None: d.is_goal(s) if not self._parallel else d.is_goal(s, i), heuristic=lambda d, s, i=None: self._heuristic(d, s) if not self._parallel else d.call(i, 0, s), use_labels=self._use_labels, time_budget=self._time_budget, rollout_budget=self._rollout_budget, max_depth=self._max_depth, epsilon_moving_average_window=self._epsilon_moving_average_window, epsilon=self._epsilon, discount=self._discount, online_node_garbage=self._online_node_garbage, parallel=self._parallel, debug_logs=self._debug_logs, watchdog=self._watchdog, ) self._solver.clear() def _solve_domain(self, domain_factory: Callable[[], D]) -> None: self._init_solve(domain_factory) def _solve_from(self, memory: D.T_memory[D.T_state]) -> None: self._solver.solve(memory) def _is_solution_defined_for( self, observation: D.T_agent[D.T_observation] ) -> bool: return self._solver.is_solution_defined_for(observation) def _get_next_action( self, observation: D.T_agent[D.T_observation] ) -> D.T_agent[D.T_concurrency[D.T_event]]: if self._continuous_planning or not self._is_solution_defined_for( observation ): self._solve_from(observation) action = self._solver.get_next_action(observation) if action is None: print( "\x1b[3;33;40m" + "No best action found in observation " + str(observation) + ", applying random action" + "\x1b[0m" ) return self.call_domain_method("get_action_space").sample() else: return action def _get_utility(self, observation: D.T_agent[D.T_observation]) -> D.T_value: return self._solver.get_utility(observation) def get_nb_of_explored_states(self) -> int: return self._solver.get_nb_of_explored_states() def get_nb_rollouts(self) -> int: return self._solver.get_nb_rollouts() def get_policy( self, ) -> Dict[ D.T_agent[D.T_observation], Tuple[D.T_agent[D.T_concurrency[D.T_event]], float], ]: return self._solver.get_policy() except ImportError: sys.path = record_sys_path print( 'Scikit-decide C++ hub library not found. Please check it is installed in "skdecide/hub".' ) raise
scikit-decide
/scikit_decide-0.9.6-cp310-cp310-macosx_10_15_x86_64.whl/skdecide/hub/solver/lrtdp/lrtdp.py
lrtdp.py
from __future__ import annotations import os import sys from typing import Callable, Dict, Optional, Tuple from skdecide import Domain, Solver, hub from skdecide.builders.domain import ( Actions, FullyObservable, Goals, Markovian, PositiveCosts, Sequential, SingleAgent, UncertainTransitions, ) from skdecide.builders.solver import DeterministicPolicies, ParallelSolver, Utilities from skdecide.core import Value record_sys_path = sys.path skdecide_cpp_extension_lib_path = os.path.abspath(hub.__path__[0]) if skdecide_cpp_extension_lib_path not in sys.path: sys.path.append(skdecide_cpp_extension_lib_path) try: from __skdecide_hub_cpp import _LRTDPSolver_ as lrtdp_solver # TODO: remove Markovian req? class D( Domain, SingleAgent, Sequential, UncertainTransitions, Actions, Goals, Markovian, FullyObservable, PositiveCosts, ): pass class LRTDP(ParallelSolver, Solver, DeterministicPolicies, Utilities): T_domain = D def __init__( self, domain_factory: Callable[[], Domain] = None, heuristic: Optional[ Callable[[Domain, D.T_state], D.T_agent[Value[D.T_value]]] ] = None, use_labels: bool = True, time_budget: int = 3600000, rollout_budget: int = 100000, max_depth: int = 1000, epsilon_moving_average_window: int = 100, epsilon: float = 0.001, discount: float = 1.0, online_node_garbage: bool = False, continuous_planning: bool = True, parallel: bool = False, shared_memory_proxy=None, debug_logs: bool = False, watchdog: Callable[[int, int, float, float], bool] = None, ) -> None: ParallelSolver.__init__( self, domain_factory=domain_factory, parallel=parallel, shared_memory_proxy=shared_memory_proxy, ) self._solver = None if heuristic is None: self._heuristic = lambda d, s: Value(cost=0) else: self._heuristic = heuristic self._lambdas = [self._heuristic] self._use_labels = use_labels self._time_budget = time_budget self._rollout_budget = rollout_budget self._max_depth = max_depth self._epsilon_moving_average_window = epsilon_moving_average_window self._epsilon = epsilon self._discount = discount self._online_node_garbage = online_node_garbage self._continuous_planning = continuous_planning self._debug_logs = debug_logs if watchdog is None: self._watchdog = ( lambda elapsed_time, number_rollouts, best_value, epsilon_moving_average: True ) else: self._watchdog = watchdog self._ipc_notify = True def close(self): """Joins the parallel domains' processes. Not calling this method (or not using the 'with' context statement) results in the solver forever waiting for the domain processes to exit. """ if self._parallel: self._solver.close() ParallelSolver.close(self) def _init_solve(self, domain_factory: Callable[[], Domain]) -> None: self._domain_factory = domain_factory self._solver = lrtdp_solver( domain=self.get_domain(), goal_checker=lambda d, s, i=None: d.is_goal(s) if not self._parallel else d.is_goal(s, i), heuristic=lambda d, s, i=None: self._heuristic(d, s) if not self._parallel else d.call(i, 0, s), use_labels=self._use_labels, time_budget=self._time_budget, rollout_budget=self._rollout_budget, max_depth=self._max_depth, epsilon_moving_average_window=self._epsilon_moving_average_window, epsilon=self._epsilon, discount=self._discount, online_node_garbage=self._online_node_garbage, parallel=self._parallel, debug_logs=self._debug_logs, watchdog=self._watchdog, ) self._solver.clear() def _solve_domain(self, domain_factory: Callable[[], D]) -> None: self._init_solve(domain_factory) def _solve_from(self, memory: D.T_memory[D.T_state]) -> None: self._solver.solve(memory) def _is_solution_defined_for( self, observation: D.T_agent[D.T_observation] ) -> bool: return self._solver.is_solution_defined_for(observation) def _get_next_action( self, observation: D.T_agent[D.T_observation] ) -> D.T_agent[D.T_concurrency[D.T_event]]: if self._continuous_planning or not self._is_solution_defined_for( observation ): self._solve_from(observation) action = self._solver.get_next_action(observation) if action is None: print( "\x1b[3;33;40m" + "No best action found in observation " + str(observation) + ", applying random action" + "\x1b[0m" ) return self.call_domain_method("get_action_space").sample() else: return action def _get_utility(self, observation: D.T_agent[D.T_observation]) -> D.T_value: return self._solver.get_utility(observation) def get_nb_of_explored_states(self) -> int: return self._solver.get_nb_of_explored_states() def get_nb_rollouts(self) -> int: return self._solver.get_nb_rollouts() def get_policy( self, ) -> Dict[ D.T_agent[D.T_observation], Tuple[D.T_agent[D.T_concurrency[D.T_event]], float], ]: return self._solver.get_policy() except ImportError: sys.path = record_sys_path print( 'Scikit-decide C++ hub library not found. Please check it is installed in "skdecide/hub".' ) raise
0.590543
0.144873
from __future__ import annotations import os import sys from typing import Any, Callable from skdecide import Domain, Solver, hub from skdecide.builders.domain import ( Actions, DeterministicInitialized, DeterministicTransitions, FullyObservable, Markovian, Rewards, Sequential, SingleAgent, ) from skdecide.builders.solver import DeterministicPolicies, ParallelSolver, Utilities from skdecide.core import Value record_sys_path = sys.path skdecide_cpp_extension_lib_path = os.path.abspath(hub.__path__[0]) if skdecide_cpp_extension_lib_path not in sys.path: sys.path.append(skdecide_cpp_extension_lib_path) try: from __skdecide_hub_cpp import _BFWSSolver_ as bfws_solver class D( Domain, SingleAgent, Sequential, DeterministicTransitions, Actions, DeterministicInitialized, Markovian, FullyObservable, Rewards, ): # TODO: check why DeterministicInitialized & PositiveCosts/Rewards? pass class BFWS(ParallelSolver, Solver, DeterministicPolicies, Utilities): T_domain = D def __init__( self, domain_factory: Callable[[], Domain], state_features: Callable[[Domain, D.T_state], Any], heuristic: Callable[[Domain, D.T_state], D.T_agent[Value[D.T_value]]], termination_checker: Callable[ [Domain, D.T_state], D.T_agent[D.T_predicate] ], parallel: bool = False, shared_memory_proxy=None, debug_logs: bool = False, ) -> None: ParallelSolver.__init__( self, domain_factory=domain_factory, parallel=parallel, shared_memory_proxy=shared_memory_proxy, ) self._solver = None self._domain = None self._state_features = state_features self._termination_checker = termination_checker self._debug_logs = debug_logs if heuristic is None: self._heuristic = lambda d, s: Value(cost=0) else: self._heuristic = heuristic self._lambdas = [ self._state_features, self._heuristic, self._termination_checker, ] self._ipc_notify = True def close(self): """Joins the parallel domains' processes. Not calling this method (or not using the 'with' context statement) results in the solver forever waiting for the domain processes to exit. """ if self._parallel: self._solver.close() ParallelSolver.close(self) def _init_solve(self, domain_factory: Callable[[], D]) -> None: self._domain_factory = domain_factory self._solver = bfws_solver( domain=self.get_domain(), state_features=lambda d, s: self._state_features(d, s) if not self._parallel else d.call(None, 0, s), heuristic=lambda d, s: self._heuristic(d, s) if not self._parallel else d.call(None, 1, s), termination_checker=lambda d, s: self._termination_checker(d, s) if not self._parallel else d.call(None, 2, s), parallel=self._parallel, debug_logs=self._debug_logs, ) self._solver.clear() def _solve_domain(self, domain_factory: Callable[[], D]) -> None: self._init_solve(domain_factory) def _solve_from(self, memory: D.T_memory[D.T_state]) -> None: self._solver.solve(memory) def _is_solution_defined_for( self, observation: D.T_agent[D.T_observation] ) -> bool: return self._solver.is_solution_defined_for(observation) def _get_next_action( self, observation: D.T_agent[D.T_observation] ) -> D.T_agent[D.T_concurrency[D.T_event]]: if not self._is_solution_defined_for(observation): self._solve_from(observation) return self._solver.get_next_action(observation) def _get_utility(self, observation: D.T_agent[D.T_observation]) -> D.T_value: return self._solver.get_utility(observation) except ImportError: sys.path = record_sys_path print( 'Scikit-decide C++ hub library not found. Please check it is installed in "skdecide/hub".' ) raise
scikit-decide
/scikit_decide-0.9.6-cp310-cp310-macosx_10_15_x86_64.whl/skdecide/hub/solver/bfws/bfws.py
bfws.py
from __future__ import annotations import os import sys from typing import Any, Callable from skdecide import Domain, Solver, hub from skdecide.builders.domain import ( Actions, DeterministicInitialized, DeterministicTransitions, FullyObservable, Markovian, Rewards, Sequential, SingleAgent, ) from skdecide.builders.solver import DeterministicPolicies, ParallelSolver, Utilities from skdecide.core import Value record_sys_path = sys.path skdecide_cpp_extension_lib_path = os.path.abspath(hub.__path__[0]) if skdecide_cpp_extension_lib_path not in sys.path: sys.path.append(skdecide_cpp_extension_lib_path) try: from __skdecide_hub_cpp import _BFWSSolver_ as bfws_solver class D( Domain, SingleAgent, Sequential, DeterministicTransitions, Actions, DeterministicInitialized, Markovian, FullyObservable, Rewards, ): # TODO: check why DeterministicInitialized & PositiveCosts/Rewards? pass class BFWS(ParallelSolver, Solver, DeterministicPolicies, Utilities): T_domain = D def __init__( self, domain_factory: Callable[[], Domain], state_features: Callable[[Domain, D.T_state], Any], heuristic: Callable[[Domain, D.T_state], D.T_agent[Value[D.T_value]]], termination_checker: Callable[ [Domain, D.T_state], D.T_agent[D.T_predicate] ], parallel: bool = False, shared_memory_proxy=None, debug_logs: bool = False, ) -> None: ParallelSolver.__init__( self, domain_factory=domain_factory, parallel=parallel, shared_memory_proxy=shared_memory_proxy, ) self._solver = None self._domain = None self._state_features = state_features self._termination_checker = termination_checker self._debug_logs = debug_logs if heuristic is None: self._heuristic = lambda d, s: Value(cost=0) else: self._heuristic = heuristic self._lambdas = [ self._state_features, self._heuristic, self._termination_checker, ] self._ipc_notify = True def close(self): """Joins the parallel domains' processes. Not calling this method (or not using the 'with' context statement) results in the solver forever waiting for the domain processes to exit. """ if self._parallel: self._solver.close() ParallelSolver.close(self) def _init_solve(self, domain_factory: Callable[[], D]) -> None: self._domain_factory = domain_factory self._solver = bfws_solver( domain=self.get_domain(), state_features=lambda d, s: self._state_features(d, s) if not self._parallel else d.call(None, 0, s), heuristic=lambda d, s: self._heuristic(d, s) if not self._parallel else d.call(None, 1, s), termination_checker=lambda d, s: self._termination_checker(d, s) if not self._parallel else d.call(None, 2, s), parallel=self._parallel, debug_logs=self._debug_logs, ) self._solver.clear() def _solve_domain(self, domain_factory: Callable[[], D]) -> None: self._init_solve(domain_factory) def _solve_from(self, memory: D.T_memory[D.T_state]) -> None: self._solver.solve(memory) def _is_solution_defined_for( self, observation: D.T_agent[D.T_observation] ) -> bool: return self._solver.is_solution_defined_for(observation) def _get_next_action( self, observation: D.T_agent[D.T_observation] ) -> D.T_agent[D.T_concurrency[D.T_event]]: if not self._is_solution_defined_for(observation): self._solve_from(observation) return self._solver.get_next_action(observation) def _get_utility(self, observation: D.T_agent[D.T_observation]) -> D.T_value: return self._solver.get_utility(observation) except ImportError: sys.path = record_sys_path print( 'Scikit-decide C++ hub library not found. Please check it is installed in "skdecide/hub".' ) raise
0.493409
0.138753
from __future__ import annotations from heapq import heappop, heappush from itertools import count from typing import Any, Dict, Tuple from skdecide import D, DeterministicPlanningDomain, GoalMDPDomain, MDPDomain, Memory from skdecide.hub.solver.graph_explorer.GraphDomain import ( GraphDomain, GraphDomainUncertain, ) from skdecide.hub.solver.graph_explorer.GraphExploration import GraphExploration # WARNING : adapted for the scheduling domains. class DFSExploration(GraphExploration): def __init__( self, domain: GoalMDPDomain, score_function=None, max_edges=None, max_nodes=None, max_path=None, ): self.domain = domain self.score_function = score_function self.c = count() if score_function is None: self.score_function = lambda s: (next(self.c)) self.max_edges = max_edges self.max_nodes = max_nodes self.max_path = max_path def build_graph_domain(self, init_state: Any = None) -> GraphDomainUncertain: if init_state is None: initial_state = self.domain.get_initial_state() else: initial_state = init_state stack = [(self.score_function(initial_state), initial_state)] domain = self.domain goal_states = set() terminal_states = set() num_s = 0 state_to_ind = {} nb_states = 1 nb_edges = 0 result = {initial_state} next_state_map: Dict[ D.T_state, Dict[D.T_event, Dict[D.T_state, Tuple[float, float]]] ] = {} state_terminal: Dict[D.T_state, bool] = {} state_goal: Dict[D.T_state, bool] = {} state_terminal[initial_state] = self.domain.is_terminal(initial_state) state_goal[initial_state] = self.domain.is_goal(initial_state) while len(stack) > 0: if not len(result) % 100 and len(result) > nb_states: print("Expanded {} states.".format(len(result))) nb_states = len(result) tuple, s = heappop(stack) if s not in state_to_ind: state_to_ind[s] = num_s num_s += 1 if domain.is_terminal(s): terminal_states.add(s) if domain.is_goal(s): goal_states.add(s) if domain.is_goal(s) or domain.is_terminal(s): continue actions = domain.get_applicable_actions(s).get_elements() for action in actions: successors = domain.get_next_state_distribution(s, action).get_values() for succ, prob in successors: if s not in next_state_map: next_state_map[s] = {} if action not in next_state_map[s]: next_state_map[s][action] = {} if prob != 0 and succ not in result: nb_states += 1 nb_edges += 1 result.add(succ) heappush(stack, (self.score_function(succ), succ)) cost = domain.get_transition_value(s, action, succ) next_state_map[s][action][succ] = (prob, cost.cost) state_goal[succ] = domain.is_goal(succ) state_terminal[succ] = domain.is_terminal(succ) if (nb_states > self.max_nodes) or (nb_edges > self.max_edges): break return GraphDomainUncertain( next_state_map=next_state_map, state_terminal=state_terminal, state_goal=state_goal, )
scikit-decide
/scikit_decide-0.9.6-cp310-cp310-macosx_10_15_x86_64.whl/skdecide/hub/solver/graph_explorer/DFS_Uncertain_Exploration.py
DFS_Uncertain_Exploration.py
from __future__ import annotations from heapq import heappop, heappush from itertools import count from typing import Any, Dict, Tuple from skdecide import D, DeterministicPlanningDomain, GoalMDPDomain, MDPDomain, Memory from skdecide.hub.solver.graph_explorer.GraphDomain import ( GraphDomain, GraphDomainUncertain, ) from skdecide.hub.solver.graph_explorer.GraphExploration import GraphExploration # WARNING : adapted for the scheduling domains. class DFSExploration(GraphExploration): def __init__( self, domain: GoalMDPDomain, score_function=None, max_edges=None, max_nodes=None, max_path=None, ): self.domain = domain self.score_function = score_function self.c = count() if score_function is None: self.score_function = lambda s: (next(self.c)) self.max_edges = max_edges self.max_nodes = max_nodes self.max_path = max_path def build_graph_domain(self, init_state: Any = None) -> GraphDomainUncertain: if init_state is None: initial_state = self.domain.get_initial_state() else: initial_state = init_state stack = [(self.score_function(initial_state), initial_state)] domain = self.domain goal_states = set() terminal_states = set() num_s = 0 state_to_ind = {} nb_states = 1 nb_edges = 0 result = {initial_state} next_state_map: Dict[ D.T_state, Dict[D.T_event, Dict[D.T_state, Tuple[float, float]]] ] = {} state_terminal: Dict[D.T_state, bool] = {} state_goal: Dict[D.T_state, bool] = {} state_terminal[initial_state] = self.domain.is_terminal(initial_state) state_goal[initial_state] = self.domain.is_goal(initial_state) while len(stack) > 0: if not len(result) % 100 and len(result) > nb_states: print("Expanded {} states.".format(len(result))) nb_states = len(result) tuple, s = heappop(stack) if s not in state_to_ind: state_to_ind[s] = num_s num_s += 1 if domain.is_terminal(s): terminal_states.add(s) if domain.is_goal(s): goal_states.add(s) if domain.is_goal(s) or domain.is_terminal(s): continue actions = domain.get_applicable_actions(s).get_elements() for action in actions: successors = domain.get_next_state_distribution(s, action).get_values() for succ, prob in successors: if s not in next_state_map: next_state_map[s] = {} if action not in next_state_map[s]: next_state_map[s][action] = {} if prob != 0 and succ not in result: nb_states += 1 nb_edges += 1 result.add(succ) heappush(stack, (self.score_function(succ), succ)) cost = domain.get_transition_value(s, action, succ) next_state_map[s][action][succ] = (prob, cost.cost) state_goal[succ] = domain.is_goal(succ) state_terminal[succ] = domain.is_terminal(succ) if (nb_states > self.max_nodes) or (nb_edges > self.max_edges): break return GraphDomainUncertain( next_state_map=next_state_map, state_terminal=state_terminal, state_goal=state_goal, )
0.634543
0.247498
from __future__ import annotations from typing import Any from skdecide import DeterministicPlanningDomain, Memory from skdecide.hub.solver.graph_explorer.GraphDomain import GraphDomain from skdecide.hub.solver.graph_explorer.GraphExploration import GraphExploration class FullSpaceExploration(GraphExploration): def __init__( self, domain: DeterministicPlanningDomain, max_edges=None, max_nodes=None, max_path=None, ): self.domain = domain self.max_edges = max_edges self.max_nodes = max_nodes self.max_path = max_path def build_graph_domain(self, init_state: Any = None) -> GraphDomain: next_state_map = {} next_state_attributes = {} if init_state is None: init_state = self.domain.get_initial_state() stack = [(init_state, [init_state])] nb_nodes = 1 nb_edges = 0 nb_path = 0 next_state_map[init_state] = {} next_state_attributes[init_state] = {} while stack: (vertex, path) = stack.pop() actions = self.domain.get_applicable_actions(vertex).get_elements() for action in actions: next = self.domain.get_next_state(vertex, action) if next not in next_state_map: next_state_map[next] = {} next_state_attributes[next] = {} nb_nodes += 1 if action not in next_state_map[vertex]: nb_edges += 1 next_state_map[vertex][action] = next next_state_attributes[vertex][action] = { "cost": self.domain.get_transition_value( Memory([vertex]), action, next ).cost, "reward": self.domain.get_transition_value( Memory([vertex]), action, next ).reward, } if self.domain.is_goal(next): nb_path += 1 else: if next not in next_state_map: stack.append((next, path + [next])) if ( nb_path > self.max_path or (nb_nodes > self.max_nodes and nb_path >= 1) or (nb_edges > self.max_edges and nb_path >= 1) ): break return GraphDomain(next_state_map, next_state_attributes, None, None) def reachable_states(self, s0: Any): """Computes all states reachable from s0.""" result = {s0} stack = [s0] domain = self._domain while len(stack) > 0: if not len(result) % 100: print("Expanded {} states.".format(len(result))) s = stack.pop() if domain.is_terminal(s): continue # Add successors actions = domain.get_applicable_actions(s).get_elements() for action in actions: successors = domain.get_next_state_distribution(s, action).get_values() for succ, prob in successors: if prob != 0 and succ not in result: result.add(succ) stack.append(succ) return result
scikit-decide
/scikit_decide-0.9.6-cp310-cp310-macosx_10_15_x86_64.whl/skdecide/hub/solver/graph_explorer/FullSpaceExploration.py
FullSpaceExploration.py
from __future__ import annotations from typing import Any from skdecide import DeterministicPlanningDomain, Memory from skdecide.hub.solver.graph_explorer.GraphDomain import GraphDomain from skdecide.hub.solver.graph_explorer.GraphExploration import GraphExploration class FullSpaceExploration(GraphExploration): def __init__( self, domain: DeterministicPlanningDomain, max_edges=None, max_nodes=None, max_path=None, ): self.domain = domain self.max_edges = max_edges self.max_nodes = max_nodes self.max_path = max_path def build_graph_domain(self, init_state: Any = None) -> GraphDomain: next_state_map = {} next_state_attributes = {} if init_state is None: init_state = self.domain.get_initial_state() stack = [(init_state, [init_state])] nb_nodes = 1 nb_edges = 0 nb_path = 0 next_state_map[init_state] = {} next_state_attributes[init_state] = {} while stack: (vertex, path) = stack.pop() actions = self.domain.get_applicable_actions(vertex).get_elements() for action in actions: next = self.domain.get_next_state(vertex, action) if next not in next_state_map: next_state_map[next] = {} next_state_attributes[next] = {} nb_nodes += 1 if action not in next_state_map[vertex]: nb_edges += 1 next_state_map[vertex][action] = next next_state_attributes[vertex][action] = { "cost": self.domain.get_transition_value( Memory([vertex]), action, next ).cost, "reward": self.domain.get_transition_value( Memory([vertex]), action, next ).reward, } if self.domain.is_goal(next): nb_path += 1 else: if next not in next_state_map: stack.append((next, path + [next])) if ( nb_path > self.max_path or (nb_nodes > self.max_nodes and nb_path >= 1) or (nb_edges > self.max_edges and nb_path >= 1) ): break return GraphDomain(next_state_map, next_state_attributes, None, None) def reachable_states(self, s0: Any): """Computes all states reachable from s0.""" result = {s0} stack = [s0] domain = self._domain while len(stack) > 0: if not len(result) % 100: print("Expanded {} states.".format(len(result))) s = stack.pop() if domain.is_terminal(s): continue # Add successors actions = domain.get_applicable_actions(s).get_elements() for action in actions: successors = domain.get_next_state_distribution(s, action).get_values() for succ, prob in successors: if prob != 0 and succ not in result: result.add(succ) stack.append(succ) return result
0.71413
0.256203
from __future__ import annotations from typing import Any from skdecide import DeterministicPlanningDomain, Memory from skdecide.hub.solver.graph_explorer.GraphDomain import GraphDomain from skdecide.hub.solver.graph_explorer.GraphExploration import GraphExploration class DFSExploration(GraphExploration): def __init__( self, domain: DeterministicPlanningDomain, max_edges=None, max_nodes=None, max_path=None, ): self.domain = domain self.max_edges = max_edges self.max_nodes = max_nodes self.max_path = max_path def build_graph_domain( self, init_state: Any = None, transition_extractor=None, verbose=True ) -> GraphDomain: if transition_extractor is None: transition_extractor = lambda s, a, s_prime: { "cost": self.domain.get_transition_value(s, a, s_prime).cost } next_state_map = {} next_state_attributes = {} if init_state is None: init_state = self.domain.get_initial_state() stack = [(init_state, [init_state])] nb_nodes = 1 nb_edges = 0 nb_path = 0 next_state_map[init_state] = {} next_state_attributes[init_state] = {} paths_dict = {} while stack: (vertex, path) = stack.pop() actions = self.domain.get_applicable_actions(vertex).get_elements() for action in actions: next = self.domain.get_next_state(Memory([vertex]), action) if action not in next_state_map[vertex]: nb_edges += 1 else: continue next_state_map[vertex][action] = next next_state_attributes[vertex][action] = transition_extractor( vertex, action, next ) if self.domain.is_goal(next): nb_path += 1 if verbose: print(nb_path, " / ", self.max_path) print("nodes ", nb_nodes, " / ", self.max_nodes) print("edges ", nb_edges, " / ", self.max_edges) else: if next not in next_state_map: stack.append((next, path + [next])) paths_dict[next] = set(tuple(path + [next])) # else: # if tuple(path+[next]) not in paths_dict[next]: # stack.append((next, path + [next])) # paths_dict[next].add(tuple(path + [next])) if next not in next_state_map: next_state_map[next] = {} next_state_attributes[next] = {} nb_nodes += 1 if ( nb_path > self.max_path or (nb_nodes > self.max_nodes and nb_path >= 1) or (nb_edges > self.max_edges and nb_path >= 1) ): break return GraphDomain(next_state_map, next_state_attributes, None, None)
scikit-decide
/scikit_decide-0.9.6-cp310-cp310-macosx_10_15_x86_64.whl/skdecide/hub/solver/graph_explorer/DFSExploration.py
DFSExploration.py
from __future__ import annotations from typing import Any from skdecide import DeterministicPlanningDomain, Memory from skdecide.hub.solver.graph_explorer.GraphDomain import GraphDomain from skdecide.hub.solver.graph_explorer.GraphExploration import GraphExploration class DFSExploration(GraphExploration): def __init__( self, domain: DeterministicPlanningDomain, max_edges=None, max_nodes=None, max_path=None, ): self.domain = domain self.max_edges = max_edges self.max_nodes = max_nodes self.max_path = max_path def build_graph_domain( self, init_state: Any = None, transition_extractor=None, verbose=True ) -> GraphDomain: if transition_extractor is None: transition_extractor = lambda s, a, s_prime: { "cost": self.domain.get_transition_value(s, a, s_prime).cost } next_state_map = {} next_state_attributes = {} if init_state is None: init_state = self.domain.get_initial_state() stack = [(init_state, [init_state])] nb_nodes = 1 nb_edges = 0 nb_path = 0 next_state_map[init_state] = {} next_state_attributes[init_state] = {} paths_dict = {} while stack: (vertex, path) = stack.pop() actions = self.domain.get_applicable_actions(vertex).get_elements() for action in actions: next = self.domain.get_next_state(Memory([vertex]), action) if action not in next_state_map[vertex]: nb_edges += 1 else: continue next_state_map[vertex][action] = next next_state_attributes[vertex][action] = transition_extractor( vertex, action, next ) if self.domain.is_goal(next): nb_path += 1 if verbose: print(nb_path, " / ", self.max_path) print("nodes ", nb_nodes, " / ", self.max_nodes) print("edges ", nb_edges, " / ", self.max_edges) else: if next not in next_state_map: stack.append((next, path + [next])) paths_dict[next] = set(tuple(path + [next])) # else: # if tuple(path+[next]) not in paths_dict[next]: # stack.append((next, path + [next])) # paths_dict[next].add(tuple(path + [next])) if next not in next_state_map: next_state_map[next] = {} next_state_attributes[next] = {} nb_nodes += 1 if ( nb_path > self.max_path or (nb_nodes > self.max_nodes and nb_path >= 1) or (nb_edges > self.max_edges and nb_path >= 1) ): break return GraphDomain(next_state_map, next_state_attributes, None, None)
0.516595
0.205296
from __future__ import annotations import os import sys from typing import Any, Callable, Dict, List, Tuple from skdecide import Domain, Solver, hub from skdecide.builders.domain import ( Actions, DeterministicInitialized, Environment, FullyObservable, Markovian, Rewards, Sequential, SingleAgent, ) from skdecide.builders.solver import DeterministicPolicies, ParallelSolver, Utilities record_sys_path = sys.path skdecide_cpp_extension_lib_path = os.path.abspath(hub.__path__[0]) if skdecide_cpp_extension_lib_path not in sys.path: sys.path.append(skdecide_cpp_extension_lib_path) try: from __skdecide_hub_cpp import _RIWSolver_ as riw_solver class D( Domain, SingleAgent, Sequential, Environment, Actions, DeterministicInitialized, Markovian, FullyObservable, Rewards, ): # TODO: check why DeterministicInitialized & PositiveCosts/Rewards? pass class RIW(ParallelSolver, Solver, DeterministicPolicies, Utilities): T_domain = D def __init__( self, domain_factory: Callable[[], Domain], state_features: Callable[[Domain, D.T_state], Any], use_state_feature_hash: bool = False, use_simulation_domain: bool = False, time_budget: int = 3600000, rollout_budget: int = 100000, max_depth: int = 1000, exploration: float = 0.25, epsilon_moving_average_window: int = 100, epsilon: float = 0.001, discount: float = 1.0, online_node_garbage: bool = False, continuous_planning: bool = True, parallel: bool = False, shared_memory_proxy=None, debug_logs: bool = False, watchdog: Callable[[int, int, float, float], bool] = None, ) -> None: ParallelSolver.__init__( self, domain_factory=domain_factory, parallel=parallel, shared_memory_proxy=shared_memory_proxy, ) self._solver = None self._domain = None self._state_features = state_features self._use_state_feature_hash = use_state_feature_hash self._use_simulation_domain = use_simulation_domain self._time_budget = time_budget self._rollout_budget = rollout_budget self._max_depth = max_depth self._exploration = exploration self._epsilon_moving_average_window = epsilon_moving_average_window self._epsilon = epsilon self._discount = discount self._online_node_garbage = online_node_garbage self._continuous_planning = continuous_planning self._debug_logs = debug_logs if watchdog is None: self._watchdog = ( lambda elapsed_time, number_rollouts, best_value, epsilon_moving_average: True ) else: self._watchdog = watchdog self._lambdas = [self._state_features] self._ipc_notify = True def close(self): """Joins the parallel domains' processes. Not calling this method (or not using the 'with' context statement) results in the solver forever waiting for the domain processes to exit. """ if self._parallel: self._solver.close() ParallelSolver.close(self) def _init_solve(self, domain_factory: Callable[[], D]) -> None: self._domain_factory = domain_factory self._solver = riw_solver( domain=self.get_domain(), state_features=lambda d, s, i=None: self._state_features(d, s) if not self._parallel else d.call(i, 0, s), use_state_feature_hash=self._use_state_feature_hash, use_simulation_domain=self._use_simulation_domain, time_budget=self._time_budget, rollout_budget=self._rollout_budget, max_depth=self._max_depth, exploration=self._exploration, epsilon_moving_average_window=self._epsilon_moving_average_window, epsilon=self._epsilon, discount=self._discount, online_node_garbage=self._online_node_garbage, parallel=self._parallel, debug_logs=self._debug_logs, watchdog=self._watchdog, ) self._solver.clear() def _solve_domain(self, domain_factory: Callable[[], D]) -> None: self._init_solve(domain_factory) def _solve_from(self, memory: D.T_memory[D.T_state]) -> None: self._solver.solve(memory) def _is_solution_defined_for( self, observation: D.T_agent[D.T_observation] ) -> bool: return self._solver.is_solution_defined_for(observation) def _get_next_action( self, observation: D.T_agent[D.T_observation] ) -> D.T_agent[D.T_concurrency[D.T_event]]: if self._continuous_planning or not self._is_solution_defined_for( observation ): self._solve_from(observation) action = self._solver.get_next_action(observation) if action is None: print( "\x1b[3;33;40m" + "No best action found in observation " + str(observation) + ", applying random action" + "\x1b[0m" ) return self.call_domain_method("get_action_space").sample() else: return action def _reset(self) -> None: self._solver.clear() def _get_utility(self, observation: D.T_agent[D.T_observation]) -> D.T_value: return self._solver.get_utility(observation) def get_nb_of_explored_states(self) -> int: return self._solver.get_nb_of_explored_states() def get_nb_of_pruned_states(self) -> int: return self._solver.get_nb_of_pruned_states() def get_nb_rollouts(self) -> int: return self._solver.get_nb_rollouts() def get_policy( self, ) -> Dict[ D.T_agent[D.T_observation], Tuple[D.T_agent[D.T_concurrency[D.T_event]], float], ]: return self._solver.get_policy() def get_action_prefix(self) -> List[D.T_agent[D.T_observation]]: return self._solver.get_action_prefix() except ImportError: sys.path = record_sys_path print( 'Scikit-decide C++ hub library not found. Please check it is installed in "skdecide/hub".' ) raise
scikit-decide
/scikit_decide-0.9.6-cp310-cp310-macosx_10_15_x86_64.whl/skdecide/hub/solver/riw/riw.py
riw.py
from __future__ import annotations import os import sys from typing import Any, Callable, Dict, List, Tuple from skdecide import Domain, Solver, hub from skdecide.builders.domain import ( Actions, DeterministicInitialized, Environment, FullyObservable, Markovian, Rewards, Sequential, SingleAgent, ) from skdecide.builders.solver import DeterministicPolicies, ParallelSolver, Utilities record_sys_path = sys.path skdecide_cpp_extension_lib_path = os.path.abspath(hub.__path__[0]) if skdecide_cpp_extension_lib_path not in sys.path: sys.path.append(skdecide_cpp_extension_lib_path) try: from __skdecide_hub_cpp import _RIWSolver_ as riw_solver class D( Domain, SingleAgent, Sequential, Environment, Actions, DeterministicInitialized, Markovian, FullyObservable, Rewards, ): # TODO: check why DeterministicInitialized & PositiveCosts/Rewards? pass class RIW(ParallelSolver, Solver, DeterministicPolicies, Utilities): T_domain = D def __init__( self, domain_factory: Callable[[], Domain], state_features: Callable[[Domain, D.T_state], Any], use_state_feature_hash: bool = False, use_simulation_domain: bool = False, time_budget: int = 3600000, rollout_budget: int = 100000, max_depth: int = 1000, exploration: float = 0.25, epsilon_moving_average_window: int = 100, epsilon: float = 0.001, discount: float = 1.0, online_node_garbage: bool = False, continuous_planning: bool = True, parallel: bool = False, shared_memory_proxy=None, debug_logs: bool = False, watchdog: Callable[[int, int, float, float], bool] = None, ) -> None: ParallelSolver.__init__( self, domain_factory=domain_factory, parallel=parallel, shared_memory_proxy=shared_memory_proxy, ) self._solver = None self._domain = None self._state_features = state_features self._use_state_feature_hash = use_state_feature_hash self._use_simulation_domain = use_simulation_domain self._time_budget = time_budget self._rollout_budget = rollout_budget self._max_depth = max_depth self._exploration = exploration self._epsilon_moving_average_window = epsilon_moving_average_window self._epsilon = epsilon self._discount = discount self._online_node_garbage = online_node_garbage self._continuous_planning = continuous_planning self._debug_logs = debug_logs if watchdog is None: self._watchdog = ( lambda elapsed_time, number_rollouts, best_value, epsilon_moving_average: True ) else: self._watchdog = watchdog self._lambdas = [self._state_features] self._ipc_notify = True def close(self): """Joins the parallel domains' processes. Not calling this method (or not using the 'with' context statement) results in the solver forever waiting for the domain processes to exit. """ if self._parallel: self._solver.close() ParallelSolver.close(self) def _init_solve(self, domain_factory: Callable[[], D]) -> None: self._domain_factory = domain_factory self._solver = riw_solver( domain=self.get_domain(), state_features=lambda d, s, i=None: self._state_features(d, s) if not self._parallel else d.call(i, 0, s), use_state_feature_hash=self._use_state_feature_hash, use_simulation_domain=self._use_simulation_domain, time_budget=self._time_budget, rollout_budget=self._rollout_budget, max_depth=self._max_depth, exploration=self._exploration, epsilon_moving_average_window=self._epsilon_moving_average_window, epsilon=self._epsilon, discount=self._discount, online_node_garbage=self._online_node_garbage, parallel=self._parallel, debug_logs=self._debug_logs, watchdog=self._watchdog, ) self._solver.clear() def _solve_domain(self, domain_factory: Callable[[], D]) -> None: self._init_solve(domain_factory) def _solve_from(self, memory: D.T_memory[D.T_state]) -> None: self._solver.solve(memory) def _is_solution_defined_for( self, observation: D.T_agent[D.T_observation] ) -> bool: return self._solver.is_solution_defined_for(observation) def _get_next_action( self, observation: D.T_agent[D.T_observation] ) -> D.T_agent[D.T_concurrency[D.T_event]]: if self._continuous_planning or not self._is_solution_defined_for( observation ): self._solve_from(observation) action = self._solver.get_next_action(observation) if action is None: print( "\x1b[3;33;40m" + "No best action found in observation " + str(observation) + ", applying random action" + "\x1b[0m" ) return self.call_domain_method("get_action_space").sample() else: return action def _reset(self) -> None: self._solver.clear() def _get_utility(self, observation: D.T_agent[D.T_observation]) -> D.T_value: return self._solver.get_utility(observation) def get_nb_of_explored_states(self) -> int: return self._solver.get_nb_of_explored_states() def get_nb_of_pruned_states(self) -> int: return self._solver.get_nb_of_pruned_states() def get_nb_rollouts(self) -> int: return self._solver.get_nb_rollouts() def get_policy( self, ) -> Dict[ D.T_agent[D.T_observation], Tuple[D.T_agent[D.T_concurrency[D.T_event]], float], ]: return self._solver.get_policy() def get_action_prefix(self) -> List[D.T_agent[D.T_observation]]: return self._solver.get_action_prefix() except ImportError: sys.path = record_sys_path print( 'Scikit-decide C++ hub library not found. Please check it is installed in "skdecide/hub".' ) raise
0.556641
0.173849
from __future__ import annotations from typing import Callable, Optional from skdecide import Domain, Solver, Value from skdecide.builders.domain import ( Actions, DeterministicTransitions, FullyObservable, Goals, Markovian, PositiveCosts, Sequential, SingleAgent, ) from skdecide.builders.solver import DeterministicPolicies, Utilities class D( Domain, SingleAgent, Sequential, DeterministicTransitions, Actions, Goals, Markovian, FullyObservable, PositiveCosts, ): pass class LRTAstar(Solver, DeterministicPolicies, Utilities): T_domain = D def _get_next_action( self, observation: D.T_agent[D.T_observation] ) -> D.T_agent[D.T_concurrency[D.T_event]]: return self._policy.get(observation, None) def _is_policy_defined_for(self, observation: D.T_agent[D.T_observation]) -> bool: return observation is self._policy def _get_utility(self, observation: D.T_agent[D.T_observation]) -> D.T_value: if observation not in self.values: return self._heuristic(self._domain, observation).cost return self.values[observation] def __init__( self, from_state: Optional[D.T_state] = None, heuristic: Optional[ Callable[[Domain, D.T_state], D.T_agent[Value[D.T_value]]] ] = None, weight: float = 1.0, verbose: bool = False, max_iter=5000, max_depth=200, ) -> None: self._from_state = from_state self._heuristic = ( (lambda _, __: Value(cost=0.0)) if heuristic is None else heuristic ) self._weight = weight self.max_iter = max_iter self.max_depth = max_depth self._plan = [] self.values = {} self._verbose = verbose self.heuristic_changed = False self._policy = {} def _solve_domain(self, domain_factory: Callable[[], D]) -> None: self._domain = domain_factory() self.values = {} iteration = 0 best_cost = float("inf") if self._from_state is None: # get initial observation from domain (assuming DeterministicInitialized) from_observation = self._domain.get_initial_state() else: from_observation = self._from_state # best_path = None while True: print(from_observation) dead_end, cumulated_cost, current_roll, list_action = self.doTrial( from_observation ) if self._verbose: print( "iter ", iteration, "/", self.max_iter, " : dead end, ", dead_end, " cost : ", cumulated_cost, ) if not dead_end and cumulated_cost < best_cost: best_cost = cumulated_cost # best_path = current_roll for k in range(len(current_roll)): self._policy[current_roll[k][0]] = current_roll[k][1]["action"] if not self.heuristic_changed: print(self.heuristic_changed) return iteration += 1 if iteration > self.max_iter: return def doTrial(self, from_observation: D.T_agent[D.T_observation]): list_action = [] current_state = from_observation depth = 0 dead_end = False cumulated_reward = 0.0 current_roll = [current_state] current_roll_and_action = [] self.heuristic_changed = False while (not self._domain.is_goal(current_state)) and (depth < self.max_depth): next_action = None next_state = None best_estimated_cost = float("inf") applicable_actions = self._domain.get_applicable_actions(current_state) for action in applicable_actions.get_elements(): st = self._domain.get_next_state(current_state, action) r = self._domain.get_transition_value(current_state, action, st).cost if st in current_roll: continue if st not in self.values: self.values[st] = self._heuristic(self._domain, st).cost if r + self.values[st] < best_estimated_cost: next_state = st next_action = action best_estimated_cost = r + self.values[st] if next_action is None: self.values[current_state] = float("inf") dead_end = True self.heuristic_changed = True break else: if (not current_state in self.values) or ( self.values[current_state] != best_estimated_cost ): self.heuristic_changed = True self.values[current_state] = best_estimated_cost cumulated_reward += best_estimated_cost - ( self.values[next_state] if next_state in self.values else self._heuristic(self._domain, next_state).cost ) list_action.append(next_action) current_roll_and_action.append((current_state, {"action": next_action})) current_state = next_state depth += 1 current_roll.append(current_state) current_roll_and_action.append((current_state, {"action": None})) cumulated_reward += self.values[current_state] return dead_end, cumulated_reward, current_roll_and_action, list_action
scikit-decide
/scikit_decide-0.9.6-cp310-cp310-macosx_10_15_x86_64.whl/skdecide/hub/solver/lrtastar/lrtastar.py
lrtastar.py
from __future__ import annotations from typing import Callable, Optional from skdecide import Domain, Solver, Value from skdecide.builders.domain import ( Actions, DeterministicTransitions, FullyObservable, Goals, Markovian, PositiveCosts, Sequential, SingleAgent, ) from skdecide.builders.solver import DeterministicPolicies, Utilities class D( Domain, SingleAgent, Sequential, DeterministicTransitions, Actions, Goals, Markovian, FullyObservable, PositiveCosts, ): pass class LRTAstar(Solver, DeterministicPolicies, Utilities): T_domain = D def _get_next_action( self, observation: D.T_agent[D.T_observation] ) -> D.T_agent[D.T_concurrency[D.T_event]]: return self._policy.get(observation, None) def _is_policy_defined_for(self, observation: D.T_agent[D.T_observation]) -> bool: return observation is self._policy def _get_utility(self, observation: D.T_agent[D.T_observation]) -> D.T_value: if observation not in self.values: return self._heuristic(self._domain, observation).cost return self.values[observation] def __init__( self, from_state: Optional[D.T_state] = None, heuristic: Optional[ Callable[[Domain, D.T_state], D.T_agent[Value[D.T_value]]] ] = None, weight: float = 1.0, verbose: bool = False, max_iter=5000, max_depth=200, ) -> None: self._from_state = from_state self._heuristic = ( (lambda _, __: Value(cost=0.0)) if heuristic is None else heuristic ) self._weight = weight self.max_iter = max_iter self.max_depth = max_depth self._plan = [] self.values = {} self._verbose = verbose self.heuristic_changed = False self._policy = {} def _solve_domain(self, domain_factory: Callable[[], D]) -> None: self._domain = domain_factory() self.values = {} iteration = 0 best_cost = float("inf") if self._from_state is None: # get initial observation from domain (assuming DeterministicInitialized) from_observation = self._domain.get_initial_state() else: from_observation = self._from_state # best_path = None while True: print(from_observation) dead_end, cumulated_cost, current_roll, list_action = self.doTrial( from_observation ) if self._verbose: print( "iter ", iteration, "/", self.max_iter, " : dead end, ", dead_end, " cost : ", cumulated_cost, ) if not dead_end and cumulated_cost < best_cost: best_cost = cumulated_cost # best_path = current_roll for k in range(len(current_roll)): self._policy[current_roll[k][0]] = current_roll[k][1]["action"] if not self.heuristic_changed: print(self.heuristic_changed) return iteration += 1 if iteration > self.max_iter: return def doTrial(self, from_observation: D.T_agent[D.T_observation]): list_action = [] current_state = from_observation depth = 0 dead_end = False cumulated_reward = 0.0 current_roll = [current_state] current_roll_and_action = [] self.heuristic_changed = False while (not self._domain.is_goal(current_state)) and (depth < self.max_depth): next_action = None next_state = None best_estimated_cost = float("inf") applicable_actions = self._domain.get_applicable_actions(current_state) for action in applicable_actions.get_elements(): st = self._domain.get_next_state(current_state, action) r = self._domain.get_transition_value(current_state, action, st).cost if st in current_roll: continue if st not in self.values: self.values[st] = self._heuristic(self._domain, st).cost if r + self.values[st] < best_estimated_cost: next_state = st next_action = action best_estimated_cost = r + self.values[st] if next_action is None: self.values[current_state] = float("inf") dead_end = True self.heuristic_changed = True break else: if (not current_state in self.values) or ( self.values[current_state] != best_estimated_cost ): self.heuristic_changed = True self.values[current_state] = best_estimated_cost cumulated_reward += best_estimated_cost - ( self.values[next_state] if next_state in self.values else self._heuristic(self._domain, next_state).cost ) list_action.append(next_action) current_roll_and_action.append((current_state, {"action": next_action})) current_state = next_state depth += 1 current_roll.append(current_state) current_roll_and_action.append((current_state, {"action": None})) cumulated_reward += self.values[current_state] return dead_end, cumulated_reward, current_roll_and_action, list_action
0.754237
0.342929
from __future__ import annotations from enum import Enum from functools import partial from typing import Dict, List, Optional, Union from skdecide.builders.domain.scheduling.scheduling_domains import ( D, MultiModeRCPSP, SchedulingDomain, SingleModeRCPSP, ) from skdecide.builders.domain.scheduling.scheduling_domains_modelling import ( SchedulingAction, SchedulingActionEnum, State, ) from skdecide.builders.solver.policy import DeterministicPolicies class BasePolicyMethod(Enum): FOLLOW_GANTT = 0 SGS_PRECEDENCE = 1 SGS_READY = 2 SGS_STRICT = 3 SGS_TIME_FREEDOM = 4 SGS_INDEX_FREEDOM = 5 PILE = 6 class PolicyMethodParams: def __init__( self, base_policy_method: BasePolicyMethod, delta_time_freedom=10, delta_index_freedom=10, ): self.base_policy_method = base_policy_method self.delta_time_freedom = delta_time_freedom self.delta_index_freedom = delta_index_freedom class PolicyRCPSP(DeterministicPolicies): T_domain = D def __init__( self, domain: SchedulingDomain, policy_method_params: PolicyMethodParams, permutation_task: List[int], modes_dictionnary: Dict[int, int], schedule: Optional[ Dict[int, Dict[str, int]] ] = None, # {id: {"start_time":, "end_time"}} resource_allocation: Optional[Dict[int, List[str]]] = None, resource_allocation_priority: Optional[Dict[int, List[str]]] = None, ): self.domain = domain self.policy_method_params = policy_method_params self.permutation_task = permutation_task self.modes_dictionnary = modes_dictionnary self.schedule = schedule self.store_start_date = {} if self.schedule is not None: for task_id in self.schedule: start_date = self.schedule[task_id]["start_time"] if start_date not in self.store_start_date: self.store_start_date[start_date] = set() self.store_start_date[start_date].add(task_id) self.resource_allocation = resource_allocation self.resource_allocation_priority = resource_allocation_priority self.build_function() def reset(self): pass def build_function(self): func = partial( map_method_to_function[self.policy_method_params.base_policy_method], policy_rcpsp=self, check_if_applicable=False, domain_sk_decide=self.domain, delta_time_freedom=self.policy_method_params.delta_time_freedom, delta_index_freedom=self.policy_method_params.delta_index_freedom, ) self.func = func def _get_next_action( self, observation: D.T_agent[D.T_observation] ) -> D.T_agent[D.T_concurrency[D.T_event]]: return self.func(state=observation) def _is_policy_defined_for(self, observation: D.T_agent[D.T_observation]) -> bool: return True def action_in_applicable_actions( domain_sk_decide, observation: D.T_agent[D.T_observation], the_action: SchedulingAction, ): return domain_sk_decide.check_if_action_can_be_started(observation, the_action) def next_action_follow_static_gantt( policy_rcpsp: PolicyRCPSP, state: State, check_if_applicable: bool = False, **kwargs ): obs: State = state t = obs.t ongoing_task = obs.tasks_ongoing complete_task = obs.tasks_complete possible_task_to_launch = policy_rcpsp.domain.task_possible_to_launch_precedence( state=state ) the_action = SchedulingAction( task=None, action=SchedulingActionEnum.TIME_PR, mode=None, time_progress=True, resource_unit_names=None, ) if t in policy_rcpsp.store_start_date: tasks = [ task for task in policy_rcpsp.store_start_date[t] if task not in ongoing_task and task not in complete_task and task in possible_task_to_launch ] if len(tasks) > 0: the_action = SchedulingAction( task=tasks[0], action=SchedulingActionEnum.START, mode=policy_rcpsp.modes_dictionnary[tasks[0]], time_progress=False, resource_unit_names=None, ) if policy_rcpsp.resource_allocation is not None: if tasks[0] in policy_rcpsp.resource_allocation: the_action.resource_unit_names = policy_rcpsp.resource_allocation[ tasks[0] ] if True: action_available = action_in_applicable_actions( policy_rcpsp.domain, state, the_action ) if not action_available[0]: the_action = SchedulingAction( task=None, action=SchedulingActionEnum.TIME_PR, mode=None, time_progress=True, resource_unit_names=None, ) return the_action def next_action_sgs_first_task_precedence_ready( policy_rcpsp: PolicyRCPSP, state: State, check_if_applicable: bool = False, **kwargs ): obs: State = state next_task_to_launch = None possible_task_to_launch = policy_rcpsp.domain.task_possible_to_launch_precedence( state=state ) tasks_remaining = set(state.tasks_remaining) sorted_task_not_done = sorted( [ (index, policy_rcpsp.permutation_task[index]) for index in range(len(policy_rcpsp.permutation_task)) if policy_rcpsp.permutation_task[index] in tasks_remaining ], key=lambda x: x[0], ) for i in range(len(sorted_task_not_done)): task = sorted_task_not_done[i][1] if task in possible_task_to_launch: next_task_to_launch = task break if next_task_to_launch is not None: if policy_rcpsp.schedule is not None: original_time_start_task = policy_rcpsp.schedule[next_task_to_launch][ "start_time" ] other_tasks_same_time = [ task_id for ind, task_id in sorted_task_not_done if task_id != next_task_to_launch and policy_rcpsp.schedule[task_id]["start_time"] == original_time_start_task and task_id in possible_task_to_launch ] else: other_tasks_same_time = [] tasks_of_interest = [next_task_to_launch] + other_tasks_same_time the_action = None for tinterest in tasks_of_interest: the_action = SchedulingAction( task=tinterest, action=SchedulingActionEnum.START, mode=policy_rcpsp.modes_dictionnary[tinterest], time_progress=False, resource_unit_names=None, ) if policy_rcpsp.resource_allocation is not None: if tinterest in policy_rcpsp.resource_allocation: the_action.resource_unit_names = policy_rcpsp.resource_allocation[ tinterest ] applicable = action_in_applicable_actions( domain_sk_decide=policy_rcpsp.domain, observation=state, the_action=the_action, ) if applicable[0]: break else: the_action = None if the_action is None: the_action = SchedulingAction( task=None, action=SchedulingActionEnum.TIME_PR, mode=None, time_progress=True, resource_unit_names=None, ) return the_action else: return SchedulingAction( task=None, action=SchedulingActionEnum.TIME_PR, mode=None, time_progress=True, resource_unit_names=None, ) def next_action_sgs_first_task_ready( policy_rcpsp: PolicyRCPSP, state: State, check_if_applicable: bool = False, domain_sk_decide: Union[MultiModeRCPSP, SingleModeRCPSP] = None, **kwargs, ): obs: State = state t = obs.t tasks_remaining = set(state.tasks_remaining) sorted_task_not_done = sorted( [ (index, policy_rcpsp.permutation_task[index]) for index in range(len(policy_rcpsp.permutation_task)) if policy_rcpsp.permutation_task[index] in tasks_remaining ], key=lambda x: x[0], ) next_task_to_launch = None possible_task_to_launch = policy_rcpsp.domain.task_possible_to_launch_precedence( state=state ) for i in range(len(sorted_task_not_done)): task = sorted_task_not_done[i][1] if task not in possible_task_to_launch: continue the_action = SchedulingAction( task=task, action=SchedulingActionEnum.START, mode=policy_rcpsp.modes_dictionnary[task], time_progress=False, resource_unit_names=None, ) if policy_rcpsp.resource_allocation is not None: if task in policy_rcpsp.resource_allocation: the_action.resource_unit_names = policy_rcpsp.resource_allocation[task] action_available = action_in_applicable_actions( policy_rcpsp.domain, state, the_action ) if action_available[0]: return the_action the_action = SchedulingAction( task=None, action=SchedulingActionEnum.TIME_PR, mode=None, time_progress=True, resource_unit_names=None, ) return the_action def next_action_sgs_strict( policy_rcpsp: PolicyRCPSP, state: State, check_if_applicable: bool = False, domain_sk_decide: Union[MultiModeRCPSP, SingleModeRCPSP] = None, **kwargs, ): obs: State = state t = obs.t possible_task_to_launch = policy_rcpsp.domain.task_possible_to_launch_precedence( state=state ) tasks_remaining = set(state.tasks_remaining) sorted_task_not_done = sorted( [ (index, policy_rcpsp.permutation_task[index]) for index in range(len(policy_rcpsp.permutation_task)) if policy_rcpsp.permutation_task[index] in tasks_remaining and policy_rcpsp.permutation_task[index] in possible_task_to_launch ], key=lambda x: x[0], ) the_action = None if len(sorted_task_not_done) > 0: other_tasks_same_time = [sorted_task_not_done[0][1]] if policy_rcpsp.schedule is not None: scheduled_time = policy_rcpsp.schedule[sorted_task_not_done[0][1]][ "start_time" ] other_tasks_same_time = [ task_id for ind, task_id in sorted_task_not_done if policy_rcpsp.schedule[task_id]["start_time"] == scheduled_time ] for tinterest in other_tasks_same_time: the_action = SchedulingAction( task=tinterest, action=SchedulingActionEnum.START, mode=policy_rcpsp.modes_dictionnary[tinterest], time_progress=False, resource_unit_names=None, ) # start_tasks=[tinterest], advance_time=False) if policy_rcpsp.resource_allocation is not None: if tinterest in policy_rcpsp.resource_allocation: the_action.resource_unit_names = policy_rcpsp.resource_allocation[ tinterest ] applicable = action_in_applicable_actions( policy_rcpsp.domain, observation=state, the_action=the_action ) if applicable[0]: break else: the_action = None if the_action is None: the_action = SchedulingAction( task=None, action=SchedulingActionEnum.TIME_PR, mode=None, time_progress=True, resource_unit_names=None, ) return the_action def next_action_sgs_time_freedom( policy_rcpsp: PolicyRCPSP, state: State, check_if_applicable: bool = False, domain_sk_decide: Union[MultiModeRCPSP, SingleModeRCPSP] = None, delta_time_freedom: int = 10, **kwargs, ): obs: State = state possible_task_to_launch = policy_rcpsp.domain.task_possible_to_launch_precedence( state=state ) tasks_remaining = set(state.tasks_remaining) sorted_task_not_done = sorted( [ (index, policy_rcpsp.permutation_task[index]) for index in range(len(policy_rcpsp.permutation_task)) if policy_rcpsp.permutation_task[index] in tasks_remaining and policy_rcpsp.permutation_task[index] in possible_task_to_launch ], key=lambda x: x[0], ) the_action = None if len(sorted_task_not_done) > 0: other_tasks_same_time = [sorted_task_not_done[0][1]] if policy_rcpsp.schedule is not None: scheduled_time = policy_rcpsp.schedule[sorted_task_not_done[0][1]][ "start_time" ] other_tasks_same_time = [ task_id for ind, task_id in sorted_task_not_done if scheduled_time <= policy_rcpsp.schedule[task_id]["start_time"] <= scheduled_time + delta_time_freedom ] for tinterest in other_tasks_same_time: the_action = SchedulingAction( task=tinterest, action=SchedulingActionEnum.START, mode=policy_rcpsp.modes_dictionnary[tinterest], time_progress=False, resource_unit_names=None, ) # start_tasks=[tinterest], advance_time=False) if policy_rcpsp.resource_allocation is not None: if tinterest in policy_rcpsp.resource_allocation: the_action.resource_unit_names = policy_rcpsp.resource_allocation[ tinterest ] applicable = action_in_applicable_actions( policy_rcpsp.domain, observation=state, the_action=the_action ) if applicable[0]: break else: the_action = None if the_action is None: the_action = SchedulingAction( task=None, action=SchedulingActionEnum.TIME_PR, mode=None, time_progress=True, resource_unit_names=None, ) return the_action def next_action_sgs_index_freedom( policy_rcpsp: PolicyRCPSP, state: State, check_if_applicable: bool = False, domain_sk_decide: Union[MultiModeRCPSP, SingleModeRCPSP] = None, delta_index_freedom: int = 10, **kwargs, ): obs: State = state possible_task_to_launch = policy_rcpsp.domain.task_possible_to_launch_precedence( state=state ) tasks_remaining = set(state.tasks_remaining) sorted_task_not_done = sorted( [ (index, policy_rcpsp.permutation_task[index]) for index in range(len(policy_rcpsp.permutation_task)) if policy_rcpsp.permutation_task[index] in tasks_remaining and policy_rcpsp.permutation_task[index] in possible_task_to_launch ], key=lambda x: x[0], ) the_action = None if len(sorted_task_not_done) > 0: index_t = sorted_task_not_done[0][0] other_tasks_same_time = [ task_id for ind, task_id in sorted_task_not_done if ind <= index_t + delta_index_freedom ] for tinterest in other_tasks_same_time: the_action = SchedulingAction( task=tinterest, action=SchedulingActionEnum.START, mode=policy_rcpsp.modes_dictionnary[tinterest], time_progress=False, resource_unit_names=None, ) # start_tasks=[tinterest], advance_time=False) if policy_rcpsp.resource_allocation is not None: if tinterest in policy_rcpsp.resource_allocation: the_action.resource_unit_names = policy_rcpsp.resource_allocation[ tinterest ] applicable = action_in_applicable_actions( policy_rcpsp.domain, observation=state, the_action=the_action ) if applicable[0]: break else: the_action = None if the_action is None: the_action = SchedulingAction( task=None, action=SchedulingActionEnum.TIME_PR, mode=None, time_progress=True, resource_unit_names=None, ) return the_action map_method_to_function = { BasePolicyMethod.FOLLOW_GANTT: next_action_follow_static_gantt, BasePolicyMethod.SGS_PRECEDENCE: next_action_sgs_first_task_precedence_ready, BasePolicyMethod.SGS_STRICT: next_action_sgs_strict, BasePolicyMethod.SGS_READY: next_action_sgs_first_task_ready, BasePolicyMethod.SGS_TIME_FREEDOM: next_action_sgs_time_freedom, BasePolicyMethod.SGS_INDEX_FREEDOM: next_action_sgs_index_freedom, }
scikit-decide
/scikit_decide-0.9.6-cp310-cp310-macosx_10_15_x86_64.whl/skdecide/hub/solver/sgs_policies/sgs_policies.py
sgs_policies.py
from __future__ import annotations from enum import Enum from functools import partial from typing import Dict, List, Optional, Union from skdecide.builders.domain.scheduling.scheduling_domains import ( D, MultiModeRCPSP, SchedulingDomain, SingleModeRCPSP, ) from skdecide.builders.domain.scheduling.scheduling_domains_modelling import ( SchedulingAction, SchedulingActionEnum, State, ) from skdecide.builders.solver.policy import DeterministicPolicies class BasePolicyMethod(Enum): FOLLOW_GANTT = 0 SGS_PRECEDENCE = 1 SGS_READY = 2 SGS_STRICT = 3 SGS_TIME_FREEDOM = 4 SGS_INDEX_FREEDOM = 5 PILE = 6 class PolicyMethodParams: def __init__( self, base_policy_method: BasePolicyMethod, delta_time_freedom=10, delta_index_freedom=10, ): self.base_policy_method = base_policy_method self.delta_time_freedom = delta_time_freedom self.delta_index_freedom = delta_index_freedom class PolicyRCPSP(DeterministicPolicies): T_domain = D def __init__( self, domain: SchedulingDomain, policy_method_params: PolicyMethodParams, permutation_task: List[int], modes_dictionnary: Dict[int, int], schedule: Optional[ Dict[int, Dict[str, int]] ] = None, # {id: {"start_time":, "end_time"}} resource_allocation: Optional[Dict[int, List[str]]] = None, resource_allocation_priority: Optional[Dict[int, List[str]]] = None, ): self.domain = domain self.policy_method_params = policy_method_params self.permutation_task = permutation_task self.modes_dictionnary = modes_dictionnary self.schedule = schedule self.store_start_date = {} if self.schedule is not None: for task_id in self.schedule: start_date = self.schedule[task_id]["start_time"] if start_date not in self.store_start_date: self.store_start_date[start_date] = set() self.store_start_date[start_date].add(task_id) self.resource_allocation = resource_allocation self.resource_allocation_priority = resource_allocation_priority self.build_function() def reset(self): pass def build_function(self): func = partial( map_method_to_function[self.policy_method_params.base_policy_method], policy_rcpsp=self, check_if_applicable=False, domain_sk_decide=self.domain, delta_time_freedom=self.policy_method_params.delta_time_freedom, delta_index_freedom=self.policy_method_params.delta_index_freedom, ) self.func = func def _get_next_action( self, observation: D.T_agent[D.T_observation] ) -> D.T_agent[D.T_concurrency[D.T_event]]: return self.func(state=observation) def _is_policy_defined_for(self, observation: D.T_agent[D.T_observation]) -> bool: return True def action_in_applicable_actions( domain_sk_decide, observation: D.T_agent[D.T_observation], the_action: SchedulingAction, ): return domain_sk_decide.check_if_action_can_be_started(observation, the_action) def next_action_follow_static_gantt( policy_rcpsp: PolicyRCPSP, state: State, check_if_applicable: bool = False, **kwargs ): obs: State = state t = obs.t ongoing_task = obs.tasks_ongoing complete_task = obs.tasks_complete possible_task_to_launch = policy_rcpsp.domain.task_possible_to_launch_precedence( state=state ) the_action = SchedulingAction( task=None, action=SchedulingActionEnum.TIME_PR, mode=None, time_progress=True, resource_unit_names=None, ) if t in policy_rcpsp.store_start_date: tasks = [ task for task in policy_rcpsp.store_start_date[t] if task not in ongoing_task and task not in complete_task and task in possible_task_to_launch ] if len(tasks) > 0: the_action = SchedulingAction( task=tasks[0], action=SchedulingActionEnum.START, mode=policy_rcpsp.modes_dictionnary[tasks[0]], time_progress=False, resource_unit_names=None, ) if policy_rcpsp.resource_allocation is not None: if tasks[0] in policy_rcpsp.resource_allocation: the_action.resource_unit_names = policy_rcpsp.resource_allocation[ tasks[0] ] if True: action_available = action_in_applicable_actions( policy_rcpsp.domain, state, the_action ) if not action_available[0]: the_action = SchedulingAction( task=None, action=SchedulingActionEnum.TIME_PR, mode=None, time_progress=True, resource_unit_names=None, ) return the_action def next_action_sgs_first_task_precedence_ready( policy_rcpsp: PolicyRCPSP, state: State, check_if_applicable: bool = False, **kwargs ): obs: State = state next_task_to_launch = None possible_task_to_launch = policy_rcpsp.domain.task_possible_to_launch_precedence( state=state ) tasks_remaining = set(state.tasks_remaining) sorted_task_not_done = sorted( [ (index, policy_rcpsp.permutation_task[index]) for index in range(len(policy_rcpsp.permutation_task)) if policy_rcpsp.permutation_task[index] in tasks_remaining ], key=lambda x: x[0], ) for i in range(len(sorted_task_not_done)): task = sorted_task_not_done[i][1] if task in possible_task_to_launch: next_task_to_launch = task break if next_task_to_launch is not None: if policy_rcpsp.schedule is not None: original_time_start_task = policy_rcpsp.schedule[next_task_to_launch][ "start_time" ] other_tasks_same_time = [ task_id for ind, task_id in sorted_task_not_done if task_id != next_task_to_launch and policy_rcpsp.schedule[task_id]["start_time"] == original_time_start_task and task_id in possible_task_to_launch ] else: other_tasks_same_time = [] tasks_of_interest = [next_task_to_launch] + other_tasks_same_time the_action = None for tinterest in tasks_of_interest: the_action = SchedulingAction( task=tinterest, action=SchedulingActionEnum.START, mode=policy_rcpsp.modes_dictionnary[tinterest], time_progress=False, resource_unit_names=None, ) if policy_rcpsp.resource_allocation is not None: if tinterest in policy_rcpsp.resource_allocation: the_action.resource_unit_names = policy_rcpsp.resource_allocation[ tinterest ] applicable = action_in_applicable_actions( domain_sk_decide=policy_rcpsp.domain, observation=state, the_action=the_action, ) if applicable[0]: break else: the_action = None if the_action is None: the_action = SchedulingAction( task=None, action=SchedulingActionEnum.TIME_PR, mode=None, time_progress=True, resource_unit_names=None, ) return the_action else: return SchedulingAction( task=None, action=SchedulingActionEnum.TIME_PR, mode=None, time_progress=True, resource_unit_names=None, ) def next_action_sgs_first_task_ready( policy_rcpsp: PolicyRCPSP, state: State, check_if_applicable: bool = False, domain_sk_decide: Union[MultiModeRCPSP, SingleModeRCPSP] = None, **kwargs, ): obs: State = state t = obs.t tasks_remaining = set(state.tasks_remaining) sorted_task_not_done = sorted( [ (index, policy_rcpsp.permutation_task[index]) for index in range(len(policy_rcpsp.permutation_task)) if policy_rcpsp.permutation_task[index] in tasks_remaining ], key=lambda x: x[0], ) next_task_to_launch = None possible_task_to_launch = policy_rcpsp.domain.task_possible_to_launch_precedence( state=state ) for i in range(len(sorted_task_not_done)): task = sorted_task_not_done[i][1] if task not in possible_task_to_launch: continue the_action = SchedulingAction( task=task, action=SchedulingActionEnum.START, mode=policy_rcpsp.modes_dictionnary[task], time_progress=False, resource_unit_names=None, ) if policy_rcpsp.resource_allocation is not None: if task in policy_rcpsp.resource_allocation: the_action.resource_unit_names = policy_rcpsp.resource_allocation[task] action_available = action_in_applicable_actions( policy_rcpsp.domain, state, the_action ) if action_available[0]: return the_action the_action = SchedulingAction( task=None, action=SchedulingActionEnum.TIME_PR, mode=None, time_progress=True, resource_unit_names=None, ) return the_action def next_action_sgs_strict( policy_rcpsp: PolicyRCPSP, state: State, check_if_applicable: bool = False, domain_sk_decide: Union[MultiModeRCPSP, SingleModeRCPSP] = None, **kwargs, ): obs: State = state t = obs.t possible_task_to_launch = policy_rcpsp.domain.task_possible_to_launch_precedence( state=state ) tasks_remaining = set(state.tasks_remaining) sorted_task_not_done = sorted( [ (index, policy_rcpsp.permutation_task[index]) for index in range(len(policy_rcpsp.permutation_task)) if policy_rcpsp.permutation_task[index] in tasks_remaining and policy_rcpsp.permutation_task[index] in possible_task_to_launch ], key=lambda x: x[0], ) the_action = None if len(sorted_task_not_done) > 0: other_tasks_same_time = [sorted_task_not_done[0][1]] if policy_rcpsp.schedule is not None: scheduled_time = policy_rcpsp.schedule[sorted_task_not_done[0][1]][ "start_time" ] other_tasks_same_time = [ task_id for ind, task_id in sorted_task_not_done if policy_rcpsp.schedule[task_id]["start_time"] == scheduled_time ] for tinterest in other_tasks_same_time: the_action = SchedulingAction( task=tinterest, action=SchedulingActionEnum.START, mode=policy_rcpsp.modes_dictionnary[tinterest], time_progress=False, resource_unit_names=None, ) # start_tasks=[tinterest], advance_time=False) if policy_rcpsp.resource_allocation is not None: if tinterest in policy_rcpsp.resource_allocation: the_action.resource_unit_names = policy_rcpsp.resource_allocation[ tinterest ] applicable = action_in_applicable_actions( policy_rcpsp.domain, observation=state, the_action=the_action ) if applicable[0]: break else: the_action = None if the_action is None: the_action = SchedulingAction( task=None, action=SchedulingActionEnum.TIME_PR, mode=None, time_progress=True, resource_unit_names=None, ) return the_action def next_action_sgs_time_freedom( policy_rcpsp: PolicyRCPSP, state: State, check_if_applicable: bool = False, domain_sk_decide: Union[MultiModeRCPSP, SingleModeRCPSP] = None, delta_time_freedom: int = 10, **kwargs, ): obs: State = state possible_task_to_launch = policy_rcpsp.domain.task_possible_to_launch_precedence( state=state ) tasks_remaining = set(state.tasks_remaining) sorted_task_not_done = sorted( [ (index, policy_rcpsp.permutation_task[index]) for index in range(len(policy_rcpsp.permutation_task)) if policy_rcpsp.permutation_task[index] in tasks_remaining and policy_rcpsp.permutation_task[index] in possible_task_to_launch ], key=lambda x: x[0], ) the_action = None if len(sorted_task_not_done) > 0: other_tasks_same_time = [sorted_task_not_done[0][1]] if policy_rcpsp.schedule is not None: scheduled_time = policy_rcpsp.schedule[sorted_task_not_done[0][1]][ "start_time" ] other_tasks_same_time = [ task_id for ind, task_id in sorted_task_not_done if scheduled_time <= policy_rcpsp.schedule[task_id]["start_time"] <= scheduled_time + delta_time_freedom ] for tinterest in other_tasks_same_time: the_action = SchedulingAction( task=tinterest, action=SchedulingActionEnum.START, mode=policy_rcpsp.modes_dictionnary[tinterest], time_progress=False, resource_unit_names=None, ) # start_tasks=[tinterest], advance_time=False) if policy_rcpsp.resource_allocation is not None: if tinterest in policy_rcpsp.resource_allocation: the_action.resource_unit_names = policy_rcpsp.resource_allocation[ tinterest ] applicable = action_in_applicable_actions( policy_rcpsp.domain, observation=state, the_action=the_action ) if applicable[0]: break else: the_action = None if the_action is None: the_action = SchedulingAction( task=None, action=SchedulingActionEnum.TIME_PR, mode=None, time_progress=True, resource_unit_names=None, ) return the_action def next_action_sgs_index_freedom( policy_rcpsp: PolicyRCPSP, state: State, check_if_applicable: bool = False, domain_sk_decide: Union[MultiModeRCPSP, SingleModeRCPSP] = None, delta_index_freedom: int = 10, **kwargs, ): obs: State = state possible_task_to_launch = policy_rcpsp.domain.task_possible_to_launch_precedence( state=state ) tasks_remaining = set(state.tasks_remaining) sorted_task_not_done = sorted( [ (index, policy_rcpsp.permutation_task[index]) for index in range(len(policy_rcpsp.permutation_task)) if policy_rcpsp.permutation_task[index] in tasks_remaining and policy_rcpsp.permutation_task[index] in possible_task_to_launch ], key=lambda x: x[0], ) the_action = None if len(sorted_task_not_done) > 0: index_t = sorted_task_not_done[0][0] other_tasks_same_time = [ task_id for ind, task_id in sorted_task_not_done if ind <= index_t + delta_index_freedom ] for tinterest in other_tasks_same_time: the_action = SchedulingAction( task=tinterest, action=SchedulingActionEnum.START, mode=policy_rcpsp.modes_dictionnary[tinterest], time_progress=False, resource_unit_names=None, ) # start_tasks=[tinterest], advance_time=False) if policy_rcpsp.resource_allocation is not None: if tinterest in policy_rcpsp.resource_allocation: the_action.resource_unit_names = policy_rcpsp.resource_allocation[ tinterest ] applicable = action_in_applicable_actions( policy_rcpsp.domain, observation=state, the_action=the_action ) if applicable[0]: break else: the_action = None if the_action is None: the_action = SchedulingAction( task=None, action=SchedulingActionEnum.TIME_PR, mode=None, time_progress=True, resource_unit_names=None, ) return the_action map_method_to_function = { BasePolicyMethod.FOLLOW_GANTT: next_action_follow_static_gantt, BasePolicyMethod.SGS_PRECEDENCE: next_action_sgs_first_task_precedence_ready, BasePolicyMethod.SGS_STRICT: next_action_sgs_strict, BasePolicyMethod.SGS_READY: next_action_sgs_first_task_ready, BasePolicyMethod.SGS_TIME_FREEDOM: next_action_sgs_time_freedom, BasePolicyMethod.SGS_INDEX_FREEDOM: next_action_sgs_index_freedom, }
0.828245
0.164752
from __future__ import annotations import glob import os from typing import Callable, Dict, Optional, Type import ray from ray.rllib.agents.trainer import Trainer from ray.rllib.env.multi_agent_env import MultiAgentEnv from ray.tune.registry import register_env from skdecide import Domain, Solver from skdecide.builders.domain import ( Initializable, Sequential, SingleAgent, UnrestrictedActions, ) from skdecide.builders.solver import Policies, Restorable from skdecide.hub.space.gym import GymSpace # TODO: remove UnrestrictedActions? class D(Domain, Sequential, UnrestrictedActions, Initializable): pass class RayRLlib(Solver, Policies, Restorable): """This class wraps a Ray RLlib solver (ray[rllib]) as a scikit-decide solver. !!! warning Using this class requires Ray RLlib to be installed. """ T_domain = D def __init__( self, algo_class: Type[Trainer], train_iterations: int, config: Optional[Dict] = None, policy_configs: Dict[str, Dict] = {"policy": {}}, policy_mapping_fn: Callable[[str], str] = lambda agent_id: "policy", ) -> None: """Initialize Ray RLlib. # Parameters algo_class: The class of Ray RLlib trainer/agent to wrap. train_iterations: The number of iterations to call the trainer's train() method. config: The configuration dictionary for the trainer. policy_configs: The mapping from policy id (str) to additional config (dict) (leave default for single policy). policy_mapping_fn: The function mapping agent ids to policy ids (leave default for single policy). """ self._algo_class = algo_class self._train_iterations = train_iterations self._config = config or {} self._policy_configs = policy_configs self._policy_mapping_fn = policy_mapping_fn ray.init(ignore_reinit_error=True) @classmethod def _check_domain_additional(cls, domain: Domain) -> bool: if isinstance(domain, SingleAgent): return isinstance(domain.get_action_space(), GymSpace) and isinstance( domain.get_observation_space(), GymSpace ) else: return all( isinstance(a, GymSpace) for a in domain.get_action_space().values() ) and all( isinstance(o, GymSpace) for o in domain.get_observation_space().values() ) def _solve_domain(self, domain_factory: Callable[[], D]) -> None: # Reuse algo if possible (enables further learning) if not hasattr(self, "_algo"): self._init_algo(domain_factory) # Training loop for _ in range(self._train_iterations): self._algo.train() def _sample_action( self, observation: D.T_agent[D.T_observation] ) -> D.T_agent[D.T_concurrency[D.T_event]]: action = { k: self._algo.compute_action( self._unwrap_obs(v, k), policy_id=self._policy_mapping_fn(k) ) for k, v in observation.items() } return self._wrap_action(action) def _is_policy_defined_for(self, observation: D.T_agent[D.T_observation]) -> bool: return True def _save(self, path: str) -> None: self._algo.save(path) def _load(self, path: str, domain_factory: Callable[[], D]): if not os.path.isfile(path): # Find latest checkpoint metadata_files = glob.glob(f"{path}/**/*.tune_metadata") latest_metadata_file = max(metadata_files, key=os.path.getctime) path = latest_metadata_file[: -len(".tune_metadata")] self._init_algo(domain_factory) self._algo.restore(path) def _init_algo(self, domain_factory: Callable[[], D]): domain = domain_factory() self._wrap_action = lambda a: { k: next(iter(domain.get_action_space()[k].from_unwrapped([v]))) for k, v in a.items() } self._unwrap_obs = lambda o, agent: next( iter(domain.get_observation_space()[agent].to_unwrapped([o])) ) # Overwrite multi-agent config pol_obs_spaces = { self._policy_mapping_fn(k): v.unwrapped() for k, v in domain.get_observation_space().items() } pol_act_spaces = { self._policy_mapping_fn(k): v.unwrapped() for k, v in domain.get_action_space().items() } policies = { k: (None, pol_obs_spaces[k], pol_act_spaces[k], v or {}) for k, v in self._policy_configs.items() } self._config["multiagent"] = { "policies": policies, "policy_mapping_fn": self._policy_mapping_fn, } # Instanciate algo register_env("skdecide_env", lambda _: AsRLlibMultiAgentEnv(domain_factory())) self._algo = self._algo_class(env="skdecide_env", config=self._config) class AsRLlibMultiAgentEnv(MultiAgentEnv): def __init__(self, domain: D) -> None: """Initialize AsRLlibMultiAgentEnv. # Parameters domain: The scikit-decide domain to wrap as a RLlib multi-agent environment. """ self._domain = domain def reset(self): """Resets the env and returns observations from ready agents. # Returns obs (dict): New observations for each ready agent. """ raw_observation = self._domain.reset() observation = { k: next(iter(self._domain.get_observation_space()[k].to_unwrapped([v]))) for k, v in raw_observation.items() } return observation def step(self, action_dict): """Returns observations from ready agents. The returns are dicts mapping from agent_id strings to values. The number of agents in the env can vary over time. # Returns obs (dict): New observations for each ready agent. rewards (dict): Reward values for each ready agent. If the episode is just started, the value will be None. dones (dict): Done values for each ready agent. The special key "__all__" (required) is used to indicate env termination. infos (dict): Optional info values for each agent id. """ action = { k: next(iter(self._domain.get_action_space()[k].from_unwrapped([v]))) for k, v in action_dict.items() } outcome = self._domain.step(action) observations = { k: next(iter(self._domain.get_observation_space()[k].to_unwrapped([v]))) for k, v in outcome.observation.items() } rewards = {k: v.reward for k, v in outcome.value.items()} done = {"__all__": outcome.termination} infos = {k: (v or {}) for k, v in outcome.info.items()} return observations, rewards, done, infos def unwrapped(self): """Unwrap the scikit-decide domain and return it. # Returns The original scikit-decide domain. """ return self._domain if __name__ == "__main__": from ray.rllib.agents.ppo import PPOTrainer from skdecide.hub.domain.rock_paper_scissors import RockPaperScissors from skdecide.utils import rollout domain_factory = lambda: RockPaperScissors() domain = domain_factory() if RayRLlib.check_domain(domain): solver_factory = lambda: RayRLlib( PPOTrainer, train_iterations=1, config={"framework": "torch"} ) solver = RockPaperScissors.solve_with(solver_factory, domain_factory) rollout( domain, solver, action_formatter=lambda a: str({k: v.name for k, v in a.items()}), outcome_formatter=lambda o: f"{ {k: v.name for k, v in o.observation.items()} }" f" - rewards: { {k: v.reward for k, v in o.value.items()} }", )
scikit-decide
/scikit_decide-0.9.6-cp310-cp310-macosx_10_15_x86_64.whl/skdecide/hub/solver/ray_rllib/ray_rllib.py
ray_rllib.py
from __future__ import annotations import glob import os from typing import Callable, Dict, Optional, Type import ray from ray.rllib.agents.trainer import Trainer from ray.rllib.env.multi_agent_env import MultiAgentEnv from ray.tune.registry import register_env from skdecide import Domain, Solver from skdecide.builders.domain import ( Initializable, Sequential, SingleAgent, UnrestrictedActions, ) from skdecide.builders.solver import Policies, Restorable from skdecide.hub.space.gym import GymSpace # TODO: remove UnrestrictedActions? class D(Domain, Sequential, UnrestrictedActions, Initializable): pass class RayRLlib(Solver, Policies, Restorable): """This class wraps a Ray RLlib solver (ray[rllib]) as a scikit-decide solver. !!! warning Using this class requires Ray RLlib to be installed. """ T_domain = D def __init__( self, algo_class: Type[Trainer], train_iterations: int, config: Optional[Dict] = None, policy_configs: Dict[str, Dict] = {"policy": {}}, policy_mapping_fn: Callable[[str], str] = lambda agent_id: "policy", ) -> None: """Initialize Ray RLlib. # Parameters algo_class: The class of Ray RLlib trainer/agent to wrap. train_iterations: The number of iterations to call the trainer's train() method. config: The configuration dictionary for the trainer. policy_configs: The mapping from policy id (str) to additional config (dict) (leave default for single policy). policy_mapping_fn: The function mapping agent ids to policy ids (leave default for single policy). """ self._algo_class = algo_class self._train_iterations = train_iterations self._config = config or {} self._policy_configs = policy_configs self._policy_mapping_fn = policy_mapping_fn ray.init(ignore_reinit_error=True) @classmethod def _check_domain_additional(cls, domain: Domain) -> bool: if isinstance(domain, SingleAgent): return isinstance(domain.get_action_space(), GymSpace) and isinstance( domain.get_observation_space(), GymSpace ) else: return all( isinstance(a, GymSpace) for a in domain.get_action_space().values() ) and all( isinstance(o, GymSpace) for o in domain.get_observation_space().values() ) def _solve_domain(self, domain_factory: Callable[[], D]) -> None: # Reuse algo if possible (enables further learning) if not hasattr(self, "_algo"): self._init_algo(domain_factory) # Training loop for _ in range(self._train_iterations): self._algo.train() def _sample_action( self, observation: D.T_agent[D.T_observation] ) -> D.T_agent[D.T_concurrency[D.T_event]]: action = { k: self._algo.compute_action( self._unwrap_obs(v, k), policy_id=self._policy_mapping_fn(k) ) for k, v in observation.items() } return self._wrap_action(action) def _is_policy_defined_for(self, observation: D.T_agent[D.T_observation]) -> bool: return True def _save(self, path: str) -> None: self._algo.save(path) def _load(self, path: str, domain_factory: Callable[[], D]): if not os.path.isfile(path): # Find latest checkpoint metadata_files = glob.glob(f"{path}/**/*.tune_metadata") latest_metadata_file = max(metadata_files, key=os.path.getctime) path = latest_metadata_file[: -len(".tune_metadata")] self._init_algo(domain_factory) self._algo.restore(path) def _init_algo(self, domain_factory: Callable[[], D]): domain = domain_factory() self._wrap_action = lambda a: { k: next(iter(domain.get_action_space()[k].from_unwrapped([v]))) for k, v in a.items() } self._unwrap_obs = lambda o, agent: next( iter(domain.get_observation_space()[agent].to_unwrapped([o])) ) # Overwrite multi-agent config pol_obs_spaces = { self._policy_mapping_fn(k): v.unwrapped() for k, v in domain.get_observation_space().items() } pol_act_spaces = { self._policy_mapping_fn(k): v.unwrapped() for k, v in domain.get_action_space().items() } policies = { k: (None, pol_obs_spaces[k], pol_act_spaces[k], v or {}) for k, v in self._policy_configs.items() } self._config["multiagent"] = { "policies": policies, "policy_mapping_fn": self._policy_mapping_fn, } # Instanciate algo register_env("skdecide_env", lambda _: AsRLlibMultiAgentEnv(domain_factory())) self._algo = self._algo_class(env="skdecide_env", config=self._config) class AsRLlibMultiAgentEnv(MultiAgentEnv): def __init__(self, domain: D) -> None: """Initialize AsRLlibMultiAgentEnv. # Parameters domain: The scikit-decide domain to wrap as a RLlib multi-agent environment. """ self._domain = domain def reset(self): """Resets the env and returns observations from ready agents. # Returns obs (dict): New observations for each ready agent. """ raw_observation = self._domain.reset() observation = { k: next(iter(self._domain.get_observation_space()[k].to_unwrapped([v]))) for k, v in raw_observation.items() } return observation def step(self, action_dict): """Returns observations from ready agents. The returns are dicts mapping from agent_id strings to values. The number of agents in the env can vary over time. # Returns obs (dict): New observations for each ready agent. rewards (dict): Reward values for each ready agent. If the episode is just started, the value will be None. dones (dict): Done values for each ready agent. The special key "__all__" (required) is used to indicate env termination. infos (dict): Optional info values for each agent id. """ action = { k: next(iter(self._domain.get_action_space()[k].from_unwrapped([v]))) for k, v in action_dict.items() } outcome = self._domain.step(action) observations = { k: next(iter(self._domain.get_observation_space()[k].to_unwrapped([v]))) for k, v in outcome.observation.items() } rewards = {k: v.reward for k, v in outcome.value.items()} done = {"__all__": outcome.termination} infos = {k: (v or {}) for k, v in outcome.info.items()} return observations, rewards, done, infos def unwrapped(self): """Unwrap the scikit-decide domain and return it. # Returns The original scikit-decide domain. """ return self._domain if __name__ == "__main__": from ray.rllib.agents.ppo import PPOTrainer from skdecide.hub.domain.rock_paper_scissors import RockPaperScissors from skdecide.utils import rollout domain_factory = lambda: RockPaperScissors() domain = domain_factory() if RayRLlib.check_domain(domain): solver_factory = lambda: RayRLlib( PPOTrainer, train_iterations=1, config={"framework": "torch"} ) solver = RockPaperScissors.solve_with(solver_factory, domain_factory) rollout( domain, solver, action_formatter=lambda a: str({k: v.name for k, v in a.items()}), outcome_formatter=lambda o: f"{ {k: v.name for k, v in o.observation.items()} }" f" - rewards: { {k: v.reward for k, v in o.value.items()} }", )
0.836955
0.240869
from __future__ import annotations from typing import Callable from skdecide import DeterministicPolicySolver, Domain, EnumerableSpace, Memory from skdecide.builders.domain import EnumerableTransitions, FullyObservable, SingleAgent class D(Domain, SingleAgent, EnumerableTransitions, FullyObservable): pass class SimpleGreedy(DeterministicPolicySolver): T_domain = D @classmethod def _check_domain_additional(cls, domain: D) -> bool: return isinstance(domain.get_action_space(), EnumerableSpace) def _solve_domain(self, domain_factory: Callable[[], D]) -> None: self._domain = ( domain_factory() ) # no further solving code required here since everything is computed online def _get_next_action( self, observation: D.T_agent[D.T_observation] ) -> D.T_agent[D.T_concurrency[D.T_event]]: # This solver selects the first action with the highest expected immediate reward (greedy) domain = self._domain memory = Memory( [observation] ) # note: observation == state (because FullyObservable) applicable_actions = domain.get_applicable_actions(memory) if domain.is_transition_value_dependent_on_next_state(): values = [] for a in applicable_actions.get_elements(): next_state_prob = domain.get_next_state_distribution( memory, [a] ).get_values() expected_value = sum( p * domain.get_transition_value(memory, [a], s).reward for s, p in next_state_prob ) values.append(expected_value) else: values = [ domain.get_transition_value(memory, a).reward for a in applicable_actions ] argmax = max(range(len(values)), key=lambda i: values[i]) return [ applicable_actions.get_elements()[argmax] ] # list of action here because we handle Parallel domains def _is_policy_defined_for(self, observation: D.T_agent[D.T_observation]) -> bool: return True
scikit-decide
/scikit_decide-0.9.6-cp310-cp310-macosx_10_15_x86_64.whl/skdecide/hub/solver/simple_greedy/simple_greedy.py
simple_greedy.py
from __future__ import annotations from typing import Callable from skdecide import DeterministicPolicySolver, Domain, EnumerableSpace, Memory from skdecide.builders.domain import EnumerableTransitions, FullyObservable, SingleAgent class D(Domain, SingleAgent, EnumerableTransitions, FullyObservable): pass class SimpleGreedy(DeterministicPolicySolver): T_domain = D @classmethod def _check_domain_additional(cls, domain: D) -> bool: return isinstance(domain.get_action_space(), EnumerableSpace) def _solve_domain(self, domain_factory: Callable[[], D]) -> None: self._domain = ( domain_factory() ) # no further solving code required here since everything is computed online def _get_next_action( self, observation: D.T_agent[D.T_observation] ) -> D.T_agent[D.T_concurrency[D.T_event]]: # This solver selects the first action with the highest expected immediate reward (greedy) domain = self._domain memory = Memory( [observation] ) # note: observation == state (because FullyObservable) applicable_actions = domain.get_applicable_actions(memory) if domain.is_transition_value_dependent_on_next_state(): values = [] for a in applicable_actions.get_elements(): next_state_prob = domain.get_next_state_distribution( memory, [a] ).get_values() expected_value = sum( p * domain.get_transition_value(memory, [a], s).reward for s, p in next_state_prob ) values.append(expected_value) else: values = [ domain.get_transition_value(memory, a).reward for a in applicable_actions ] argmax = max(range(len(values)), key=lambda i: values[i]) return [ applicable_actions.get_elements()[argmax] ] # list of action here because we handle Parallel domains def _is_policy_defined_for(self, observation: D.T_agent[D.T_observation]) -> bool: return True
0.927096
0.435781
from __future__ import annotations from typing import Any, Callable, Dict from stable_baselines3.common.vec_env import DummyVecEnv from skdecide import Domain, Solver from skdecide.builders.domain import ( Initializable, Sequential, SingleAgent, UnrestrictedActions, ) from skdecide.builders.solver import Policies, Restorable from skdecide.hub.domain.gym import AsGymEnv from skdecide.hub.space.gym import GymSpace class D(Domain, SingleAgent, Sequential, UnrestrictedActions, Initializable): pass class StableBaseline(Solver, Policies, Restorable): """This class wraps a stable OpenAI Baselines solver (stable_baselines3) as a scikit-decide solver. !!! warning Using this class requires Stable Baselines 3 to be installed. """ T_domain = D def __init__( self, algo_class: type, baselines_policy: Any, learn_config: Dict = None, **kwargs: Any, ) -> None: """Initialize StableBaselines. # Parameters algo_class: The class of Baselines solver (stable_baselines3) to wrap. baselines_policy: The class of Baselines policy network (stable_baselines3.common.policies or str) to use. """ self._algo_class = algo_class self._baselines_policy = baselines_policy self._learn_config = learn_config if learn_config is not None else {} self._algo_kwargs = kwargs @classmethod def _check_domain_additional(cls, domain: Domain) -> bool: return isinstance(domain.get_action_space(), GymSpace) and isinstance( domain.get_observation_space(), GymSpace ) def _solve_domain(self, domain_factory: Callable[[], D]) -> None: # TODO: improve code for parallelism # (https://stable-baselines3.readthedocs.io/en/master/guide/examples.html # #multiprocessing-unleashing-the-power-of-vectorized-environments)? if not hasattr( self, "_algo" ): # reuse algo if possible (enables further learning) domain = domain_factory() env = DummyVecEnv( [lambda: AsGymEnv(domain)] ) # the algorithms require a vectorized environment to run self._algo = self._algo_class( self._baselines_policy, env, **self._algo_kwargs ) self._init_algo(domain) self._algo.learn(**self._learn_config) def _sample_action( self, observation: D.T_agent[D.T_observation] ) -> D.T_agent[D.T_concurrency[D.T_event]]: action, _ = self._algo.predict(observation) return self._wrap_action(action) def _is_policy_defined_for(self, observation: D.T_agent[D.T_observation]) -> bool: return True def _save(self, path: str) -> None: self._algo.save(path) def _load(self, path: str, domain_factory: Callable[[], D]): self._algo = self._algo_class.load(path) self._init_algo(domain_factory()) def _init_algo(self, domain: D): self._wrap_action = lambda a: next( iter(domain.get_action_space().from_unwrapped([a])) )
scikit-decide
/scikit_decide-0.9.6-cp310-cp310-macosx_10_15_x86_64.whl/skdecide/hub/solver/stable_baselines/stable_baselines.py
stable_baselines.py
from __future__ import annotations from typing import Any, Callable, Dict from stable_baselines3.common.vec_env import DummyVecEnv from skdecide import Domain, Solver from skdecide.builders.domain import ( Initializable, Sequential, SingleAgent, UnrestrictedActions, ) from skdecide.builders.solver import Policies, Restorable from skdecide.hub.domain.gym import AsGymEnv from skdecide.hub.space.gym import GymSpace class D(Domain, SingleAgent, Sequential, UnrestrictedActions, Initializable): pass class StableBaseline(Solver, Policies, Restorable): """This class wraps a stable OpenAI Baselines solver (stable_baselines3) as a scikit-decide solver. !!! warning Using this class requires Stable Baselines 3 to be installed. """ T_domain = D def __init__( self, algo_class: type, baselines_policy: Any, learn_config: Dict = None, **kwargs: Any, ) -> None: """Initialize StableBaselines. # Parameters algo_class: The class of Baselines solver (stable_baselines3) to wrap. baselines_policy: The class of Baselines policy network (stable_baselines3.common.policies or str) to use. """ self._algo_class = algo_class self._baselines_policy = baselines_policy self._learn_config = learn_config if learn_config is not None else {} self._algo_kwargs = kwargs @classmethod def _check_domain_additional(cls, domain: Domain) -> bool: return isinstance(domain.get_action_space(), GymSpace) and isinstance( domain.get_observation_space(), GymSpace ) def _solve_domain(self, domain_factory: Callable[[], D]) -> None: # TODO: improve code for parallelism # (https://stable-baselines3.readthedocs.io/en/master/guide/examples.html # #multiprocessing-unleashing-the-power-of-vectorized-environments)? if not hasattr( self, "_algo" ): # reuse algo if possible (enables further learning) domain = domain_factory() env = DummyVecEnv( [lambda: AsGymEnv(domain)] ) # the algorithms require a vectorized environment to run self._algo = self._algo_class( self._baselines_policy, env, **self._algo_kwargs ) self._init_algo(domain) self._algo.learn(**self._learn_config) def _sample_action( self, observation: D.T_agent[D.T_observation] ) -> D.T_agent[D.T_concurrency[D.T_event]]: action, _ = self._algo.predict(observation) return self._wrap_action(action) def _is_policy_defined_for(self, observation: D.T_agent[D.T_observation]) -> bool: return True def _save(self, path: str) -> None: self._algo.save(path) def _load(self, path: str, domain_factory: Callable[[], D]): self._algo = self._algo_class.load(path) self._init_algo(domain_factory()) def _init_algo(self, domain: D): self._wrap_action = lambda a: next( iter(domain.get_action_space().from_unwrapped([a])) )
0.820326
0.238683
from __future__ import annotations from typing import Any, Dict from skdecide import rollout_episode from skdecide.builders.domain.scheduling.scheduling_domains import D, SchedulingDomain from skdecide.builders.solver import DeterministicPolicies class MetaPolicy(DeterministicPolicies): T_domain = D def __init__( self, policies: Dict[Any, DeterministicPolicies], execution_domain: SchedulingDomain, known_domain: SchedulingDomain, nb_rollout_estimation=1, verbose=True, ): self.known_domain = known_domain self.known_domain.fast = True self.execution_domain = execution_domain self.policies = policies self.current_states = {method: None for method in policies} self.nb_rollout_estimation = nb_rollout_estimation self.verbose = verbose def reset(self): self.current_states = {method: None for method in self.policies} def _get_next_action( self, observation: D.T_agent[D.T_observation] ) -> D.T_agent[D.T_concurrency[D.T_event]]: results = {} actions_map = {} self.known_domain.set_inplace_environment(True) actions_c = [ self.policies[method].get_next_action(observation) for method in self.policies ] if len(set(actions_c)) > 1: for method in self.policies: results[method] = 0.0 for j in range(self.nb_rollout_estimation): states, actions, values = rollout_episode( domain=self.known_domain, solver=self.policies[method], outcome_formatter=None, action_formatter=None, verbose=False, from_memory=observation.copy(), ) # cost = sum(v.cost for v in values) results[method] += ( states[-1].t - observation.t ) # TODO, this is a trick... actions_map[method] = actions[0] if self.verbose: # print(results) print(actions_map[min(results, key=lambda x: results[x])]) return actions_map[min(results, key=lambda x: results[x])] else: return actions_c[0] def _is_policy_defined_for(self, observation: D.T_agent[D.T_observation]) -> bool: return True
scikit-decide
/scikit_decide-0.9.6-cp310-cp310-macosx_10_15_x86_64.whl/skdecide/hub/solver/meta_policy/meta_policies.py
meta_policies.py
from __future__ import annotations from typing import Any, Dict from skdecide import rollout_episode from skdecide.builders.domain.scheduling.scheduling_domains import D, SchedulingDomain from skdecide.builders.solver import DeterministicPolicies class MetaPolicy(DeterministicPolicies): T_domain = D def __init__( self, policies: Dict[Any, DeterministicPolicies], execution_domain: SchedulingDomain, known_domain: SchedulingDomain, nb_rollout_estimation=1, verbose=True, ): self.known_domain = known_domain self.known_domain.fast = True self.execution_domain = execution_domain self.policies = policies self.current_states = {method: None for method in policies} self.nb_rollout_estimation = nb_rollout_estimation self.verbose = verbose def reset(self): self.current_states = {method: None for method in self.policies} def _get_next_action( self, observation: D.T_agent[D.T_observation] ) -> D.T_agent[D.T_concurrency[D.T_event]]: results = {} actions_map = {} self.known_domain.set_inplace_environment(True) actions_c = [ self.policies[method].get_next_action(observation) for method in self.policies ] if len(set(actions_c)) > 1: for method in self.policies: results[method] = 0.0 for j in range(self.nb_rollout_estimation): states, actions, values = rollout_episode( domain=self.known_domain, solver=self.policies[method], outcome_formatter=None, action_formatter=None, verbose=False, from_memory=observation.copy(), ) # cost = sum(v.cost for v in values) results[method] += ( states[-1].t - observation.t ) # TODO, this is a trick... actions_map[method] = actions[0] if self.verbose: # print(results) print(actions_map[min(results, key=lambda x: results[x])]) return actions_map[min(results, key=lambda x: results[x])] else: return actions_c[0] def _is_policy_defined_for(self, observation: D.T_agent[D.T_observation]) -> bool: return True
0.623606
0.213705
from __future__ import annotations import os import sys from typing import Any, Callable, List, Tuple from skdecide import Domain, Solver, hub from skdecide.builders.domain import ( Actions, DeterministicInitialized, DeterministicTransitions, FullyObservable, Markovian, Rewards, Sequential, SingleAgent, ) from skdecide.builders.solver import DeterministicPolicies, ParallelSolver, Utilities from skdecide.hub.space.gym import ListSpace record_sys_path = sys.path skdecide_cpp_extension_lib_path = os.path.abspath(hub.__path__[0]) if skdecide_cpp_extension_lib_path not in sys.path: sys.path.append(skdecide_cpp_extension_lib_path) try: from __skdecide_hub_cpp import _IWSolver_ as iw_solver class D( Domain, SingleAgent, Sequential, DeterministicTransitions, Actions, DeterministicInitialized, Markovian, FullyObservable, Rewards, ): # TODO: check why DeterministicInitialized & PositiveCosts/Rewards? pass class IW(ParallelSolver, Solver, DeterministicPolicies, Utilities): T_domain = D def __init__( self, domain_factory: Callable[[], Domain], state_features: Callable[[Domain, D.T_state], Any], use_state_feature_hash: bool = False, node_ordering: Callable[[float, int, int, float, int, int], bool] = None, time_budget: int = 0, # time budget to continue searching for better plans after a goal has been reached parallel: bool = False, shared_memory_proxy=None, debug_logs: bool = False, ) -> None: ParallelSolver.__init__( self, domain_factory=domain_factory, parallel=parallel, shared_memory_proxy=shared_memory_proxy, ) self._solver = None self._domain = None self._state_features = state_features self._use_state_feature_hash = use_state_feature_hash self._node_ordering = node_ordering self._time_budget = time_budget self._debug_logs = debug_logs self._lambdas = [self._state_features] self._ipc_notify = True def close(self): """Joins the parallel domains' processes. Not calling this method (or not using the 'with' context statement) results in the solver forever waiting for the domain processes to exit. """ if self._parallel: self._solver.close() ParallelSolver.close(self) def _init_solve(self, domain_factory: Callable[[], D]) -> None: self._domain_factory = domain_factory self._solver = iw_solver( domain=self.get_domain(), state_features=lambda d, s: self._state_features(d, s) if not self._parallel else d.call(None, 0, s), use_state_feature_hash=self._use_state_feature_hash, node_ordering=self._node_ordering, time_budget=self._time_budget, parallel=self._parallel, debug_logs=self._debug_logs, ) self._solver.clear() def _solve_domain(self, domain_factory: Callable[[], D]) -> None: self._init_solve(domain_factory) def _solve_from(self, memory: D.T_memory[D.T_state]) -> None: self._solver.solve(memory) def _is_solution_defined_for( self, observation: D.T_agent[D.T_observation] ) -> bool: return self._solver.is_solution_defined_for(observation) def _get_next_action( self, observation: D.T_agent[D.T_observation] ) -> D.T_agent[D.T_concurrency[D.T_event]]: if not self._is_solution_defined_for(observation): self._solve_from(observation) return self._solver.get_next_action(observation) def _get_utility(self, observation: D.T_agent[D.T_observation]) -> D.T_value: return self._solver.get_utility(observation) def _reset(self) -> None: self._solver.clear() def get_nb_of_explored_states(self) -> int: return self._solver.get_nb_of_explored_states() def get_nb_of_pruned_states(self) -> int: return self._solver.get_nb_of_pruned_states() def get_intermediate_scores(self) -> List[Tuple[int, float]]: return self._solver.get_intermediate_scores() except ImportError: sys.path = record_sys_path print( 'Scikit-decide C++ hub library not found. Please check it is installed in "skdecide/hub".' ) raise
scikit-decide
/scikit_decide-0.9.6-cp310-cp310-macosx_10_15_x86_64.whl/skdecide/hub/solver/iw/iw.py
iw.py
from __future__ import annotations import os import sys from typing import Any, Callable, List, Tuple from skdecide import Domain, Solver, hub from skdecide.builders.domain import ( Actions, DeterministicInitialized, DeterministicTransitions, FullyObservable, Markovian, Rewards, Sequential, SingleAgent, ) from skdecide.builders.solver import DeterministicPolicies, ParallelSolver, Utilities from skdecide.hub.space.gym import ListSpace record_sys_path = sys.path skdecide_cpp_extension_lib_path = os.path.abspath(hub.__path__[0]) if skdecide_cpp_extension_lib_path not in sys.path: sys.path.append(skdecide_cpp_extension_lib_path) try: from __skdecide_hub_cpp import _IWSolver_ as iw_solver class D( Domain, SingleAgent, Sequential, DeterministicTransitions, Actions, DeterministicInitialized, Markovian, FullyObservable, Rewards, ): # TODO: check why DeterministicInitialized & PositiveCosts/Rewards? pass class IW(ParallelSolver, Solver, DeterministicPolicies, Utilities): T_domain = D def __init__( self, domain_factory: Callable[[], Domain], state_features: Callable[[Domain, D.T_state], Any], use_state_feature_hash: bool = False, node_ordering: Callable[[float, int, int, float, int, int], bool] = None, time_budget: int = 0, # time budget to continue searching for better plans after a goal has been reached parallel: bool = False, shared_memory_proxy=None, debug_logs: bool = False, ) -> None: ParallelSolver.__init__( self, domain_factory=domain_factory, parallel=parallel, shared_memory_proxy=shared_memory_proxy, ) self._solver = None self._domain = None self._state_features = state_features self._use_state_feature_hash = use_state_feature_hash self._node_ordering = node_ordering self._time_budget = time_budget self._debug_logs = debug_logs self._lambdas = [self._state_features] self._ipc_notify = True def close(self): """Joins the parallel domains' processes. Not calling this method (or not using the 'with' context statement) results in the solver forever waiting for the domain processes to exit. """ if self._parallel: self._solver.close() ParallelSolver.close(self) def _init_solve(self, domain_factory: Callable[[], D]) -> None: self._domain_factory = domain_factory self._solver = iw_solver( domain=self.get_domain(), state_features=lambda d, s: self._state_features(d, s) if not self._parallel else d.call(None, 0, s), use_state_feature_hash=self._use_state_feature_hash, node_ordering=self._node_ordering, time_budget=self._time_budget, parallel=self._parallel, debug_logs=self._debug_logs, ) self._solver.clear() def _solve_domain(self, domain_factory: Callable[[], D]) -> None: self._init_solve(domain_factory) def _solve_from(self, memory: D.T_memory[D.T_state]) -> None: self._solver.solve(memory) def _is_solution_defined_for( self, observation: D.T_agent[D.T_observation] ) -> bool: return self._solver.is_solution_defined_for(observation) def _get_next_action( self, observation: D.T_agent[D.T_observation] ) -> D.T_agent[D.T_concurrency[D.T_event]]: if not self._is_solution_defined_for(observation): self._solve_from(observation) return self._solver.get_next_action(observation) def _get_utility(self, observation: D.T_agent[D.T_observation]) -> D.T_value: return self._solver.get_utility(observation) def _reset(self) -> None: self._solver.clear() def get_nb_of_explored_states(self) -> int: return self._solver.get_nb_of_explored_states() def get_nb_of_pruned_states(self) -> int: return self._solver.get_nb_of_pruned_states() def get_intermediate_scores(self) -> List[Tuple[int, float]]: return self._solver.get_intermediate_scores() except ImportError: sys.path = record_sys_path print( 'Scikit-decide C++ hub library not found. Please check it is installed in "skdecide/hub".' ) raise
0.521471
0.162746
# scikit-deploy Deploy models trained with scikit-learn with Docker. ## Requirements You will need python 3 and Docker installed on your system. You can deploy any model trained with scikit-learn, or which implements the same `predict()` method as scikit-learn models (eg. xgboost). ## Installing `pip install scikit-deploy` ## Configuration First, you will need a model trained using scikit-learn 0.20 (should support all versions later on) which has been pickled. You will also need a `configuration.json` file describing the model metadata and build information. It takes the following form: ``` { "image_tag": "{{the tag given to the generated docker image}}", "endpoints": ["{{the endpoints to call for scoring}}"], } ``` Endpoints have the following format: ``` { "route": "{{the HTTP route to call for scoring}}", "model_path": "{{model absolute path}}", "inputs": [{{the input features, objects with "name" and optional fields "default", "offset" and "scaling" }}], "outputs": [{{the output targets, objects with "name" and optional fields "offset" and "scaling"}}] } ``` For inputs, the offset will be substracted to the value and then the difference will be divided by the scaling. For outputs, the offset will be added to the value and the sum will be multiplied by the scaling. Offset and scaling values are typically used to normalize and denormalize the inputs and outputs respectively. Here is an example config file : ``` { "image_tag": "my_super_model:latest", "endpoints": [ { "route": "/super-score", "model_path": "/home/toto/model.pkl", "inputs": [{"name": "x"}, {"name": "y", "default": 1.551, "offset": 50, "scaling": 2}], "outputs": [{"name": "z", "offset": 3, "scaling": 1.4}] } ], } ``` ## Building your image Run the following command: `skdeploy -c /path/to/config.json` This will run a Docker build using the image name you have provided. If your models require extra dependencies, you can specify an additional `requirements.txt` file to include for your server with the `-r`flag: `skdeploy -c /path/to/config -r /path/to/requirements.txt` If you need to specify a SSH private key in case your requirements are part of a private repository, use the `-k` flag: `skdeploy -c /path/to/config -r /path/to/requirements.txt -k "$(cat /path/to/private_key)"` ## Running and testing the server The server running inside the Docker container listens on port 5000. To test your server on local port 8080 for example, run it using docker: `docker run -p 8080:5000 your_image_tag` And you can start querying the server ; for the config file above, this would be done as : `GET localhost:8080/super-score?x=1337&y=115.16` Which would yield the json ``` { "prediction": { "z": 11525 } } ``` You can also send a `POST` request to the endpoint. In this case, the body must be a JSON array of the inputs. Using the `POST` method, you can ask the server for several predictions in one request. For example: ``` [ {"x": 1337, "y": 115.16}, {"x": 2664, "y": 98.3}, ] ``` Which would yield ``` { [ {"prediction": {"z": 11525}}, {"prediction": {"z": 3457}} ] } ```
scikit-deploy
/scikit-deploy-2.2.0.tar.gz/scikit-deploy-2.2.0/README.md
README.md
{ "image_tag": "{{the tag given to the generated docker image}}", "endpoints": ["{{the endpoints to call for scoring}}"], } { "route": "{{the HTTP route to call for scoring}}", "model_path": "{{model absolute path}}", "inputs": [{{the input features, objects with "name" and optional fields "default", "offset" and "scaling" }}], "outputs": [{{the output targets, objects with "name" and optional fields "offset" and "scaling"}}] } { "image_tag": "my_super_model:latest", "endpoints": [ { "route": "/super-score", "model_path": "/home/toto/model.pkl", "inputs": [{"name": "x"}, {"name": "y", "default": 1.551, "offset": 50, "scaling": 2}], "outputs": [{"name": "z", "offset": 3, "scaling": 1.4}] } ], } { "prediction": { "z": 11525 } } [ {"x": 1337, "y": 115.16}, {"x": 2664, "y": 98.3}, ] { [ {"prediction": {"z": 11525}}, {"prediction": {"z": 3457}} ] }
0.585101
0.955651
import tempfile import shutil import logging import pkg_resources import sys import os.path as osp import docker import json import pickle from typing import Optional logger = logging.getLogger("scikit-deploy") def _prepare_requirements(temp_dir, requirements_path): """ Concatenates an user-provided requirements file with the default one. """ # read default requirements final_path = osp.join(temp_dir, "workspace", "requirements.txt") with open(final_path) as f: reqs = f.read() # concatenate with user-specified with open(requirements_path) as f: reqs = "{}\n{}".format(reqs, f.read()) # write back to file with open(final_path, "w+") as f: f.write(reqs) def _prepare_workspace(temp_dir, config, requirements_path): """ Prepares the temporary workspace directory for the docker build """ # copy the server package as the workspace directory shutil.copytree( pkg_resources.resource_filename(__name__, "scikit_deploy_server"), osp.join(temp_dir, "workspace"), ) # copy resources (clf, config) to the workspace server resources resources_folder = osp.join(temp_dir, "workspace", "server", "resources") json.dump(config, open(osp.join(resources_folder, "config.json"), "w")) for endpoint in config["endpoints"]: shutil.copy( endpoint["model_path"], osp.join(resources_folder, endpoint["model_name"]) ) if requirements_path is not None: _prepare_requirements(temp_dir, requirements_path) def _build_docker(temp_dir, image_tag, ssh_key: Optional[str] = None): path = osp.join(temp_dir, "workspace") client = docker.APIClient() try: if ssh_key is None: output = client.build( path=path, dockerfile="Dockerfile", tag=image_tag, quiet=False, network_mode="host", ) else: output = client.build( path=path, dockerfile="Dockerfile-multi-stage", tag=image_tag, quiet=False, network_mode="host", forcerm=True, # ensure SSH keys don't persist target="multi-stage-build-final", buildargs=dict(SSH_PRIVATE_KEY=ssh_key), ) for l in output: logs = l.decode("utf-8").split("\r\n") for line in logs: if line: line = json.loads(line) # Show only relevant outputs if "stream" in line: logger.info("(DOCKER) - {}".format(line["stream"])) if "errorDetail" in line: logger.error("(DOCKER) - {}".format(line["errorDetail"])) except (docker.errors.BuildError, docker.errors.APIError) as e: logger.error("Docker build failed with logs: ") for l in e.build_log: logger.error(l) raise def _validate_route(route: str): if not route.startswith("/"): logger.error("route must begin with a /") raise ValueError() if route.endswith("/"): logger.error("route cannot end with a /") raise ValueError() def _generate_request(config): endpoint = config["endpoints"][0] route = endpoint["route"] qs = "&".join([f"{o['name']}=0" for o in endpoint["inputs"]]) return f"http://localhost:8000{route}?{qs}" def build(config_path, requirements_path, ssh_key: Optional[str] = None): """ Builds the docker image """ logger.info("Beginning build.") temp_dir = tempfile.mkdtemp() try: with open(config_path) as f: config = json.load(f) image_tag = config.get("image_tag") if image_tag is None: logger.error("No image_tag specified in config") exit(1) if "endpoints" not in config: logger.error("No endpoints specified in config") exit(1) for endpoint in config["endpoints"]: _validate_route(endpoint.get("route")) endpoint["model_name"] = ( endpoint["route"].replace("/", "_") + "_clf.pkl" ) _prepare_workspace(temp_dir, config, requirements_path) _build_docker(temp_dir, image_tag, ssh_key) logger.info(f"Successfully built image {image_tag}") logger.info("To test, run :") logger.info(f" docker run -p 8000:8000 {image_tag}") logger.info("and then perform http request") logger.info(f" GET {_generate_request(config)}") status = 0 except: logger.exception("Failed to build image") status = 1 finally: shutil.rmtree(temp_dir) exit(status)
scikit-deploy
/scikit-deploy-2.2.0.tar.gz/scikit-deploy-2.2.0/scikit_deploy/build.py
build.py
import tempfile import shutil import logging import pkg_resources import sys import os.path as osp import docker import json import pickle from typing import Optional logger = logging.getLogger("scikit-deploy") def _prepare_requirements(temp_dir, requirements_path): """ Concatenates an user-provided requirements file with the default one. """ # read default requirements final_path = osp.join(temp_dir, "workspace", "requirements.txt") with open(final_path) as f: reqs = f.read() # concatenate with user-specified with open(requirements_path) as f: reqs = "{}\n{}".format(reqs, f.read()) # write back to file with open(final_path, "w+") as f: f.write(reqs) def _prepare_workspace(temp_dir, config, requirements_path): """ Prepares the temporary workspace directory for the docker build """ # copy the server package as the workspace directory shutil.copytree( pkg_resources.resource_filename(__name__, "scikit_deploy_server"), osp.join(temp_dir, "workspace"), ) # copy resources (clf, config) to the workspace server resources resources_folder = osp.join(temp_dir, "workspace", "server", "resources") json.dump(config, open(osp.join(resources_folder, "config.json"), "w")) for endpoint in config["endpoints"]: shutil.copy( endpoint["model_path"], osp.join(resources_folder, endpoint["model_name"]) ) if requirements_path is not None: _prepare_requirements(temp_dir, requirements_path) def _build_docker(temp_dir, image_tag, ssh_key: Optional[str] = None): path = osp.join(temp_dir, "workspace") client = docker.APIClient() try: if ssh_key is None: output = client.build( path=path, dockerfile="Dockerfile", tag=image_tag, quiet=False, network_mode="host", ) else: output = client.build( path=path, dockerfile="Dockerfile-multi-stage", tag=image_tag, quiet=False, network_mode="host", forcerm=True, # ensure SSH keys don't persist target="multi-stage-build-final", buildargs=dict(SSH_PRIVATE_KEY=ssh_key), ) for l in output: logs = l.decode("utf-8").split("\r\n") for line in logs: if line: line = json.loads(line) # Show only relevant outputs if "stream" in line: logger.info("(DOCKER) - {}".format(line["stream"])) if "errorDetail" in line: logger.error("(DOCKER) - {}".format(line["errorDetail"])) except (docker.errors.BuildError, docker.errors.APIError) as e: logger.error("Docker build failed with logs: ") for l in e.build_log: logger.error(l) raise def _validate_route(route: str): if not route.startswith("/"): logger.error("route must begin with a /") raise ValueError() if route.endswith("/"): logger.error("route cannot end with a /") raise ValueError() def _generate_request(config): endpoint = config["endpoints"][0] route = endpoint["route"] qs = "&".join([f"{o['name']}=0" for o in endpoint["inputs"]]) return f"http://localhost:8000{route}?{qs}" def build(config_path, requirements_path, ssh_key: Optional[str] = None): """ Builds the docker image """ logger.info("Beginning build.") temp_dir = tempfile.mkdtemp() try: with open(config_path) as f: config = json.load(f) image_tag = config.get("image_tag") if image_tag is None: logger.error("No image_tag specified in config") exit(1) if "endpoints" not in config: logger.error("No endpoints specified in config") exit(1) for endpoint in config["endpoints"]: _validate_route(endpoint.get("route")) endpoint["model_name"] = ( endpoint["route"].replace("/", "_") + "_clf.pkl" ) _prepare_workspace(temp_dir, config, requirements_path) _build_docker(temp_dir, image_tag, ssh_key) logger.info(f"Successfully built image {image_tag}") logger.info("To test, run :") logger.info(f" docker run -p 8000:8000 {image_tag}") logger.info("and then perform http request") logger.info(f" GET {_generate_request(config)}") status = 0 except: logger.exception("Failed to build image") status = 1 finally: shutil.rmtree(temp_dir) exit(status)
0.398289
0.089177
import pickle import json import pkg_resources import numpy as np import os from flask import Blueprint, request, jsonify from server.prediction import predict from server.config import Config from server.logging import get_logger from server.util import APIError from collections import Iterable LOGGER = get_logger(__name__) config = Config() LOGGER.info("Started server with config") LOGGER.info(json.dumps(config.config_data)) models = {} endpoints_config = {} for endpoint in config.endpoints: # We remove the leading / route_key = endpoint.route[1:] models[route_key] = pickle.loads(pkg_resources.resource_string( __name__, f'resources/{endpoint.model_name}')) endpoints_config[route_key] = endpoint app_blueprint = Blueprint('app', __name__) @app_blueprint.route('/<route>', methods=['GET']) def index_endpoint(route:str): try: model = models.get(route) endpoint_config = endpoints_config.get(route) if not model: raise APIError('Not found', 404) LOGGER.info("Received scoring request") prediction = predict(model, request.args, endpoint_config) except APIError as e: return e.message, e.status_code LOGGER.info("Successful prediction") return jsonify(dict(prediction=prediction)) @app_blueprint.route('/<route>', methods=['POST']) def score_multiple_endpoint(route:str): try: model = models.get(route) endpoint_config = endpoints_config.get(route) if not model: raise APIError('Not found', 404) LOGGER.info('Received scoring request for multiple samples') data = request.get_json() if not isinstance(data, Iterable): return "Body should be a json array of parameters", 400 res = [dict(prediction=predict(model, x, endpoint_config)) for x in data] except APIError as e: return e.message, e.status_code return jsonify(res) @app_blueprint.route("/instance/health", methods=['GET']) def health(): return "healthy", 200 @app_blueprint.route("/config", methods=['GET']) def config_endpoint(): return jsonify(config.config_data), 200
scikit-deploy
/scikit-deploy-2.2.0.tar.gz/scikit-deploy-2.2.0/scikit_deploy/scikit_deploy_server/server/scoring.py
scoring.py
import pickle import json import pkg_resources import numpy as np import os from flask import Blueprint, request, jsonify from server.prediction import predict from server.config import Config from server.logging import get_logger from server.util import APIError from collections import Iterable LOGGER = get_logger(__name__) config = Config() LOGGER.info("Started server with config") LOGGER.info(json.dumps(config.config_data)) models = {} endpoints_config = {} for endpoint in config.endpoints: # We remove the leading / route_key = endpoint.route[1:] models[route_key] = pickle.loads(pkg_resources.resource_string( __name__, f'resources/{endpoint.model_name}')) endpoints_config[route_key] = endpoint app_blueprint = Blueprint('app', __name__) @app_blueprint.route('/<route>', methods=['GET']) def index_endpoint(route:str): try: model = models.get(route) endpoint_config = endpoints_config.get(route) if not model: raise APIError('Not found', 404) LOGGER.info("Received scoring request") prediction = predict(model, request.args, endpoint_config) except APIError as e: return e.message, e.status_code LOGGER.info("Successful prediction") return jsonify(dict(prediction=prediction)) @app_blueprint.route('/<route>', methods=['POST']) def score_multiple_endpoint(route:str): try: model = models.get(route) endpoint_config = endpoints_config.get(route) if not model: raise APIError('Not found', 404) LOGGER.info('Received scoring request for multiple samples') data = request.get_json() if not isinstance(data, Iterable): return "Body should be a json array of parameters", 400 res = [dict(prediction=predict(model, x, endpoint_config)) for x in data] except APIError as e: return e.message, e.status_code return jsonify(res) @app_blueprint.route("/instance/health", methods=['GET']) def health(): return "healthy", 200 @app_blueprint.route("/config", methods=['GET']) def config_endpoint(): return jsonify(config.config_data), 200
0.33546
0.053825
from __future__ import annotations import json import importlib import inspect import pkgutil from types import ModuleType, FunctionType from typing import Dict import sklearn from sklearn.base import BaseEstimator, TransformerMixin from sklearn.utils._pprint import _changed_params MODULES = [ "sklearn.base", "sklearn.calibration", "sklearn.cluster", "sklearn.compose", "sklearn.covariance", "sklearn.cross_decomposition", "sklearn.datasets", "sklearn.decomposition", "sklearn.discriminant_analysis", "sklearn.dummy", "sklearn.ensemble", "sklearn.exceptions", "sklearn.experimental", "sklearn.feature_extraction", "sklearn.feature_selection", "sklearn.gaussian_process", "sklearn.impute", "sklearn.inspection", "sklearn.isotonic", "sklearn.kernel_approximation", "sklearn.kernel_ridge", "sklearn.linear_model", "sklearn.manifold", "sklearn.metrics", "sklearn.mixture", "sklearn.model_selection", "sklearn.multiclass", "sklearn.multioutput", "sklearn.naive_bayes", "sklearn.neighbors", "sklearn.neural_network", "sklearn.pipeline", "sklearn.preprocessing", "sklearn.random_projection", "sklearn.semi_supervised", "sklearn.svm", "sklearn.tree", "sklearn.utils", ] for mod in MODULES: importlib.import_module(mod) def _get_submodules(module): """Get all submodules of a module.""" if hasattr(module, "__path__"): return [name for _, name, _ in pkgutil.iter_modules(module.__path__)] return [] def get_all_sklearn_objects( module: ModuleType, ) -> Dict[str, FunctionType | BaseEstimator | TransformerMixin]: """Get all objects from a module.""" objs = {} submodules = _get_submodules(module) for name in dir(module): if not name.startswith("_"): obj = getattr(module, name) if name in submodules: objs.update(get_all_sklearn_objects(obj)) elif inspect.isclass(obj) or inspect.isfunction(obj): objs[name] = obj return objs def load(dict_: dict, /) -> BaseEstimator | TransformerMixin: """Create a python instance from dict structure.""" objs = get_all_sklearn_objects(sklearn) if isinstance(dict_, list): for i, item in enumerate(dict_): dict_[i] = load(item) return dict_ if isinstance(dict_, dict): for key in dict_.keys(): dict_[key] = load(dict_[key]) kwargs = dict_[key] if dict_[key] is not None else {} try: return objs[key](**kwargs) except KeyError: pass return dict_ return dict_ class SKLearnEncoder(json.JSONEncoder): """Encode SKLearn objects to JSON.""" def default(self, o): """Default encoding.""" if isinstance(o, (sklearn.base.BaseEstimator, sklearn.base.TransformerMixin)): name = o.__class__.__name__ params = _changed_params(o) if params == {}: params = None return {name: params} return json.JSONEncoder.default(self, o) def dump(obj: BaseEstimator | TransformerMixin, /) -> dict: """Create a dict from a python object.""" return json.loads(json.dumps(obj, cls=SKLearnEncoder))
scikit-dict
/scikit_dict-0.1.0-py3-none-any.whl/skdict/__init__.py
__init__.py
from __future__ import annotations import json import importlib import inspect import pkgutil from types import ModuleType, FunctionType from typing import Dict import sklearn from sklearn.base import BaseEstimator, TransformerMixin from sklearn.utils._pprint import _changed_params MODULES = [ "sklearn.base", "sklearn.calibration", "sklearn.cluster", "sklearn.compose", "sklearn.covariance", "sklearn.cross_decomposition", "sklearn.datasets", "sklearn.decomposition", "sklearn.discriminant_analysis", "sklearn.dummy", "sklearn.ensemble", "sklearn.exceptions", "sklearn.experimental", "sklearn.feature_extraction", "sklearn.feature_selection", "sklearn.gaussian_process", "sklearn.impute", "sklearn.inspection", "sklearn.isotonic", "sklearn.kernel_approximation", "sklearn.kernel_ridge", "sklearn.linear_model", "sklearn.manifold", "sklearn.metrics", "sklearn.mixture", "sklearn.model_selection", "sklearn.multiclass", "sklearn.multioutput", "sklearn.naive_bayes", "sklearn.neighbors", "sklearn.neural_network", "sklearn.pipeline", "sklearn.preprocessing", "sklearn.random_projection", "sklearn.semi_supervised", "sklearn.svm", "sklearn.tree", "sklearn.utils", ] for mod in MODULES: importlib.import_module(mod) def _get_submodules(module): """Get all submodules of a module.""" if hasattr(module, "__path__"): return [name for _, name, _ in pkgutil.iter_modules(module.__path__)] return [] def get_all_sklearn_objects( module: ModuleType, ) -> Dict[str, FunctionType | BaseEstimator | TransformerMixin]: """Get all objects from a module.""" objs = {} submodules = _get_submodules(module) for name in dir(module): if not name.startswith("_"): obj = getattr(module, name) if name in submodules: objs.update(get_all_sklearn_objects(obj)) elif inspect.isclass(obj) or inspect.isfunction(obj): objs[name] = obj return objs def load(dict_: dict, /) -> BaseEstimator | TransformerMixin: """Create a python instance from dict structure.""" objs = get_all_sklearn_objects(sklearn) if isinstance(dict_, list): for i, item in enumerate(dict_): dict_[i] = load(item) return dict_ if isinstance(dict_, dict): for key in dict_.keys(): dict_[key] = load(dict_[key]) kwargs = dict_[key] if dict_[key] is not None else {} try: return objs[key](**kwargs) except KeyError: pass return dict_ return dict_ class SKLearnEncoder(json.JSONEncoder): """Encode SKLearn objects to JSON.""" def default(self, o): """Default encoding.""" if isinstance(o, (sklearn.base.BaseEstimator, sklearn.base.TransformerMixin)): name = o.__class__.__name__ params = _changed_params(o) if params == {}: params = None return {name: params} return json.JSONEncoder.default(self, o) def dump(obj: BaseEstimator | TransformerMixin, /) -> dict: """Create a dict from a python object.""" return json.loads(json.dumps(obj, cls=SKLearnEncoder))
0.749087
0.421492
from numpy import min, max, percentile, zeros, bool_, pad, sin, arange, pi, concatenate from numpy.random import default_rng from skdh.utility import moving_mean, moving_median, moving_sd from skdh.sleep.utility import ( compute_z_angle, compute_absolute_difference, drop_min_blocks, arg_longest_bout, ) def get_total_sleep_opportunity( fs, time, accel, temperature, wear_starts, wear_stops, min_rest_block, max_act_break, tso_min_thresh, tso_max_thresh, tso_perc, tso_factor, int_wear_temp, int_wear_move, plot_fn, idx_start=0, add_active_time=0.0, ): """ Compute the period of time in which sleep can occur for a given days worth of data. For this algorithm, it is the longest period of wear-time that has low activity. Parameters ---------- fs : float Sampling frequency of the time and acceleration data, in Hz. time : numpy.ndarray Timestamps for the acceleration. accel : numpy.ndarray (N, 3) array of acceleration values in g. temperature : numpy.ndarray (N, 3) array of temperature values in celsius. wear_starts : {numpy.ndarray, None} Indices for the starts of wear-time. Note that while `time` and `accel` should be the values for one day, `wear_starts` is likely indexed to the whole data series. This offset can be adjusted by `idx_start`. If indexing only into the one day, `idx_start` should be 0. If None, will compute wear internally. wear_stops : {numpy.ndarray, None} Indices for the stops of wear-time. Note that while `time` and `accel` should be the values for one day, `wear_stops` is likely indexed to the whole data series. This offset can be adjusted by `idx_start`. If indexing only into the one day, `idx_start` should be 0. If None, will compute wear internally. min_rest_block : int Minimum number of minutes that a rest period can be max_act_break : int Maximum number of minutes an active block can be so that it doesn't interrupt a longer rest period. tso_min_thresh : float Minimum angle value the TSO threshold can be. tso_max_thresh : float Maximum angle value the TSO threshold can be. tso_perc : int The percentile to use when calculating the TSO threshold from daily data. tso_factor : float The factor to multiply the percentile value by co get the TSO threshold. int_wear_temp : float Internal wear temperature threshold in celsius. int_wear_move : float Internal wear movement threshold in g. plot_fn : function Plotting function for the arm angle. idx_start : int, optional Offset index for wear-time indices. If `wear_starts` and `wear_stops` are relative to the day of interest, then `idx_start` should equal 0. add_active_time : float, optional Add active time to the accelerometer signal start and end when detecting the total sleep opportunity. This can occasionally be useful if less than 24 hrs of data are collected, as sleep-period skewed data can effect the sleep window cutoff, effecting the end results. Suggested is not adding more than 1.5 hours. Default is 0.0 for no added data. Returns ------- start : float Total sleep opportunity start timestamp. stop : float Total sleep opportunity stop timestamp. arg_start : int Total sleep opportunity start index, into the specific period of time. arg_stop : int Total sleep opportunity stop index, into the specific period of time. """ # samples in 5 seconds. GGIR makes this always odd, which is a function # of the library (zoo) they are using for rollmedian n5 = int(5 * fs) # compute the rolling median for 5s windows acc_rmd = moving_median(accel, n5, skip=1, axis=0) # compute the z-angle z = compute_z_angle(acc_rmd) # rolling 5s mean with non-overlapping windows for the z-angle _z_rm = moving_mean(z, n5, n5) # plot arm angle plot_fn(_z_rm) # add data as required rng = default_rng() blocksize = max([int(12 * 60 * add_active_time), 0]) angleblock = sin(arange(blocksize) / pi * 0.1) * 40 angleblock += rng.normal(loc=0.0, scale=10.0, size=blocksize) z_rm = concatenate((angleblock, _z_rm, angleblock)) # the angle differences dz_rm = compute_absolute_difference(z_rm) # rolling 5 minute median. 12 windows per minute * 5 minutes dz_rm_rmd = moving_median(dz_rm, 12 * 5, skip=1) # compute the TSO threshold tso_thresh = compute_tso_threshold( dz_rm_rmd, min_td=tso_min_thresh, max_td=tso_max_thresh, perc=tso_perc, factor=tso_factor, ) # get the number of windows there would be without additional data # .size because the difference is computed and left at the same size nw = (_z_rm.size - (12 * 5)) + 1 # "// 1" left out # create the TSO mask (1 -> sleep opportunity, only happens during wear) tso = zeros(nw, dtype=bool_) # block off external non-wear times, scale by 5s blocks for strt, stp in zip((wear_starts - idx_start) / n5, (wear_stops - idx_start) / n5): tso[int(strt) : int(stp)] = True # apply the threshold before any internal wear checking tso &= ( dz_rm_rmd[blocksize : blocksize + nw] < tso_thresh ) # now only blocks where there is no movement, and wear are left # check if we can compute wear internally if temperature is not None and int_wear_temp > 0.0: t_rmed_5s = moving_median(temperature, n5, 1) t_rmean_5s = moving_mean(t_rmed_5s, n5, n5) t_rmed_5m = moving_median(t_rmean_5s, 60, 1) # 5 min rolling median temp_nonwear = t_rmed_5m < int_wear_temp tso[temp_nonwear] = False # non-wear -> not a TSO opportunity if int_wear_move > 0.0: acc_rmean_5s = moving_mean(acc_rmd, n5, n5, axis=0) acc_rsd_30m = moving_sd(acc_rmean_5s, 360, 1, axis=0, return_previous=False) move_nonwear = pad( (acc_rsd_30m < int_wear_move).any(axis=1), pad_width=(150, 150), constant_values=False, ) tso[move_nonwear] = False # drop rest blocks less than minimum allowed rest length # rolling 5min, the underlying windows are 5s, so 12 * minutes => # of samples tso = drop_min_blocks( tso, 12 * min_rest_block, drop_value=1, replace_value=0, skip_bounds=True ) # drop active blocks less than maximum allowed active length tso = drop_min_blocks( tso, 12 * max_act_break, drop_value=0, replace_value=1, skip_bounds=True ) # get the indices of the longest bout arg_start, arg_end = arg_longest_bout(tso, 1) # get the timestamps of the longest bout if arg_start is not None: # account for left justified windows - times need to be bumped up half a window # account for 5s windows in indexing arg_start = (arg_start + 30) * n5 # 12 * 5 / 2 = 30 arg_end = (arg_end + 30) * n5 start, end = time[arg_start], time[arg_end] else: start = end = None return start, end, arg_start, arg_end def compute_tso_threshold(arr, min_td=0.1, max_td=0.5, perc=10, factor=15.0): """ Computes the daily threshold value separating rest periods from active periods for the TSO detection algorithm. Parameters ---------- arr : array Array of the absolute difference of the z-angle. min_td : float Minimum acceptable threshold value. max_td : float Maximum acceptable threshold value. perc : integer, optional Percentile to use for the threshold. Default is 10. factor : float, optional Factor to multiply the percentil value by. Default is 15.0. Returns ------- td : float """ td = min((max((percentile(arr, perc) * factor, min_td)), max_td)) return td
scikit-digital-health
/scikit_digital_health-0.11.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl/skdh/sleep/tso.py
tso.py
from numpy import min, max, percentile, zeros, bool_, pad, sin, arange, pi, concatenate from numpy.random import default_rng from skdh.utility import moving_mean, moving_median, moving_sd from skdh.sleep.utility import ( compute_z_angle, compute_absolute_difference, drop_min_blocks, arg_longest_bout, ) def get_total_sleep_opportunity( fs, time, accel, temperature, wear_starts, wear_stops, min_rest_block, max_act_break, tso_min_thresh, tso_max_thresh, tso_perc, tso_factor, int_wear_temp, int_wear_move, plot_fn, idx_start=0, add_active_time=0.0, ): """ Compute the period of time in which sleep can occur for a given days worth of data. For this algorithm, it is the longest period of wear-time that has low activity. Parameters ---------- fs : float Sampling frequency of the time and acceleration data, in Hz. time : numpy.ndarray Timestamps for the acceleration. accel : numpy.ndarray (N, 3) array of acceleration values in g. temperature : numpy.ndarray (N, 3) array of temperature values in celsius. wear_starts : {numpy.ndarray, None} Indices for the starts of wear-time. Note that while `time` and `accel` should be the values for one day, `wear_starts` is likely indexed to the whole data series. This offset can be adjusted by `idx_start`. If indexing only into the one day, `idx_start` should be 0. If None, will compute wear internally. wear_stops : {numpy.ndarray, None} Indices for the stops of wear-time. Note that while `time` and `accel` should be the values for one day, `wear_stops` is likely indexed to the whole data series. This offset can be adjusted by `idx_start`. If indexing only into the one day, `idx_start` should be 0. If None, will compute wear internally. min_rest_block : int Minimum number of minutes that a rest period can be max_act_break : int Maximum number of minutes an active block can be so that it doesn't interrupt a longer rest period. tso_min_thresh : float Minimum angle value the TSO threshold can be. tso_max_thresh : float Maximum angle value the TSO threshold can be. tso_perc : int The percentile to use when calculating the TSO threshold from daily data. tso_factor : float The factor to multiply the percentile value by co get the TSO threshold. int_wear_temp : float Internal wear temperature threshold in celsius. int_wear_move : float Internal wear movement threshold in g. plot_fn : function Plotting function for the arm angle. idx_start : int, optional Offset index for wear-time indices. If `wear_starts` and `wear_stops` are relative to the day of interest, then `idx_start` should equal 0. add_active_time : float, optional Add active time to the accelerometer signal start and end when detecting the total sleep opportunity. This can occasionally be useful if less than 24 hrs of data are collected, as sleep-period skewed data can effect the sleep window cutoff, effecting the end results. Suggested is not adding more than 1.5 hours. Default is 0.0 for no added data. Returns ------- start : float Total sleep opportunity start timestamp. stop : float Total sleep opportunity stop timestamp. arg_start : int Total sleep opportunity start index, into the specific period of time. arg_stop : int Total sleep opportunity stop index, into the specific period of time. """ # samples in 5 seconds. GGIR makes this always odd, which is a function # of the library (zoo) they are using for rollmedian n5 = int(5 * fs) # compute the rolling median for 5s windows acc_rmd = moving_median(accel, n5, skip=1, axis=0) # compute the z-angle z = compute_z_angle(acc_rmd) # rolling 5s mean with non-overlapping windows for the z-angle _z_rm = moving_mean(z, n5, n5) # plot arm angle plot_fn(_z_rm) # add data as required rng = default_rng() blocksize = max([int(12 * 60 * add_active_time), 0]) angleblock = sin(arange(blocksize) / pi * 0.1) * 40 angleblock += rng.normal(loc=0.0, scale=10.0, size=blocksize) z_rm = concatenate((angleblock, _z_rm, angleblock)) # the angle differences dz_rm = compute_absolute_difference(z_rm) # rolling 5 minute median. 12 windows per minute * 5 minutes dz_rm_rmd = moving_median(dz_rm, 12 * 5, skip=1) # compute the TSO threshold tso_thresh = compute_tso_threshold( dz_rm_rmd, min_td=tso_min_thresh, max_td=tso_max_thresh, perc=tso_perc, factor=tso_factor, ) # get the number of windows there would be without additional data # .size because the difference is computed and left at the same size nw = (_z_rm.size - (12 * 5)) + 1 # "// 1" left out # create the TSO mask (1 -> sleep opportunity, only happens during wear) tso = zeros(nw, dtype=bool_) # block off external non-wear times, scale by 5s blocks for strt, stp in zip((wear_starts - idx_start) / n5, (wear_stops - idx_start) / n5): tso[int(strt) : int(stp)] = True # apply the threshold before any internal wear checking tso &= ( dz_rm_rmd[blocksize : blocksize + nw] < tso_thresh ) # now only blocks where there is no movement, and wear are left # check if we can compute wear internally if temperature is not None and int_wear_temp > 0.0: t_rmed_5s = moving_median(temperature, n5, 1) t_rmean_5s = moving_mean(t_rmed_5s, n5, n5) t_rmed_5m = moving_median(t_rmean_5s, 60, 1) # 5 min rolling median temp_nonwear = t_rmed_5m < int_wear_temp tso[temp_nonwear] = False # non-wear -> not a TSO opportunity if int_wear_move > 0.0: acc_rmean_5s = moving_mean(acc_rmd, n5, n5, axis=0) acc_rsd_30m = moving_sd(acc_rmean_5s, 360, 1, axis=0, return_previous=False) move_nonwear = pad( (acc_rsd_30m < int_wear_move).any(axis=1), pad_width=(150, 150), constant_values=False, ) tso[move_nonwear] = False # drop rest blocks less than minimum allowed rest length # rolling 5min, the underlying windows are 5s, so 12 * minutes => # of samples tso = drop_min_blocks( tso, 12 * min_rest_block, drop_value=1, replace_value=0, skip_bounds=True ) # drop active blocks less than maximum allowed active length tso = drop_min_blocks( tso, 12 * max_act_break, drop_value=0, replace_value=1, skip_bounds=True ) # get the indices of the longest bout arg_start, arg_end = arg_longest_bout(tso, 1) # get the timestamps of the longest bout if arg_start is not None: # account for left justified windows - times need to be bumped up half a window # account for 5s windows in indexing arg_start = (arg_start + 30) * n5 # 12 * 5 / 2 = 30 arg_end = (arg_end + 30) * n5 start, end = time[arg_start], time[arg_end] else: start = end = None return start, end, arg_start, arg_end def compute_tso_threshold(arr, min_td=0.1, max_td=0.5, perc=10, factor=15.0): """ Computes the daily threshold value separating rest periods from active periods for the TSO detection algorithm. Parameters ---------- arr : array Array of the absolute difference of the z-angle. min_td : float Minimum acceptable threshold value. max_td : float Maximum acceptable threshold value. perc : integer, optional Percentile to use for the threshold. Default is 10. factor : float, optional Factor to multiply the percentil value by. Default is 15.0. Returns ------- td : float """ td = min((max((percentile(arr, perc) * factor, min_td)), max_td)) return td
0.895554
0.616243
from numpy import ( any, arctan, pi, roll, abs, argmax, diff, nonzero, insert, sqrt, pad, int_, append, mean, var, ascontiguousarray, ) from scipy.signal import butter, sosfiltfilt from skdh.utility import get_windowed_view from skdh.utility import moving_mean, moving_sd, moving_median from skdh.utility.internal import rle __all__ = [ "compute_z_angle", "compute_absolute_difference", "drop_min_blocks", "arg_longest_bout", "compute_activity_index", ] def get_weartime(acc_rmed, temp, fs, move_thresh, temp_thresh): """ Compute the wear time using acceleration and temperature data. Parameters ---------- acc_rmed : numpy.ndarray Rolling median acceleration with 5s windows and 1 sample skips. temp : numpy.ndarray Raw temperature data. fs : float Sampling frequency. move_thresh : float Threshold to classify acceleration as wear/nonwear temp_thresh : float Temperature threshold to classify as wear/nonwear Returns ------- wear : numpy.ndarray (N, 2) array of [start, stop] indices of blocks of wear time. """ n5 = int(5 * fs) # rolling 5s mean (non-overlapping windows) mn = moving_mean(acc_rmed, n5, n5, axis=0) # rolling 30min StDev. 5s windows -> 12 windows per minute acc_rsd = moving_sd(mn, 12 * 30, 1, axis=0, return_previous=False) # TODO note that this 30 min rolling standard deviation likely means that our wear/nonwear # timest could be off by as much as 30 mins, due to windows extending into the wear time. # this is likely going to be an issue for all wear time algorithms due to long # windows, however. # rolling 5s median of temperature rmd = moving_median(temp, n5, skip=1) # rolling 5s mean (non-overlapping) mn = moving_mean(rmd, n5, n5) # rolling 5m median temp_rmd = moving_median(mn, 12 * 5, skip=1) move_mask = any(acc_rsd > move_thresh, axis=1) temp_mask = temp_rmd >= temp_thresh # pad the movement mask, temperature mask is the correct size npad = temp_mask.size - move_mask.size move_mask = pad(move_mask, (0, npad), mode="constant", constant_values=0) dwear = diff((move_mask | temp_mask).astype(int_)) starts = nonzero(dwear == 1)[0] + 1 stops = nonzero(dwear == -1)[0] + 1 if move_mask[0] or temp_mask[0]: starts = insert(starts, 0, 0) if move_mask[-1] or temp_mask[-1]: stops = append(stops, move_mask.size) return starts * n5, stops * n5 def compute_z_angle(acc): """ Computes the z-angle of a tri-axial accelerometer signal with columns X, Y, Z per sample. Parameters ---------- acc : array Returns ------- z : array """ z = arctan(acc[:, 2] / sqrt(acc[:, 0] ** 2 + acc[:, 1] ** 2)) * (180.0 / pi) return z def compute_absolute_difference(arr): """ Computes the absolute difference between an array and itself shifted by 1 sample along the first axis. Parameters ---------- arr : array Returns ------- absd: array """ shifted = roll(arr, 1) shifted[0] = shifted[1] absd = abs(arr - shifted) return absd def drop_min_blocks(arr, min_block_size, drop_value, replace_value, skip_bounds=True): """ Drops (rescores) blocks of a desired value with length less than some minimum length. (Ex. drop all blocks of value 1 with length < 5 and replace with new value 0). Parameters ---------- arr : array min_block_size : integer Minimum acceptable block length in samples. drop_value : integer Value of blocks to examine. replace_value : integer Value to replace dropped blocks to. skip_bounds : boolean If True, ignores the first and last blocks. Returns ------- arr : array """ lengths, starts, vals = rle(arr) ctr = 0 n = len(lengths) for length, start, val in zip(lengths, starts, vals): ctr += 1 if skip_bounds and (ctr == 1 or ctr == n): continue if val == drop_value and length < min_block_size: arr[start : start + length] = replace_value return arr def arg_longest_bout(arr, block_val): """ Finds the first and last indices of the longest block of a given value present in a 1D array. Parameters ---------- arr : array One-dimensional array. block_val : integer Value of the desired blocks. Returns ------- longest_bout : tuple First, last indices of the longest block. """ lengths, starts, vals = rle(arr) vals = vals.flatten() val_mask = vals == block_val if len(lengths[val_mask]): max_index = argmax(lengths[val_mask]) max_start = starts[val_mask][max_index] longest_bout = max_start, max_start + lengths[val_mask][max_index] else: longest_bout = None, None return longest_bout def compute_activity_index(fs, accel, hp_cut=0.25): """ Calculate the activity index Parameters ---------- fs : float Sampling frequency in Hz accel : numpy.ndarray Acceleration hp_cut : float High-pass filter cutoff Returns ------- ai : numpy.ndarray The activity index of non-overlapping 60s windows """ # high pass filter sos = butter(3, hp_cut * 2 / fs, btype="high", output="sos") accel_hf = ascontiguousarray(sosfiltfilt(sos, accel, axis=0)) # non-overlapping 60s windows acc_w = get_windowed_view(accel_hf, int(60 * fs), int(60 * fs)) # compute activity index act_ind = sqrt(mean(var(acc_w, axis=2), axis=1)) return act_ind
scikit-digital-health
/scikit_digital_health-0.11.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl/skdh/sleep/utility.py
utility.py
from numpy import ( any, arctan, pi, roll, abs, argmax, diff, nonzero, insert, sqrt, pad, int_, append, mean, var, ascontiguousarray, ) from scipy.signal import butter, sosfiltfilt from skdh.utility import get_windowed_view from skdh.utility import moving_mean, moving_sd, moving_median from skdh.utility.internal import rle __all__ = [ "compute_z_angle", "compute_absolute_difference", "drop_min_blocks", "arg_longest_bout", "compute_activity_index", ] def get_weartime(acc_rmed, temp, fs, move_thresh, temp_thresh): """ Compute the wear time using acceleration and temperature data. Parameters ---------- acc_rmed : numpy.ndarray Rolling median acceleration with 5s windows and 1 sample skips. temp : numpy.ndarray Raw temperature data. fs : float Sampling frequency. move_thresh : float Threshold to classify acceleration as wear/nonwear temp_thresh : float Temperature threshold to classify as wear/nonwear Returns ------- wear : numpy.ndarray (N, 2) array of [start, stop] indices of blocks of wear time. """ n5 = int(5 * fs) # rolling 5s mean (non-overlapping windows) mn = moving_mean(acc_rmed, n5, n5, axis=0) # rolling 30min StDev. 5s windows -> 12 windows per minute acc_rsd = moving_sd(mn, 12 * 30, 1, axis=0, return_previous=False) # TODO note that this 30 min rolling standard deviation likely means that our wear/nonwear # timest could be off by as much as 30 mins, due to windows extending into the wear time. # this is likely going to be an issue for all wear time algorithms due to long # windows, however. # rolling 5s median of temperature rmd = moving_median(temp, n5, skip=1) # rolling 5s mean (non-overlapping) mn = moving_mean(rmd, n5, n5) # rolling 5m median temp_rmd = moving_median(mn, 12 * 5, skip=1) move_mask = any(acc_rsd > move_thresh, axis=1) temp_mask = temp_rmd >= temp_thresh # pad the movement mask, temperature mask is the correct size npad = temp_mask.size - move_mask.size move_mask = pad(move_mask, (0, npad), mode="constant", constant_values=0) dwear = diff((move_mask | temp_mask).astype(int_)) starts = nonzero(dwear == 1)[0] + 1 stops = nonzero(dwear == -1)[0] + 1 if move_mask[0] or temp_mask[0]: starts = insert(starts, 0, 0) if move_mask[-1] or temp_mask[-1]: stops = append(stops, move_mask.size) return starts * n5, stops * n5 def compute_z_angle(acc): """ Computes the z-angle of a tri-axial accelerometer signal with columns X, Y, Z per sample. Parameters ---------- acc : array Returns ------- z : array """ z = arctan(acc[:, 2] / sqrt(acc[:, 0] ** 2 + acc[:, 1] ** 2)) * (180.0 / pi) return z def compute_absolute_difference(arr): """ Computes the absolute difference between an array and itself shifted by 1 sample along the first axis. Parameters ---------- arr : array Returns ------- absd: array """ shifted = roll(arr, 1) shifted[0] = shifted[1] absd = abs(arr - shifted) return absd def drop_min_blocks(arr, min_block_size, drop_value, replace_value, skip_bounds=True): """ Drops (rescores) blocks of a desired value with length less than some minimum length. (Ex. drop all blocks of value 1 with length < 5 and replace with new value 0). Parameters ---------- arr : array min_block_size : integer Minimum acceptable block length in samples. drop_value : integer Value of blocks to examine. replace_value : integer Value to replace dropped blocks to. skip_bounds : boolean If True, ignores the first and last blocks. Returns ------- arr : array """ lengths, starts, vals = rle(arr) ctr = 0 n = len(lengths) for length, start, val in zip(lengths, starts, vals): ctr += 1 if skip_bounds and (ctr == 1 or ctr == n): continue if val == drop_value and length < min_block_size: arr[start : start + length] = replace_value return arr def arg_longest_bout(arr, block_val): """ Finds the first and last indices of the longest block of a given value present in a 1D array. Parameters ---------- arr : array One-dimensional array. block_val : integer Value of the desired blocks. Returns ------- longest_bout : tuple First, last indices of the longest block. """ lengths, starts, vals = rle(arr) vals = vals.flatten() val_mask = vals == block_val if len(lengths[val_mask]): max_index = argmax(lengths[val_mask]) max_start = starts[val_mask][max_index] longest_bout = max_start, max_start + lengths[val_mask][max_index] else: longest_bout = None, None return longest_bout def compute_activity_index(fs, accel, hp_cut=0.25): """ Calculate the activity index Parameters ---------- fs : float Sampling frequency in Hz accel : numpy.ndarray Acceleration hp_cut : float High-pass filter cutoff Returns ------- ai : numpy.ndarray The activity index of non-overlapping 60s windows """ # high pass filter sos = butter(3, hp_cut * 2 / fs, btype="high", output="sos") accel_hf = ascontiguousarray(sosfiltfilt(sos, accel, axis=0)) # non-overlapping 60s windows acc_w = get_windowed_view(accel_hf, int(60 * fs), int(60 * fs)) # compute activity index act_ind = sqrt(mean(var(acc_w, axis=2), axis=1)) return act_ind
0.803521
0.569912
from numpy import array, convolve, int_ from skdh.sleep.utility import rle def compute_sleep_predictions(act_index, sf=0.243, rescore=True): """ Apply the Cole-Kripke algorithm to activity index data Parameters ---------- act_index : numpy.ndarray Activity index calculated from accelerometer data on 1 minute windows. sf : float, optional Scale factor used for the predictions. Default is 0.243, which was optimized for activity index. Recommended range if changing is between 0.15 and 0.3 depending on desired sensitivity, and possibly the population being observed. rescore : bool, optional If True, applies Webster's rescoring rules to the sleep predictions to improve specificity. Returns ------- Notes ----- Applies Webster's rescoring rules as described in the Cole-Kripke paper. """ # paper writes this backwards [::-1]. For convolution has to be written this way though kernel = array([0.0, 0.0, 4.024, 5.84, 16.19, 5.07, 3.75, 6.87, 4.64]) * sf scores = convolve(act_index, kernel, "same") predictions = (scores < 0.5).astype(int_) # sleep as positive if rescore: wake_bin = 0 for t in range(predictions.size): if not predictions[t]: wake_bin += 1 else: if ( wake_bin >= 15 ): # rule c: >= 15 minutes of wake -> next 4min of sleep rescored predictions[t : t + 4] = 0 elif ( 10 <= wake_bin < 15 ): # rule b: >= 10 minutes of wake -> next 3 min rescored predictions[t : t + 3] = 0 elif ( 4 <= wake_bin < 10 ): # rule a: >=4 min of wake -> next 1min of sleep rescored predictions[t] = 0 wake_bin = 0 # reset # rule d: [>10 min wake][<=6 min sleep][>10min wake] gets rescored dt, changes, vals = rle(predictions) mask = (changes >= 10) & (changes < (predictions.size - 10)) & (dt <= 6) & vals for start, dur in zip(changes[mask], dt[mask]): predictions[start : start + dur] = 0 return predictions
scikit-digital-health
/scikit_digital_health-0.11.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl/skdh/sleep/sleep_classification.py
sleep_classification.py
from numpy import array, convolve, int_ from skdh.sleep.utility import rle def compute_sleep_predictions(act_index, sf=0.243, rescore=True): """ Apply the Cole-Kripke algorithm to activity index data Parameters ---------- act_index : numpy.ndarray Activity index calculated from accelerometer data on 1 minute windows. sf : float, optional Scale factor used for the predictions. Default is 0.243, which was optimized for activity index. Recommended range if changing is between 0.15 and 0.3 depending on desired sensitivity, and possibly the population being observed. rescore : bool, optional If True, applies Webster's rescoring rules to the sleep predictions to improve specificity. Returns ------- Notes ----- Applies Webster's rescoring rules as described in the Cole-Kripke paper. """ # paper writes this backwards [::-1]. For convolution has to be written this way though kernel = array([0.0, 0.0, 4.024, 5.84, 16.19, 5.07, 3.75, 6.87, 4.64]) * sf scores = convolve(act_index, kernel, "same") predictions = (scores < 0.5).astype(int_) # sleep as positive if rescore: wake_bin = 0 for t in range(predictions.size): if not predictions[t]: wake_bin += 1 else: if ( wake_bin >= 15 ): # rule c: >= 15 minutes of wake -> next 4min of sleep rescored predictions[t : t + 4] = 0 elif ( 10 <= wake_bin < 15 ): # rule b: >= 10 minutes of wake -> next 3 min rescored predictions[t : t + 3] = 0 elif ( 4 <= wake_bin < 10 ): # rule a: >=4 min of wake -> next 1min of sleep rescored predictions[t] = 0 wake_bin = 0 # reset # rule d: [>10 min wake][<=6 min sleep][>10min wake] gets rescored dt, changes, vals = rle(predictions) mask = (changes >= 10) & (changes < (predictions.size - 10)) & (dt <= 6) & vals for start, dur in zip(changes[mask], dt[mask]): predictions[start : start + dur] = 0 return predictions
0.901303
0.577972
from abc import ABC, abstractmethod from collections.abc import Iterator, Sequence import json from warnings import warn from pandas import DataFrame from numpy import float_, asarray, zeros, sum, moveaxis __all__ = ["Bank"] class ArrayConversionError(Exception): pass def get_n_feats(size, index): if isinstance(index, int): return 1 elif isinstance(index, (Iterator, Sequence)): return len(index) elif isinstance(index, slice): return len(range(*index.indices(size))) elif isinstance(index, type(Ellipsis)): return size def partial_index_check(index): if index is None: index = ... if not isinstance(index, (int, Iterator, Sequence, type(...), slice)): raise IndexError(f"Index type ({type(index)}) not understood.") if isinstance(index, str): raise IndexError("Index type (str) not understood.") return index def normalize_indices(nfeat, index): if index is None: return [...] * nfeat elif not isinstance(index, (Iterator, Sequence)): # slice, single integer, etc return [partial_index_check(index)] * nfeat elif all([isinstance(i, int) for i in index]): # iterable of ints return [index] * nfeat elif isinstance(index, Sequence): # able to be indexed return [partial_index_check(i) for i in index] else: # pragma: no cover return IndexError(f"Index type ({type(index)}) not understood.") def normalize_axes(ndim, axis, ind_axis): """ Normalize input axes to be positive/correct for how the swapping has to work """ if axis == ind_axis: raise ValueError("axis and index_axis cannot be the same") if ndim == 1: return 0, None elif ndim >= 2: """ | shape | ax | ia | move1 | ax | ia | res | ax | ia | res move | |--------|----|----|--------|----|----|-------|----|----|----------| | (a, b) | 0 | 1 | (b, a) | 0 | 0 | (bf,) | | | | | (a, b) | 0 | N | (b, a) | 0 | N | (f, b)| | | | | (a, b) | 1 | 0 | | | | (3a,) | | | | | (a, b) | 1 | N | | | | (f, a)| | | | | shape | ax| ia | move1 | ax| ia| move2 | res | | ia| res move | |----------|---|------|----------|---|---|----------|----------|----|---|----------| | (a, b, c)| 0 | 1(0) | (b, c, a)| | | | (bf, c) | 0 | 0 | | | (a, b, c)| 0 | 2(1) | (b, c, a)| | 1 | (c, b, a)| (cf, b) | 0 | 1 | (b, cf) | | (a, b, c)| 0 | N | (b, c, a)| | | | (f, b, c)| | | | | (a, b, c)| 1 | 0 | (a, c, b)| | | | (af, c) | 0 | 0 | | | (a, b, c)| 1 | 2(1) | (a, c, b)| | 1 | (c, a, b)| (cf, a) | 0 | 1 | (a, cf) | | (a, b, c)| 1 | N | (a, c, b)| | | | (f, a, c)| | | | | (a, b, c)| 2 | 0 | (a, b, c)| | | | (af, b) | 0 | 0 | | | (a, b, c)| 2 | 1 | (a, b, c)| | 1 | (b, a, c)| (bf, a) | 0 | 1 | (a, bf) | | (a, b, c)| 2 | N | (a, b, c)| | | | (f, a, b)| | | | | shape | ax| ia | move1 | ia| move2 | res | | ia| res move | |------------|---|------|-------------|---|-------------|-------------|---|---|-----------| |(a, b, c, d)| 0 | 1(0) | (b, c, d, a)| | | (bf, c, d) | 0 | 0 | | |(a, b, c, d)| 0 | 2(1) | (b, c, d, a)| 1 | (c, b, d, a)| (cf, b, d) | 0 | 1 | (b, cf, d)| |(a, b, c, d)| 0 | 3(2) | (b, c, d, a)| 2 | (d, b, c, a)| (df, b, c) | 0 | 2 | (d, c, df)| |(a, b, c, d)| 0 | N | (b, c, d, a)| | | (f, b, c, d)| | | | |(a, b, c, d)| 1 | 0 | (a, c, d, b)| | | (af, c, d) | | | | |(a, b, c, d)| 1 | 2(1) | (a, c, d, b)| 1 | (c, a, d, b)| (cf, a, d) | 0 | 1 | (a, cf, d)| |(a, b, c, d)| 1 | 3(2) | (a, c, d, b)| 2 | (d, a, c, b)| (df, a, c) | 0 | 2 | (a, c, df)| |(a, b, c, d)| 1 | N | (a, c, d, b)| | | (f, a, c, d)| | | | |(a, b, c, d)| 2 | 0 | (a, b, d, c)| | | (af, b, d) | | | | |(a, b, c, d)| 2 | 1 | (a, b, d, c)| 1 | (b, a, d, c)| (bf, a, d) | 0 | 1 | (a, bf, d)| |(a, b, c, d)| 2 | 3(2) | (a, b, d, c)| 2 | (d, a, b, c)| (df, a, b) | 0 | 2 | (a, b, df)| |(a, b, c, d)| 2 | N | (a, b, d, c)| | | (f, a, b, d)| | | | |(a, b, c, d)| 3 | 0 | (a, b, c, d)| | | (af, b, c) | | | | |(a, b, c, d)| 3 | 1 | (a, b, c, d)| 1 | (b, a, c, d)| (bf, a, c) | 0 | 1 | (a, bf, c)| |(a, b, c, d)| 3 | 2 | (a, b, c, d)| 2 | (c, a, b, d)| (cf, a, b) | 0 | 2 | (a, b, cf)| |(a, b, c, d)| 3 | N | (a, b, c, d)| | | (f, a, b, c)| | | | """ ax = axis if axis >= 0 else ndim + axis if ind_axis is None: return ax, None ia = ind_axis if ind_axis >= 0 else ndim + ind_axis if ia > ax: ia -= 1 return ax, ia class Bank: """ A feature bank object for ease in creating a table or pipeline of features to be computed. Parameters ---------- bank_file : {None, path-like}, optional Path to a saved bank file to load. Optional Examples -------- """ __slots__ = ("_feats", "_indices") def __str__(self): return "Bank" def __repr__(self): s = "Bank[" for f in self._feats: s += f"\n\t{f!r}," s += "\n]" return s def __contains__(self, item): return item in self._feats def __len__(self): return len(self._feats) def __init__(self, bank_file=None): # initialize some variables self._feats = [] self._indices = [] if bank_file is not None: self.load(bank_file) def add(self, features, index=None): """ Add a feature or features to the pipeline. Parameters ---------- features : {Feature, list} Single signal Feature, or list of signal Features to add to the feature Bank index : {int, slice, list}, optional Index to be applied to data input to each features. Either a index that will apply to every feature, or a list of features corresponding to each feature being added. """ if isinstance(features, Feature): if features in self: warn( f"Feature {features!s} already in the Bank, will be duplicated.", UserWarning, ) self._indices.append(partial_index_check(index)) self._feats.append(features) elif all([isinstance(i, Feature) for i in features]): if any([ft in self for ft in features]): warn("Feature already in the Bank, will be duplicated.", UserWarning) self._indices.extend(normalize_indices(len(features), index)) self._feats.extend(features) def save(self, file): """ Save the feature Bank to a file for a persistent object that can be loaded later to create the same Bank as before Parameters ---------- file : path-like File to be saved to. Creates a new file or overwrites an existing file. """ out = [] for i, ft in enumerate(self._feats): idx = "Ellipsis" if self._indices[i] is Ellipsis else self._indices[i] out.append( {ft.__class__.__name__: {"Parameters": ft._params, "Index": idx}} ) with open(file, "w") as f: json.dump(out, f) def load(self, file): """ Load a previously saved feature Bank from a json file. Parameters ---------- file : path-like File to be read to create the feature Bank. """ # the import must be here, otherwise a circular import error occurs from skdh.features import lib with open(file, "r") as f: feats = json.load(f) for ft in feats: name = list(ft.keys())[0] params = ft[name]["Parameters"] index = ft[name]["Index"] if index == "Ellipsis": index = Ellipsis # add it to the feature bank self.add(getattr(lib, name)(**params), index=index) def compute( self, signal, fs=1.0, *, axis=-1, index_axis=None, indices=None, columns=None ): """ Compute the specified features for the given signal Parameters ---------- signal : {array-like} Array-like signal to have features computed for. fs : float, optional Sampling frequency in Hz. Default is 1Hz axis : int, optional Axis along which to compute the features. Default is -1. index_axis : {None, int}, optional Axis corresponding to the indices specified in `Bank.add` or `indices`. Default is None, which assumes that this axis is not part of the signal. Note that setting this to None means values for `indices` or the indices set in `Bank.add` will be ignored. indices : {None, int, list-like, slice, ellipsis}, optional Indices to apply to the input signal. Either None, a integer, list-like, slice to apply to each feature, or a list-like of lists/objects with a 1:1 correspondence to the features present in the Bank. If provided, takes precedence over any values given in `Bank.add`. Default is None, which will use indices from `Bank.add`. columns : {None, list}, optional Columns to use if providing a dataframe. Default is None (uses all columns). Returns ------- feats : numpy.ndarray Computed features. """ # standardize the input signal if isinstance(signal, DataFrame): columns = columns if columns is not None else signal.columns x = signal[columns].values.astype(float_) else: try: x = asarray(signal, dtype=float_) except ValueError as e: raise ArrayConversionError("Error converting signal to ndarray") from e axis, index_axis = normalize_axes(x.ndim, axis, index_axis) if index_axis is None: indices = [...] * len(self) else: if indices is None: indices = self._indices else: indices = normalize_indices(len(self), indices) # get the number of features that will results. Needed to allocate the feature array if index_axis is None: # don't have to move any other axes than the computation axis x = moveaxis(x, axis, -1) # number of feats is 1 per n_feats = [1] * len(self) feats = zeros((sum(n_feats),) + x.shape[:-1], dtype=float_) else: # move both the computation and index axis. do this in two steps to allow for undoing # just the index axis swap later. The index_axis has been adjusted appropriately # to match this axis move in 2 steps x = moveaxis(x, axis, -1) x = moveaxis(x, index_axis, 0) n_feats = [] for ind in indices: n_feats.append(get_n_feats(x.shape[0], ind)) feats = zeros((sum(n_feats),) + x.shape[1:-1], dtype=float_) feat_i = 0 # keep track of where in the feature array we are for i, ft in enumerate(self._feats): feats[feat_i : feat_i + n_feats[i]] = ft.compute( x[indices[i]], fs=fs, axis=-1 ) feat_i += n_feats[i] # Move the shape back to the correct one. # only have to do this if there is an index axis, because otherwise the array is still in # the same order as originally if index_axis is not None: feats = moveaxis(feats, 0, index_axis) # undo the previous swap/move return feats class Feature(ABC): """ Base feature class """ def __str__(self): return self.__class__.__name__ def __repr__(self): s = self.__class__.__name__ + "(" for p in self._params: s += f"{p}={self._params[p]!r}, " if len(self._params) > 0: s = s[:-2] return s + ")" def __eq__(self, other): if isinstance(other, type(self)): # double check the name eq = str(other) == str(self) # check the parameters eq &= other._params == self._params return eq else: return False __slots__ = ("_params",) def __init__(self, **params): self._params = params @abstractmethod def compute(self, signal, fs=1.0, *, axis=-1): """ Compute the signal feature. Parameters ---------- signal : array-like Signal to compute the feature over. fs : float, optional Sampling frequency in Hz. Default is 1.0 axis : int, optional Axis over which to compute the feature. Default is -1 (last dimension) Returns ------- feat : numpy.ndarray ndarray of the computed feature """ # move the computation axis to the end return moveaxis(asarray(signal, dtype=float_), axis, -1)
scikit-digital-health
/scikit_digital_health-0.11.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl/skdh/features/core.py
core.py
from abc import ABC, abstractmethod from collections.abc import Iterator, Sequence import json from warnings import warn from pandas import DataFrame from numpy import float_, asarray, zeros, sum, moveaxis __all__ = ["Bank"] class ArrayConversionError(Exception): pass def get_n_feats(size, index): if isinstance(index, int): return 1 elif isinstance(index, (Iterator, Sequence)): return len(index) elif isinstance(index, slice): return len(range(*index.indices(size))) elif isinstance(index, type(Ellipsis)): return size def partial_index_check(index): if index is None: index = ... if not isinstance(index, (int, Iterator, Sequence, type(...), slice)): raise IndexError(f"Index type ({type(index)}) not understood.") if isinstance(index, str): raise IndexError("Index type (str) not understood.") return index def normalize_indices(nfeat, index): if index is None: return [...] * nfeat elif not isinstance(index, (Iterator, Sequence)): # slice, single integer, etc return [partial_index_check(index)] * nfeat elif all([isinstance(i, int) for i in index]): # iterable of ints return [index] * nfeat elif isinstance(index, Sequence): # able to be indexed return [partial_index_check(i) for i in index] else: # pragma: no cover return IndexError(f"Index type ({type(index)}) not understood.") def normalize_axes(ndim, axis, ind_axis): """ Normalize input axes to be positive/correct for how the swapping has to work """ if axis == ind_axis: raise ValueError("axis and index_axis cannot be the same") if ndim == 1: return 0, None elif ndim >= 2: """ | shape | ax | ia | move1 | ax | ia | res | ax | ia | res move | |--------|----|----|--------|----|----|-------|----|----|----------| | (a, b) | 0 | 1 | (b, a) | 0 | 0 | (bf,) | | | | | (a, b) | 0 | N | (b, a) | 0 | N | (f, b)| | | | | (a, b) | 1 | 0 | | | | (3a,) | | | | | (a, b) | 1 | N | | | | (f, a)| | | | | shape | ax| ia | move1 | ax| ia| move2 | res | | ia| res move | |----------|---|------|----------|---|---|----------|----------|----|---|----------| | (a, b, c)| 0 | 1(0) | (b, c, a)| | | | (bf, c) | 0 | 0 | | | (a, b, c)| 0 | 2(1) | (b, c, a)| | 1 | (c, b, a)| (cf, b) | 0 | 1 | (b, cf) | | (a, b, c)| 0 | N | (b, c, a)| | | | (f, b, c)| | | | | (a, b, c)| 1 | 0 | (a, c, b)| | | | (af, c) | 0 | 0 | | | (a, b, c)| 1 | 2(1) | (a, c, b)| | 1 | (c, a, b)| (cf, a) | 0 | 1 | (a, cf) | | (a, b, c)| 1 | N | (a, c, b)| | | | (f, a, c)| | | | | (a, b, c)| 2 | 0 | (a, b, c)| | | | (af, b) | 0 | 0 | | | (a, b, c)| 2 | 1 | (a, b, c)| | 1 | (b, a, c)| (bf, a) | 0 | 1 | (a, bf) | | (a, b, c)| 2 | N | (a, b, c)| | | | (f, a, b)| | | | | shape | ax| ia | move1 | ia| move2 | res | | ia| res move | |------------|---|------|-------------|---|-------------|-------------|---|---|-----------| |(a, b, c, d)| 0 | 1(0) | (b, c, d, a)| | | (bf, c, d) | 0 | 0 | | |(a, b, c, d)| 0 | 2(1) | (b, c, d, a)| 1 | (c, b, d, a)| (cf, b, d) | 0 | 1 | (b, cf, d)| |(a, b, c, d)| 0 | 3(2) | (b, c, d, a)| 2 | (d, b, c, a)| (df, b, c) | 0 | 2 | (d, c, df)| |(a, b, c, d)| 0 | N | (b, c, d, a)| | | (f, b, c, d)| | | | |(a, b, c, d)| 1 | 0 | (a, c, d, b)| | | (af, c, d) | | | | |(a, b, c, d)| 1 | 2(1) | (a, c, d, b)| 1 | (c, a, d, b)| (cf, a, d) | 0 | 1 | (a, cf, d)| |(a, b, c, d)| 1 | 3(2) | (a, c, d, b)| 2 | (d, a, c, b)| (df, a, c) | 0 | 2 | (a, c, df)| |(a, b, c, d)| 1 | N | (a, c, d, b)| | | (f, a, c, d)| | | | |(a, b, c, d)| 2 | 0 | (a, b, d, c)| | | (af, b, d) | | | | |(a, b, c, d)| 2 | 1 | (a, b, d, c)| 1 | (b, a, d, c)| (bf, a, d) | 0 | 1 | (a, bf, d)| |(a, b, c, d)| 2 | 3(2) | (a, b, d, c)| 2 | (d, a, b, c)| (df, a, b) | 0 | 2 | (a, b, df)| |(a, b, c, d)| 2 | N | (a, b, d, c)| | | (f, a, b, d)| | | | |(a, b, c, d)| 3 | 0 | (a, b, c, d)| | | (af, b, c) | | | | |(a, b, c, d)| 3 | 1 | (a, b, c, d)| 1 | (b, a, c, d)| (bf, a, c) | 0 | 1 | (a, bf, c)| |(a, b, c, d)| 3 | 2 | (a, b, c, d)| 2 | (c, a, b, d)| (cf, a, b) | 0 | 2 | (a, b, cf)| |(a, b, c, d)| 3 | N | (a, b, c, d)| | | (f, a, b, c)| | | | """ ax = axis if axis >= 0 else ndim + axis if ind_axis is None: return ax, None ia = ind_axis if ind_axis >= 0 else ndim + ind_axis if ia > ax: ia -= 1 return ax, ia class Bank: """ A feature bank object for ease in creating a table or pipeline of features to be computed. Parameters ---------- bank_file : {None, path-like}, optional Path to a saved bank file to load. Optional Examples -------- """ __slots__ = ("_feats", "_indices") def __str__(self): return "Bank" def __repr__(self): s = "Bank[" for f in self._feats: s += f"\n\t{f!r}," s += "\n]" return s def __contains__(self, item): return item in self._feats def __len__(self): return len(self._feats) def __init__(self, bank_file=None): # initialize some variables self._feats = [] self._indices = [] if bank_file is not None: self.load(bank_file) def add(self, features, index=None): """ Add a feature or features to the pipeline. Parameters ---------- features : {Feature, list} Single signal Feature, or list of signal Features to add to the feature Bank index : {int, slice, list}, optional Index to be applied to data input to each features. Either a index that will apply to every feature, or a list of features corresponding to each feature being added. """ if isinstance(features, Feature): if features in self: warn( f"Feature {features!s} already in the Bank, will be duplicated.", UserWarning, ) self._indices.append(partial_index_check(index)) self._feats.append(features) elif all([isinstance(i, Feature) for i in features]): if any([ft in self for ft in features]): warn("Feature already in the Bank, will be duplicated.", UserWarning) self._indices.extend(normalize_indices(len(features), index)) self._feats.extend(features) def save(self, file): """ Save the feature Bank to a file for a persistent object that can be loaded later to create the same Bank as before Parameters ---------- file : path-like File to be saved to. Creates a new file or overwrites an existing file. """ out = [] for i, ft in enumerate(self._feats): idx = "Ellipsis" if self._indices[i] is Ellipsis else self._indices[i] out.append( {ft.__class__.__name__: {"Parameters": ft._params, "Index": idx}} ) with open(file, "w") as f: json.dump(out, f) def load(self, file): """ Load a previously saved feature Bank from a json file. Parameters ---------- file : path-like File to be read to create the feature Bank. """ # the import must be here, otherwise a circular import error occurs from skdh.features import lib with open(file, "r") as f: feats = json.load(f) for ft in feats: name = list(ft.keys())[0] params = ft[name]["Parameters"] index = ft[name]["Index"] if index == "Ellipsis": index = Ellipsis # add it to the feature bank self.add(getattr(lib, name)(**params), index=index) def compute( self, signal, fs=1.0, *, axis=-1, index_axis=None, indices=None, columns=None ): """ Compute the specified features for the given signal Parameters ---------- signal : {array-like} Array-like signal to have features computed for. fs : float, optional Sampling frequency in Hz. Default is 1Hz axis : int, optional Axis along which to compute the features. Default is -1. index_axis : {None, int}, optional Axis corresponding to the indices specified in `Bank.add` or `indices`. Default is None, which assumes that this axis is not part of the signal. Note that setting this to None means values for `indices` or the indices set in `Bank.add` will be ignored. indices : {None, int, list-like, slice, ellipsis}, optional Indices to apply to the input signal. Either None, a integer, list-like, slice to apply to each feature, or a list-like of lists/objects with a 1:1 correspondence to the features present in the Bank. If provided, takes precedence over any values given in `Bank.add`. Default is None, which will use indices from `Bank.add`. columns : {None, list}, optional Columns to use if providing a dataframe. Default is None (uses all columns). Returns ------- feats : numpy.ndarray Computed features. """ # standardize the input signal if isinstance(signal, DataFrame): columns = columns if columns is not None else signal.columns x = signal[columns].values.astype(float_) else: try: x = asarray(signal, dtype=float_) except ValueError as e: raise ArrayConversionError("Error converting signal to ndarray") from e axis, index_axis = normalize_axes(x.ndim, axis, index_axis) if index_axis is None: indices = [...] * len(self) else: if indices is None: indices = self._indices else: indices = normalize_indices(len(self), indices) # get the number of features that will results. Needed to allocate the feature array if index_axis is None: # don't have to move any other axes than the computation axis x = moveaxis(x, axis, -1) # number of feats is 1 per n_feats = [1] * len(self) feats = zeros((sum(n_feats),) + x.shape[:-1], dtype=float_) else: # move both the computation and index axis. do this in two steps to allow for undoing # just the index axis swap later. The index_axis has been adjusted appropriately # to match this axis move in 2 steps x = moveaxis(x, axis, -1) x = moveaxis(x, index_axis, 0) n_feats = [] for ind in indices: n_feats.append(get_n_feats(x.shape[0], ind)) feats = zeros((sum(n_feats),) + x.shape[1:-1], dtype=float_) feat_i = 0 # keep track of where in the feature array we are for i, ft in enumerate(self._feats): feats[feat_i : feat_i + n_feats[i]] = ft.compute( x[indices[i]], fs=fs, axis=-1 ) feat_i += n_feats[i] # Move the shape back to the correct one. # only have to do this if there is an index axis, because otherwise the array is still in # the same order as originally if index_axis is not None: feats = moveaxis(feats, 0, index_axis) # undo the previous swap/move return feats class Feature(ABC): """ Base feature class """ def __str__(self): return self.__class__.__name__ def __repr__(self): s = self.__class__.__name__ + "(" for p in self._params: s += f"{p}={self._params[p]!r}, " if len(self._params) > 0: s = s[:-2] return s + ")" def __eq__(self, other): if isinstance(other, type(self)): # double check the name eq = str(other) == str(self) # check the parameters eq &= other._params == self._params return eq else: return False __slots__ = ("_params",) def __init__(self, **params): self._params = params @abstractmethod def compute(self, signal, fs=1.0, *, axis=-1): """ Compute the signal feature. Parameters ---------- signal : array-like Signal to compute the feature over. fs : float, optional Sampling frequency in Hz. Default is 1.0 axis : int, optional Axis over which to compute the feature. Default is -1 (last dimension) Returns ------- feat : numpy.ndarray ndarray of the computed feature """ # move the computation axis to the end return moveaxis(asarray(signal, dtype=float_), axis, -1)
0.759805
0.499023
from skdh.features.core import Feature from skdh.features.lib import extensions __all__ = ["SignalEntropy", "SampleEntropy", "PermutationEntropy"] class SignalEntropy(Feature): r""" A Measure of the information contained in a signal. Also described as a measure of how surprising the outcome of a variable is. Notes ----- The entropy is estimated using the histogram of the input signal. Bin limits for the histogram are defined per .. math:: n_{bins} = ceil(\sqrt{N}) \delta = \frac{x_{max} - x_{min}}{N - 1} bin_{min} = x_{min} - \frac{\delta}{2} bin_{max} = x_{max} + \frac{\delta}{2} where :math:`N` is the number of samples in the signal. Note that the data is standardized before computing (using mean and standard deviation). With the histogram, then the estimate of the entropy is computed per .. math:: H_{est} = -\sum_{i=1}^kf(x_i)ln(f(x_i)) + ln(w) - bias w = \frac{bin_{max} - bin_{min}}{n_{bins}} bias = -\frac{n_{bins} - 1}{2N} Because of the standardization before the histogram computation, the entropy estimate is scaled again per .. math:: H_{est} = exp(H_{est}^2) - 2 References ---------- .. [1] Wallis, Kenneth. "A note on the calculation of entropy from histograms". 2006. https://warwick.ac.uk/fac/soc/economics/staff/academic/wallis/publications/entropy.pdf """ __slots__ = () def __init__(self): super(SignalEntropy, self).__init__() def compute(self, signal, *, axis=-1, **kwargs): """ compute(signal, *, axis=-1) Compute the signal entropy Parameters ---------- signal : array-like Array-like containing values to compute the signal entropy for. axis : int, optional Axis along which the signal entropy will be computed. Ignored if `signal` is a pandas.DataFrame. Default is last (-1). Returns ------- sig_ent : numpy.ndarray Computed signal entropy. """ x = super().compute(signal, axis=axis) return extensions.signal_entropy(x) class SampleEntropy(Feature): r""" A measure of the complexity of a time-series signal. Sample entropy is a modification of approximate entropy, but has the benefit of being data-length independent and having an easier implementation. Smaller values indicate more self-similarity in the dataset, and/or less noise. Parameters ---------- m : int, optional Set length for comparison (aka embedding dimension). Default is 4 r : float, optional Maximum distance between sets. Default is 1.0 Notes ----- Sample entropy first computes the probability that if two sets of length :math:`m` simultaneous data points have distance :math:`<r`, then two sets of length :math:`m+` simultaneous data points also have distance :math:`<r`, and then takes the negative natural logarithm of this probability. .. math:: E_{sample} = -ln\frac{A}{B} where :math:`A=`number of :math:`m+1` vector pairs with distance :math:`<r` and :math:`B=`number of :math:`m` vector pairs with distance :math:`<r` The distance metric used is the Chebyshev distance, which is defined as the maximum absolute value of the sample-by-sample difference between two sets of the same length References ---------- .. [1] https://archive.physionet.org/physiotools/sampen/c/sampen.c """ __slots__ = ("m", "r") def __init__(self, m=4, r=1.0): super(SampleEntropy, self).__init__(m=m, r=r) self.m = m self.r = r def compute(self, signal, *, axis=-1, **kwargs): """ compute(signal, *, axis=-1) Compute the sample entropy of a signal Parameters ---------- signal : array-like Array-like containing values to compute the sample entropy for. axis : int, optional Axis along which the signal entropy will be computed. Ignored if `signal` is a pandas.DataFrame. Default is last (-1). Returns ------- samp_en : numpy.ndarray Computed sample entropy. """ x = super().compute(signal, axis=axis) return extensions.sample_entropy(x, self.m, self.r) class PermutationEntropy(Feature): """ A meausure of the signal complexity. Based on how the temporal signal behaves according to a series of ordinal patterns. Parameters ---------- order : int, optional Order (length of sub-signals) to use in the computation. Default is 3 delay : int, optional Time-delay to use in computing the sub-signals. Default is 1 sample. normalize : bool, optional Normalize the output between 0 and 1. Default is False. """ __slots__ = ("order", "delay", "normalize") def __init__(self, order=3, delay=1, normalize=False): super(PermutationEntropy, self).__init__( order=order, delay=delay, normalize=False ) self.order = order self.delay = delay self.normalize = normalize def compute(self, signal, *, axis=-1, **kwargs): """ compute(signal, *, axis=-1) Compute the permutation entropy Parameters ---------- signal : array-like Array-like containing values to compute the signal entropy for. axis : int, optional Axis along which the signal entropy will be computed. Ignored if `signal` is a pandas.DataFrame. Default is last (-1). Returns ------- perm_en : numpy.ndarray Computed permutation entropy. """ x = super().compute(signal, axis=axis) return extensions.permutation_entropy(x, self.order, self.delay, self.normalize)
scikit-digital-health
/scikit_digital_health-0.11.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl/skdh/features/lib/entropy.py
entropy.py
from skdh.features.core import Feature from skdh.features.lib import extensions __all__ = ["SignalEntropy", "SampleEntropy", "PermutationEntropy"] class SignalEntropy(Feature): r""" A Measure of the information contained in a signal. Also described as a measure of how surprising the outcome of a variable is. Notes ----- The entropy is estimated using the histogram of the input signal. Bin limits for the histogram are defined per .. math:: n_{bins} = ceil(\sqrt{N}) \delta = \frac{x_{max} - x_{min}}{N - 1} bin_{min} = x_{min} - \frac{\delta}{2} bin_{max} = x_{max} + \frac{\delta}{2} where :math:`N` is the number of samples in the signal. Note that the data is standardized before computing (using mean and standard deviation). With the histogram, then the estimate of the entropy is computed per .. math:: H_{est} = -\sum_{i=1}^kf(x_i)ln(f(x_i)) + ln(w) - bias w = \frac{bin_{max} - bin_{min}}{n_{bins}} bias = -\frac{n_{bins} - 1}{2N} Because of the standardization before the histogram computation, the entropy estimate is scaled again per .. math:: H_{est} = exp(H_{est}^2) - 2 References ---------- .. [1] Wallis, Kenneth. "A note on the calculation of entropy from histograms". 2006. https://warwick.ac.uk/fac/soc/economics/staff/academic/wallis/publications/entropy.pdf """ __slots__ = () def __init__(self): super(SignalEntropy, self).__init__() def compute(self, signal, *, axis=-1, **kwargs): """ compute(signal, *, axis=-1) Compute the signal entropy Parameters ---------- signal : array-like Array-like containing values to compute the signal entropy for. axis : int, optional Axis along which the signal entropy will be computed. Ignored if `signal` is a pandas.DataFrame. Default is last (-1). Returns ------- sig_ent : numpy.ndarray Computed signal entropy. """ x = super().compute(signal, axis=axis) return extensions.signal_entropy(x) class SampleEntropy(Feature): r""" A measure of the complexity of a time-series signal. Sample entropy is a modification of approximate entropy, but has the benefit of being data-length independent and having an easier implementation. Smaller values indicate more self-similarity in the dataset, and/or less noise. Parameters ---------- m : int, optional Set length for comparison (aka embedding dimension). Default is 4 r : float, optional Maximum distance between sets. Default is 1.0 Notes ----- Sample entropy first computes the probability that if two sets of length :math:`m` simultaneous data points have distance :math:`<r`, then two sets of length :math:`m+` simultaneous data points also have distance :math:`<r`, and then takes the negative natural logarithm of this probability. .. math:: E_{sample} = -ln\frac{A}{B} where :math:`A=`number of :math:`m+1` vector pairs with distance :math:`<r` and :math:`B=`number of :math:`m` vector pairs with distance :math:`<r` The distance metric used is the Chebyshev distance, which is defined as the maximum absolute value of the sample-by-sample difference between two sets of the same length References ---------- .. [1] https://archive.physionet.org/physiotools/sampen/c/sampen.c """ __slots__ = ("m", "r") def __init__(self, m=4, r=1.0): super(SampleEntropy, self).__init__(m=m, r=r) self.m = m self.r = r def compute(self, signal, *, axis=-1, **kwargs): """ compute(signal, *, axis=-1) Compute the sample entropy of a signal Parameters ---------- signal : array-like Array-like containing values to compute the sample entropy for. axis : int, optional Axis along which the signal entropy will be computed. Ignored if `signal` is a pandas.DataFrame. Default is last (-1). Returns ------- samp_en : numpy.ndarray Computed sample entropy. """ x = super().compute(signal, axis=axis) return extensions.sample_entropy(x, self.m, self.r) class PermutationEntropy(Feature): """ A meausure of the signal complexity. Based on how the temporal signal behaves according to a series of ordinal patterns. Parameters ---------- order : int, optional Order (length of sub-signals) to use in the computation. Default is 3 delay : int, optional Time-delay to use in computing the sub-signals. Default is 1 sample. normalize : bool, optional Normalize the output between 0 and 1. Default is False. """ __slots__ = ("order", "delay", "normalize") def __init__(self, order=3, delay=1, normalize=False): super(PermutationEntropy, self).__init__( order=order, delay=delay, normalize=False ) self.order = order self.delay = delay self.normalize = normalize def compute(self, signal, *, axis=-1, **kwargs): """ compute(signal, *, axis=-1) Compute the permutation entropy Parameters ---------- signal : array-like Array-like containing values to compute the signal entropy for. axis : int, optional Axis along which the signal entropy will be computed. Ignored if `signal` is a pandas.DataFrame. Default is last (-1). Returns ------- perm_en : numpy.ndarray Computed permutation entropy. """ x = super().compute(signal, axis=axis) return extensions.permutation_entropy(x, self.order, self.delay, self.normalize)
0.979957
0.909466
from numpy import zeros, ceil, log2, sort, sum, diff, sign, maximum import pywt from skdh.features.core import Feature __all__ = ["DetailPower", "DetailPowerRatio"] class DetailPower(Feature): """ The summed power in the detail levels that span the chosen frequency band. Parameters ---------- wavelet : str Wavelet to use. Options are the discrete wavelets in `PyWavelets`. Default is 'coif4'. freq_band : array_like 2-element array-like of the frequency band (Hz) to get the power in. Default is [1, 3]. References ---------- .. [1] Sekine, M. et al. "Classification of waist-acceleration signals in a continuous walking record." Medical Engineering & Physics. Vol. 22. Pp 285-291. 2000. """ __slots__ = ("wave", "f_band") _wavelet_options = pywt.wavelist(kind="discrete") def __init__(self, wavelet="coif4", freq_band=None): super().__init__(wavelet=wavelet, freq_band=freq_band) self.wave = wavelet if freq_band is not None: self.f_band = sort(freq_band) else: self.f_band = [1.0, 3.0] def compute(self, signal, fs=1.0, *, axis=-1): """ Compute the detail power Parameters ---------- signal : array-like Array-like containing values to compute the detail power for. fs : float, optional Sampling frequency in Hz. If not provided, default is 1.0Hz. axis : int, optional Axis along which the signal entropy will be computed. Ignored if `signal` is a pandas.DataFrame. Default is last (-1). Returns ------- power : numpy.ndarray Computed detail power. """ x = super().compute(signal, fs, axis=axis) # computation lvls = [ int(ceil(log2(fs / self.f_band[0]))), # maximum level needed int(ceil(log2(fs / self.f_band[1]))), # minimum level to include in sum ] # TODO test effect of mode on result cA, *cD = pywt.wavedec(x, self.wave, mode="symmetric", level=lvls[0], axis=-1) # set non necessary levels to 0 for i in range(lvls[0] - lvls[1] + 1, lvls[0]): cD[i][:] = 0.0 # reconstruct and get negative->positive zero crossings xr = pywt.waverec((cA,) + tuple(cD), self.wave, mode="symmetric", axis=-1) N = sum(diff(sign(xr), axis=-1) > 0, axis=-1).astype(float) # ensure no 0 values to prevent divide by 0 N = maximum(N, 1e-10) rshape = x.shape[:-1] result = zeros(rshape) for i in range(lvls[0] - lvls[1] + 1): result += sum(cD[i] ** 2, axis=-1) return result / N class DetailPowerRatio(Feature): """ The ratio of the power in the detail signals that span the specified frequency band. Uses the discrete wavelet transform to break down the signal into constituent components at different frequencies. Parameters ---------- wavelet : str Wavelet to use. Options are the discrete wavelets in `PyWavelets`. Default is 'coif4'. freq_band : array_like 2-element array-like of the frequency band (Hz) to get the power in. Default is [1, 10]. Notes ----- In the original paper [1]_, the result is multiplied by 100 to obtain a percentage. This final multiplication is not included in order to obtain results that have a scale that closer matches the typical 0-1 (or -1 to 1) scale for machine learning features. NOTE that this does not mean that the values will be in this range - since the scaling factor is the original acceleration and not the wavelet detail values. References ---------- .. [1] Sekine, M. et al. "Classification of waist-acceleration signals in a continuous walking record." Medical Engineering & Physics. Vol. 22. Pp 285-291. 2000. """ __slots__ = ("wave", "f_band") _wavelet_options = pywt.wavelist(kind="discrete") def __init__(self, wavelet="coif4", freq_band=None): super().__init__(wavelet=wavelet, freq_band=freq_band) self.wave = wavelet if freq_band is not None: self.f_band = sort(freq_band) else: self.f_band = [1.0, 10.0] def compute(self, signal, fs=1.0, *, axis=-1): """ Compute the detail power ratio Parameters ---------- signal : array-like Array-like containing values to compute the detail power ratio for. fs : float, optional Sampling frequency in Hz. If not provided, default is 1.0Hz. axis : int, optional Axis along which the signal entropy will be computed. Ignored if `signal` is a pandas.DataFrame. Default is last (-1). Returns ------- power_ratio : numpy.ndarray Computed detail power ratio. """ x = super().compute(signal, fs, axis=axis) # compute the required levels lvls = [ int(ceil(log2(fs / self.f_band[0]))), # maximum level needed int(ceil(log2(fs / self.f_band[1]))), # minimum level to include in sum ] # TODO test effect of mode on result cA, *cD = pywt.wavedec(x, self.wave, mode="symmetric", level=lvls[0], axis=-1) result = zeros(x.shape[:-1]) for i in range(lvls[0] - lvls[1] + 1): result += sum(cD[i] ** 2, axis=-1) return result / sum(x**2, axis=-1)
scikit-digital-health
/scikit_digital_health-0.11.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl/skdh/features/lib/wavelet.py
wavelet.py
from numpy import zeros, ceil, log2, sort, sum, diff, sign, maximum import pywt from skdh.features.core import Feature __all__ = ["DetailPower", "DetailPowerRatio"] class DetailPower(Feature): """ The summed power in the detail levels that span the chosen frequency band. Parameters ---------- wavelet : str Wavelet to use. Options are the discrete wavelets in `PyWavelets`. Default is 'coif4'. freq_band : array_like 2-element array-like of the frequency band (Hz) to get the power in. Default is [1, 3]. References ---------- .. [1] Sekine, M. et al. "Classification of waist-acceleration signals in a continuous walking record." Medical Engineering & Physics. Vol. 22. Pp 285-291. 2000. """ __slots__ = ("wave", "f_band") _wavelet_options = pywt.wavelist(kind="discrete") def __init__(self, wavelet="coif4", freq_band=None): super().__init__(wavelet=wavelet, freq_band=freq_band) self.wave = wavelet if freq_band is not None: self.f_band = sort(freq_band) else: self.f_band = [1.0, 3.0] def compute(self, signal, fs=1.0, *, axis=-1): """ Compute the detail power Parameters ---------- signal : array-like Array-like containing values to compute the detail power for. fs : float, optional Sampling frequency in Hz. If not provided, default is 1.0Hz. axis : int, optional Axis along which the signal entropy will be computed. Ignored if `signal` is a pandas.DataFrame. Default is last (-1). Returns ------- power : numpy.ndarray Computed detail power. """ x = super().compute(signal, fs, axis=axis) # computation lvls = [ int(ceil(log2(fs / self.f_band[0]))), # maximum level needed int(ceil(log2(fs / self.f_band[1]))), # minimum level to include in sum ] # TODO test effect of mode on result cA, *cD = pywt.wavedec(x, self.wave, mode="symmetric", level=lvls[0], axis=-1) # set non necessary levels to 0 for i in range(lvls[0] - lvls[1] + 1, lvls[0]): cD[i][:] = 0.0 # reconstruct and get negative->positive zero crossings xr = pywt.waverec((cA,) + tuple(cD), self.wave, mode="symmetric", axis=-1) N = sum(diff(sign(xr), axis=-1) > 0, axis=-1).astype(float) # ensure no 0 values to prevent divide by 0 N = maximum(N, 1e-10) rshape = x.shape[:-1] result = zeros(rshape) for i in range(lvls[0] - lvls[1] + 1): result += sum(cD[i] ** 2, axis=-1) return result / N class DetailPowerRatio(Feature): """ The ratio of the power in the detail signals that span the specified frequency band. Uses the discrete wavelet transform to break down the signal into constituent components at different frequencies. Parameters ---------- wavelet : str Wavelet to use. Options are the discrete wavelets in `PyWavelets`. Default is 'coif4'. freq_band : array_like 2-element array-like of the frequency band (Hz) to get the power in. Default is [1, 10]. Notes ----- In the original paper [1]_, the result is multiplied by 100 to obtain a percentage. This final multiplication is not included in order to obtain results that have a scale that closer matches the typical 0-1 (or -1 to 1) scale for machine learning features. NOTE that this does not mean that the values will be in this range - since the scaling factor is the original acceleration and not the wavelet detail values. References ---------- .. [1] Sekine, M. et al. "Classification of waist-acceleration signals in a continuous walking record." Medical Engineering & Physics. Vol. 22. Pp 285-291. 2000. """ __slots__ = ("wave", "f_band") _wavelet_options = pywt.wavelist(kind="discrete") def __init__(self, wavelet="coif4", freq_band=None): super().__init__(wavelet=wavelet, freq_band=freq_band) self.wave = wavelet if freq_band is not None: self.f_band = sort(freq_band) else: self.f_band = [1.0, 10.0] def compute(self, signal, fs=1.0, *, axis=-1): """ Compute the detail power ratio Parameters ---------- signal : array-like Array-like containing values to compute the detail power ratio for. fs : float, optional Sampling frequency in Hz. If not provided, default is 1.0Hz. axis : int, optional Axis along which the signal entropy will be computed. Ignored if `signal` is a pandas.DataFrame. Default is last (-1). Returns ------- power_ratio : numpy.ndarray Computed detail power ratio. """ x = super().compute(signal, fs, axis=axis) # compute the required levels lvls = [ int(ceil(log2(fs / self.f_band[0]))), # maximum level needed int(ceil(log2(fs / self.f_band[1]))), # minimum level to include in sum ] # TODO test effect of mode on result cA, *cD = pywt.wavedec(x, self.wave, mode="symmetric", level=lvls[0], axis=-1) result = zeros(x.shape[:-1]) for i in range(lvls[0] - lvls[1] + 1): result += sum(cD[i] ** 2, axis=-1) return result / sum(x**2, axis=-1)
0.942447
0.675024
from skdh.features.core import Feature from skdh.features.lib import extensions __all__ = [ "DominantFrequency", "DominantFrequencyValue", "PowerSpectralSum", "SpectralFlatness", "SpectralEntropy", ] class DominantFrequency(Feature): r""" The primary frequency in the signal. Computed using the FFT and finding the maximum value of the power spectral density in the specified range of frequencies. Parameters ---------- padlevel : int, optional Padding (factors of 2) to use in the FFT computation. Default is 2. low_cutoff : float, optional Low value of the frequency range to look in. Default is 0.0 Hz high_cutoff : float, optional High value of the frequency range to look in. Default is 5.0 Hz Notes ----- The `padlevel` parameter effects the number of points to be used in the FFT computation by factors of 2. The computation of number of points is per .. math:: nfft = 2^{ceil(log_2(N)) + padlevel} So `padlevel=2` would mean that for a signal with length 150, the number of points used in the FFT would go from 256 to 1024. """ __slots__ = ("pad", "low_cut", "high_cut") def __init__(self, padlevel=2, low_cutoff=0.0, high_cutoff=5.0): super(DominantFrequency, self).__init__( padlevel=padlevel, low_cutoff=low_cutoff, high_cutoff=high_cutoff ) self.pad = padlevel self.low_cut = low_cutoff self.high_cut = high_cutoff def compute(self, signal, fs=1.0, *, axis=-1): """ Compute the dominant frequency Parameters ---------- signal : array-like Array-like containing values to compute the dominant frequency for. fs : float, optional Sampling frequency in Hz. If not provided, default is assumed to be 1Hz. axis : int, optional Axis along which the signal entropy will be computed. Ignored if `signal` is a pandas.DataFrame. Default is last (-1). Returns ------- dom_freq : numpy.ndarray Computed dominant frequency. """ x = super().compute(signal, fs, axis=axis) return extensions.dominant_frequency( x, fs, self.pad, self.low_cut, self.high_cut ) class DominantFrequencyValue(Feature): r""" The power spectral density maximum value. Taken inside the range of frequencies specified. Parameters ---------- padlevel : int, optional Padding (factors of 2) to use in the FFT computation. Default is 2. low_cutoff : float, optional Low value of the frequency range to look in. Default is 0.0 Hz high_cutoff : float, optional High value of the frequency range to look in. Default is 5.0 Hz Notes ----- The `padlevel` parameter effects the number of points to be used in the FFT computation by factors of 2. The computation of number of points is per .. math:: nfft = 2^{ceil(log_2(N)) + padlevel} So `padlevel=2` would mean that for a signal with length 150, the number of points used in the FFT would go from 256 to 1024. """ __slots__ = ("pad", "low_cut", "high_cut") def __init__(self, padlevel=2, low_cutoff=0.0, high_cutoff=5.0): super(DominantFrequencyValue, self).__init__( padlevel=padlevel, low_cutoff=low_cutoff, high_cutoff=high_cutoff ) self.pad = padlevel self.low_cut = low_cutoff self.high_cut = high_cutoff def compute(self, signal, fs=1.0, *, axis=-1): """ Compute the dominant frequency value Parameters ---------- signal : array-like Array-like containing values to compute the dominant frequency value for. fs : float, optional Sampling frequency in Hz. If not provided, default is assumed to be 1Hz. axis : int, optional Axis along which the signal entropy will be computed. Ignored if `signal` is a pandas.DataFrame. Default is last (-1). Returns ------- dom_freq_val : numpy.ndarray Computed dominant frequency value. """ x = super().compute(signal, fs, axis=axis) return extensions.dominant_frequency_value( x, fs, self.pad, self.low_cut, self.high_cut ) class PowerSpectralSum(Feature): r""" Sum of power spectral density values. The sum of power spectral density values in a 1.0Hz wide band around the primary (dominant) frequency (:math:`f_{dom}\pm 0.5`) Parameters ---------- padlevel : int, optional Padding (factors of 2) to use in the FFT computation. Default is 2. low_cutoff : float, optional Low value of the frequency range to look in. Default is 0.0 Hz high_cutoff : float, optional High value of the frequency range to look in. Default is 5.0 Hz Notes ----- The `padlevel` parameter effects the number of points to be used in the FFT computation by factors of 2. The computation of number of points is per .. math:: nfft = 2^{ceil(log_2(N)) + padlevel} So `padlevel=2` would mean that for a signal with length 150, the number of points used in the FFT would go from 256 to 1024. """ __slots__ = ("pad", "low_cut", "high_cut") def __init__(self, padlevel=2, low_cutoff=0.0, high_cutoff=5.0): super(PowerSpectralSum, self).__init__( padlevel=padlevel, low_cutoff=low_cutoff, high_cutoff=high_cutoff ) self.pad = padlevel self.low_cut = low_cutoff self.high_cut = high_cutoff def compute(self, signal, fs=1.0, *, axis=-1): """ Compute the power spectral sum Parameters ---------- signal : array-like Array-like containing values to compute the power spectral sum for. fs : float, optional Sampling frequency in Hz. If not provided, default is assumed to be 1Hz. axis : int, optional Axis along which the signal entropy will be computed. Ignored if `signal` is a pandas.DataFrame. Default is last (-1). Returns ------- pss : numpy.ndarray Computed power spectral sum. """ x = super().compute(signal, fs, axis=axis) return extensions.power_spectral_sum( x, fs, self.pad, self.low_cut, self.high_cut ) class SpectralFlatness(Feature): r""" A measure of the "tonality" or resonant structure of a signal. Provides a quantification of how tone-like a signal is, as opposed to being noise-like. For this case, tonality is defined in a sense as the amount of peaks in the power spectrum, opposed to a flat signal representing white noise. Parameters ---------- padlevel : int, optional Padding (factors of 2) to use in the FFT computation. Default is 2. low_cutoff : float, optional Low value of the frequency range to look in. Default is 0.0 Hz high_cutoff : float, optional High value of the frequency range to look in. Default is 5.0 Hz Notes ----- The `padlevel` parameter effects the number of points to be used in the FFT computation by factors of 2. The computation of number of points is per .. math:: nfft = 2^{ceil(log_2(N)) + padlevel} So `padlevel=2` would mean that for a signal with length 150, the number of points used in the FFT would go from 256 to 1024. """ __slots__ = ("pad", "low_cut", "high_cut") def __init__(self, padlevel=2, low_cutoff=0.0, high_cutoff=5.0): super(SpectralFlatness, self).__init__( padlevel=padlevel, low_cutoff=low_cutoff, high_cutoff=high_cutoff ) self.pad = padlevel self.low_cut = low_cutoff self.high_cut = high_cutoff def compute(self, signal, fs=1.0, *, axis=-1): """ Compute the spectral flatness Parameters ---------- signal : array-like Array-like containing values to compute the spectral flatness for. fs : float, optional Sampling frequency in Hz. If not provided, default is assumed to be 1Hz. axis : int, optional Axis along which the signal entropy will be computed. Ignored if `signal` is a pandas.DataFrame. Default is last (-1). Returns ------- spec_flat : numpy.ndarray Computed spectral flatness. """ x = super().compute(signal, fs, axis=axis) return extensions.spectral_flatness( x, fs, self.pad, self.low_cut, self.high_cut ) class SpectralEntropy(Feature): r""" A measure of the information contained in the power spectral density estimate. Similar to :py:class:`SignalEntropy` but for the power spectral density. Parameters ---------- padlevel : int, optional Padding (factors of 2) to use in the FFT computation. Default is 2. low_cutoff : float, optional Low value of the frequency range to look in. Default is 0.0 Hz high_cutoff : float, optional High value of the frequency range to look in. Default is 5.0 Hz Notes ----- The `padlevel` parameter effects the number of points to be used in the FFT computation by factors of 2. The computation of number of points is per .. math:: nfft = 2^{ceil(log_2(N)) + padlevel} So `padlevel=2` would mean that for a signal with length 150, the number of points used in the FFT would go from 256 to 1024. """ __slots__ = ("pad", "low_cut", "high_cut") def __init__(self, padlevel=2, low_cutoff=0.0, high_cutoff=5.0): super(SpectralEntropy, self).__init__( padlevel=padlevel, low_cutoff=low_cutoff, high_cutoff=high_cutoff ) self.pad = padlevel self.low_cut = low_cutoff self.high_cut = high_cutoff def compute(self, signal, fs=1.0, *, axis=-1): """ Compute the spectral entropy Parameters ---------- signal : array-like Array-like containing values to compute the spectral entropy for. fs : float, optional Sampling frequency in Hz. If not provided, default is assumed to be 1Hz. axis : int, optional Axis along which the signal entropy will be computed. Ignored if `signal` is a pandas.DataFrame. Default is last (-1). Returns ------- spec_ent : numpy.ndarray Computed spectral entropy. """ x = super().compute(signal, fs, axis=axis) return extensions.spectral_entropy(x, fs, self.pad, self.low_cut, self.high_cut)
scikit-digital-health
/scikit_digital_health-0.11.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl/skdh/features/lib/frequency.py
frequency.py
from skdh.features.core import Feature from skdh.features.lib import extensions __all__ = [ "DominantFrequency", "DominantFrequencyValue", "PowerSpectralSum", "SpectralFlatness", "SpectralEntropy", ] class DominantFrequency(Feature): r""" The primary frequency in the signal. Computed using the FFT and finding the maximum value of the power spectral density in the specified range of frequencies. Parameters ---------- padlevel : int, optional Padding (factors of 2) to use in the FFT computation. Default is 2. low_cutoff : float, optional Low value of the frequency range to look in. Default is 0.0 Hz high_cutoff : float, optional High value of the frequency range to look in. Default is 5.0 Hz Notes ----- The `padlevel` parameter effects the number of points to be used in the FFT computation by factors of 2. The computation of number of points is per .. math:: nfft = 2^{ceil(log_2(N)) + padlevel} So `padlevel=2` would mean that for a signal with length 150, the number of points used in the FFT would go from 256 to 1024. """ __slots__ = ("pad", "low_cut", "high_cut") def __init__(self, padlevel=2, low_cutoff=0.0, high_cutoff=5.0): super(DominantFrequency, self).__init__( padlevel=padlevel, low_cutoff=low_cutoff, high_cutoff=high_cutoff ) self.pad = padlevel self.low_cut = low_cutoff self.high_cut = high_cutoff def compute(self, signal, fs=1.0, *, axis=-1): """ Compute the dominant frequency Parameters ---------- signal : array-like Array-like containing values to compute the dominant frequency for. fs : float, optional Sampling frequency in Hz. If not provided, default is assumed to be 1Hz. axis : int, optional Axis along which the signal entropy will be computed. Ignored if `signal` is a pandas.DataFrame. Default is last (-1). Returns ------- dom_freq : numpy.ndarray Computed dominant frequency. """ x = super().compute(signal, fs, axis=axis) return extensions.dominant_frequency( x, fs, self.pad, self.low_cut, self.high_cut ) class DominantFrequencyValue(Feature): r""" The power spectral density maximum value. Taken inside the range of frequencies specified. Parameters ---------- padlevel : int, optional Padding (factors of 2) to use in the FFT computation. Default is 2. low_cutoff : float, optional Low value of the frequency range to look in. Default is 0.0 Hz high_cutoff : float, optional High value of the frequency range to look in. Default is 5.0 Hz Notes ----- The `padlevel` parameter effects the number of points to be used in the FFT computation by factors of 2. The computation of number of points is per .. math:: nfft = 2^{ceil(log_2(N)) + padlevel} So `padlevel=2` would mean that for a signal with length 150, the number of points used in the FFT would go from 256 to 1024. """ __slots__ = ("pad", "low_cut", "high_cut") def __init__(self, padlevel=2, low_cutoff=0.0, high_cutoff=5.0): super(DominantFrequencyValue, self).__init__( padlevel=padlevel, low_cutoff=low_cutoff, high_cutoff=high_cutoff ) self.pad = padlevel self.low_cut = low_cutoff self.high_cut = high_cutoff def compute(self, signal, fs=1.0, *, axis=-1): """ Compute the dominant frequency value Parameters ---------- signal : array-like Array-like containing values to compute the dominant frequency value for. fs : float, optional Sampling frequency in Hz. If not provided, default is assumed to be 1Hz. axis : int, optional Axis along which the signal entropy will be computed. Ignored if `signal` is a pandas.DataFrame. Default is last (-1). Returns ------- dom_freq_val : numpy.ndarray Computed dominant frequency value. """ x = super().compute(signal, fs, axis=axis) return extensions.dominant_frequency_value( x, fs, self.pad, self.low_cut, self.high_cut ) class PowerSpectralSum(Feature): r""" Sum of power spectral density values. The sum of power spectral density values in a 1.0Hz wide band around the primary (dominant) frequency (:math:`f_{dom}\pm 0.5`) Parameters ---------- padlevel : int, optional Padding (factors of 2) to use in the FFT computation. Default is 2. low_cutoff : float, optional Low value of the frequency range to look in. Default is 0.0 Hz high_cutoff : float, optional High value of the frequency range to look in. Default is 5.0 Hz Notes ----- The `padlevel` parameter effects the number of points to be used in the FFT computation by factors of 2. The computation of number of points is per .. math:: nfft = 2^{ceil(log_2(N)) + padlevel} So `padlevel=2` would mean that for a signal with length 150, the number of points used in the FFT would go from 256 to 1024. """ __slots__ = ("pad", "low_cut", "high_cut") def __init__(self, padlevel=2, low_cutoff=0.0, high_cutoff=5.0): super(PowerSpectralSum, self).__init__( padlevel=padlevel, low_cutoff=low_cutoff, high_cutoff=high_cutoff ) self.pad = padlevel self.low_cut = low_cutoff self.high_cut = high_cutoff def compute(self, signal, fs=1.0, *, axis=-1): """ Compute the power spectral sum Parameters ---------- signal : array-like Array-like containing values to compute the power spectral sum for. fs : float, optional Sampling frequency in Hz. If not provided, default is assumed to be 1Hz. axis : int, optional Axis along which the signal entropy will be computed. Ignored if `signal` is a pandas.DataFrame. Default is last (-1). Returns ------- pss : numpy.ndarray Computed power spectral sum. """ x = super().compute(signal, fs, axis=axis) return extensions.power_spectral_sum( x, fs, self.pad, self.low_cut, self.high_cut ) class SpectralFlatness(Feature): r""" A measure of the "tonality" or resonant structure of a signal. Provides a quantification of how tone-like a signal is, as opposed to being noise-like. For this case, tonality is defined in a sense as the amount of peaks in the power spectrum, opposed to a flat signal representing white noise. Parameters ---------- padlevel : int, optional Padding (factors of 2) to use in the FFT computation. Default is 2. low_cutoff : float, optional Low value of the frequency range to look in. Default is 0.0 Hz high_cutoff : float, optional High value of the frequency range to look in. Default is 5.0 Hz Notes ----- The `padlevel` parameter effects the number of points to be used in the FFT computation by factors of 2. The computation of number of points is per .. math:: nfft = 2^{ceil(log_2(N)) + padlevel} So `padlevel=2` would mean that for a signal with length 150, the number of points used in the FFT would go from 256 to 1024. """ __slots__ = ("pad", "low_cut", "high_cut") def __init__(self, padlevel=2, low_cutoff=0.0, high_cutoff=5.0): super(SpectralFlatness, self).__init__( padlevel=padlevel, low_cutoff=low_cutoff, high_cutoff=high_cutoff ) self.pad = padlevel self.low_cut = low_cutoff self.high_cut = high_cutoff def compute(self, signal, fs=1.0, *, axis=-1): """ Compute the spectral flatness Parameters ---------- signal : array-like Array-like containing values to compute the spectral flatness for. fs : float, optional Sampling frequency in Hz. If not provided, default is assumed to be 1Hz. axis : int, optional Axis along which the signal entropy will be computed. Ignored if `signal` is a pandas.DataFrame. Default is last (-1). Returns ------- spec_flat : numpy.ndarray Computed spectral flatness. """ x = super().compute(signal, fs, axis=axis) return extensions.spectral_flatness( x, fs, self.pad, self.low_cut, self.high_cut ) class SpectralEntropy(Feature): r""" A measure of the information contained in the power spectral density estimate. Similar to :py:class:`SignalEntropy` but for the power spectral density. Parameters ---------- padlevel : int, optional Padding (factors of 2) to use in the FFT computation. Default is 2. low_cutoff : float, optional Low value of the frequency range to look in. Default is 0.0 Hz high_cutoff : float, optional High value of the frequency range to look in. Default is 5.0 Hz Notes ----- The `padlevel` parameter effects the number of points to be used in the FFT computation by factors of 2. The computation of number of points is per .. math:: nfft = 2^{ceil(log_2(N)) + padlevel} So `padlevel=2` would mean that for a signal with length 150, the number of points used in the FFT would go from 256 to 1024. """ __slots__ = ("pad", "low_cut", "high_cut") def __init__(self, padlevel=2, low_cutoff=0.0, high_cutoff=5.0): super(SpectralEntropy, self).__init__( padlevel=padlevel, low_cutoff=low_cutoff, high_cutoff=high_cutoff ) self.pad = padlevel self.low_cut = low_cutoff self.high_cut = high_cutoff def compute(self, signal, fs=1.0, *, axis=-1): """ Compute the spectral entropy Parameters ---------- signal : array-like Array-like containing values to compute the spectral entropy for. fs : float, optional Sampling frequency in Hz. If not provided, default is assumed to be 1Hz. axis : int, optional Axis along which the signal entropy will be computed. Ignored if `signal` is a pandas.DataFrame. Default is last (-1). Returns ------- spec_ent : numpy.ndarray Computed spectral entropy. """ x = super().compute(signal, fs, axis=axis) return extensions.spectral_entropy(x, fs, self.pad, self.low_cut, self.high_cut)
0.980224
0.744772
from skdh.features.core import Feature from skdh.features.lib import extensions __all__ = ["ComplexityInvariantDistance", "RangeCountPercentage", "RatioBeyondRSigma"] class ComplexityInvariantDistance(Feature): """ A distance metric that accounts for signal complexity. Parameters ---------- normalize : bool, optional Normalize the signal. Default is True. """ __slots__ = ("normalize",) def __init__(self, normalize=True): super(ComplexityInvariantDistance, self).__init__(normalize=normalize) self.normalize = normalize def compute(self, signal, *, axis=-1, **kwargs): """ compute(signal, *, axis=-1) Compute the complexity invariant distance Parameters ---------- signal : array-like Array-like containing values to compute the complexity invariant distance for. axis : int, optional Axis along which the signal entropy will be computed. Ignored if `signal` is a pandas.DataFrame. Default is last (-1). Returns ------- cid : numpy.ndarray Computed complexity invariant distance. """ x = super().compute(signal, axis=axis) return extensions.complexity_invariant_distance(x, self.normalize) class RangeCountPercentage(Feature): """ The percent of the signal that falls between specified values Parameters ---------- range_min : {int, float}, optional Minimum value of the range. Default value is -1.0 range_max : {int, float}, optional Maximum value of the range. Default value is 1.0 """ __slots__ = ("rmin", "rmax") def __init__(self, range_min=-1.0, range_max=1.0): super(RangeCountPercentage, self).__init__( range_min=range_min, range_max=range_max ) self.rmin = range_min self.rmax = range_max def compute(self, signal, *, axis=-1, **kwargs): """ compute(signal, *, axis=-1) Compute the range count percentage Parameters ---------- signal : array-like Array-like containing values to compute the range count percentage for. axis : int, optional Axis along which the signal entropy will be computed. Ignored if `signal` is a pandas.DataFrame. Default is last (-1). Returns ------- rcp : numpy.ndarray Computed range count percentage. """ x = super().compute(signal, fs=1.0, axis=axis) return extensions.range_count(x, self.rmin, self.rmax) class RatioBeyondRSigma(Feature): """ The percent of the signal outside :math:`r` standard deviations from the mean. Parameters ---------- r : float, optional Number of standard deviations above or below the mean the range includes. Default is 2.0 """ __slots__ = ("r",) def __init__(self, r=2.0): super(RatioBeyondRSigma, self).__init__(r=r) self.r = r def compute(self, signal, *, axis=-1, **kwargs): r""" compute(signal, *, axis=-1) Compute the ratio beyond :math:`r\sigma` Parameters ---------- signal : array-like Array-like containing values to compute the ratio beyond :math:`r\sigma` for. axis : int, optional Axis along which the signal entropy will be computed. Ignored if `signal` is a pandas.DataFrame. Default is last (-1). Returns ------- rbr : numpy.ndarray Computed ratio beyond r sigma. """ x = super().compute(signal, fs=1.0, axis=axis) return extensions.ratio_beyond_r_sigma(x, self.r)
scikit-digital-health
/scikit_digital_health-0.11.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl/skdh/features/lib/misc.py
misc.py
from skdh.features.core import Feature from skdh.features.lib import extensions __all__ = ["ComplexityInvariantDistance", "RangeCountPercentage", "RatioBeyondRSigma"] class ComplexityInvariantDistance(Feature): """ A distance metric that accounts for signal complexity. Parameters ---------- normalize : bool, optional Normalize the signal. Default is True. """ __slots__ = ("normalize",) def __init__(self, normalize=True): super(ComplexityInvariantDistance, self).__init__(normalize=normalize) self.normalize = normalize def compute(self, signal, *, axis=-1, **kwargs): """ compute(signal, *, axis=-1) Compute the complexity invariant distance Parameters ---------- signal : array-like Array-like containing values to compute the complexity invariant distance for. axis : int, optional Axis along which the signal entropy will be computed. Ignored if `signal` is a pandas.DataFrame. Default is last (-1). Returns ------- cid : numpy.ndarray Computed complexity invariant distance. """ x = super().compute(signal, axis=axis) return extensions.complexity_invariant_distance(x, self.normalize) class RangeCountPercentage(Feature): """ The percent of the signal that falls between specified values Parameters ---------- range_min : {int, float}, optional Minimum value of the range. Default value is -1.0 range_max : {int, float}, optional Maximum value of the range. Default value is 1.0 """ __slots__ = ("rmin", "rmax") def __init__(self, range_min=-1.0, range_max=1.0): super(RangeCountPercentage, self).__init__( range_min=range_min, range_max=range_max ) self.rmin = range_min self.rmax = range_max def compute(self, signal, *, axis=-1, **kwargs): """ compute(signal, *, axis=-1) Compute the range count percentage Parameters ---------- signal : array-like Array-like containing values to compute the range count percentage for. axis : int, optional Axis along which the signal entropy will be computed. Ignored if `signal` is a pandas.DataFrame. Default is last (-1). Returns ------- rcp : numpy.ndarray Computed range count percentage. """ x = super().compute(signal, fs=1.0, axis=axis) return extensions.range_count(x, self.rmin, self.rmax) class RatioBeyondRSigma(Feature): """ The percent of the signal outside :math:`r` standard deviations from the mean. Parameters ---------- r : float, optional Number of standard deviations above or below the mean the range includes. Default is 2.0 """ __slots__ = ("r",) def __init__(self, r=2.0): super(RatioBeyondRSigma, self).__init__(r=r) self.r = r def compute(self, signal, *, axis=-1, **kwargs): r""" compute(signal, *, axis=-1) Compute the ratio beyond :math:`r\sigma` Parameters ---------- signal : array-like Array-like containing values to compute the ratio beyond :math:`r\sigma` for. axis : int, optional Axis along which the signal entropy will be computed. Ignored if `signal` is a pandas.DataFrame. Default is last (-1). Returns ------- rbr : numpy.ndarray Computed ratio beyond r sigma. """ x = super().compute(signal, fs=1.0, axis=axis) return extensions.ratio_beyond_r_sigma(x, self.r)
0.973507
0.747961
from numpy import log as nplog, abs from skdh.features.core import Feature from skdh.features.lib import extensions __all__ = ["JerkMetric", "DimensionlessJerk", "SPARC"] class JerkMetric(Feature): r""" The normalized sum of jerk. Assumes the input signal is acceleration, and therefore the jerk is the first time derivative of the input signal. Notes ----- Given an acceleration signal :math:`a`, the pre-normalized jerk metric :math:`\hat{J}` is computed using a 2-point difference of the acceleration, then squared and summed per .. math:: \hat{J} = \sum_{i=2}^N\left(\frac{a_{i} - a_{i-1}}{\Delta t}\right)^2 where :math:`\Delta t` is the sampling period in seconds. The jerk metric :math:`J` is then normalized using constants and the maximum absolute acceleration value observed per .. math:: s = \frac{360max(|a|)^2}{\Delta t} .. math:: J = \frac{\hat{J}}{2s} """ __slots__ = () def __init__(self): super(JerkMetric, self).__init__() def compute(self, signal, fs=1.0, *, axis=-1): """ Compute the jerk metric Parameters ---------- signal : array-like Array-like containing values to compute the jerk metric for. fs : float, optional Sampling frequency in Hz. If not provided, default is 1.0Hz axis : int, optional Axis along which the signal entropy will be computed. Ignored if `signal` is a pandas.DataFrame. Default is last (-1). Returns ------- jerk_metric : numpy.ndarray Computed jerk metric. """ x = super().compute(signal, fs, axis=axis) return extensions.jerk_metric(x, fs) class DimensionlessJerk(Feature): r""" The dimensionless normalized sum of jerk, or its log value. Will take velocity, acceleration, or jerk as the input signal, and compute the jerk accordingly. Parameters ---------- log : bool, optional Take the log of the dimensionless jerk. Default is False. signal_type : {'acceleration', 'velocity', 'jerk'}, optional The type of the signal being provided. Default is 'acceleration' Notes ----- For all three inputs (acceleration, velocity, and jerk) the squaring and summation of the computed jerk values is the same as :py:class:`JerkMetric`. The difference comes in the normalization to get a dimensionless value, and in the computation of the jerk. For the different inputs, the pre-normalized metric :math:`\hat{J}` is computed per .. math:: \hat{J}_{vel} = \sum_{i=2}^{N-1}\left(\frac{v_{i+1} - 2v_{i} + v_{i-1}}{\Delta t^2}\right)^2 \\ \hat{J}_{acc} = \sum_{i=2}^N\left(\frac{a_{i} - a_{i-1}}{\Delta t}\right)^2 \\ \hat{J}_{jerk} = \sum_{i=1}^Nj_i^2 The scaling factor also changes depending on which input is provided, per .. math:: s_{vel} = \frac{max(|v|)^2}{N^3\Delta t^4} \\ s_{acc} = \frac{max(|a|)^2}{N \Delta t^2} \\ s_{jerk} = Nmax(|j|)^2 Note that the sampling period ends up cancelling out for all versions of the metric. Finally, the dimensionless jerk metric is simply the negative pre-normalized value divided by the corresponding scaling factor. If the log dimensionless jerk is required, then the negative is taken after taking the natural logarithm .. math:: DJ = \frac{-\hat{J}_{type}}{s_{type}} \\ DJ_{log} = -ln\left(\frac{\hat{J}_{type}}{s_{type}}\right) """ __slots__ = ("log", "i_type") _signal_type_options = ["velocity", "acceleration", "jerk"] def __init__(self, log=False, signal_type="acceleration"): super(DimensionlessJerk, self).__init__(log=log, signal_type=signal_type) self.log = log t_map = {"velocity": 1, "acceleration": 2, "jerk": 3} try: self.i_type = t_map[signal_type] except KeyError: raise ValueError(f"'signal_type' ({signal_type}) unrecognized.") def compute(self, signal, *, axis=-1, **kwargs): """ compute(signal, *, axis=-1) Compute the dimensionless jerk metric Parameters ---------- signal : array-like Array-like containing values to compute the dimensionless jerk metric for. axis : int, optional Axis along which the signal entropy will be computed. Ignored if `signal` is a pandas.DataFrame. Default is last (-1). Returns ------- dimless_jerk_metric : numpy.ndarray Computed [log] dimensionless jerk metric. """ x = super().compute(signal, axis=axis) res = extensions.dimensionless_jerk_metric(x, self.i_type) if self.log: return -nplog(abs(res)) else: return res class SPARC(Feature): """ A quantitative measure of the smoothness of a signal. SPARC stands for the SPectral ARC length. Parameters ---------- padlevel : int Indicates the level of zero-padding to perform on the signal. This essentially multiplies the length of the signal by 2^padlevel. Default is 4. fc: float, optional The max. cut off frequency for calculating the spectral arc length metric. Default is 10.0 Hz. amplitude_threshold : float, optional The amplitude threshold to used for determining the cut off frequency up to which the spectral arc length is to be estimated. Default is 0.05 References ---------- .. [1] S. Balasubramanian, A. Melendez-Calderon, A. Roby-Brami, and E. Burdet, “On the analysis of movement smoothness,” J NeuroEngineering Rehabil, vol. 12, no. 1, p. 112, Dec. 2015, doi: 10.1186/s12984-015-0090-9. """ __slots__ = ("padlevel", "fc", "amp_thresh") def __init__(self, padlevel=4, fc=10.0, amplitude_threshold=0.05): super(SPARC, self).__init__( padlevel=padlevel, fc=fc, amplitude_threshold=amplitude_threshold ) self.padlevel = padlevel self.fc = fc self.amp_thresh = amplitude_threshold def compute(self, signal, fs=1.0, *, axis=-1): """ compute(signal, fs, *, columns=None, windowed=False) Compute the SPARC Parameters ---------- signal : array-like Array-like containing values to compute the SPARC for. fs : float, optional Sampling frequency in Hz. If not provided, default is 1.0Hz axis : int, optional Axis along which the signal entropy will be computed. Ignored if `signal` is a pandas.DataFrame. Default is last (-1). Returns ------- sparc : numpy.ndarray Computed SPARC. """ x = super().compute(signal, fs, axis=axis) return extensions.SPARC(x, fs, self.padlevel, self.fc, self.amp_thresh)
scikit-digital-health
/scikit_digital_health-0.11.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl/skdh/features/lib/smoothness.py
smoothness.py
from numpy import log as nplog, abs from skdh.features.core import Feature from skdh.features.lib import extensions __all__ = ["JerkMetric", "DimensionlessJerk", "SPARC"] class JerkMetric(Feature): r""" The normalized sum of jerk. Assumes the input signal is acceleration, and therefore the jerk is the first time derivative of the input signal. Notes ----- Given an acceleration signal :math:`a`, the pre-normalized jerk metric :math:`\hat{J}` is computed using a 2-point difference of the acceleration, then squared and summed per .. math:: \hat{J} = \sum_{i=2}^N\left(\frac{a_{i} - a_{i-1}}{\Delta t}\right)^2 where :math:`\Delta t` is the sampling period in seconds. The jerk metric :math:`J` is then normalized using constants and the maximum absolute acceleration value observed per .. math:: s = \frac{360max(|a|)^2}{\Delta t} .. math:: J = \frac{\hat{J}}{2s} """ __slots__ = () def __init__(self): super(JerkMetric, self).__init__() def compute(self, signal, fs=1.0, *, axis=-1): """ Compute the jerk metric Parameters ---------- signal : array-like Array-like containing values to compute the jerk metric for. fs : float, optional Sampling frequency in Hz. If not provided, default is 1.0Hz axis : int, optional Axis along which the signal entropy will be computed. Ignored if `signal` is a pandas.DataFrame. Default is last (-1). Returns ------- jerk_metric : numpy.ndarray Computed jerk metric. """ x = super().compute(signal, fs, axis=axis) return extensions.jerk_metric(x, fs) class DimensionlessJerk(Feature): r""" The dimensionless normalized sum of jerk, or its log value. Will take velocity, acceleration, or jerk as the input signal, and compute the jerk accordingly. Parameters ---------- log : bool, optional Take the log of the dimensionless jerk. Default is False. signal_type : {'acceleration', 'velocity', 'jerk'}, optional The type of the signal being provided. Default is 'acceleration' Notes ----- For all three inputs (acceleration, velocity, and jerk) the squaring and summation of the computed jerk values is the same as :py:class:`JerkMetric`. The difference comes in the normalization to get a dimensionless value, and in the computation of the jerk. For the different inputs, the pre-normalized metric :math:`\hat{J}` is computed per .. math:: \hat{J}_{vel} = \sum_{i=2}^{N-1}\left(\frac{v_{i+1} - 2v_{i} + v_{i-1}}{\Delta t^2}\right)^2 \\ \hat{J}_{acc} = \sum_{i=2}^N\left(\frac{a_{i} - a_{i-1}}{\Delta t}\right)^2 \\ \hat{J}_{jerk} = \sum_{i=1}^Nj_i^2 The scaling factor also changes depending on which input is provided, per .. math:: s_{vel} = \frac{max(|v|)^2}{N^3\Delta t^4} \\ s_{acc} = \frac{max(|a|)^2}{N \Delta t^2} \\ s_{jerk} = Nmax(|j|)^2 Note that the sampling period ends up cancelling out for all versions of the metric. Finally, the dimensionless jerk metric is simply the negative pre-normalized value divided by the corresponding scaling factor. If the log dimensionless jerk is required, then the negative is taken after taking the natural logarithm .. math:: DJ = \frac{-\hat{J}_{type}}{s_{type}} \\ DJ_{log} = -ln\left(\frac{\hat{J}_{type}}{s_{type}}\right) """ __slots__ = ("log", "i_type") _signal_type_options = ["velocity", "acceleration", "jerk"] def __init__(self, log=False, signal_type="acceleration"): super(DimensionlessJerk, self).__init__(log=log, signal_type=signal_type) self.log = log t_map = {"velocity": 1, "acceleration": 2, "jerk": 3} try: self.i_type = t_map[signal_type] except KeyError: raise ValueError(f"'signal_type' ({signal_type}) unrecognized.") def compute(self, signal, *, axis=-1, **kwargs): """ compute(signal, *, axis=-1) Compute the dimensionless jerk metric Parameters ---------- signal : array-like Array-like containing values to compute the dimensionless jerk metric for. axis : int, optional Axis along which the signal entropy will be computed. Ignored if `signal` is a pandas.DataFrame. Default is last (-1). Returns ------- dimless_jerk_metric : numpy.ndarray Computed [log] dimensionless jerk metric. """ x = super().compute(signal, axis=axis) res = extensions.dimensionless_jerk_metric(x, self.i_type) if self.log: return -nplog(abs(res)) else: return res class SPARC(Feature): """ A quantitative measure of the smoothness of a signal. SPARC stands for the SPectral ARC length. Parameters ---------- padlevel : int Indicates the level of zero-padding to perform on the signal. This essentially multiplies the length of the signal by 2^padlevel. Default is 4. fc: float, optional The max. cut off frequency for calculating the spectral arc length metric. Default is 10.0 Hz. amplitude_threshold : float, optional The amplitude threshold to used for determining the cut off frequency up to which the spectral arc length is to be estimated. Default is 0.05 References ---------- .. [1] S. Balasubramanian, A. Melendez-Calderon, A. Roby-Brami, and E. Burdet, “On the analysis of movement smoothness,” J NeuroEngineering Rehabil, vol. 12, no. 1, p. 112, Dec. 2015, doi: 10.1186/s12984-015-0090-9. """ __slots__ = ("padlevel", "fc", "amp_thresh") def __init__(self, padlevel=4, fc=10.0, amplitude_threshold=0.05): super(SPARC, self).__init__( padlevel=padlevel, fc=fc, amplitude_threshold=amplitude_threshold ) self.padlevel = padlevel self.fc = fc self.amp_thresh = amplitude_threshold def compute(self, signal, fs=1.0, *, axis=-1): """ compute(signal, fs, *, columns=None, windowed=False) Compute the SPARC Parameters ---------- signal : array-like Array-like containing values to compute the SPARC for. fs : float, optional Sampling frequency in Hz. If not provided, default is 1.0Hz axis : int, optional Axis along which the signal entropy will be computed. Ignored if `signal` is a pandas.DataFrame. Default is last (-1). Returns ------- sparc : numpy.ndarray Computed SPARC. """ x = super().compute(signal, fs, axis=axis) return extensions.SPARC(x, fs, self.padlevel, self.fc, self.amp_thresh)
0.956135
0.76973
from numpy import mean, std, sum, diff, sign from scipy.stats import skew, kurtosis from skdh.features.core import Feature __all__ = ["Mean", "MeanCrossRate", "StdDev", "Skewness", "Kurtosis"] class Mean(Feature): """ The signal mean. Examples -------- >>> import numpy as np >>> signal = np.arange(15).reshape((5, 3)) >>> mn = Mean() >>> mn.compute(signal) array([6., 7., 8.]) """ __slots__ = () def __init__(self): super().__init__() def compute(self, signal, *, axis=-1, **kwargs): """ compute(signal, *, axis=-1) Compute the mean. Parameters ---------- signal : array-like Array-like containing values to compute the mean for. axis : int, optional Axis along which the signal entropy will be computed. Ignored if `signal` is a pandas.DataFrame. Default is last (-1). Returns ------- mean : numpy.ndarray Computed mean. """ x = super().compute(signal, axis=axis) return mean(x, axis=-1) class MeanCrossRate(Feature): """ Number of signal mean value crossings. Expressed as a percentage of signal length. """ __slots__ = () def __init__(self): super(MeanCrossRate, self).__init__() def compute(self, signal, *, axis=-1, **kwargs): """ compute(signal, *, axis=-1) Compute the mean cross rate Parameters ---------- signal : array-like Array-like containing values to compute the mean cross rate for. axis : int, optional Axis along which the signal entropy will be computed. Ignored if `signal` is a pandas.DataFrame. Default is last (-1). Returns ------- mcr : numpy.ndarray Computed mean cross rate. """ x = super().compute(signal, axis=axis) x_nomean = x - mean(x, axis=-1, keepdims=True) mcr = sum(diff(sign(x_nomean), axis=-1) != 0, axis=-1) return mcr / x.shape[-1] # shape of the 1 axis class StdDev(Feature): """ The signal standard deviation Examples -------- >>> import numpy as np >>> signal = np.arange(15).reshape((5, 3)) >>> StdDev().compute(signal) array([[4.74341649, 4.74341649, 4.74341649]]) """ __slots__ = () def __init__(self): super().__init__() def compute(self, signal, *, axis=-1, **kwargs): """ compute(signal, *, axis=-1) Compute the standard deviation Parameters ---------- signal : array-like Array-like containing values to compute the standard deviation for. axis : int, optional Axis along which the signal entropy will be computed. Ignored if `signal` is a pandas.DataFrame. Default is last (-1). Returns ------- stdev : numpy.ndarray Computed standard deviation. """ x = super().compute(signal, axis=axis) return std(x, axis=-1, ddof=1) class Skewness(Feature): """ The skewness of a signal. NaN inputs will be propagated through to the result. """ __slots__ = () def __init__(self): super().__init__() def compute(self, signal, *, axis=-1, **kwargs): """ compute(signal, *, axis=-1) Compute the skewness Parameters ---------- signal : array-like Array-like containing values to compute the skewness for. axis : int, optional Axis along which the signal entropy will be computed. Ignored if `signal` is a pandas.DataFrame. Default is last (-1). Returns ------- skew : numpy.ndarray Computed skewness. """ x = super().compute(signal, axis=axis) return skew(x, axis=-1, bias=False) class Kurtosis(Feature): """ The kurtosis of a signal. NaN inputs will be propagated through to the result. """ __slots__ = () def __init__(self): super().__init__() def compute(self, signal, *, axis=-1, **kwargs): """ compute(signal, *, axis=-1) Compute the kurtosis Parameters ---------- signal : array-like Array-like containing values to compute the kurtosis for. axis : int, optional Axis along which the signal entropy will be computed. Ignored if `signal` is a pandas.DataFrame. Default is last (-1). Returns ------- kurt : numpy.ndarray Computed kurtosis. """ x = super().compute(signal, axis=axis) return kurtosis(x, axis=-1, bias=False)
scikit-digital-health
/scikit_digital_health-0.11.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl/skdh/features/lib/moments.py
moments.py
from numpy import mean, std, sum, diff, sign from scipy.stats import skew, kurtosis from skdh.features.core import Feature __all__ = ["Mean", "MeanCrossRate", "StdDev", "Skewness", "Kurtosis"] class Mean(Feature): """ The signal mean. Examples -------- >>> import numpy as np >>> signal = np.arange(15).reshape((5, 3)) >>> mn = Mean() >>> mn.compute(signal) array([6., 7., 8.]) """ __slots__ = () def __init__(self): super().__init__() def compute(self, signal, *, axis=-1, **kwargs): """ compute(signal, *, axis=-1) Compute the mean. Parameters ---------- signal : array-like Array-like containing values to compute the mean for. axis : int, optional Axis along which the signal entropy will be computed. Ignored if `signal` is a pandas.DataFrame. Default is last (-1). Returns ------- mean : numpy.ndarray Computed mean. """ x = super().compute(signal, axis=axis) return mean(x, axis=-1) class MeanCrossRate(Feature): """ Number of signal mean value crossings. Expressed as a percentage of signal length. """ __slots__ = () def __init__(self): super(MeanCrossRate, self).__init__() def compute(self, signal, *, axis=-1, **kwargs): """ compute(signal, *, axis=-1) Compute the mean cross rate Parameters ---------- signal : array-like Array-like containing values to compute the mean cross rate for. axis : int, optional Axis along which the signal entropy will be computed. Ignored if `signal` is a pandas.DataFrame. Default is last (-1). Returns ------- mcr : numpy.ndarray Computed mean cross rate. """ x = super().compute(signal, axis=axis) x_nomean = x - mean(x, axis=-1, keepdims=True) mcr = sum(diff(sign(x_nomean), axis=-1) != 0, axis=-1) return mcr / x.shape[-1] # shape of the 1 axis class StdDev(Feature): """ The signal standard deviation Examples -------- >>> import numpy as np >>> signal = np.arange(15).reshape((5, 3)) >>> StdDev().compute(signal) array([[4.74341649, 4.74341649, 4.74341649]]) """ __slots__ = () def __init__(self): super().__init__() def compute(self, signal, *, axis=-1, **kwargs): """ compute(signal, *, axis=-1) Compute the standard deviation Parameters ---------- signal : array-like Array-like containing values to compute the standard deviation for. axis : int, optional Axis along which the signal entropy will be computed. Ignored if `signal` is a pandas.DataFrame. Default is last (-1). Returns ------- stdev : numpy.ndarray Computed standard deviation. """ x = super().compute(signal, axis=axis) return std(x, axis=-1, ddof=1) class Skewness(Feature): """ The skewness of a signal. NaN inputs will be propagated through to the result. """ __slots__ = () def __init__(self): super().__init__() def compute(self, signal, *, axis=-1, **kwargs): """ compute(signal, *, axis=-1) Compute the skewness Parameters ---------- signal : array-like Array-like containing values to compute the skewness for. axis : int, optional Axis along which the signal entropy will be computed. Ignored if `signal` is a pandas.DataFrame. Default is last (-1). Returns ------- skew : numpy.ndarray Computed skewness. """ x = super().compute(signal, axis=axis) return skew(x, axis=-1, bias=False) class Kurtosis(Feature): """ The kurtosis of a signal. NaN inputs will be propagated through to the result. """ __slots__ = () def __init__(self): super().__init__() def compute(self, signal, *, axis=-1, **kwargs): """ compute(signal, *, axis=-1) Compute the kurtosis Parameters ---------- signal : array-like Array-like containing values to compute the kurtosis for. axis : int, optional Axis along which the signal entropy will be computed. Ignored if `signal` is a pandas.DataFrame. Default is last (-1). Returns ------- kurt : numpy.ndarray Computed kurtosis. """ x = super().compute(signal, axis=axis) return kurtosis(x, axis=-1, bias=False)
0.971699
0.769622
from numpy import array, repeat, abs, minimum, floor, float_ from scipy.signal import lfilter_zi, lfilter from skdh.utility.internal import apply_downsample from skdh.utility import moving_mean __all__ = ["get_activity_counts"] input_coef = array( [ -0.009341062898525, -0.025470289659360, -0.004235264826105, 0.044152415456420, 0.036493718347760, -0.011893961934740, -0.022917390623150, -0.006788163862310, 0.000000000000000, ], dtype=float_, ) output_coef = array( [ 1.00000000000000000000, -3.63367395910957000000, 5.03689812757486000000, -3.09612247819666000000, 0.50620507633883000000, 0.32421701566682000000, -0.15685485875559000000, 0.01949130205890000000, 0.00000000000000000000, ], dtype=float_, ) def get_activity_counts(fs, time, accel, epoch_seconds=60): """ Compute the activity counts from acceleration. Parameters ---------- fs : float Sampling frequency. time : numpy.ndarray Shape (N,) array of epoch timestamps (in seconds) for each sample. accel : numpy.ndarray Nx3 array of measured acceleration values, in units of g. epoch_seconds : int, optional Number of seconds in an epoch (time unit for counts). Default is 60 seconds. Returns ------- counts : numpy.ndarray Array of activity counts References ---------- .. [1] A. Neishabouri et al., “Quantification of acceleration as activity counts in ActiGraph wearable,” Sci Rep, vol. 12, no. 1, Art. no. 1, Jul. 2022, doi: 10.1038/s41598-022-16003-x. Notes ----- This implementation is still slightly different than that provided in [1]_. Foremost is that the down-sampling is different to accommodate other sensor types that have different sampling frequencies than what might be provided by ActiGraph. """ # 3. down-sample to 30hz time_ds, (acc_ds,) = apply_downsample( 30.0, time, data=(accel,), aa_filter=True, fs=fs, ) # 4. filter the data # NOTE: this is the actigraph implementation - they specifically use # a filter with a phase shift (ie not filtfilt), and TF representation # instead of ZPK or SOS zi = lfilter_zi(input_coef, output_coef).reshape((-1, 1)) acc_bpf, _ = lfilter( input_coef, output_coef, acc_ds, zi=repeat(zi, acc_ds.shape[1], axis=-1) * acc_ds[0], axis=0, ) # 5. scale the data acc_bpf *= (3 / 4096) / (2.6 / 256) * 237.5 # 6. rectify acc_trim = abs(acc_bpf) # 7. trim acc_trim[acc_trim < 4] = 0 acc_trim = floor(minimum(acc_trim, 128)) # 8. "downsample" to 10hz by taking moving mean acc_10hz = moving_mean(acc_trim, 3, 3, trim=True, axis=0) # 9. get the counts block_size = epoch_seconds * 10 # 1 minute # this time is a moving sum epoch_counts = moving_mean(acc_10hz, block_size, block_size, trim=True, axis=0) epoch_counts *= block_size # remove the "mean" part to get back to sum return epoch_counts
scikit-digital-health
/scikit_digital_health-0.11.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl/skdh/utility/activity_counts.py
activity_counts.py
from numpy import array, repeat, abs, minimum, floor, float_ from scipy.signal import lfilter_zi, lfilter from skdh.utility.internal import apply_downsample from skdh.utility import moving_mean __all__ = ["get_activity_counts"] input_coef = array( [ -0.009341062898525, -0.025470289659360, -0.004235264826105, 0.044152415456420, 0.036493718347760, -0.011893961934740, -0.022917390623150, -0.006788163862310, 0.000000000000000, ], dtype=float_, ) output_coef = array( [ 1.00000000000000000000, -3.63367395910957000000, 5.03689812757486000000, -3.09612247819666000000, 0.50620507633883000000, 0.32421701566682000000, -0.15685485875559000000, 0.01949130205890000000, 0.00000000000000000000, ], dtype=float_, ) def get_activity_counts(fs, time, accel, epoch_seconds=60): """ Compute the activity counts from acceleration. Parameters ---------- fs : float Sampling frequency. time : numpy.ndarray Shape (N,) array of epoch timestamps (in seconds) for each sample. accel : numpy.ndarray Nx3 array of measured acceleration values, in units of g. epoch_seconds : int, optional Number of seconds in an epoch (time unit for counts). Default is 60 seconds. Returns ------- counts : numpy.ndarray Array of activity counts References ---------- .. [1] A. Neishabouri et al., “Quantification of acceleration as activity counts in ActiGraph wearable,” Sci Rep, vol. 12, no. 1, Art. no. 1, Jul. 2022, doi: 10.1038/s41598-022-16003-x. Notes ----- This implementation is still slightly different than that provided in [1]_. Foremost is that the down-sampling is different to accommodate other sensor types that have different sampling frequencies than what might be provided by ActiGraph. """ # 3. down-sample to 30hz time_ds, (acc_ds,) = apply_downsample( 30.0, time, data=(accel,), aa_filter=True, fs=fs, ) # 4. filter the data # NOTE: this is the actigraph implementation - they specifically use # a filter with a phase shift (ie not filtfilt), and TF representation # instead of ZPK or SOS zi = lfilter_zi(input_coef, output_coef).reshape((-1, 1)) acc_bpf, _ = lfilter( input_coef, output_coef, acc_ds, zi=repeat(zi, acc_ds.shape[1], axis=-1) * acc_ds[0], axis=0, ) # 5. scale the data acc_bpf *= (3 / 4096) / (2.6 / 256) * 237.5 # 6. rectify acc_trim = abs(acc_bpf) # 7. trim acc_trim[acc_trim < 4] = 0 acc_trim = floor(minimum(acc_trim, 128)) # 8. "downsample" to 10hz by taking moving mean acc_10hz = moving_mean(acc_trim, 3, 3, trim=True, axis=0) # 9. get the counts block_size = epoch_seconds * 10 # 1 minute # this time is a moving sum epoch_counts = moving_mean(acc_10hz, block_size, block_size, trim=True, axis=0) epoch_counts *= block_size # remove the "mean" part to get back to sum return epoch_counts
0.931905
0.41182
from warnings import warn from numpy import moveaxis, ascontiguousarray, full, nan, isnan from skdh.utility import _extensions from skdh.utility.windowing import get_windowed_view __all__ = [ "moving_mean", "moving_sd", "moving_skewness", "moving_kurtosis", "moving_median", "moving_max", "moving_min", ] def moving_mean(a, w_len, skip, trim=True, axis=-1): r""" Compute the moving mean. Parameters ---------- a : array-like Signal to compute moving mean for. w_len : int Window length in number of samples. skip : int Window start location skip in number of samples. trim : bool, optional Trim the ends of the result, where a value cannot be calculated. If False, these values will be set to NaN. Default is True. axis : int, optional Axis to compute the moving mean along. Default is -1. Returns ------- mmean : numpy.ndarray Moving mean. Note that if the moving axis is not the last axis, then the result will *not* be c-contiguous. Notes ----- On the moving axis if `trim=True`, the output length can be computed as follows: .. math:: \frac{n - w_{len}}{skip} + 1 where `n` is the length of the moving axis. For cases where `skip != 1` and `trim=False`, the length of the return on the moving axis can be calculated as: .. math:: \frac{n}{skip} Most efficient computations are for `skip` values that are either factors of `wlen`, or greater or equal to `wlen`. Warnings -------- Catastropic cancellation is a concern when `skip` is less than `wlen` due to the cumulative sum-type algorithm being used, when input values are very very large, or very very small. With typical IMU data values this should not be an issue, even for very long data series (multiple days worth of data) Examples -------- Compute the with non-overlapping windows: >>> import numpy as np >>> x = np.arange(10) >>> moving_mean(x, 3, 3) array([1., 4., 7.]) Compute with overlapping windows: >>> moving_mean(x, 3, 1) array([1., 2., 3., 4., 5., 6., 7., 8.]) Compute without trimming the result >>> moving_mean(x, 3, 1, trim=False) array([1., 2., 3., 4., 5., 6., 7., 8., nan, nan]) Compute on a nd-array to see output shape. On the moving axis, the output should be equal to :math:`(n - w_{len}) / skip + 1`. >>> n = 500 >>> window_length = 100 >>> window_skip = 50 >>> shape = (3, n, 5, 10) >>> y = np.random.random(shape) >>> res = moving_mean(y, window_length, window_skip, axis=1) >>> print(res.shape) (3, 9, 5, 10) Check flags for different axis output >>> z = np.random.random((10, 10, 10)) >>> moving_mean(z, 3, 3, axis=0).flags['C_CONTIGUOUS'] False >>> moving_mean(z, 3, 3, axis=1).flags['C_CONTIGUOUS'] False >>> moving_mean(z, 3, 3, axis=2).flags['C_CONTIGUOUS'] True """ if w_len <= 0 or skip <= 0: raise ValueError("`wlen` and `skip` cannot be less than or equal to 0.") # move computation axis to end x = moveaxis(a, axis, -1) # check that there are enough samples if w_len > x.shape[-1]: raise ValueError("Window length is larger than the computation axis.") rmean = _extensions.moving_mean(x, w_len, skip, trim) # move computation axis back to original place and return return moveaxis(rmean, -1, axis) def moving_sd(a, w_len, skip, trim=True, axis=-1, return_previous=True): r""" Compute the moving sample standard deviation. Parameters ---------- a : array-like Signal to compute moving sample standard deviation for. w_len : int Window length in number of samples. skip : int Window start location skip in number of samples. trim : bool, optional Trim the ends of the result, where a value cannot be calculated. If False, these values will be set to NaN. Default is True. axis : int, optional Axis to compute the moving mean along. Default is -1. return_previous : bool, optional Return previous moments. These are computed either way, and are therefore optional returns. Default is True. Returns ------- msd : numpy.ndarray Moving sample standard deviation. Note that if the moving axis is not the last axis, then the result will *not* be c-contiguous. mmean : numpy.ndarray, optional. Moving mean. Note that if the moving axis is not the last axis, then the result will *not* be c-contiguous. Only returned if `return_previous=True`. Notes ----- On the moving axis, the output length can be computed as follows: .. math:: \frac{n - w_{len}}{skip} + 1 where `n` is the length of the moving axis. For cases where `skip != 1` and `trim=False`, the length of the return on the moving axis can be calculated as: .. math:: \frac{n}{skip} Most efficient computations are for `skip` values that are either factors of `wlen`, or greater or equal to `wlen`. Warnings -------- Catastropic cancellation is a concern when `skip` is less than `wlen` due to the cumulative sum-type algorithms being used, when input values are very very large, or very very small. With typical IMU data values this should not be an issue, even for very long data series (multiple days worth of data). Examples -------- Compute the with non-overlapping windows: >>> import numpy as np >>> x = np.arange(10)**2 >>> moving_sd(x, 3, 3, return_previous=True) (array([ 2.081666 , 8.02080628, 14.0118997 ]), array([ 1.66666667, 16.66666667, 49.66666667])) Compute with overlapping windows: >>> moving_mean(x, 3, 1, return_previous=False) array([ 2.081666 , 4.04145188, 6.02771377, 8.02080628, 10.0166528 , 12.01388086, 14.0118997 , 16.01041328]) Compute without trimming: >>> moving_mean(x, 3, 1, trim=False, return_previous=False) array([ 2.081666 , 4.04145188, 6.02771377, 8.02080628, 10.0166528 , 12.01388086, 14.0118997 , 16.01041328, nan, nan]) Compute on a nd-array to see output shape. On the moving axis, the output should be equal to :math:`(n - w_{len}) / skip + 1`. >>> n = 500 >>> window_length = 100 >>> window_skip = 50 >>> shape = (3, n, 5, 10) >>> y = np.random.random(shape) >>> res = moving_sd(y, window_length, window_skip, axis=1, return_previous=False) >>> print(res.shape) (3, 9, 5, 10) Check flags for different axis output >>> z = np.random.random((10, 10, 10)) >>> moving_sd(z, 3, 3, axis=0, return_previous=False).flags['C_CONTIGUOUS'] False >>> moving_sd(z, 3, 3, axis=1, return_previous=False).flags['C_CONTIGUOUS'] False >>> moving_sd(z, 3, 3, axis=2, return_previous=False).flags['C_CONTIGUOUS'] True """ if w_len <= 0 or skip <= 0: raise ValueError("`wlen` and `skip` cannot be less than or equal to 0.") # move computation axis to end x = moveaxis(a, axis, -1) # check that there are enough samples if w_len > x.shape[-1]: raise ValueError( "Cannot have a window length larger than the computation axis." ) res = _extensions.moving_sd(x, w_len, skip, trim, return_previous) # move computation axis back to original place and return if return_previous: return moveaxis(res[0], -1, axis), moveaxis(res[1], -1, axis) else: return moveaxis(res, -1, axis) def moving_skewness(a, w_len, skip, trim=True, axis=-1, return_previous=True): r""" Compute the moving sample skewness. Parameters ---------- a : array-like Signal to compute moving skewness for. w_len : int Window length in number of samples. skip : int Window start location skip in number of samples. trim : bool, optional Trim the ends of the result, where a value cannot be calculated. If False, these values will be set to NaN. Default is True. axis : int, optional Axis to compute the moving mean along. Default is -1. return_previous : bool, optional Return previous moments. These are computed either way, and are therefore optional returns. Default is True. Returns ------- mskew : numpy.ndarray Moving skewness. Note that if the moving axis is not the last axis, then the result will *not* be c-contiguous. msd : numpy.ndarray, optional Moving sample standard deviation. Note that if the moving axis is not the last axis, then the result will *not* be c-contiguous. Only returned if `return_previous=True`. mmean : numpy.ndarray, optional. Moving mean. Note that if the moving axis is not the last axis, then the result will *not* be c-contiguous. Only returned if `return_previous=True`. Notes ----- On the moving axis, the output length can be computed as follows: .. math:: \frac{n - w_{len}}{skip} + 1 where `n` is the length of the moving axis. For cases where `skip != 1` and `trim=False`, the length of the return on the moving axis can be calculated as: .. math:: \frac{n}{skip} Warnings -------- While this implementation is quite fast, it is also quite mememory inefficient. 3 arrays of equal length to the computation axis are created during computation, which can easily exceed system memory if already using a significant amount of memory. Examples -------- Compute the with non-overlapping windows: >>> import numpy as np >>> x = np.arange(10)**2 >>> moving_skewness(x, 3, 3, return_previous=True) (array([0.52800497, 0.15164108, 0.08720961]), array([ 2.081666 , 8.02080628, 14.0118997 ]), array([ 1.66666667, 16.66666667, 49.66666667])) Compute with overlapping windows: >>> moving_skewness(x, 3, 1, return_previous=False) array([0.52800497, 0.29479961, 0.20070018, 0.15164108, 0.12172925, 0.10163023, 0.08720961, 0.07636413]) Compute without trimming: >>> moving_skewness(x, 3, 1, trim=False, return_previous=False) array([0.52800497, 0.29479961, 0.20070018, 0.15164108, 0.12172925, 0.10163023, 0.08720961, 0.07636413, nan, nan]) Compute on a nd-array to see output shape. On the moving axis, the output should be equal to :math:`(n - w_{len}) / skip + 1`. >>> n = 500 >>> window_length = 100 >>> window_skip = 50 >>> shape = (3, n, 5, 10) >>> y = np.random.random(shape) >>> res = moving_skewness(y, window_length, window_skip, axis=1, return_previous=False) >>> print(res.shape) (3, 9, 5, 10) Check flags for different axis output >>> z = np.random.random((10, 10, 10)) >>> moving_skewness(z, 3, 3, axis=0, return_previous=False).flags['C_CONTIGUOUS'] False >>> moving_skewness(z, 3, 3, axis=1, return_previous=False).flags['C_CONTIGUOUS'] False >>> moving_skewness(z, 3, 3, axis=2, return_previous=False).flags['C_CONTIGUOUS'] True """ if w_len <= 0 or skip <= 0: raise ValueError("`wlen` and `skip` cannot be less than or equal to 0.") # move computation axis to end x = moveaxis(a, axis, -1) # check that there are enough samples if w_len > x.shape[-1]: raise ValueError( "Cannot have a window length larger than the computation axis." ) res = _extensions.moving_skewness(x, w_len, skip, trim, return_previous) if isnan(res).any(): warn("NaN values present in output, possibly due to catastrophic cancellation.") # move computation axis back to original place and return if return_previous: return tuple(moveaxis(i, -1, axis) for i in res) else: return moveaxis(res, -1, axis) def moving_kurtosis(a, w_len, skip, trim=True, axis=-1, return_previous=True): r""" Compute the moving sample kurtosis. Parameters ---------- a : array-like Signal to compute moving kurtosis for. w_len : int Window length in number of samples. skip : int Window start location skip in number of samples. trim : bool, optional Trim the ends of the result, where a value cannot be calculated. If False, these values will be set to NaN. Default is True. axis : int, optional Axis to compute the moving mean along. Default is -1. return_previous : bool, optional Return previous moments. These are computed either way, and are therefore optional returns. Default is True. Returns ------- mkurt : numpy.ndarray Moving kurtosis. Note that if the moving axis is not the last axis, then the result will *not* be c-contiguous. mskew : numpy.ndarray, optional Moving skewness. Note that if the moving axis is not the last axis, then the result will *not* be c-contiguous. Only returned if `return_previous=True`. msd : numpy.ndarray, optional Moving sample standard deviation. Note that if the moving axis is not the last axis, then the result will *not* be c-contiguous. Only returned if `return_previous=True`. mmean : numpy.ndarray, optional. Moving mean. Note that if the moving axis is not the last axis, then the result will *not* be c-contiguous. Only returned if `return_previous=True`. Notes ----- On the moving axis, the output length can be computed as follows: .. math:: \frac{n - w_{len}}{skip} + 1 where `n` is the length of the moving axis. For cases where `skip != 1` and `trim=False`, the length of the return on the moving axis can be calculated as: .. math:: \frac{n}{skip} Warnings -------- While this implementation is quite fast, it is also quite mememory inefficient. 4 arrays of equal length to the computation axis are created during computation, which can easily exceed system memory if already using a significant amount of memory. Examples -------- Compute the with non-overlapping windows: >>> import numpy as np >>> x = np.arange(10)**2 >>> moving_kurtosis(x, 3, 3, return_previous=True) (array([-1.5, -1.5, -1.5]), # kurtosis array([0.52800497, 0.15164108, 0.08720961]), # skewness array([ 2.081666 , 8.02080628, 14.0118997 ]), # standard deviation array([ 1.66666667, 16.66666667, 49.66666667])) # mean Compute with overlapping windows: >>> moving_kurtosis(np.random.random(100), 50, 20, return_previous=False) array([-1.10155074, -1.20785479, -1.24363625]) # random Compute without trimming: >>> moving_kurtosis(np.random.random(100), 50, 20, return_previous=False) array([-1.10155074, -1.20785479, -1.24363625, nan, nan]) # random Compute on a nd-array to see output shape. On the moving axis, the output should be equal to :math:`(n - w_{len}) / skip + 1`. >>> n = 500 >>> window_length = 100 >>> window_skip = 50 >>> shape = (3, n, 5, 10) >>> y = np.random.random(shape) >>> res = moving_skewness(y, window_length, window_skip, axis=1, return_previous=False) >>> print(res.shape) (3, 9, 5, 10) Check flags for different axis output >>> z = np.random.random((10, 10, 10)) >>> moving_kurtosis(z, 3, 3, axis=0, return_previous=False).flags['C_CONTIGUOUS'] False >>> moving_kurtosis(z, 3, 3, axis=1, return_previous=False).flags['C_CONTIGUOUS'] False >>> moving_kurtosis(z, 3, 3, axis=2, return_previous=False).flags['C_CONTIGUOUS'] True """ if w_len <= 0 or skip <= 0: raise ValueError("`wlen` and `skip` cannot be less than or equal to 0.") # move computation axis to end x = moveaxis(a, axis, -1) # check that there are enough samples if w_len > x.shape[-1]: raise ValueError( "Cannot have a window length larger than the computation axis." ) res = _extensions.moving_kurtosis(x, w_len, skip, trim, return_previous) if isnan(res).any(): warn("NaN values present in output, possibly due to catastrophic cancellation.") # move computation axis back to original place and return if return_previous: return tuple(moveaxis(i, -1, axis) for i in res) else: return moveaxis(res, -1, axis) def moving_median(a, w_len, skip=1, trim=True, axis=-1): r""" Compute the moving mean. Parameters ---------- a : array-like Signal to compute moving mean for. w_len : int Window length in number of samples. skip : int Window start location skip in number of samples. Default is 1. trim : bool, optional Trim the ends of the result, where a value cannot be calculated. If False, these values will be set to NaN. Default is True. axis : int, optional Axis to compute the moving mean along. Default is -1. Returns ------- mmed : numpy.ndarray Moving median. Note that if the moving axis is not the last axis, then the result will *not* be c-contiguous. Notes ----- On the moving axis, the output length can be computed as follows: .. math:: \frac{n - w_{len}}{skip} + 1 where `n` is the length of the moving axis. For cases where `skip != 1` and `trim=False`, the length of the return on the moving axis can be calculated as: .. math:: \frac{n}{skip} Examples -------- Compute the with non-overlapping windows: >>> import numpy as np >>> x = np.arange(10) >>> moving_median(x, 3, 3) array([1., 4., 7.]) Compute with overlapping windows: >>> moving_median(x, 3, 1) array([1., 2., 3., 4., 5., 6., 7., 8.]) Compute without trimming: >>> moving_median(x, 3, 1) array([1., 2., 3., 4., 5., 6., 7., 8., nan, nan]) Compute on a nd-array to see output shape. On the moving axis, the output should be equal to :math:`(n - w_{len}) / skip + 1`. >>> n = 500 >>> window_length = 100 >>> window_skip = 50 >>> shape = (3, n, 5, 10) >>> y = np.random.random(shape) >>> res = moving_median(y, window_length, window_skip, axis=1) >>> print(res.shape) (3, 9, 5, 10) Check flags for different axis output >>> z = np.random.random((10, 10, 10)) >>> moving_median(z, 3, 3, axis=0).flags['C_CONTIGUOUS'] False >>> moving_median(z, 3, 3, axis=1).flags['C_CONTIGUOUS'] False >>> moving_median(z, 3, 3, axis=2).flags['C_CONTIGUOUS'] True """ if w_len <= 0 or skip <= 0: raise ValueError("`wlen` and `skip` cannot be less than or equal to 0.") # move computation axis to end x = moveaxis(a, axis, -1) # check that there are enough samples if w_len > x.shape[-1]: raise ValueError( "Cannot have a window length larger than the computation axis." ) rmed = _extensions.moving_median(x, w_len, skip, trim) # move computation axis back to original place and return return moveaxis(rmed, -1, axis) def moving_max(a, w_len, skip, trim=True, axis=-1): r""" Compute the moving maximum value. Parameters ---------- a : array-like Signal to compute moving max for. w_len : int Window length in number of samples. skip : int Window start location skip in number of samples. trim : bool, optional Trim the ends of the result, where a value cannot be calculated. If False, these values will be set to NaN. Default is True. axis : int, optional Axis to compute the moving max along. Default is -1. Returns ------- mmax : numpy.ndarray Moving max. Note that if the moving axis is not the last axis, then the result will *not* be c-contiguous. Notes ----- On the moving axis, the output length can be computed as follows: .. math:: \frac{n - w_{len}}{skip} + 1 where `n` is the length of the moving axis. For cases where `skip != 1` and `trim=False`, the length of the return on the moving axis can be calculated as: .. math:: \frac{n}{skip} Examples -------- Compute the with non-overlapping windows: >>> import numpy as np >>> x = np.arange(10) >>> moving_max(x, 3, 3) array([2., 5., 8.]) Compute with overlapping windows: >>> moving_max(x, 3, 1) array([2., 3., 4., 5., 6., 7., 8.]) Compute without triming: >>> moving_max(x, 3, 1) array([2., 3., 4., 5., 6., 7., 8., nan, nan]) Compute on a nd-array to see output shape. On the moving axis, the output should be equal to :math:`(n - w_{len}) / skip + 1`. >>> n = 500 >>> window_length = 100 >>> window_skip = 50 >>> shape = (3, n, 5, 10) >>> y = np.random.random(shape) >>> res = moving_max(y, window_length, window_skip, axis=1) >>> print(res.shape) (3, 9, 5, 10) Check flags for different axis output >>> z = np.random.random((10, 10, 10)) >>> moving_max(z, 3, 3, axis=0).flags['C_CONTIGUOUS'] False >>> moving_max(z, 3, 3, axis=1).flags['C_CONTIGUOUS'] False >>> moving_max(z, 3, 3, axis=2).flags['C_CONTIGUOUS'] True """ if w_len <= 0 or skip <= 0: raise ValueError("`wlen` and `skip` cannot be less than or equal to 0.") # Numpy uses SIMD instructions for max/min, so it will likely be faster # unless there is a lot of overlap cond1 = a.ndim == 1 and (skip / w_len) < 0.005 cond2 = a.ndim > 1 and (skip / w_len) < 0.3 # due to c-contiguity? cond3 = a.ndim > 2 # windowing doesnt handle more than 2 dimensions currently if any([cond1, cond2, cond3]): # move computation axis to end x = moveaxis(a, axis, -1) # check that there are enough samples if w_len > x.shape[-1]: raise ValueError("Window length is larger than the computation axis.") rmax = _extensions.moving_max(x, w_len, skip, trim) # move computation axis back to original place and return return moveaxis(rmax, -1, axis) else: x = ascontiguousarray( moveaxis(a, axis, 0) ) # need to move axis to the front for windowing xw = get_windowed_view(x, w_len, skip) if trim: res = xw.max(axis=1) # computation axis is still the second axis else: nfill = (x.shape[0] - w_len) // skip + 1 rshape = list(x.shape) rshape[0] = (x.shape[0] - 1) // skip + 1 res = full(rshape, nan) res[:nfill] = xw.max(axis=1) return moveaxis(res, 0, axis) def moving_min(a, w_len, skip, trim=True, axis=-1): r""" Compute the moving maximum value. Parameters ---------- a : array-like Signal to compute moving max for. w_len : int Window length in number of samples. skip : int Window start location skip in number of samples. trim : bool, optional Trim the ends of the result, where a value cannot be calculated. If False, these values will be set to NaN. Default is True. axis : int, optional Axis to compute the moving max along. Default is -1. Returns ------- mmax : numpy.ndarray Moving max. Note that if the moving axis is not the last axis, then the result will *not* be c-contiguous. Notes ----- On the moving axis, the output length can be computed as follows: .. math:: \frac{n - w_{len}}{skip} + 1 where `n` is the length of the moving axis. For cases where `skip != 1` and `trim=False`, the length of the return on the moving axis can be calculated as: .. math:: \frac{n}{skip} Examples -------- Compute the with non-overlapping windows: >>> import numpy as np >>> x = np.arange(10) >>> moving_min(x, 3, 3) array([1., 4., 7.]) Compute with overlapping windows: >>> moving_min(x, 3, 1) array([1., 2., 3., 4., 5., 6., 7.]) Compute without trimming: >>> moving_min(x, 3, 1) array([1., 2., 3., 4., 5., 6., 7., nan, nan]) Compute on a nd-array to see output shape. On the moving axis, the output should be equal to :math:`(n - w_{len}) / skip + 1`. >>> n = 500 >>> window_length = 100 >>> window_skip = 50 >>> shape = (3, n, 5, 10) >>> y = np.random.random(shape) >>> res = moving_min(y, window_length, window_skip, axis=1) >>> print(res.shape) (3, 9, 5, 10) Check flags for different axis output >>> z = np.random.random((10, 10, 10)) >>> moving_min(z, 3, 3, axis=0).flags['C_CONTIGUOUS'] False >>> moving_min(z, 3, 3, axis=1).flags['C_CONTIGUOUS'] False >>> moving_min(z, 3, 3, axis=2).flags['C_CONTIGUOUS'] True """ if w_len <= 0 or skip <= 0: raise ValueError("`wlen` and `skip` cannot be less than or equal to 0.") # Numpy uses SIMD instructions for max/min, so it will likely be faster # unless there is a lot of overlap cond1 = a.ndim == 1 and (skip / w_len) < 0.005 cond2 = a.ndim > 1 and (skip / w_len) < 0.3 # due to c-contiguity? cond3 = a.ndim > 2 # windowing doesnt handle more than 2 dimensions currently if any([cond1, cond2, cond3]): # move computation axis to end x = moveaxis(a, axis, -1) # check that there are enough samples if w_len > x.shape[-1]: raise ValueError("Window length is larger than the computation axis.") rmin = _extensions.moving_min(x, w_len, skip, trim) # move computation axis back to original place and return return moveaxis(rmin, -1, axis) else: x = ascontiguousarray( moveaxis(a, axis, 0) ) # need to move axis to the front for windowing xw = get_windowed_view(x, w_len, skip) if trim: res = xw.min(axis=1) # computation axis is still the second axis else: nfill = (x.shape[0] - w_len) // skip + 1 rshape = list(x.shape) rshape[0] = (x.shape[0] - 1) // skip + 1 res = full(rshape, nan) res[:nfill] = xw.min(axis=1) return moveaxis(res, 0, axis)
scikit-digital-health
/scikit_digital_health-0.11.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl/skdh/utility/math.py
math.py
from warnings import warn from numpy import moveaxis, ascontiguousarray, full, nan, isnan from skdh.utility import _extensions from skdh.utility.windowing import get_windowed_view __all__ = [ "moving_mean", "moving_sd", "moving_skewness", "moving_kurtosis", "moving_median", "moving_max", "moving_min", ] def moving_mean(a, w_len, skip, trim=True, axis=-1): r""" Compute the moving mean. Parameters ---------- a : array-like Signal to compute moving mean for. w_len : int Window length in number of samples. skip : int Window start location skip in number of samples. trim : bool, optional Trim the ends of the result, where a value cannot be calculated. If False, these values will be set to NaN. Default is True. axis : int, optional Axis to compute the moving mean along. Default is -1. Returns ------- mmean : numpy.ndarray Moving mean. Note that if the moving axis is not the last axis, then the result will *not* be c-contiguous. Notes ----- On the moving axis if `trim=True`, the output length can be computed as follows: .. math:: \frac{n - w_{len}}{skip} + 1 where `n` is the length of the moving axis. For cases where `skip != 1` and `trim=False`, the length of the return on the moving axis can be calculated as: .. math:: \frac{n}{skip} Most efficient computations are for `skip` values that are either factors of `wlen`, or greater or equal to `wlen`. Warnings -------- Catastropic cancellation is a concern when `skip` is less than `wlen` due to the cumulative sum-type algorithm being used, when input values are very very large, or very very small. With typical IMU data values this should not be an issue, even for very long data series (multiple days worth of data) Examples -------- Compute the with non-overlapping windows: >>> import numpy as np >>> x = np.arange(10) >>> moving_mean(x, 3, 3) array([1., 4., 7.]) Compute with overlapping windows: >>> moving_mean(x, 3, 1) array([1., 2., 3., 4., 5., 6., 7., 8.]) Compute without trimming the result >>> moving_mean(x, 3, 1, trim=False) array([1., 2., 3., 4., 5., 6., 7., 8., nan, nan]) Compute on a nd-array to see output shape. On the moving axis, the output should be equal to :math:`(n - w_{len}) / skip + 1`. >>> n = 500 >>> window_length = 100 >>> window_skip = 50 >>> shape = (3, n, 5, 10) >>> y = np.random.random(shape) >>> res = moving_mean(y, window_length, window_skip, axis=1) >>> print(res.shape) (3, 9, 5, 10) Check flags for different axis output >>> z = np.random.random((10, 10, 10)) >>> moving_mean(z, 3, 3, axis=0).flags['C_CONTIGUOUS'] False >>> moving_mean(z, 3, 3, axis=1).flags['C_CONTIGUOUS'] False >>> moving_mean(z, 3, 3, axis=2).flags['C_CONTIGUOUS'] True """ if w_len <= 0 or skip <= 0: raise ValueError("`wlen` and `skip` cannot be less than or equal to 0.") # move computation axis to end x = moveaxis(a, axis, -1) # check that there are enough samples if w_len > x.shape[-1]: raise ValueError("Window length is larger than the computation axis.") rmean = _extensions.moving_mean(x, w_len, skip, trim) # move computation axis back to original place and return return moveaxis(rmean, -1, axis) def moving_sd(a, w_len, skip, trim=True, axis=-1, return_previous=True): r""" Compute the moving sample standard deviation. Parameters ---------- a : array-like Signal to compute moving sample standard deviation for. w_len : int Window length in number of samples. skip : int Window start location skip in number of samples. trim : bool, optional Trim the ends of the result, where a value cannot be calculated. If False, these values will be set to NaN. Default is True. axis : int, optional Axis to compute the moving mean along. Default is -1. return_previous : bool, optional Return previous moments. These are computed either way, and are therefore optional returns. Default is True. Returns ------- msd : numpy.ndarray Moving sample standard deviation. Note that if the moving axis is not the last axis, then the result will *not* be c-contiguous. mmean : numpy.ndarray, optional. Moving mean. Note that if the moving axis is not the last axis, then the result will *not* be c-contiguous. Only returned if `return_previous=True`. Notes ----- On the moving axis, the output length can be computed as follows: .. math:: \frac{n - w_{len}}{skip} + 1 where `n` is the length of the moving axis. For cases where `skip != 1` and `trim=False`, the length of the return on the moving axis can be calculated as: .. math:: \frac{n}{skip} Most efficient computations are for `skip` values that are either factors of `wlen`, or greater or equal to `wlen`. Warnings -------- Catastropic cancellation is a concern when `skip` is less than `wlen` due to the cumulative sum-type algorithms being used, when input values are very very large, or very very small. With typical IMU data values this should not be an issue, even for very long data series (multiple days worth of data). Examples -------- Compute the with non-overlapping windows: >>> import numpy as np >>> x = np.arange(10)**2 >>> moving_sd(x, 3, 3, return_previous=True) (array([ 2.081666 , 8.02080628, 14.0118997 ]), array([ 1.66666667, 16.66666667, 49.66666667])) Compute with overlapping windows: >>> moving_mean(x, 3, 1, return_previous=False) array([ 2.081666 , 4.04145188, 6.02771377, 8.02080628, 10.0166528 , 12.01388086, 14.0118997 , 16.01041328]) Compute without trimming: >>> moving_mean(x, 3, 1, trim=False, return_previous=False) array([ 2.081666 , 4.04145188, 6.02771377, 8.02080628, 10.0166528 , 12.01388086, 14.0118997 , 16.01041328, nan, nan]) Compute on a nd-array to see output shape. On the moving axis, the output should be equal to :math:`(n - w_{len}) / skip + 1`. >>> n = 500 >>> window_length = 100 >>> window_skip = 50 >>> shape = (3, n, 5, 10) >>> y = np.random.random(shape) >>> res = moving_sd(y, window_length, window_skip, axis=1, return_previous=False) >>> print(res.shape) (3, 9, 5, 10) Check flags for different axis output >>> z = np.random.random((10, 10, 10)) >>> moving_sd(z, 3, 3, axis=0, return_previous=False).flags['C_CONTIGUOUS'] False >>> moving_sd(z, 3, 3, axis=1, return_previous=False).flags['C_CONTIGUOUS'] False >>> moving_sd(z, 3, 3, axis=2, return_previous=False).flags['C_CONTIGUOUS'] True """ if w_len <= 0 or skip <= 0: raise ValueError("`wlen` and `skip` cannot be less than or equal to 0.") # move computation axis to end x = moveaxis(a, axis, -1) # check that there are enough samples if w_len > x.shape[-1]: raise ValueError( "Cannot have a window length larger than the computation axis." ) res = _extensions.moving_sd(x, w_len, skip, trim, return_previous) # move computation axis back to original place and return if return_previous: return moveaxis(res[0], -1, axis), moveaxis(res[1], -1, axis) else: return moveaxis(res, -1, axis) def moving_skewness(a, w_len, skip, trim=True, axis=-1, return_previous=True): r""" Compute the moving sample skewness. Parameters ---------- a : array-like Signal to compute moving skewness for. w_len : int Window length in number of samples. skip : int Window start location skip in number of samples. trim : bool, optional Trim the ends of the result, where a value cannot be calculated. If False, these values will be set to NaN. Default is True. axis : int, optional Axis to compute the moving mean along. Default is -1. return_previous : bool, optional Return previous moments. These are computed either way, and are therefore optional returns. Default is True. Returns ------- mskew : numpy.ndarray Moving skewness. Note that if the moving axis is not the last axis, then the result will *not* be c-contiguous. msd : numpy.ndarray, optional Moving sample standard deviation. Note that if the moving axis is not the last axis, then the result will *not* be c-contiguous. Only returned if `return_previous=True`. mmean : numpy.ndarray, optional. Moving mean. Note that if the moving axis is not the last axis, then the result will *not* be c-contiguous. Only returned if `return_previous=True`. Notes ----- On the moving axis, the output length can be computed as follows: .. math:: \frac{n - w_{len}}{skip} + 1 where `n` is the length of the moving axis. For cases where `skip != 1` and `trim=False`, the length of the return on the moving axis can be calculated as: .. math:: \frac{n}{skip} Warnings -------- While this implementation is quite fast, it is also quite mememory inefficient. 3 arrays of equal length to the computation axis are created during computation, which can easily exceed system memory if already using a significant amount of memory. Examples -------- Compute the with non-overlapping windows: >>> import numpy as np >>> x = np.arange(10)**2 >>> moving_skewness(x, 3, 3, return_previous=True) (array([0.52800497, 0.15164108, 0.08720961]), array([ 2.081666 , 8.02080628, 14.0118997 ]), array([ 1.66666667, 16.66666667, 49.66666667])) Compute with overlapping windows: >>> moving_skewness(x, 3, 1, return_previous=False) array([0.52800497, 0.29479961, 0.20070018, 0.15164108, 0.12172925, 0.10163023, 0.08720961, 0.07636413]) Compute without trimming: >>> moving_skewness(x, 3, 1, trim=False, return_previous=False) array([0.52800497, 0.29479961, 0.20070018, 0.15164108, 0.12172925, 0.10163023, 0.08720961, 0.07636413, nan, nan]) Compute on a nd-array to see output shape. On the moving axis, the output should be equal to :math:`(n - w_{len}) / skip + 1`. >>> n = 500 >>> window_length = 100 >>> window_skip = 50 >>> shape = (3, n, 5, 10) >>> y = np.random.random(shape) >>> res = moving_skewness(y, window_length, window_skip, axis=1, return_previous=False) >>> print(res.shape) (3, 9, 5, 10) Check flags for different axis output >>> z = np.random.random((10, 10, 10)) >>> moving_skewness(z, 3, 3, axis=0, return_previous=False).flags['C_CONTIGUOUS'] False >>> moving_skewness(z, 3, 3, axis=1, return_previous=False).flags['C_CONTIGUOUS'] False >>> moving_skewness(z, 3, 3, axis=2, return_previous=False).flags['C_CONTIGUOUS'] True """ if w_len <= 0 or skip <= 0: raise ValueError("`wlen` and `skip` cannot be less than or equal to 0.") # move computation axis to end x = moveaxis(a, axis, -1) # check that there are enough samples if w_len > x.shape[-1]: raise ValueError( "Cannot have a window length larger than the computation axis." ) res = _extensions.moving_skewness(x, w_len, skip, trim, return_previous) if isnan(res).any(): warn("NaN values present in output, possibly due to catastrophic cancellation.") # move computation axis back to original place and return if return_previous: return tuple(moveaxis(i, -1, axis) for i in res) else: return moveaxis(res, -1, axis) def moving_kurtosis(a, w_len, skip, trim=True, axis=-1, return_previous=True): r""" Compute the moving sample kurtosis. Parameters ---------- a : array-like Signal to compute moving kurtosis for. w_len : int Window length in number of samples. skip : int Window start location skip in number of samples. trim : bool, optional Trim the ends of the result, where a value cannot be calculated. If False, these values will be set to NaN. Default is True. axis : int, optional Axis to compute the moving mean along. Default is -1. return_previous : bool, optional Return previous moments. These are computed either way, and are therefore optional returns. Default is True. Returns ------- mkurt : numpy.ndarray Moving kurtosis. Note that if the moving axis is not the last axis, then the result will *not* be c-contiguous. mskew : numpy.ndarray, optional Moving skewness. Note that if the moving axis is not the last axis, then the result will *not* be c-contiguous. Only returned if `return_previous=True`. msd : numpy.ndarray, optional Moving sample standard deviation. Note that if the moving axis is not the last axis, then the result will *not* be c-contiguous. Only returned if `return_previous=True`. mmean : numpy.ndarray, optional. Moving mean. Note that if the moving axis is not the last axis, then the result will *not* be c-contiguous. Only returned if `return_previous=True`. Notes ----- On the moving axis, the output length can be computed as follows: .. math:: \frac{n - w_{len}}{skip} + 1 where `n` is the length of the moving axis. For cases where `skip != 1` and `trim=False`, the length of the return on the moving axis can be calculated as: .. math:: \frac{n}{skip} Warnings -------- While this implementation is quite fast, it is also quite mememory inefficient. 4 arrays of equal length to the computation axis are created during computation, which can easily exceed system memory if already using a significant amount of memory. Examples -------- Compute the with non-overlapping windows: >>> import numpy as np >>> x = np.arange(10)**2 >>> moving_kurtosis(x, 3, 3, return_previous=True) (array([-1.5, -1.5, -1.5]), # kurtosis array([0.52800497, 0.15164108, 0.08720961]), # skewness array([ 2.081666 , 8.02080628, 14.0118997 ]), # standard deviation array([ 1.66666667, 16.66666667, 49.66666667])) # mean Compute with overlapping windows: >>> moving_kurtosis(np.random.random(100), 50, 20, return_previous=False) array([-1.10155074, -1.20785479, -1.24363625]) # random Compute without trimming: >>> moving_kurtosis(np.random.random(100), 50, 20, return_previous=False) array([-1.10155074, -1.20785479, -1.24363625, nan, nan]) # random Compute on a nd-array to see output shape. On the moving axis, the output should be equal to :math:`(n - w_{len}) / skip + 1`. >>> n = 500 >>> window_length = 100 >>> window_skip = 50 >>> shape = (3, n, 5, 10) >>> y = np.random.random(shape) >>> res = moving_skewness(y, window_length, window_skip, axis=1, return_previous=False) >>> print(res.shape) (3, 9, 5, 10) Check flags for different axis output >>> z = np.random.random((10, 10, 10)) >>> moving_kurtosis(z, 3, 3, axis=0, return_previous=False).flags['C_CONTIGUOUS'] False >>> moving_kurtosis(z, 3, 3, axis=1, return_previous=False).flags['C_CONTIGUOUS'] False >>> moving_kurtosis(z, 3, 3, axis=2, return_previous=False).flags['C_CONTIGUOUS'] True """ if w_len <= 0 or skip <= 0: raise ValueError("`wlen` and `skip` cannot be less than or equal to 0.") # move computation axis to end x = moveaxis(a, axis, -1) # check that there are enough samples if w_len > x.shape[-1]: raise ValueError( "Cannot have a window length larger than the computation axis." ) res = _extensions.moving_kurtosis(x, w_len, skip, trim, return_previous) if isnan(res).any(): warn("NaN values present in output, possibly due to catastrophic cancellation.") # move computation axis back to original place and return if return_previous: return tuple(moveaxis(i, -1, axis) for i in res) else: return moveaxis(res, -1, axis) def moving_median(a, w_len, skip=1, trim=True, axis=-1): r""" Compute the moving mean. Parameters ---------- a : array-like Signal to compute moving mean for. w_len : int Window length in number of samples. skip : int Window start location skip in number of samples. Default is 1. trim : bool, optional Trim the ends of the result, where a value cannot be calculated. If False, these values will be set to NaN. Default is True. axis : int, optional Axis to compute the moving mean along. Default is -1. Returns ------- mmed : numpy.ndarray Moving median. Note that if the moving axis is not the last axis, then the result will *not* be c-contiguous. Notes ----- On the moving axis, the output length can be computed as follows: .. math:: \frac{n - w_{len}}{skip} + 1 where `n` is the length of the moving axis. For cases where `skip != 1` and `trim=False`, the length of the return on the moving axis can be calculated as: .. math:: \frac{n}{skip} Examples -------- Compute the with non-overlapping windows: >>> import numpy as np >>> x = np.arange(10) >>> moving_median(x, 3, 3) array([1., 4., 7.]) Compute with overlapping windows: >>> moving_median(x, 3, 1) array([1., 2., 3., 4., 5., 6., 7., 8.]) Compute without trimming: >>> moving_median(x, 3, 1) array([1., 2., 3., 4., 5., 6., 7., 8., nan, nan]) Compute on a nd-array to see output shape. On the moving axis, the output should be equal to :math:`(n - w_{len}) / skip + 1`. >>> n = 500 >>> window_length = 100 >>> window_skip = 50 >>> shape = (3, n, 5, 10) >>> y = np.random.random(shape) >>> res = moving_median(y, window_length, window_skip, axis=1) >>> print(res.shape) (3, 9, 5, 10) Check flags for different axis output >>> z = np.random.random((10, 10, 10)) >>> moving_median(z, 3, 3, axis=0).flags['C_CONTIGUOUS'] False >>> moving_median(z, 3, 3, axis=1).flags['C_CONTIGUOUS'] False >>> moving_median(z, 3, 3, axis=2).flags['C_CONTIGUOUS'] True """ if w_len <= 0 or skip <= 0: raise ValueError("`wlen` and `skip` cannot be less than or equal to 0.") # move computation axis to end x = moveaxis(a, axis, -1) # check that there are enough samples if w_len > x.shape[-1]: raise ValueError( "Cannot have a window length larger than the computation axis." ) rmed = _extensions.moving_median(x, w_len, skip, trim) # move computation axis back to original place and return return moveaxis(rmed, -1, axis) def moving_max(a, w_len, skip, trim=True, axis=-1): r""" Compute the moving maximum value. Parameters ---------- a : array-like Signal to compute moving max for. w_len : int Window length in number of samples. skip : int Window start location skip in number of samples. trim : bool, optional Trim the ends of the result, where a value cannot be calculated. If False, these values will be set to NaN. Default is True. axis : int, optional Axis to compute the moving max along. Default is -1. Returns ------- mmax : numpy.ndarray Moving max. Note that if the moving axis is not the last axis, then the result will *not* be c-contiguous. Notes ----- On the moving axis, the output length can be computed as follows: .. math:: \frac{n - w_{len}}{skip} + 1 where `n` is the length of the moving axis. For cases where `skip != 1` and `trim=False`, the length of the return on the moving axis can be calculated as: .. math:: \frac{n}{skip} Examples -------- Compute the with non-overlapping windows: >>> import numpy as np >>> x = np.arange(10) >>> moving_max(x, 3, 3) array([2., 5., 8.]) Compute with overlapping windows: >>> moving_max(x, 3, 1) array([2., 3., 4., 5., 6., 7., 8.]) Compute without triming: >>> moving_max(x, 3, 1) array([2., 3., 4., 5., 6., 7., 8., nan, nan]) Compute on a nd-array to see output shape. On the moving axis, the output should be equal to :math:`(n - w_{len}) / skip + 1`. >>> n = 500 >>> window_length = 100 >>> window_skip = 50 >>> shape = (3, n, 5, 10) >>> y = np.random.random(shape) >>> res = moving_max(y, window_length, window_skip, axis=1) >>> print(res.shape) (3, 9, 5, 10) Check flags for different axis output >>> z = np.random.random((10, 10, 10)) >>> moving_max(z, 3, 3, axis=0).flags['C_CONTIGUOUS'] False >>> moving_max(z, 3, 3, axis=1).flags['C_CONTIGUOUS'] False >>> moving_max(z, 3, 3, axis=2).flags['C_CONTIGUOUS'] True """ if w_len <= 0 or skip <= 0: raise ValueError("`wlen` and `skip` cannot be less than or equal to 0.") # Numpy uses SIMD instructions for max/min, so it will likely be faster # unless there is a lot of overlap cond1 = a.ndim == 1 and (skip / w_len) < 0.005 cond2 = a.ndim > 1 and (skip / w_len) < 0.3 # due to c-contiguity? cond3 = a.ndim > 2 # windowing doesnt handle more than 2 dimensions currently if any([cond1, cond2, cond3]): # move computation axis to end x = moveaxis(a, axis, -1) # check that there are enough samples if w_len > x.shape[-1]: raise ValueError("Window length is larger than the computation axis.") rmax = _extensions.moving_max(x, w_len, skip, trim) # move computation axis back to original place and return return moveaxis(rmax, -1, axis) else: x = ascontiguousarray( moveaxis(a, axis, 0) ) # need to move axis to the front for windowing xw = get_windowed_view(x, w_len, skip) if trim: res = xw.max(axis=1) # computation axis is still the second axis else: nfill = (x.shape[0] - w_len) // skip + 1 rshape = list(x.shape) rshape[0] = (x.shape[0] - 1) // skip + 1 res = full(rshape, nan) res[:nfill] = xw.max(axis=1) return moveaxis(res, 0, axis) def moving_min(a, w_len, skip, trim=True, axis=-1): r""" Compute the moving maximum value. Parameters ---------- a : array-like Signal to compute moving max for. w_len : int Window length in number of samples. skip : int Window start location skip in number of samples. trim : bool, optional Trim the ends of the result, where a value cannot be calculated. If False, these values will be set to NaN. Default is True. axis : int, optional Axis to compute the moving max along. Default is -1. Returns ------- mmax : numpy.ndarray Moving max. Note that if the moving axis is not the last axis, then the result will *not* be c-contiguous. Notes ----- On the moving axis, the output length can be computed as follows: .. math:: \frac{n - w_{len}}{skip} + 1 where `n` is the length of the moving axis. For cases where `skip != 1` and `trim=False`, the length of the return on the moving axis can be calculated as: .. math:: \frac{n}{skip} Examples -------- Compute the with non-overlapping windows: >>> import numpy as np >>> x = np.arange(10) >>> moving_min(x, 3, 3) array([1., 4., 7.]) Compute with overlapping windows: >>> moving_min(x, 3, 1) array([1., 2., 3., 4., 5., 6., 7.]) Compute without trimming: >>> moving_min(x, 3, 1) array([1., 2., 3., 4., 5., 6., 7., nan, nan]) Compute on a nd-array to see output shape. On the moving axis, the output should be equal to :math:`(n - w_{len}) / skip + 1`. >>> n = 500 >>> window_length = 100 >>> window_skip = 50 >>> shape = (3, n, 5, 10) >>> y = np.random.random(shape) >>> res = moving_min(y, window_length, window_skip, axis=1) >>> print(res.shape) (3, 9, 5, 10) Check flags for different axis output >>> z = np.random.random((10, 10, 10)) >>> moving_min(z, 3, 3, axis=0).flags['C_CONTIGUOUS'] False >>> moving_min(z, 3, 3, axis=1).flags['C_CONTIGUOUS'] False >>> moving_min(z, 3, 3, axis=2).flags['C_CONTIGUOUS'] True """ if w_len <= 0 or skip <= 0: raise ValueError("`wlen` and `skip` cannot be less than or equal to 0.") # Numpy uses SIMD instructions for max/min, so it will likely be faster # unless there is a lot of overlap cond1 = a.ndim == 1 and (skip / w_len) < 0.005 cond2 = a.ndim > 1 and (skip / w_len) < 0.3 # due to c-contiguity? cond3 = a.ndim > 2 # windowing doesnt handle more than 2 dimensions currently if any([cond1, cond2, cond3]): # move computation axis to end x = moveaxis(a, axis, -1) # check that there are enough samples if w_len > x.shape[-1]: raise ValueError("Window length is larger than the computation axis.") rmin = _extensions.moving_min(x, w_len, skip, trim) # move computation axis back to original place and return return moveaxis(rmin, -1, axis) else: x = ascontiguousarray( moveaxis(a, axis, 0) ) # need to move axis to the front for windowing xw = get_windowed_view(x, w_len, skip) if trim: res = xw.min(axis=1) # computation axis is still the second axis else: nfill = (x.shape[0] - w_len) // skip + 1 rshape = list(x.shape) rshape[0] = (x.shape[0] - 1) // skip + 1 res = full(rshape, nan) res[:nfill] = xw.min(axis=1) return moveaxis(res, 0, axis)
0.946818
0.657683
from numpy import require from numpy.lib.stride_tricks import as_strided __all__ = ["compute_window_samples", "get_windowed_view"] class DimensionError(Exception): """ Custom error for if the input signal has too many dimensions """ pass class ContiguityError(Exception): """ Custom error for if the input signal is not C-contiguous """ pass def compute_window_samples(fs, window_length, window_step): """ Compute the number of samples for a window. Takes the sampling frequency, window length, and window step in common representations and converts them into number of samples. Parameters ---------- fs : float Sampling frequency in Hz. window_length : float Window length in seconds. If not provided (None), will do no windowing. Default is None window_step : {float, int} Window step - the spacing between the start of windows. This can be specified several different ways (see Notes). Default is 1.0 Returns ------- length_n : int Window length in samples step_n : int Window step in samples Raises ------ ValueError If `window_step` is negative, or if `window_step` is a float not in (0.0, 1.0] Notes ----- Computation of the window step depends on the type of input provided, and the range. - `window_step` is a float in (0.0, 1.0]: specifies the fraction of a window to skip to get to the start of the next window - `window_step` is an integer > 1: specifies the number of samples to skip to get to the start of the next window Examples -------- Compute the window length and step in samples for a 3s window with 50% overlap, with a sampling rate of 50Hz >>> compute_window_samples(50.0, 3.0, 0.5) (150, 75) Compute the window length for a 4.5s window with a step of 1 sample, and a sampling rate of 100Hz >>> compute_window_samples(100.0, 4.5, 1) (450, 1) """ if window_step is None or window_length is None: return None, None length_n = int(round(fs * window_length)) if isinstance(window_step, int): if window_step > 0: step_n = window_step else: raise ValueError("window_step cannot be negative") elif isinstance(window_step, float): if 0.0 < window_step < 1.0: step_n = int(round(length_n * window_step)) step_n = max(min(step_n, length_n), 1) elif window_step == 1.0: step_n = length_n else: raise ValueError("float values for window_step must be in (0.0, 1.0]") return length_n, step_n def get_windowed_view(x, window_length, step_size, ensure_c_contiguity=False): """ Return a moving window view over the data Parameters ---------- x : numpy.ndarray 1- or 2-D array of signals to window. Windows occur along the 0 axis. Must be C-contiguous. window_length : int Window length/size. step_size : int Step/stride size for windows - how many samples to step from window center to window center. ensure_c_contiguity : bool, optional Create a new array with C-contiguity if the passed array is not C-contiguous. This *may* result in the memory requirements significantly increasing. Default is False, which will raise a ValueError if `x` is not C-contiguous Returns ------- x_win : numpy.ndarray 2- or 3-D array of windows of the original data, of shape (..., L[, ...]) """ if not (x.ndim in [1, 2]): raise DimensionError("Array cannot have more than 2 dimensions.") if ensure_c_contiguity: x = require(x, requirements=["C"]) else: if not x.flags["C_CONTIGUOUS"]: raise ContiguityError( "Input array must be C-contiguous. See numpy.ascontiguousarray" ) if x.ndim == 1: nrows = ((x.size - window_length) // step_size) + 1 n = x.strides[0] return as_strided( x, shape=(nrows, window_length), strides=(step_size * n, n), writeable=False ) else: k = x.shape[1] nrows = ((x.shape[0] - window_length) // step_size) + 1 n = x.strides[1] new_shape = (nrows, window_length, k) new_strides = (step_size * k * n, k * n, n) return as_strided(x, shape=new_shape, strides=new_strides, writeable=False)
scikit-digital-health
/scikit_digital_health-0.11.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl/skdh/utility/windowing.py
windowing.py
from numpy import require from numpy.lib.stride_tricks import as_strided __all__ = ["compute_window_samples", "get_windowed_view"] class DimensionError(Exception): """ Custom error for if the input signal has too many dimensions """ pass class ContiguityError(Exception): """ Custom error for if the input signal is not C-contiguous """ pass def compute_window_samples(fs, window_length, window_step): """ Compute the number of samples for a window. Takes the sampling frequency, window length, and window step in common representations and converts them into number of samples. Parameters ---------- fs : float Sampling frequency in Hz. window_length : float Window length in seconds. If not provided (None), will do no windowing. Default is None window_step : {float, int} Window step - the spacing between the start of windows. This can be specified several different ways (see Notes). Default is 1.0 Returns ------- length_n : int Window length in samples step_n : int Window step in samples Raises ------ ValueError If `window_step` is negative, or if `window_step` is a float not in (0.0, 1.0] Notes ----- Computation of the window step depends on the type of input provided, and the range. - `window_step` is a float in (0.0, 1.0]: specifies the fraction of a window to skip to get to the start of the next window - `window_step` is an integer > 1: specifies the number of samples to skip to get to the start of the next window Examples -------- Compute the window length and step in samples for a 3s window with 50% overlap, with a sampling rate of 50Hz >>> compute_window_samples(50.0, 3.0, 0.5) (150, 75) Compute the window length for a 4.5s window with a step of 1 sample, and a sampling rate of 100Hz >>> compute_window_samples(100.0, 4.5, 1) (450, 1) """ if window_step is None or window_length is None: return None, None length_n = int(round(fs * window_length)) if isinstance(window_step, int): if window_step > 0: step_n = window_step else: raise ValueError("window_step cannot be negative") elif isinstance(window_step, float): if 0.0 < window_step < 1.0: step_n = int(round(length_n * window_step)) step_n = max(min(step_n, length_n), 1) elif window_step == 1.0: step_n = length_n else: raise ValueError("float values for window_step must be in (0.0, 1.0]") return length_n, step_n def get_windowed_view(x, window_length, step_size, ensure_c_contiguity=False): """ Return a moving window view over the data Parameters ---------- x : numpy.ndarray 1- or 2-D array of signals to window. Windows occur along the 0 axis. Must be C-contiguous. window_length : int Window length/size. step_size : int Step/stride size for windows - how many samples to step from window center to window center. ensure_c_contiguity : bool, optional Create a new array with C-contiguity if the passed array is not C-contiguous. This *may* result in the memory requirements significantly increasing. Default is False, which will raise a ValueError if `x` is not C-contiguous Returns ------- x_win : numpy.ndarray 2- or 3-D array of windows of the original data, of shape (..., L[, ...]) """ if not (x.ndim in [1, 2]): raise DimensionError("Array cannot have more than 2 dimensions.") if ensure_c_contiguity: x = require(x, requirements=["C"]) else: if not x.flags["C_CONTIGUOUS"]: raise ContiguityError( "Input array must be C-contiguous. See numpy.ascontiguousarray" ) if x.ndim == 1: nrows = ((x.size - window_length) // step_size) + 1 n = x.strides[0] return as_strided( x, shape=(nrows, window_length), strides=(step_size * n, n), writeable=False ) else: k = x.shape[1] nrows = ((x.shape[0] - window_length) // step_size) + 1 n = x.strides[1] new_shape = (nrows, window_length, k) new_strides = (step_size * k * n, k * n, n) return as_strided(x, shape=new_shape, strides=new_strides, writeable=False)
0.951402
0.590602
from numpy import ( mean, asarray, cumsum, minimum, sort, argsort, unique, insert, sum, log, nan, float_, ) from skdh.utility.internal import rle __all__ = [ "average_duration", "state_transition_probability", "gini_index", "average_hazard", "state_power_law_distribution", ] def gini(x, w=None, corr=True): """ Compute the GINI Index. Parameters ---------- x : numpy.ndarray Array of bout lengths w : {None, numpy.ndarray}, optional Weights for x. Must be the same size. If None, weights are not used. corr : bool, optional Apply finite sample correction. Default is True. Returns ------- g : float Gini index References ---------- .. [1] https://stackoverflow.com/questions/48999542/more-efficient-weighted-gini-coefficient-in -python/48999797#48999797 """ if x.size == 0: return 0.0 elif x.size == 1: return 1.0 # The rest of the code requires numpy arrays. if w is not None: sorted_indices = argsort(x) sorted_x = x[sorted_indices] sorted_w = w[sorted_indices] # Force float dtype to avoid overflows cumw = cumsum(sorted_w, dtype=float_) cumxw = cumsum(sorted_x * sorted_w, dtype=float_) g = sum(cumxw[1:] * cumw[:-1] - cumxw[:-1] * cumw[1:]) / (cumxw[-1] * cumw[-1]) if corr: return g * x.size / (x.size - 1) else: return g else: sorted_x = sort(x) n = x.size cumx = cumsum(sorted_x, dtype=float_) # The above formula, with all weights equal to 1 simplifies to: g = (n + 1 - 2 * sum(cumx) / cumx[-1]) / n if corr: return minimum(g * n / (n - 1), 1) else: return g def average_duration(a=None, *, lengths=None, values=None, voi=1): """ Compute the average duration in the desired state. Parameters ---------- a : array-like, optional 1D array of binary values. If not provided, all of `lengths`, `starts`, and `values` must be provided. lengths : {numpy.ndarray, list}, optional Lengths of runs of the binary values. If not provided, `a` must be. Must be the same size as `values`. values : {numpy.ndarray, list}, optional Values of the runs. If not provided, all `lengths` will be assumed to be for the `voi`. voi : {int, bool}, optional Value of interest, value for which to calculate the average run length. Default is `1` (`True`). Returns ------- avg_dur : float average duration, in samples, of the runs with value `voi`. Examples -------- >>> x = [0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1] >>> average_duration(x, voi=1) 2.0 >>> average_duration(x, voi=0) 5.333333333 >>> lengths = [4, 2, 9, 1, 3, 3] >>> values = [0, 1, 0, 1, 0, 1] >>> average_duration(lengths=lengths, values=values, voi=1) 2.0 >>> average_duration(lengths=lengths) 2.0 """ if a is not None: l, _, v = rle(a) lens = l[v == voi] else: if lengths is None: raise ValueError("One of `a` or `lengths` must be provided.") lens = asarray(lengths) if values is not None: lens = lens[values == voi] if lens.size == 0: return 0.0 return mean(lens) def state_transition_probability(a=None, *, lengths=None, values=None, voi=1): r""" Compute the probability of transitioning from the desired state to the second state. Parameters ---------- a : array-like, optional 1D array of binary values. If not provided, all of `lengths`, `starts`, and `values` must be provided. lengths : {numpy.ndarray, list}, optional, optional Lengths of runs of the binary values. If not provided, `a` must be. Must be the same size as `values`. values : {numpy.ndarray, list}, optional, optional Values of the runs. If not provided, all `lengths` will be assumed to be for the `voi`. voi : {int, bool}, optional Value of interest, value for which to calculate the average run length. Default is `1` (`True`). Returns ------- avg_dur : float average duration, in samples, of the runs with value `voi`. Examples -------- >>> x = [0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1] >>> state_transition_probability(x, voi=1) 0.5 >>> state_transition_probability(x, voi=0) 0.1875 >>> lengths = [4, 2, 9, 1, 3, 3] >>> values = [0, 1, 0, 1, 0, 1] >>> state_transition_probability(lengths=lengths, values=values, voi=1) 0.5 >>> state_transition_probability(lengths=lengths) 0.5 References ---------- .. [1] J. Di et al., “Patterns of sedentary and active time accumulation are associated with mortality in US adults: The NHANES study,” bioRxiv, p. 182337, Aug. 2017, doi: 10.1101/182337. Notes ----- Higher values indicate more frequent switching between states, and as a result may indicate greater fragmentation of sleep. The implementation is straightforward [1]_, and is simply defined as .. math:: satp = \frac{1}{\mu_{awake}} where :math:`\mu_{awake}` is the mean awake bout time. """ if a is not None: l, _, v = rle(a) lens = l[v == voi] else: if lengths is None: raise ValueError("One of `a` or `lengths` must be provided.") lens = asarray(lengths) if values is not None: lens = lens[values == voi] if lens.size == 0: return nan return 1 / mean(lens) def gini_index(a=None, *, lengths=None, values=None, voi=1): """ Compute the normalized variability of the state bouts, also known as the GINI index from economics. Parameters ---------- a : array-like, optional 1D array of binary values. If not provided, all of `lengths`, `starts`, and `values` must be provided. lengths : {numpy.ndarray, list}, optional, optional Lengths of runs of the binary values. If not provided, `a` must be. Must be the same size as `values`. values : {numpy.ndarray, list}, optional, optional Values of the runs. If not provided, all `lengths` will be assumed to be for the `voi`. voi : {int, bool}, optional Value of interest, value for which to calculate the average run length. Default is `1` (`True`). Returns ------- avg_dur : float average duration, in samples, of the runs with value `voi`. Examples -------- >>> x = [0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1] >>> gini_index(x, voi=1) 0.333333 >>> gini_index(x, voi=0) 0.375 >>> lengths = [4, 2, 9, 1, 3, 3] >>> values = [0, 1, 0, 1, 0, 1] >>> gini_index(lengths=lengths, values=values, voi=1) 0.333333 >>> gini_index(lengths=lengths) 0.333333 References ---------- .. [1] J. Di et al., “Patterns of sedentary and active time accumulation are associated with mortality in US adults: The NHANES study,” bioRxiv, p. 182337, Aug. 2017, doi: 10.1101/182337. Notes ----- Gini Index values are bounded between 0 and 1, with values near 1 indicating the total time accumulating due to a small number of longer bouts, whereas values near 0 indicate all bouts contribute more equally to the total time. """ if a is not None: l, _, v = rle(a) lens = l[v == voi] else: if lengths is None: raise ValueError("One of `a` or `lengths` must be provided.") lens = asarray(lengths) if values is not None: lens = lens[values == voi] if lens.size == 0: return 0.0 return gini(lens, w=None, corr=True) def average_hazard(a=None, *, lengths=None, values=None, voi=1): r""" Compute the average hazard summary of the hazard function, as a function of the state bout duration. The average hazard represents a summary of the frequency of transitioning from one state to the other. Parameters ---------- a : array-like, optional 1D array of binary values. If not provided, all of `lengths`, `starts`, and `values` must be provided. lengths : {numpy.ndarray, list}, optional, optional Lengths of runs of the binary values. If not provided, `a` must be. Must be the same size as `values`. values : {numpy.ndarray, list}, optional, optional Values of the runs. If not provided, all `lengths` will be assumed to be for the `voi`. voi : {int, bool}, optional Value of interest, value for which to calculate the average run length. Default is `1` (`True`). Returns ------- avg_dur : float average duration, in samples, of the runs with value `voi`. Examples -------- >>> x = [0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1] >>> average_hazard(x, voi=1) 0.61111111 >>> average_hazard(x, voi=0) 0.61111111 >>> lengths = [4, 2, 9, 1, 3, 3] >>> values = [0, 1, 0, 1, 0, 1] >>> average_hazard(lengths=lengths, values=values, voi=1) 0.61111111 >>> average_hazard(lengths=lengths) 0.61111111 References ---------- .. [1] J. Di et al., “Patterns of sedentary and active time accumulation are associated with mortality in US adults: The NHANES study,” bioRxiv, p. 182337, Aug. 2017, doi: 10.1101/182337. Notes ----- Higher values indicate higher frequency in switching from sleep to awake states. The average hazard is computed per [1]_: .. math:: h(t_n_i) = \frac{n\left(t_n_i\right)}{n - n^c\left(t_n_{i-1}\right)} \har{h} = \frac{1}{m}\sum_{t\in D}h(t) where :math:`h(t_n_i)` is the hazard for the sleep bout of length :math:`t_n_i`, :math:`n(t_n_i)` is the number of bouts of length :math:`t_n_i`, :math:`n` is the total number of sleep bouts, :math:`n^c(t_n_i)` is the sum number of bouts less than or equal to length :math:`t_n_i`, and :math:`t\in D` indicates all bouts up to the maximum length (:math:`D`). """ if a is not None: l, _, v = rle(a) lens = l[v == voi] else: if lengths is None: raise ValueError("One of `a` or `lengths` must be provided.") lens = asarray(lengths) if values is not None: lens = lens[values == voi] if lens.size == 0: return nan unq, cnts = unique(lens, return_counts=True) sidx = argsort(unq) cnts = cnts[sidx] cumsum_cnts = insert(cumsum(cnts), 0, 0) h = cnts / (cumsum_cnts[-1] - cumsum_cnts[:-1]) return sum(h) / unq.size def state_power_law_distribution(a=None, *, lengths=None, values=None, voi=1): r""" Compute the scaling factor for the power law distribution over the desired state bout lengths. Parameters ---------- a : array-like, optional 1D array of binary values. If not provided, all of `lengths`, `starts`, and `values` must be provided. lengths : {numpy.ndarray, list}, optional, optional Lengths of runs of the binary values. If not provided, `a` must be. Must be the same size as `values`. values : {numpy.ndarray, list}, optional, optional Values of the runs. If not provided, all `lengths` will be assumed to be for the `voi`. voi : {int, bool}, optional Value of interest, value for which to calculate the average run length. Default is `1` (`True`). Returns ------- avg_dur : float average duration, in samples, of the runs with value `voi`. Examples -------- >>> x = [0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1] >>> state_power_law_distribution(x, voi=1) 1.7749533004219864 >>> state_power_law_distribution(x, voi=0) 2.5517837760569524 >>> lengths = [4, 2, 9, 1, 3, 3] >>> values = [0, 1, 0, 1, 0, 1] >>> state_power_law_distribution(lengths=lengths, values=values, voi=1) 1.7749533004219864 >>> state_power_law_distribution(lengths=lengths) 1.7749533004219864 References ---------- .. [1] J. Di et al., “Patterns of sedentary and active time accumulation are associated with mortality in US adults: The NHANES study,” bioRxiv, p. 182337, Aug. 2017, doi: 10.1101/182337. Notes ----- Larger `alpha` values indicate that the total sleeping time is accumulated with a larger portion of shorter sleep bouts. The power law scaling factor is computer per [1]_: .. math:: 1 + \frac{n_{sleep}}{\sum_{i}\log{t_i / \left(min(t) - 0.5\right)}} where :math:`n_{sleep}` is the number of sleep bouts, :math:`t_i` is the duration of the :math:`ith` sleep bout, and :math:`min(t)` is the length of the shortest sleep bout. """ if a is not None: l, _, v = rle(a) lens = l[v == voi] else: if lengths is None: raise ValueError("One of `a` or `lengths` must be provided.") lens = asarray(lengths) if values is not None: lens = lens[values == voi] if lens.size == 0: return 1.0 return 1 + lens.size / sum(log(lens / (lens.min() - 0.5)))
scikit-digital-health
/scikit_digital_health-0.11.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl/skdh/utility/fragmentation_endpoints.py
fragmentation_endpoints.py
from numpy import ( mean, asarray, cumsum, minimum, sort, argsort, unique, insert, sum, log, nan, float_, ) from skdh.utility.internal import rle __all__ = [ "average_duration", "state_transition_probability", "gini_index", "average_hazard", "state_power_law_distribution", ] def gini(x, w=None, corr=True): """ Compute the GINI Index. Parameters ---------- x : numpy.ndarray Array of bout lengths w : {None, numpy.ndarray}, optional Weights for x. Must be the same size. If None, weights are not used. corr : bool, optional Apply finite sample correction. Default is True. Returns ------- g : float Gini index References ---------- .. [1] https://stackoverflow.com/questions/48999542/more-efficient-weighted-gini-coefficient-in -python/48999797#48999797 """ if x.size == 0: return 0.0 elif x.size == 1: return 1.0 # The rest of the code requires numpy arrays. if w is not None: sorted_indices = argsort(x) sorted_x = x[sorted_indices] sorted_w = w[sorted_indices] # Force float dtype to avoid overflows cumw = cumsum(sorted_w, dtype=float_) cumxw = cumsum(sorted_x * sorted_w, dtype=float_) g = sum(cumxw[1:] * cumw[:-1] - cumxw[:-1] * cumw[1:]) / (cumxw[-1] * cumw[-1]) if corr: return g * x.size / (x.size - 1) else: return g else: sorted_x = sort(x) n = x.size cumx = cumsum(sorted_x, dtype=float_) # The above formula, with all weights equal to 1 simplifies to: g = (n + 1 - 2 * sum(cumx) / cumx[-1]) / n if corr: return minimum(g * n / (n - 1), 1) else: return g def average_duration(a=None, *, lengths=None, values=None, voi=1): """ Compute the average duration in the desired state. Parameters ---------- a : array-like, optional 1D array of binary values. If not provided, all of `lengths`, `starts`, and `values` must be provided. lengths : {numpy.ndarray, list}, optional Lengths of runs of the binary values. If not provided, `a` must be. Must be the same size as `values`. values : {numpy.ndarray, list}, optional Values of the runs. If not provided, all `lengths` will be assumed to be for the `voi`. voi : {int, bool}, optional Value of interest, value for which to calculate the average run length. Default is `1` (`True`). Returns ------- avg_dur : float average duration, in samples, of the runs with value `voi`. Examples -------- >>> x = [0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1] >>> average_duration(x, voi=1) 2.0 >>> average_duration(x, voi=0) 5.333333333 >>> lengths = [4, 2, 9, 1, 3, 3] >>> values = [0, 1, 0, 1, 0, 1] >>> average_duration(lengths=lengths, values=values, voi=1) 2.0 >>> average_duration(lengths=lengths) 2.0 """ if a is not None: l, _, v = rle(a) lens = l[v == voi] else: if lengths is None: raise ValueError("One of `a` or `lengths` must be provided.") lens = asarray(lengths) if values is not None: lens = lens[values == voi] if lens.size == 0: return 0.0 return mean(lens) def state_transition_probability(a=None, *, lengths=None, values=None, voi=1): r""" Compute the probability of transitioning from the desired state to the second state. Parameters ---------- a : array-like, optional 1D array of binary values. If not provided, all of `lengths`, `starts`, and `values` must be provided. lengths : {numpy.ndarray, list}, optional, optional Lengths of runs of the binary values. If not provided, `a` must be. Must be the same size as `values`. values : {numpy.ndarray, list}, optional, optional Values of the runs. If not provided, all `lengths` will be assumed to be for the `voi`. voi : {int, bool}, optional Value of interest, value for which to calculate the average run length. Default is `1` (`True`). Returns ------- avg_dur : float average duration, in samples, of the runs with value `voi`. Examples -------- >>> x = [0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1] >>> state_transition_probability(x, voi=1) 0.5 >>> state_transition_probability(x, voi=0) 0.1875 >>> lengths = [4, 2, 9, 1, 3, 3] >>> values = [0, 1, 0, 1, 0, 1] >>> state_transition_probability(lengths=lengths, values=values, voi=1) 0.5 >>> state_transition_probability(lengths=lengths) 0.5 References ---------- .. [1] J. Di et al., “Patterns of sedentary and active time accumulation are associated with mortality in US adults: The NHANES study,” bioRxiv, p. 182337, Aug. 2017, doi: 10.1101/182337. Notes ----- Higher values indicate more frequent switching between states, and as a result may indicate greater fragmentation of sleep. The implementation is straightforward [1]_, and is simply defined as .. math:: satp = \frac{1}{\mu_{awake}} where :math:`\mu_{awake}` is the mean awake bout time. """ if a is not None: l, _, v = rle(a) lens = l[v == voi] else: if lengths is None: raise ValueError("One of `a` or `lengths` must be provided.") lens = asarray(lengths) if values is not None: lens = lens[values == voi] if lens.size == 0: return nan return 1 / mean(lens) def gini_index(a=None, *, lengths=None, values=None, voi=1): """ Compute the normalized variability of the state bouts, also known as the GINI index from economics. Parameters ---------- a : array-like, optional 1D array of binary values. If not provided, all of `lengths`, `starts`, and `values` must be provided. lengths : {numpy.ndarray, list}, optional, optional Lengths of runs of the binary values. If not provided, `a` must be. Must be the same size as `values`. values : {numpy.ndarray, list}, optional, optional Values of the runs. If not provided, all `lengths` will be assumed to be for the `voi`. voi : {int, bool}, optional Value of interest, value for which to calculate the average run length. Default is `1` (`True`). Returns ------- avg_dur : float average duration, in samples, of the runs with value `voi`. Examples -------- >>> x = [0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1] >>> gini_index(x, voi=1) 0.333333 >>> gini_index(x, voi=0) 0.375 >>> lengths = [4, 2, 9, 1, 3, 3] >>> values = [0, 1, 0, 1, 0, 1] >>> gini_index(lengths=lengths, values=values, voi=1) 0.333333 >>> gini_index(lengths=lengths) 0.333333 References ---------- .. [1] J. Di et al., “Patterns of sedentary and active time accumulation are associated with mortality in US adults: The NHANES study,” bioRxiv, p. 182337, Aug. 2017, doi: 10.1101/182337. Notes ----- Gini Index values are bounded between 0 and 1, with values near 1 indicating the total time accumulating due to a small number of longer bouts, whereas values near 0 indicate all bouts contribute more equally to the total time. """ if a is not None: l, _, v = rle(a) lens = l[v == voi] else: if lengths is None: raise ValueError("One of `a` or `lengths` must be provided.") lens = asarray(lengths) if values is not None: lens = lens[values == voi] if lens.size == 0: return 0.0 return gini(lens, w=None, corr=True) def average_hazard(a=None, *, lengths=None, values=None, voi=1): r""" Compute the average hazard summary of the hazard function, as a function of the state bout duration. The average hazard represents a summary of the frequency of transitioning from one state to the other. Parameters ---------- a : array-like, optional 1D array of binary values. If not provided, all of `lengths`, `starts`, and `values` must be provided. lengths : {numpy.ndarray, list}, optional, optional Lengths of runs of the binary values. If not provided, `a` must be. Must be the same size as `values`. values : {numpy.ndarray, list}, optional, optional Values of the runs. If not provided, all `lengths` will be assumed to be for the `voi`. voi : {int, bool}, optional Value of interest, value for which to calculate the average run length. Default is `1` (`True`). Returns ------- avg_dur : float average duration, in samples, of the runs with value `voi`. Examples -------- >>> x = [0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1] >>> average_hazard(x, voi=1) 0.61111111 >>> average_hazard(x, voi=0) 0.61111111 >>> lengths = [4, 2, 9, 1, 3, 3] >>> values = [0, 1, 0, 1, 0, 1] >>> average_hazard(lengths=lengths, values=values, voi=1) 0.61111111 >>> average_hazard(lengths=lengths) 0.61111111 References ---------- .. [1] J. Di et al., “Patterns of sedentary and active time accumulation are associated with mortality in US adults: The NHANES study,” bioRxiv, p. 182337, Aug. 2017, doi: 10.1101/182337. Notes ----- Higher values indicate higher frequency in switching from sleep to awake states. The average hazard is computed per [1]_: .. math:: h(t_n_i) = \frac{n\left(t_n_i\right)}{n - n^c\left(t_n_{i-1}\right)} \har{h} = \frac{1}{m}\sum_{t\in D}h(t) where :math:`h(t_n_i)` is the hazard for the sleep bout of length :math:`t_n_i`, :math:`n(t_n_i)` is the number of bouts of length :math:`t_n_i`, :math:`n` is the total number of sleep bouts, :math:`n^c(t_n_i)` is the sum number of bouts less than or equal to length :math:`t_n_i`, and :math:`t\in D` indicates all bouts up to the maximum length (:math:`D`). """ if a is not None: l, _, v = rle(a) lens = l[v == voi] else: if lengths is None: raise ValueError("One of `a` or `lengths` must be provided.") lens = asarray(lengths) if values is not None: lens = lens[values == voi] if lens.size == 0: return nan unq, cnts = unique(lens, return_counts=True) sidx = argsort(unq) cnts = cnts[sidx] cumsum_cnts = insert(cumsum(cnts), 0, 0) h = cnts / (cumsum_cnts[-1] - cumsum_cnts[:-1]) return sum(h) / unq.size def state_power_law_distribution(a=None, *, lengths=None, values=None, voi=1): r""" Compute the scaling factor for the power law distribution over the desired state bout lengths. Parameters ---------- a : array-like, optional 1D array of binary values. If not provided, all of `lengths`, `starts`, and `values` must be provided. lengths : {numpy.ndarray, list}, optional, optional Lengths of runs of the binary values. If not provided, `a` must be. Must be the same size as `values`. values : {numpy.ndarray, list}, optional, optional Values of the runs. If not provided, all `lengths` will be assumed to be for the `voi`. voi : {int, bool}, optional Value of interest, value for which to calculate the average run length. Default is `1` (`True`). Returns ------- avg_dur : float average duration, in samples, of the runs with value `voi`. Examples -------- >>> x = [0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1] >>> state_power_law_distribution(x, voi=1) 1.7749533004219864 >>> state_power_law_distribution(x, voi=0) 2.5517837760569524 >>> lengths = [4, 2, 9, 1, 3, 3] >>> values = [0, 1, 0, 1, 0, 1] >>> state_power_law_distribution(lengths=lengths, values=values, voi=1) 1.7749533004219864 >>> state_power_law_distribution(lengths=lengths) 1.7749533004219864 References ---------- .. [1] J. Di et al., “Patterns of sedentary and active time accumulation are associated with mortality in US adults: The NHANES study,” bioRxiv, p. 182337, Aug. 2017, doi: 10.1101/182337. Notes ----- Larger `alpha` values indicate that the total sleeping time is accumulated with a larger portion of shorter sleep bouts. The power law scaling factor is computer per [1]_: .. math:: 1 + \frac{n_{sleep}}{\sum_{i}\log{t_i / \left(min(t) - 0.5\right)}} where :math:`n_{sleep}` is the number of sleep bouts, :math:`t_i` is the duration of the :math:`ith` sleep bout, and :math:`min(t)` is the length of the shortest sleep bout. """ if a is not None: l, _, v = rle(a) lens = l[v == voi] else: if lengths is None: raise ValueError("One of `a` or `lengths` must be provided.") lens = asarray(lengths) if values is not None: lens = lens[values == voi] if lens.size == 0: return 1.0 return 1 + lens.size / sum(log(lens / (lens.min() - 0.5)))
0.929432
0.592991
from warnings import warn from numpy import argmax, abs, mean, cos, arcsin, sign, zeros_like __all__ = ["correct_accelerometer_orientation"] def correct_accelerometer_orientation(accel, v_axis=None, ap_axis=None): r""" Applies the correction for acceleration from [1]_ to better align acceleration with the human body anatomical axes. This correction requires that the original device measuring accleration is somewhat closely aligned with the anatomical axes already, due to required assumptions. Quality of the correction will degrade the farther from aligned the input acceleration is. Parameters ---------- accel : numpy.ndarray (N, 3) array of acceleration values, in units of "g". v_axis : {None, int}, optional Vertical axis for `accel`. If not provided (default of None), this will be guessed as the axis with the largest mean value. ap_axis : {None, int}, optional Anterior-posterior axis for `accel`. If not provided (default of None), the ML and AP axes will not be picked. This will have a slight effect on the correction. Returns ------- co_accel : numpy.ndarray (N, 3) array of acceleration with best alignment to the human anatomical axes Notes ----- If `v_axis` is not provided (`None`), it is guessed as the largest mean valued axis (absolute value). While this should work for most cases, it will fail if there is significant acceleration in the non-vertical axes. As such, if there are very large accelerations present, this value should be provided. If `ap_axis` is not provided, it is guessed as the axis with the most similar autocovariance to the vertical axes. The correction algorithm from [1]_ starts by using simple trigonometric identities to correct the measured acceleration per .. math:: a_A = a_a\cos{\theta_a} - sign(a_v)a_v\sin{\theta_a} a_V' = sign(a_v)a_a\sin{\theta_a} + a_v\cos{\theta_a} a_M = a_m\cos{\theta_m} - sign(a_v)a_V'\sin{\theta_m} a_V = sign(a_v)a_m\sin{\theta_m} + a_V'\cos{\theta_m} where $a_i$ is the measured $i$ direction acceleration, $a_I$ is the corrected $I$ direction acceleration ($i/I=[a/A, m/M, v/V]$, $a$ is anterior-posterior, $m$ is medial-lateral, and $v$ is vertical), $a_V'$ is a provisional estimate of the corrected vertical acceleration. $\theta_{a/m}$ are the angles between the measured AP and ML axes and the horizontal plane. Through some manipulation, [1]_ arrives at the simplification that best estimates for these angles per .. math:: \sin{\theta_a} = \bar{a}_a \sin{\theta_m} = \bar{a}_m This is the part of the step that requires acceleration to be in "g", as well as mostly already aligned. If significantly out of alignment, then this small-angle relationship with sine starts to fall apart, and the correction will not be as appropriate. References ---------- .. [1] R. Moe-Nilssen, “A new method for evaluating motor control in gait under real-life environmental conditions. Part 1: The instrument,” Clinical Biomechanics, vol. 13, no. 4–5, pp. 320–327, Jun. 1998, doi: 10.1016/S0268-0033(98)00089-8. """ if v_axis is None: v_axis = argmax(abs(mean(accel, axis=0))) else: if not (0 <= v_axis < 3): raise ValueError("v_axis must be in {0, 1, 2}") if ap_axis is None: ap_axis, ml_axis = [i for i in range(3) if i != v_axis] else: if not (0 <= ap_axis < 3): raise ValueError("ap_axis must be in {0, 1, 2}") ml_axis = [i for i in range(3) if i not in [v_axis, ap_axis]][0] s_theta_a = mean(accel[:, ap_axis]) s_theta_m = mean(accel[:, ml_axis]) # make sure the theta values are in range if s_theta_a < -1 or s_theta_a > 1 or s_theta_m < -1 or s_theta_m > 1: warn("Accel. correction angles outside possible range [-1, 1]. Not correcting.") return accel c_theta_a = cos(arcsin(s_theta_a)) c_theta_m = cos(arcsin(s_theta_m)) v_sign = sign(mean(accel[:, v_axis])) co_accel = zeros_like(accel) # correct ap axis acceleration co_accel[:, ap_axis] = ( accel[:, ap_axis] * c_theta_a - v_sign * accel[:, v_axis] * s_theta_a ) # provisional correction for vertical axis co_accel[:, v_axis] = ( v_sign * accel[:, ap_axis] * s_theta_a + accel[:, v_axis] * c_theta_a ) # correct ml axis acceleration co_accel[:, ml_axis] = ( accel[:, ml_axis] * c_theta_m - v_sign * co_accel[:, v_axis] * s_theta_m ) # final correction for vertical axis co_accel[:, v_axis] = ( v_sign * accel[:, ml_axis] * s_theta_m + co_accel[:, v_axis] * c_theta_m ) return co_accel
scikit-digital-health
/scikit_digital_health-0.11.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl/skdh/utility/orientation.py
orientation.py
from warnings import warn from numpy import argmax, abs, mean, cos, arcsin, sign, zeros_like __all__ = ["correct_accelerometer_orientation"] def correct_accelerometer_orientation(accel, v_axis=None, ap_axis=None): r""" Applies the correction for acceleration from [1]_ to better align acceleration with the human body anatomical axes. This correction requires that the original device measuring accleration is somewhat closely aligned with the anatomical axes already, due to required assumptions. Quality of the correction will degrade the farther from aligned the input acceleration is. Parameters ---------- accel : numpy.ndarray (N, 3) array of acceleration values, in units of "g". v_axis : {None, int}, optional Vertical axis for `accel`. If not provided (default of None), this will be guessed as the axis with the largest mean value. ap_axis : {None, int}, optional Anterior-posterior axis for `accel`. If not provided (default of None), the ML and AP axes will not be picked. This will have a slight effect on the correction. Returns ------- co_accel : numpy.ndarray (N, 3) array of acceleration with best alignment to the human anatomical axes Notes ----- If `v_axis` is not provided (`None`), it is guessed as the largest mean valued axis (absolute value). While this should work for most cases, it will fail if there is significant acceleration in the non-vertical axes. As such, if there are very large accelerations present, this value should be provided. If `ap_axis` is not provided, it is guessed as the axis with the most similar autocovariance to the vertical axes. The correction algorithm from [1]_ starts by using simple trigonometric identities to correct the measured acceleration per .. math:: a_A = a_a\cos{\theta_a} - sign(a_v)a_v\sin{\theta_a} a_V' = sign(a_v)a_a\sin{\theta_a} + a_v\cos{\theta_a} a_M = a_m\cos{\theta_m} - sign(a_v)a_V'\sin{\theta_m} a_V = sign(a_v)a_m\sin{\theta_m} + a_V'\cos{\theta_m} where $a_i$ is the measured $i$ direction acceleration, $a_I$ is the corrected $I$ direction acceleration ($i/I=[a/A, m/M, v/V]$, $a$ is anterior-posterior, $m$ is medial-lateral, and $v$ is vertical), $a_V'$ is a provisional estimate of the corrected vertical acceleration. $\theta_{a/m}$ are the angles between the measured AP and ML axes and the horizontal plane. Through some manipulation, [1]_ arrives at the simplification that best estimates for these angles per .. math:: \sin{\theta_a} = \bar{a}_a \sin{\theta_m} = \bar{a}_m This is the part of the step that requires acceleration to be in "g", as well as mostly already aligned. If significantly out of alignment, then this small-angle relationship with sine starts to fall apart, and the correction will not be as appropriate. References ---------- .. [1] R. Moe-Nilssen, “A new method for evaluating motor control in gait under real-life environmental conditions. Part 1: The instrument,” Clinical Biomechanics, vol. 13, no. 4–5, pp. 320–327, Jun. 1998, doi: 10.1016/S0268-0033(98)00089-8. """ if v_axis is None: v_axis = argmax(abs(mean(accel, axis=0))) else: if not (0 <= v_axis < 3): raise ValueError("v_axis must be in {0, 1, 2}") if ap_axis is None: ap_axis, ml_axis = [i for i in range(3) if i != v_axis] else: if not (0 <= ap_axis < 3): raise ValueError("ap_axis must be in {0, 1, 2}") ml_axis = [i for i in range(3) if i not in [v_axis, ap_axis]][0] s_theta_a = mean(accel[:, ap_axis]) s_theta_m = mean(accel[:, ml_axis]) # make sure the theta values are in range if s_theta_a < -1 or s_theta_a > 1 or s_theta_m < -1 or s_theta_m > 1: warn("Accel. correction angles outside possible range [-1, 1]. Not correcting.") return accel c_theta_a = cos(arcsin(s_theta_a)) c_theta_m = cos(arcsin(s_theta_m)) v_sign = sign(mean(accel[:, v_axis])) co_accel = zeros_like(accel) # correct ap axis acceleration co_accel[:, ap_axis] = ( accel[:, ap_axis] * c_theta_a - v_sign * accel[:, v_axis] * s_theta_a ) # provisional correction for vertical axis co_accel[:, v_axis] = ( v_sign * accel[:, ap_axis] * s_theta_a + accel[:, v_axis] * c_theta_a ) # correct ml axis acceleration co_accel[:, ml_axis] = ( accel[:, ml_axis] * c_theta_m - v_sign * co_accel[:, v_axis] * s_theta_m ) # final correction for vertical axis co_accel[:, v_axis] = ( v_sign * accel[:, ml_axis] * s_theta_m + co_accel[:, v_axis] * c_theta_m ) return co_accel
0.968456
0.790692
from skdh.activity import metrics def get_available_cutpoints(name=None): """ Print the available cutpoints for activity level segmentation, or the thresholds for a specific set of cutpoints. Parameters ---------- name : {None, str}, optional The name of the cupoint values to print. If None, will print all the available cutpoint options. """ if name is None: for k in _base_cutpoints: print(k) else: cuts = _base_cutpoints[name] print(f"{name}\n{'-' * 15}") print(f"Metric: {cuts['metric']}") for level in ["sedentary", "light", "moderate", "vigorous"]: lthresh, uthresh = get_level_thresholds(level, cuts) print(f"{level} range [g]: {lthresh:0.3f} -> {uthresh:0.3f}") def get_level_thresholds(level, cutpoints): if level.lower() in ["sed", "sedentary"]: return -1e5, cutpoints["sedentary"] elif level.lower() == "light": return cutpoints["sedentary"], cutpoints["light"] elif level.lower() in ["mod", "moderate"]: return cutpoints["light"], cutpoints["moderate"] elif level.lower() in ["vig", "vigorous"]: return cutpoints["moderate"], 1e5 elif level.lower() == "mvpa": return cutpoints["light"], 1e5 elif level.lower() == "slpa": # sedentary-light phys. act. return -1e5, cutpoints["light"] else: raise ValueError(f"Activity level label [{level}] not recognized.") def get_metric(name): return getattr(metrics, name) # ========================================================== # Activity cutpoints _base_cutpoints = {} _base_cutpoints["esliger_lwrist_adult"] = { "metric": "metric_enmo", "kwargs": {"take_abs": True}, "sedentary": 217 / 80 / 60, # paper at 80hz, summed for each minute long window "light": 644 / 80 / 60, "moderate": 1810 / 80 / 60, } _base_cutpoints["esliger_rwirst_adult"] = { "metric": "metric_enmo", "kwargs": {"take_abs": True}, "sedentary": 386 / 80 / 60, # paper at 80hz, summed for each 1min window "light": 439 / 80 / 60, "moderate": 2098 / 80 / 60, } _base_cutpoints["esliger_lumbar_adult"] = { "metric": "metric_enmo", "kwargs": {"take_abs": True}, "sedentary": 77 / 80 / 60, # paper at 80hz, summed for each 1min window "light": 219 / 80 / 60, "moderate": 2056 / 80 / 60, } _base_cutpoints["schaefer_ndomwrist_child6-11"] = { "metric": "metric_bfen", "kwargs": {"low_cutoff": 0.2, "high_cutoff": 15, "trim_zero": False}, "sedentary": 0.190, "light": 0.314, "moderate": 0.998, } _base_cutpoints["phillips_rwrist_child8-14"] = { "metric": "metric_enmo", "kwargs": {"take_abs": True}, "sedentary": 6 / 80, # paper at 80hz, summed for each 1s window "light": 21 / 80, "moderate": 56 / 80, } _base_cutpoints["phillips_lwrist_child8-14"] = { "metric": "metric_enmo", "kwargs": {"take_abs": True}, "sedentary": 7 / 80, "light": 19 / 80, "moderate": 60 / 80, } _base_cutpoints["phillips_hip_child8-14"] = { "metric": "metric_enmo", "kwargs": {"take_abs": True}, "sedentary": 3 / 80, "light": 16 / 80, "moderate": 51 / 80, } _base_cutpoints["vaha-ypya_hip_adult"] = { "metric": "metric_mad", "kwargs": {}, "light": 0.091, # originally presented in mg "moderate": 0.414, } _base_cutpoints["hildebrand_hip_adult_actigraph"] = { "metric": "metric_enmo", "kwargs": {"take_abs": False, "trim_zero": True}, "sedentary": 0.0474, "light": 0.0691, "moderate": 0.2587, } _base_cutpoints["hildebrand_hip_adult_geneactv"] = { "metric": "metric_enmo", "kwargs": {"take_abs": False, "trim_zero": True}, "sedentary": 0.0469, "light": 0.0687, "moderate": 0.2668, } _base_cutpoints["hildebrand_wrist_adult_actigraph"] = { "metric": "metric_enmo", "kwargs": {"take_abs": False, "trim_zero": True}, "sedentary": 0.0448, "light": 0.1006, "moderate": 0.4288, } _base_cutpoints["hildebrand_wrist_adult_geneactiv"] = { "metric": "metric_enmo", "kwargs": {"take_abs": False, "trim_zero": True}, "sedentary": 0.0458, "light": 0.0932, "moderate": 0.4183, } _base_cutpoints["hildebrand_hip_child7-11_actigraph"] = { "metric": "metric_enmo", "kwargs": {"take_abs": False, "trim_zero": True}, "sedentary": 0.0633, "light": 0.1426, "moderate": 0.4646, } _base_cutpoints["hildebrand_hip_child7-11_geneactiv"] = { "metric": "metric_enmo", "kwargs": {"take_abs": False, "trim_zero": True}, "sedentary": 0.0641, "light": 0.1528, "moderate": 0.5143, } _base_cutpoints["hildebrand_wrist_child7-11_actigraph"] = { "metric": "metric_enmo", "kwargs": {"take_abs": False, "trim_zero": True}, "sedentary": 0.0356, "light": 0.2014, "moderate": 0.707, } _base_cutpoints["hildebrand_wrist_child7-11_geneactiv"] = { "metric": "metric_enmo", "kwargs": {"take_abs": False, "trim_zero": True}, "sedentary": 0.0563, "light": 0.1916, "moderate": 0.6958, } _base_cutpoints["migueles_wrist_adult"] = { "metric": "metric_enmo", "kwargs": {"take_abs": False, "trim_zero": True}, "sedentary": 0.050, "light": 0.110, "moderate": 0.440, }
scikit-digital-health
/scikit_digital_health-0.11.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl/skdh/activity/cutpoints.py
cutpoints.py
from skdh.activity import metrics def get_available_cutpoints(name=None): """ Print the available cutpoints for activity level segmentation, or the thresholds for a specific set of cutpoints. Parameters ---------- name : {None, str}, optional The name of the cupoint values to print. If None, will print all the available cutpoint options. """ if name is None: for k in _base_cutpoints: print(k) else: cuts = _base_cutpoints[name] print(f"{name}\n{'-' * 15}") print(f"Metric: {cuts['metric']}") for level in ["sedentary", "light", "moderate", "vigorous"]: lthresh, uthresh = get_level_thresholds(level, cuts) print(f"{level} range [g]: {lthresh:0.3f} -> {uthresh:0.3f}") def get_level_thresholds(level, cutpoints): if level.lower() in ["sed", "sedentary"]: return -1e5, cutpoints["sedentary"] elif level.lower() == "light": return cutpoints["sedentary"], cutpoints["light"] elif level.lower() in ["mod", "moderate"]: return cutpoints["light"], cutpoints["moderate"] elif level.lower() in ["vig", "vigorous"]: return cutpoints["moderate"], 1e5 elif level.lower() == "mvpa": return cutpoints["light"], 1e5 elif level.lower() == "slpa": # sedentary-light phys. act. return -1e5, cutpoints["light"] else: raise ValueError(f"Activity level label [{level}] not recognized.") def get_metric(name): return getattr(metrics, name) # ========================================================== # Activity cutpoints _base_cutpoints = {} _base_cutpoints["esliger_lwrist_adult"] = { "metric": "metric_enmo", "kwargs": {"take_abs": True}, "sedentary": 217 / 80 / 60, # paper at 80hz, summed for each minute long window "light": 644 / 80 / 60, "moderate": 1810 / 80 / 60, } _base_cutpoints["esliger_rwirst_adult"] = { "metric": "metric_enmo", "kwargs": {"take_abs": True}, "sedentary": 386 / 80 / 60, # paper at 80hz, summed for each 1min window "light": 439 / 80 / 60, "moderate": 2098 / 80 / 60, } _base_cutpoints["esliger_lumbar_adult"] = { "metric": "metric_enmo", "kwargs": {"take_abs": True}, "sedentary": 77 / 80 / 60, # paper at 80hz, summed for each 1min window "light": 219 / 80 / 60, "moderate": 2056 / 80 / 60, } _base_cutpoints["schaefer_ndomwrist_child6-11"] = { "metric": "metric_bfen", "kwargs": {"low_cutoff": 0.2, "high_cutoff": 15, "trim_zero": False}, "sedentary": 0.190, "light": 0.314, "moderate": 0.998, } _base_cutpoints["phillips_rwrist_child8-14"] = { "metric": "metric_enmo", "kwargs": {"take_abs": True}, "sedentary": 6 / 80, # paper at 80hz, summed for each 1s window "light": 21 / 80, "moderate": 56 / 80, } _base_cutpoints["phillips_lwrist_child8-14"] = { "metric": "metric_enmo", "kwargs": {"take_abs": True}, "sedentary": 7 / 80, "light": 19 / 80, "moderate": 60 / 80, } _base_cutpoints["phillips_hip_child8-14"] = { "metric": "metric_enmo", "kwargs": {"take_abs": True}, "sedentary": 3 / 80, "light": 16 / 80, "moderate": 51 / 80, } _base_cutpoints["vaha-ypya_hip_adult"] = { "metric": "metric_mad", "kwargs": {}, "light": 0.091, # originally presented in mg "moderate": 0.414, } _base_cutpoints["hildebrand_hip_adult_actigraph"] = { "metric": "metric_enmo", "kwargs": {"take_abs": False, "trim_zero": True}, "sedentary": 0.0474, "light": 0.0691, "moderate": 0.2587, } _base_cutpoints["hildebrand_hip_adult_geneactv"] = { "metric": "metric_enmo", "kwargs": {"take_abs": False, "trim_zero": True}, "sedentary": 0.0469, "light": 0.0687, "moderate": 0.2668, } _base_cutpoints["hildebrand_wrist_adult_actigraph"] = { "metric": "metric_enmo", "kwargs": {"take_abs": False, "trim_zero": True}, "sedentary": 0.0448, "light": 0.1006, "moderate": 0.4288, } _base_cutpoints["hildebrand_wrist_adult_geneactiv"] = { "metric": "metric_enmo", "kwargs": {"take_abs": False, "trim_zero": True}, "sedentary": 0.0458, "light": 0.0932, "moderate": 0.4183, } _base_cutpoints["hildebrand_hip_child7-11_actigraph"] = { "metric": "metric_enmo", "kwargs": {"take_abs": False, "trim_zero": True}, "sedentary": 0.0633, "light": 0.1426, "moderate": 0.4646, } _base_cutpoints["hildebrand_hip_child7-11_geneactiv"] = { "metric": "metric_enmo", "kwargs": {"take_abs": False, "trim_zero": True}, "sedentary": 0.0641, "light": 0.1528, "moderate": 0.5143, } _base_cutpoints["hildebrand_wrist_child7-11_actigraph"] = { "metric": "metric_enmo", "kwargs": {"take_abs": False, "trim_zero": True}, "sedentary": 0.0356, "light": 0.2014, "moderate": 0.707, } _base_cutpoints["hildebrand_wrist_child7-11_geneactiv"] = { "metric": "metric_enmo", "kwargs": {"take_abs": False, "trim_zero": True}, "sedentary": 0.0563, "light": 0.1916, "moderate": 0.6958, } _base_cutpoints["migueles_wrist_adult"] = { "metric": "metric_enmo", "kwargs": {"take_abs": False, "trim_zero": True}, "sedentary": 0.050, "light": 0.110, "moderate": 0.440, }
0.767385
0.270453
from numpy import maximum, abs, repeat, arctan, sqrt, pi from numpy.linalg import norm from scipy.signal import butter, sosfiltfilt from skdh.utility import moving_mean __all__ = [ "metric_anglez", "metric_en", "metric_enmo", "metric_bfen", "metric_hfen", "metric_hfenplus", "metric_mad", ] def metric_anglez(accel, wlen, *args, **kwargs): """ Compute the angle between the accelerometer z axis and the horizontal plane. Parameters ---------- accel : numpy.ndarray (N, 3) array of acceleration values in g. wlen : int Window length (in number of samples) for non-overlapping windows. Returns ------- anglez : numpy.ndarray (N, ) array of angles between accelerometer z axis and horizontal plane in degrees. """ anglez = arctan(accel[:, 2] / sqrt(accel[:, 0] ** 2 + accel[:, 1] ** 2)) * ( 180 / pi ) return moving_mean(anglez, wlen, wlen) def metric_en(accel, wlen, *args, **kwargs): """ Compute the euclidean norm. Parameters ---------- accel : numpy.ndarray (N, 3) array of acceleration values in g. wlen : int Window length (in number of samples) for non-overlapping windows. Returns ------- en : numpy.ndarray (N, ) array of euclidean norms. """ return moving_mean(norm(accel, axis=1), wlen, wlen) def metric_enmo(accel, wlen, *args, take_abs=False, trim_zero=True, **kwargs): """ Compute the euclidean norm minus 1. Works best when the accelerometer data has been calibrated so that devices at rest measure acceleration norms of 1g. Parameters ---------- accel : numpy.ndarray (N, 3) array of acceleration values in g. wlen : int Window length (in number of samples) for non-overlapping windows. take_abs : bool, optional Use the absolute value of the difference between euclidean norm and 1g. Default is False. trim_zero : bool, optional Trim values to no less than 0. Default is True. Returns ------- enmo : numpy.ndarray (N, ) array of euclidean norms minus 1. """ enmo = norm(accel, axis=1) - 1 if take_abs: enmo = abs(enmo) if trim_zero: return moving_mean(maximum(enmo, 0), wlen, wlen) else: return moving_mean(enmo, wlen, wlen) def metric_bfen(accel, wlen, fs, low_cutoff=0.2, high_cutoff=15, **kwargs): """ Compute the band-pass filtered euclidean norm. Parameters ---------- accel : numpy.ndarray (N, 3) array of acceleration values in g. wlen : int Window length (in number of samples) for non-overlapping windows. fs : float Sampling frequency of `accel` in Hz. low_cutoff : float, optional Band-pass low cutoff in Hz. Default is 0.2Hz. high_cutoff : float, optional Band-pass high cutoff in Hz. Default is 15Hz Returns ------- bfen : numpy.ndarray (N, ) array of band-pass filtered and euclidean normed accelerations. """ sos = butter( 4, [2 * low_cutoff / fs, 2 * high_cutoff / fs], btype="bandpass", output="sos" ) # no reason to for trimming zeros as the norm after the filter will always # be positive return moving_mean(norm(sosfiltfilt(sos, accel, axis=0), axis=1), wlen, wlen) def metric_hfen(accel, wlen, fs, low_cutoff=0.2, trim_zero=True, **kwargs): """ Compute the high-pass filtered euclidean norm. Parameters ---------- accel : numpy.ndarray (N, 3) array of acceleration values in g. wlen : int Window length (in number of samples) for non-overlapping windows. fs : float Sampling frequency of `accel` in Hz. low_cutoff : float, optional High-pass cutoff in Hz. Default is 0.2Hz. trim_zero : bool, optional Trim values to no less than 0. Default is True. Returns ------- hfen : numpy.ndarray (N, ) array of high-pass filtered and euclidean normed accelerations. """ sos = butter(4, 2 * low_cutoff / fs, btype="high", output="sos") # no reason to for trimming zeros as the norm after the filter will always # be positive return moving_mean(norm(sosfiltfilt(sos, accel, axis=0), axis=1), wlen, wlen) def metric_hfenplus(accel, wlen, fs, cutoff=0.2, trim_zero=True, **kwargs): """ Compute the high-pass filtered euclidean norm plus the low-pass filtered euclidean norm minus 1g. Parameters ---------- accel : numpy.ndarray (N, 3) array of acceleration values in g. wlen : int Window length (in number of samples) for non-overlapping windows. fs : float Sampling frequency of `accel` in Hz. cutoff : float, optional Cutoff in Hz for both high and low filters. Default is 0.2Hz. trim_zero : bool, optional Trim values to no less than 0. Default is True. Returns ------- hfenp : numpy.ndarray (N, ) array of high-pass filtered acceleration norm added to the low-pass filtered norm minus 1g. """ sos_low = butter(4, 2 * cutoff / fs, btype="low", output="sos") sos_high = butter(4, 2 * cutoff / fs, btype="high", output="sos") acc_high = norm(sosfiltfilt(sos_high, accel, axis=0), axis=1) acc_low = norm(sosfiltfilt(sos_low, accel, axis=0), axis=1) if trim_zero: return moving_mean(maximum(acc_high + acc_low - 1, 0), wlen, wlen) else: return moving_mean(acc_high + acc_low - 1, wlen, wlen) def metric_mad(accel, wlen, *args, **kwargs): """ Compute the Mean Amplitude Deviation metric for acceleration. Parameters ---------- accel : numpy.ndarray (N, 3) array of accelerationes measured in g. wlen : int Window length (in number of samples) for non-overlapping windows. Returns ------- mad : numpy.ndarray (N, ) array of computed MAD values. """ acc_norm = norm(accel, axis=1) r_avg = repeat(moving_mean(acc_norm, wlen, wlen), wlen) mad = moving_mean(abs(acc_norm[: r_avg.size] - r_avg), wlen, wlen) return mad
scikit-digital-health
/scikit_digital_health-0.11.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl/skdh/activity/metrics.py
metrics.py
from numpy import maximum, abs, repeat, arctan, sqrt, pi from numpy.linalg import norm from scipy.signal import butter, sosfiltfilt from skdh.utility import moving_mean __all__ = [ "metric_anglez", "metric_en", "metric_enmo", "metric_bfen", "metric_hfen", "metric_hfenplus", "metric_mad", ] def metric_anglez(accel, wlen, *args, **kwargs): """ Compute the angle between the accelerometer z axis and the horizontal plane. Parameters ---------- accel : numpy.ndarray (N, 3) array of acceleration values in g. wlen : int Window length (in number of samples) for non-overlapping windows. Returns ------- anglez : numpy.ndarray (N, ) array of angles between accelerometer z axis and horizontal plane in degrees. """ anglez = arctan(accel[:, 2] / sqrt(accel[:, 0] ** 2 + accel[:, 1] ** 2)) * ( 180 / pi ) return moving_mean(anglez, wlen, wlen) def metric_en(accel, wlen, *args, **kwargs): """ Compute the euclidean norm. Parameters ---------- accel : numpy.ndarray (N, 3) array of acceleration values in g. wlen : int Window length (in number of samples) for non-overlapping windows. Returns ------- en : numpy.ndarray (N, ) array of euclidean norms. """ return moving_mean(norm(accel, axis=1), wlen, wlen) def metric_enmo(accel, wlen, *args, take_abs=False, trim_zero=True, **kwargs): """ Compute the euclidean norm minus 1. Works best when the accelerometer data has been calibrated so that devices at rest measure acceleration norms of 1g. Parameters ---------- accel : numpy.ndarray (N, 3) array of acceleration values in g. wlen : int Window length (in number of samples) for non-overlapping windows. take_abs : bool, optional Use the absolute value of the difference between euclidean norm and 1g. Default is False. trim_zero : bool, optional Trim values to no less than 0. Default is True. Returns ------- enmo : numpy.ndarray (N, ) array of euclidean norms minus 1. """ enmo = norm(accel, axis=1) - 1 if take_abs: enmo = abs(enmo) if trim_zero: return moving_mean(maximum(enmo, 0), wlen, wlen) else: return moving_mean(enmo, wlen, wlen) def metric_bfen(accel, wlen, fs, low_cutoff=0.2, high_cutoff=15, **kwargs): """ Compute the band-pass filtered euclidean norm. Parameters ---------- accel : numpy.ndarray (N, 3) array of acceleration values in g. wlen : int Window length (in number of samples) for non-overlapping windows. fs : float Sampling frequency of `accel` in Hz. low_cutoff : float, optional Band-pass low cutoff in Hz. Default is 0.2Hz. high_cutoff : float, optional Band-pass high cutoff in Hz. Default is 15Hz Returns ------- bfen : numpy.ndarray (N, ) array of band-pass filtered and euclidean normed accelerations. """ sos = butter( 4, [2 * low_cutoff / fs, 2 * high_cutoff / fs], btype="bandpass", output="sos" ) # no reason to for trimming zeros as the norm after the filter will always # be positive return moving_mean(norm(sosfiltfilt(sos, accel, axis=0), axis=1), wlen, wlen) def metric_hfen(accel, wlen, fs, low_cutoff=0.2, trim_zero=True, **kwargs): """ Compute the high-pass filtered euclidean norm. Parameters ---------- accel : numpy.ndarray (N, 3) array of acceleration values in g. wlen : int Window length (in number of samples) for non-overlapping windows. fs : float Sampling frequency of `accel` in Hz. low_cutoff : float, optional High-pass cutoff in Hz. Default is 0.2Hz. trim_zero : bool, optional Trim values to no less than 0. Default is True. Returns ------- hfen : numpy.ndarray (N, ) array of high-pass filtered and euclidean normed accelerations. """ sos = butter(4, 2 * low_cutoff / fs, btype="high", output="sos") # no reason to for trimming zeros as the norm after the filter will always # be positive return moving_mean(norm(sosfiltfilt(sos, accel, axis=0), axis=1), wlen, wlen) def metric_hfenplus(accel, wlen, fs, cutoff=0.2, trim_zero=True, **kwargs): """ Compute the high-pass filtered euclidean norm plus the low-pass filtered euclidean norm minus 1g. Parameters ---------- accel : numpy.ndarray (N, 3) array of acceleration values in g. wlen : int Window length (in number of samples) for non-overlapping windows. fs : float Sampling frequency of `accel` in Hz. cutoff : float, optional Cutoff in Hz for both high and low filters. Default is 0.2Hz. trim_zero : bool, optional Trim values to no less than 0. Default is True. Returns ------- hfenp : numpy.ndarray (N, ) array of high-pass filtered acceleration norm added to the low-pass filtered norm minus 1g. """ sos_low = butter(4, 2 * cutoff / fs, btype="low", output="sos") sos_high = butter(4, 2 * cutoff / fs, btype="high", output="sos") acc_high = norm(sosfiltfilt(sos_high, accel, axis=0), axis=1) acc_low = norm(sosfiltfilt(sos_low, accel, axis=0), axis=1) if trim_zero: return moving_mean(maximum(acc_high + acc_low - 1, 0), wlen, wlen) else: return moving_mean(acc_high + acc_low - 1, wlen, wlen) def metric_mad(accel, wlen, *args, **kwargs): """ Compute the Mean Amplitude Deviation metric for acceleration. Parameters ---------- accel : numpy.ndarray (N, 3) array of accelerationes measured in g. wlen : int Window length (in number of samples) for non-overlapping windows. Returns ------- mad : numpy.ndarray (N, ) array of computed MAD values. """ acc_norm = norm(accel, axis=1) r_avg = repeat(moving_mean(acc_norm, wlen, wlen), wlen) mad = moving_mean(abs(acc_norm[: r_avg.size] - r_avg), wlen, wlen) return mad
0.956166
0.623835
from warnings import warn from numpy import vstack, asarray, int_ from skdh.base import BaseProcess from skdh.io.base import check_input_file from skdh.io._extensions import read_geneactiv class ReadBin(BaseProcess): """ Read a binary .bin file from a GeneActiv sensor into memory. Acceleration values are returned in units of `g`. If providing a base and period value, included in the output will be the indices to create windows starting at the `base` time, with a length of `period`. Parameters ---------- bases : {None, int, list-like}, optional Base hours [0, 23] in which to start a window of time. Default is None, which will not do any windowing. Both `base` and `period` must be defined in order to window. Can use multiple, but the number of `bases` must match the number of `periods`. periods : {None, int, list-like}, optional Periods for each window, in [1, 24]. Defines the number of hours per window. Default is None, which will do no windowing. Both `period` and `base` must be defined to window. Can use multiple but the number of `periods` must match the number of `bases`. ext_error : {"warn", "raise", "skip"}, optional What to do if the file extension does not match the expected extension (.bin). Default is "warn". "raise" raises a ValueError. "skip" skips the file reading altogether and attempts to continue with the pipeline. Examples ======== Setup a reader with no windowing: >>> reader = ReadBin() >>> reader.predict('example.bin') {'accel': ..., 'time': ...} Setup a reader that does windowing between 8:00 AM and 8:00 PM (20:00): >>> reader = ReadBin(bases=8, periods=12) # 8 + 12 = 20 >>> reader.predict('example.bin') {'accel': ..., 'time': ..., 'day_ends': [130, 13951, ...]} """ def __init__(self, bases=None, periods=None, ext_error="warn"): super().__init__( # kwargs bases=bases, periods=periods, ext_error=ext_error, ) if ext_error.lower() in ["warn", "raise", "skip"]: self.ext_error = ext_error.lower() else: raise ValueError("`ext_error` must be one of 'raise', 'warn', 'skip'.") if (bases is None) and (periods is None): self.window = False self.bases = asarray([0]) # needs to be defined for passing to extensions self.periods = asarray([12]) elif (bases is None) or (periods is None): warn("One of base or period is None, not windowing", UserWarning) self.window = False self.bases = asarray([0]) self.periods = asarray([12]) else: if isinstance(bases, int) and isinstance(periods, int): bases = asarray([bases]) periods = asarray([periods]) else: bases = asarray(bases, dtype=int_) periods = asarray(periods, dtype=int_) if ((0 <= bases) & (bases <= 23)).all() and ( (1 <= periods) & (periods <= 24) ).all(): self.window = True self.bases = bases self.periods = periods else: raise ValueError( "Base must be in [0, 23] and period must be in [1, 23]" ) @check_input_file(".bin") def predict(self, file=None, **kwargs): """ predict(file) Read the data from the GeneActiv file Parameters ---------- file : {str, Path} Path to the file to read. Must either be a string, or be able to be converted by `str(file)` Returns ------- data : dict Dictionary of the data contained in the file. Raises ------ ValueError If the file name is not provided Notes ----- The keys in `data` depend on which data the file contained. Potential keys are: - `accel`: acceleration [g] - `time`: timestamps [s] - `light`: light values [unknown] - `temperature`: temperature [deg C] - `day_ends`: window indices """ super().predict(expect_days=False, expect_wear=False, file=file, **kwargs) # read the file n_max, fs, acc, time, light, temp, starts, stops = read_geneactiv( file, self.bases, self.periods ) results = { self._time: time[:n_max], self._acc: acc[:n_max, :], self._temp: temp[:n_max], "light": light[:n_max], "fs": fs, "file": file, } if self.window: results[self._days] = {} for i, data in enumerate(zip(self.bases, self.periods)): strt = starts[stops[:, i] != 0, i] stp = stops[stops[:, i] != 0, i] results[self._days][(data[0], data[1])] = vstack((strt, stp)).T kwargs.update(results) return (kwargs, None) if self._in_pipeline else kwargs
scikit-digital-health
/scikit_digital_health-0.11.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl/skdh/io/geneactiv.py
geneactiv.py
from warnings import warn from numpy import vstack, asarray, int_ from skdh.base import BaseProcess from skdh.io.base import check_input_file from skdh.io._extensions import read_geneactiv class ReadBin(BaseProcess): """ Read a binary .bin file from a GeneActiv sensor into memory. Acceleration values are returned in units of `g`. If providing a base and period value, included in the output will be the indices to create windows starting at the `base` time, with a length of `period`. Parameters ---------- bases : {None, int, list-like}, optional Base hours [0, 23] in which to start a window of time. Default is None, which will not do any windowing. Both `base` and `period` must be defined in order to window. Can use multiple, but the number of `bases` must match the number of `periods`. periods : {None, int, list-like}, optional Periods for each window, in [1, 24]. Defines the number of hours per window. Default is None, which will do no windowing. Both `period` and `base` must be defined to window. Can use multiple but the number of `periods` must match the number of `bases`. ext_error : {"warn", "raise", "skip"}, optional What to do if the file extension does not match the expected extension (.bin). Default is "warn". "raise" raises a ValueError. "skip" skips the file reading altogether and attempts to continue with the pipeline. Examples ======== Setup a reader with no windowing: >>> reader = ReadBin() >>> reader.predict('example.bin') {'accel': ..., 'time': ...} Setup a reader that does windowing between 8:00 AM and 8:00 PM (20:00): >>> reader = ReadBin(bases=8, periods=12) # 8 + 12 = 20 >>> reader.predict('example.bin') {'accel': ..., 'time': ..., 'day_ends': [130, 13951, ...]} """ def __init__(self, bases=None, periods=None, ext_error="warn"): super().__init__( # kwargs bases=bases, periods=periods, ext_error=ext_error, ) if ext_error.lower() in ["warn", "raise", "skip"]: self.ext_error = ext_error.lower() else: raise ValueError("`ext_error` must be one of 'raise', 'warn', 'skip'.") if (bases is None) and (periods is None): self.window = False self.bases = asarray([0]) # needs to be defined for passing to extensions self.periods = asarray([12]) elif (bases is None) or (periods is None): warn("One of base or period is None, not windowing", UserWarning) self.window = False self.bases = asarray([0]) self.periods = asarray([12]) else: if isinstance(bases, int) and isinstance(periods, int): bases = asarray([bases]) periods = asarray([periods]) else: bases = asarray(bases, dtype=int_) periods = asarray(periods, dtype=int_) if ((0 <= bases) & (bases <= 23)).all() and ( (1 <= periods) & (periods <= 24) ).all(): self.window = True self.bases = bases self.periods = periods else: raise ValueError( "Base must be in [0, 23] and period must be in [1, 23]" ) @check_input_file(".bin") def predict(self, file=None, **kwargs): """ predict(file) Read the data from the GeneActiv file Parameters ---------- file : {str, Path} Path to the file to read. Must either be a string, or be able to be converted by `str(file)` Returns ------- data : dict Dictionary of the data contained in the file. Raises ------ ValueError If the file name is not provided Notes ----- The keys in `data` depend on which data the file contained. Potential keys are: - `accel`: acceleration [g] - `time`: timestamps [s] - `light`: light values [unknown] - `temperature`: temperature [deg C] - `day_ends`: window indices """ super().predict(expect_days=False, expect_wear=False, file=file, **kwargs) # read the file n_max, fs, acc, time, light, temp, starts, stops = read_geneactiv( file, self.bases, self.periods ) results = { self._time: time[:n_max], self._acc: acc[:n_max, :], self._temp: temp[:n_max], "light": light[:n_max], "fs": fs, "file": file, } if self.window: results[self._days] = {} for i, data in enumerate(zip(self.bases, self.periods)): strt = starts[stops[:, i] != 0, i] stp = stops[stops[:, i] != 0, i] results[self._days][(data[0], data[1])] = vstack((strt, stp)).T kwargs.update(results) return (kwargs, None) if self._in_pipeline else kwargs
0.920652
0.650883
from pathlib import Path import functools from warnings import warn from skdh.io.utility import FileSizeError def check_input_file( extension, check_size=True, ext_message="File extension [{}] does not match expected [{}]", ): """ Check the input file for existence and suffix. Parameters ---------- extension : str Expected file suffix, eg '.abc'. check_size : bool, optional Check file size is over 1kb. Default is True. ext_message : str, optional Message to print if the suffix does not match. Should take 2 format arguments ('{}'), the first for the actual file suffix, and the second for the expected suffix. """ def decorator_check_input_file(func): @functools.wraps(func) def wrapper_check_input_file(self, file=None, **kwargs): # check if the file is provided if file is None: raise ValueError("`file` must not be None.") # make a path instance for ease of use pfile = Path(file) # make sure the file exists if not pfile.exists(): raise FileNotFoundError(f"File {file} does not exist.") # check that the file matches the expected extension if pfile.suffix != extension: if self.ext_error == "warn": warn(ext_message.format(pfile.suffix, extension), UserWarning) elif self.ext_error == "raise": raise ValueError(ext_message.format(pfile.suffix, extension)) elif self.ext_error == "skip": kwargs.update({"file": str(file)}) return (kwargs, None) if self._in_pipeline else kwargs # check file size if desired if check_size: if pfile.stat().st_size < 1000: raise FileSizeError("File is less than 1kb, nothing to read.") # cast to a string file = str(file) return func(self, file=file, **kwargs) return wrapper_check_input_file return decorator_check_input_file
scikit-digital-health
/scikit_digital_health-0.11.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl/skdh/io/base.py
base.py
from pathlib import Path import functools from warnings import warn from skdh.io.utility import FileSizeError def check_input_file( extension, check_size=True, ext_message="File extension [{}] does not match expected [{}]", ): """ Check the input file for existence and suffix. Parameters ---------- extension : str Expected file suffix, eg '.abc'. check_size : bool, optional Check file size is over 1kb. Default is True. ext_message : str, optional Message to print if the suffix does not match. Should take 2 format arguments ('{}'), the first for the actual file suffix, and the second for the expected suffix. """ def decorator_check_input_file(func): @functools.wraps(func) def wrapper_check_input_file(self, file=None, **kwargs): # check if the file is provided if file is None: raise ValueError("`file` must not be None.") # make a path instance for ease of use pfile = Path(file) # make sure the file exists if not pfile.exists(): raise FileNotFoundError(f"File {file} does not exist.") # check that the file matches the expected extension if pfile.suffix != extension: if self.ext_error == "warn": warn(ext_message.format(pfile.suffix, extension), UserWarning) elif self.ext_error == "raise": raise ValueError(ext_message.format(pfile.suffix, extension)) elif self.ext_error == "skip": kwargs.update({"file": str(file)}) return (kwargs, None) if self._in_pipeline else kwargs # check file size if desired if check_size: if pfile.stat().st_size < 1000: raise FileSizeError("File is less than 1kb, nothing to read.") # cast to a string file = str(file) return func(self, file=file, **kwargs) return wrapper_check_input_file return decorator_check_input_file
0.78535
0.273797
from numpy import load as np_load from skdh.base import BaseProcess from skdh.io.base import check_input_file class ReadNumpyFile(BaseProcess): """ Read a Numpy compressed file into memory. The file should have been created by `numpy.savez`. The data contained is read in unprocessed - ie acceleration is already assumed to be in units of 'g' and time in units of seconds. No day windowing is performed. Expected keys are `time` and `accel`. If `fs` is present, it is used as well. Parameters ---------- allow_pickle : bool, optional Allow pickled objects in the NumPy file. Default is False, which is the safer option. For more information see :py:meth:`numpy.load`. ext_error : {"warn", "raise", "skip"}, optional What to do if the file extension does not match the expected extension (.npz). Default is "warn". "raise" raises a ValueError. "skip" skips the file reading altogether and attempts to continue with the pipeline. """ def __init__(self, allow_pickle=False, ext_error="warn"): super(ReadNumpyFile, self).__init__( allow_pickle=allow_pickle, ext_error=ext_error ) self.allow_pickle = allow_pickle if ext_error.lower() in ["warn", "raise", "skip"]: self.ext_error = ext_error.lower() else: raise ValueError("`ext_error` must be one of 'raise', 'warn', 'skip'.") @check_input_file(".npz", check_size=True) def predict(self, file=None, **kwargs): """ predict(file) Read the data from a numpy compressed file. Parameters ---------- file : {str, Path} Path to the file to read. Must either be a string, or be able to be converted by `str(file)`. Returns ------- data : dict Dictionary of the data contained in the file. Raises ------ ValueError If the file name is not provided Notes ----- The keys in `data` depend on which data the file contained. Potential keys are: - `accel`: acceleration [g] - `time`: timestamps [s] - `fs`: sampling frequency in Hz. """ super().predict(expect_days=False, expect_wear=False, file=file, **kwargs) with np_load(file, allow_pickle=self.allow_pickle) as data: kwargs.update(data) # pull everything in # make sure that fs is saved properly if "fs" in data: kwargs["fs"] = data["fs"][()] # check that time and accel are in the correct names if self._time not in kwargs or self._acc not in kwargs: raise ValueError( f"Missing `{self._time}` or `{self._acc}` arrays in the file" ) # make sure we return the file kwargs.update({"file": file}) return (kwargs, None) if self._in_pipeline else kwargs
scikit-digital-health
/scikit_digital_health-0.11.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl/skdh/io/numpy_compressed.py
numpy_compressed.py
from numpy import load as np_load from skdh.base import BaseProcess from skdh.io.base import check_input_file class ReadNumpyFile(BaseProcess): """ Read a Numpy compressed file into memory. The file should have been created by `numpy.savez`. The data contained is read in unprocessed - ie acceleration is already assumed to be in units of 'g' and time in units of seconds. No day windowing is performed. Expected keys are `time` and `accel`. If `fs` is present, it is used as well. Parameters ---------- allow_pickle : bool, optional Allow pickled objects in the NumPy file. Default is False, which is the safer option. For more information see :py:meth:`numpy.load`. ext_error : {"warn", "raise", "skip"}, optional What to do if the file extension does not match the expected extension (.npz). Default is "warn". "raise" raises a ValueError. "skip" skips the file reading altogether and attempts to continue with the pipeline. """ def __init__(self, allow_pickle=False, ext_error="warn"): super(ReadNumpyFile, self).__init__( allow_pickle=allow_pickle, ext_error=ext_error ) self.allow_pickle = allow_pickle if ext_error.lower() in ["warn", "raise", "skip"]: self.ext_error = ext_error.lower() else: raise ValueError("`ext_error` must be one of 'raise', 'warn', 'skip'.") @check_input_file(".npz", check_size=True) def predict(self, file=None, **kwargs): """ predict(file) Read the data from a numpy compressed file. Parameters ---------- file : {str, Path} Path to the file to read. Must either be a string, or be able to be converted by `str(file)`. Returns ------- data : dict Dictionary of the data contained in the file. Raises ------ ValueError If the file name is not provided Notes ----- The keys in `data` depend on which data the file contained. Potential keys are: - `accel`: acceleration [g] - `time`: timestamps [s] - `fs`: sampling frequency in Hz. """ super().predict(expect_days=False, expect_wear=False, file=file, **kwargs) with np_load(file, allow_pickle=self.allow_pickle) as data: kwargs.update(data) # pull everything in # make sure that fs is saved properly if "fs" in data: kwargs["fs"] = data["fs"][()] # check that time and accel are in the correct names if self._time not in kwargs or self._acc not in kwargs: raise ValueError( f"Missing `{self._time}` or `{self._acc}` arrays in the file" ) # make sure we return the file kwargs.update({"file": file}) return (kwargs, None) if self._in_pipeline else kwargs
0.870542
0.500977
from warnings import warn from numpy import vstack, asarray, ascontiguousarray, minimum, int_ from skdh.base import BaseProcess from skdh.io.base import check_input_file from skdh.io._extensions import read_axivity class UnexpectedAxesError(Exception): pass class ReadCwa(BaseProcess): """ Read a binary CWA file from an axivity sensor into memory. Acceleration is return in units of 'g' while angular velocity (if available) is returned in units of `deg/s`. If providing a base and period value, included in the output will be the indices to create windows starting at the `base` time, with a length of `period`. Parameters ---------- bases : {None, int}, optional Base hour [0, 23] in which to start a window of time. Default is None, which will not do any windowing. Both `base` and `period` must be defined in order to window. periods : {None, int}, optional Period for each window, in [1, 24]. Defines the number of hours per window. Default is None, which will do no windowing. Both `period` and `base` must be defined to window ext_error : {"warn", "raise", "skip"}, optional What to do if the file extension does not match the expected extension (.cwa). Default is "warn". "raise" raises a ValueError. "skip" skips the file reading altogether and attempts to continue with the pipeline. Examples -------- Setup a reader with no windowing: >>> reader = ReadCwa() >>> reader.predict('example.cwa') {'accel': ..., 'time': ..., ...} Setup a reader that does windowing between 8:00 AM and 8:00 PM (20:00): >>> reader = ReadCwa(bases=8, periods=12) # 8 + 12 = 20 >>> reader.predict('example.cwa') {'accel': ..., 'time': ..., 'day_ends': [130, 13951, ...], ...} """ def __init__(self, bases=None, periods=None, ext_error="warn"): super().__init__( # kwargs bases=bases, periods=periods, ext_error=ext_error, ) if ext_error.lower() in ["warn", "raise", "skip"]: self.ext_error = ext_error.lower() else: raise ValueError("`ext_error` must be one of 'raise', 'warn', 'skip'.") if (bases is None) and (periods is None): self.window = False self.bases = asarray([0]) # needs to be defined for passing to extensions self.periods = asarray([12]) elif (bases is None) or (periods is None): warn("One of base or period is None, not windowing", UserWarning) self.window = False self.bases = asarray([0]) self.periods = asarray([12]) else: if isinstance(bases, int) and isinstance(periods, int): bases = asarray([bases]) periods = asarray([periods]) else: bases = asarray(bases, dtype=int_) periods = asarray(periods, dtype=int_) if ((0 <= bases) & (bases <= 23)).all() and ( (1 <= periods) & (periods <= 24) ).all(): self.window = True self.bases = bases self.periods = periods else: raise ValueError( "Base must be in [0, 23] and period must be in [1, 23]" ) @check_input_file(".cwa") def predict(self, file=None, **kwargs): """ predict(file) Read the data from the axivity file Parameters ---------- file : {str, Path} Path to the file to read. Must either be a string, or be able to be converted by `str(file)` Returns ------- data : dict Dictionary of the data contained in the file. Raises ------ ValueError If the file name is not provided UnexpectedAxesError If the number of axes returned is not 3, 6 or 9 Notes ----- The keys in `data` depend on which data the file contained. Potential keys are: - `accel`: acceleration [g] - `gyro`: angular velocity [deg/s] - `magnet`: magnetic field readings [uT] - `time`: timestamps [s] - `day_ends`: window indices """ super().predict(expect_days=False, expect_wear=False, file=file, **kwargs) # read the file fs, n_bad_samples, imudata, ts, temperature, starts, stops = read_axivity( file, self.bases, self.periods ) # end = None if n_bad_samples == 0 else -n_bad_samples end = None num_axes = imudata.shape[1] gyr_axes = mag_axes = None if num_axes == 3: acc_axes = slice(None) elif num_axes == 6: gyr_axes = slice(3) acc_axes = slice(3, 6) elif num_axes == 9: # pragma: no cover :: don't have data to test this gyr_axes = slice(3) acc_axes = slice(3, 6) mag_axes = slice(6, 9) else: # pragma: no cover :: not expected to reach here only if file is corrupt raise UnexpectedAxesError("Unexpected number of axes in the IMU data") results = { self._time: ts[:end], "file": file, "fs": fs, self._temp: temperature[:end], } if acc_axes is not None: results[self._acc] = ascontiguousarray(imudata[:end, acc_axes]) if gyr_axes is not None: results[self._gyro] = ascontiguousarray(imudata[:end, gyr_axes]) if mag_axes is not None: # pragma: no cover :: don't have data to test this results[self._mag] = ascontiguousarray(imudata[:end, mag_axes]) if self.window: results[self._days] = {} for i, data in enumerate(zip(self.bases, self.periods)): strt = starts[stops[:, i] != 0, i] stp = stops[stops[:, i] != 0, i] results[self._days][(data[0], data[1])] = minimum( vstack((strt, stp)).T, results[self._time].size - 1 ) kwargs.update(results) return (kwargs, None) if self._in_pipeline else kwargs
scikit-digital-health
/scikit_digital_health-0.11.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl/skdh/io/axivity.py
axivity.py
from warnings import warn from numpy import vstack, asarray, ascontiguousarray, minimum, int_ from skdh.base import BaseProcess from skdh.io.base import check_input_file from skdh.io._extensions import read_axivity class UnexpectedAxesError(Exception): pass class ReadCwa(BaseProcess): """ Read a binary CWA file from an axivity sensor into memory. Acceleration is return in units of 'g' while angular velocity (if available) is returned in units of `deg/s`. If providing a base and period value, included in the output will be the indices to create windows starting at the `base` time, with a length of `period`. Parameters ---------- bases : {None, int}, optional Base hour [0, 23] in which to start a window of time. Default is None, which will not do any windowing. Both `base` and `period` must be defined in order to window. periods : {None, int}, optional Period for each window, in [1, 24]. Defines the number of hours per window. Default is None, which will do no windowing. Both `period` and `base` must be defined to window ext_error : {"warn", "raise", "skip"}, optional What to do if the file extension does not match the expected extension (.cwa). Default is "warn". "raise" raises a ValueError. "skip" skips the file reading altogether and attempts to continue with the pipeline. Examples -------- Setup a reader with no windowing: >>> reader = ReadCwa() >>> reader.predict('example.cwa') {'accel': ..., 'time': ..., ...} Setup a reader that does windowing between 8:00 AM and 8:00 PM (20:00): >>> reader = ReadCwa(bases=8, periods=12) # 8 + 12 = 20 >>> reader.predict('example.cwa') {'accel': ..., 'time': ..., 'day_ends': [130, 13951, ...], ...} """ def __init__(self, bases=None, periods=None, ext_error="warn"): super().__init__( # kwargs bases=bases, periods=periods, ext_error=ext_error, ) if ext_error.lower() in ["warn", "raise", "skip"]: self.ext_error = ext_error.lower() else: raise ValueError("`ext_error` must be one of 'raise', 'warn', 'skip'.") if (bases is None) and (periods is None): self.window = False self.bases = asarray([0]) # needs to be defined for passing to extensions self.periods = asarray([12]) elif (bases is None) or (periods is None): warn("One of base or period is None, not windowing", UserWarning) self.window = False self.bases = asarray([0]) self.periods = asarray([12]) else: if isinstance(bases, int) and isinstance(periods, int): bases = asarray([bases]) periods = asarray([periods]) else: bases = asarray(bases, dtype=int_) periods = asarray(periods, dtype=int_) if ((0 <= bases) & (bases <= 23)).all() and ( (1 <= periods) & (periods <= 24) ).all(): self.window = True self.bases = bases self.periods = periods else: raise ValueError( "Base must be in [0, 23] and period must be in [1, 23]" ) @check_input_file(".cwa") def predict(self, file=None, **kwargs): """ predict(file) Read the data from the axivity file Parameters ---------- file : {str, Path} Path to the file to read. Must either be a string, or be able to be converted by `str(file)` Returns ------- data : dict Dictionary of the data contained in the file. Raises ------ ValueError If the file name is not provided UnexpectedAxesError If the number of axes returned is not 3, 6 or 9 Notes ----- The keys in `data` depend on which data the file contained. Potential keys are: - `accel`: acceleration [g] - `gyro`: angular velocity [deg/s] - `magnet`: magnetic field readings [uT] - `time`: timestamps [s] - `day_ends`: window indices """ super().predict(expect_days=False, expect_wear=False, file=file, **kwargs) # read the file fs, n_bad_samples, imudata, ts, temperature, starts, stops = read_axivity( file, self.bases, self.periods ) # end = None if n_bad_samples == 0 else -n_bad_samples end = None num_axes = imudata.shape[1] gyr_axes = mag_axes = None if num_axes == 3: acc_axes = slice(None) elif num_axes == 6: gyr_axes = slice(3) acc_axes = slice(3, 6) elif num_axes == 9: # pragma: no cover :: don't have data to test this gyr_axes = slice(3) acc_axes = slice(3, 6) mag_axes = slice(6, 9) else: # pragma: no cover :: not expected to reach here only if file is corrupt raise UnexpectedAxesError("Unexpected number of axes in the IMU data") results = { self._time: ts[:end], "file": file, "fs": fs, self._temp: temperature[:end], } if acc_axes is not None: results[self._acc] = ascontiguousarray(imudata[:end, acc_axes]) if gyr_axes is not None: results[self._gyro] = ascontiguousarray(imudata[:end, gyr_axes]) if mag_axes is not None: # pragma: no cover :: don't have data to test this results[self._mag] = ascontiguousarray(imudata[:end, mag_axes]) if self.window: results[self._days] = {} for i, data in enumerate(zip(self.bases, self.periods)): strt = starts[stops[:, i] != 0, i] stp = stops[stops[:, i] != 0, i] results[self._days][(data[0], data[1])] = minimum( vstack((strt, stp)).T, results[self._time].size - 1 ) kwargs.update(results) return (kwargs, None) if self._in_pipeline else kwargs
0.89796
0.60288
from sys import version_info from numpy import isclose, where, diff, insert, append, ascontiguousarray, int_ from numpy.linalg import norm from scipy.signal import butter, sosfiltfilt import lightgbm as lgb from skdh.utility import get_windowed_view from skdh.utility.internal import rle from skdh.features import Bank if version_info >= (3, 7): from importlib import resources else: # pragma: no cover import importlib_resources def _resolve_path(mod, file): if version_info >= (3, 7): with resources.path(mod, file) as file_path: path = file_path else: # pragma: no cover with importlib_resources.path(mod, file) as file_path: path = file_path return path class DimensionMismatchError(Exception): pass def get_gait_classification_lgbm(gait_starts, gait_stops, accel, fs): """ Get classification of windows of accelerometer data using the LightGBM classifier Parameters ---------- gait_starts : {None, numpy.ndarray} Provided gait start indices. gait_stops : {None, numpy.ndarray} Provided gait stop indices. accel : numpy.ndarray (N, 3) array of acceleration values, in units of "g" fs : float Sampling frequency for the data """ if gait_starts is not None and gait_stops is not None: return gait_starts, gait_stops else: if not isclose(fs, 50.0) and not isclose(fs, 20.0): raise ValueError("fs must be either 50hz or 20hz.") suffix = "50hz" if fs == 50.0 else "20hz" wlen = int(fs * 3) # window length, 3 seconds wstep = wlen # non-overlapping windows thresh = 0.7 # mean + 1 stdev of best threshold for maximizing F1 score. # used to try to minimized false positives # band-pass filter sos = butter(1, [2 * 0.25 / fs, 2 * 5 / fs], btype="band", output="sos") accel_filt = ascontiguousarray(sosfiltfilt(sos, norm(accel, axis=1))) # window, data will already be in c-contiguous layout accel_w = get_windowed_view(accel_filt, wlen, wstep, ensure_c_contiguity=False) # get the feature bank feat_bank = Bank() # data is already windowed feat_bank.load(_resolve_path("skdh.gait.model", "final_features.json")) # compute the features accel_feats = feat_bank.compute(accel_w, fs=fs, axis=1, index_axis=None) # output shape is (18, 99), need to transpose when passing to classifier # load the classification model lgb_file = str( _resolve_path( "skdh.gait.model", f"lgbm_gait_classifier_no-stairs_{suffix}.lgbm" ) ) bst = lgb.Booster(model_file=lgb_file) # predict gait_predictions = ( bst.predict(accel_feats.T, raw_score=False) > thresh ).astype(int_) lengths, starts, vals = rle(gait_predictions) bout_starts = starts[vals == 1] bout_stops = bout_starts + lengths[vals == 1] # convert to actual values that match up with data bout_starts *= wstep bout_stops = bout_stops * wstep + ( wlen - wstep ) # account for edges, if windows overlap return bout_starts.astype("int"), bout_stops.astype("int")
scikit-digital-health
/scikit_digital_health-0.11.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl/skdh/gait/get_gait_classification.py
get_gait_classification.py
from sys import version_info from numpy import isclose, where, diff, insert, append, ascontiguousarray, int_ from numpy.linalg import norm from scipy.signal import butter, sosfiltfilt import lightgbm as lgb from skdh.utility import get_windowed_view from skdh.utility.internal import rle from skdh.features import Bank if version_info >= (3, 7): from importlib import resources else: # pragma: no cover import importlib_resources def _resolve_path(mod, file): if version_info >= (3, 7): with resources.path(mod, file) as file_path: path = file_path else: # pragma: no cover with importlib_resources.path(mod, file) as file_path: path = file_path return path class DimensionMismatchError(Exception): pass def get_gait_classification_lgbm(gait_starts, gait_stops, accel, fs): """ Get classification of windows of accelerometer data using the LightGBM classifier Parameters ---------- gait_starts : {None, numpy.ndarray} Provided gait start indices. gait_stops : {None, numpy.ndarray} Provided gait stop indices. accel : numpy.ndarray (N, 3) array of acceleration values, in units of "g" fs : float Sampling frequency for the data """ if gait_starts is not None and gait_stops is not None: return gait_starts, gait_stops else: if not isclose(fs, 50.0) and not isclose(fs, 20.0): raise ValueError("fs must be either 50hz or 20hz.") suffix = "50hz" if fs == 50.0 else "20hz" wlen = int(fs * 3) # window length, 3 seconds wstep = wlen # non-overlapping windows thresh = 0.7 # mean + 1 stdev of best threshold for maximizing F1 score. # used to try to minimized false positives # band-pass filter sos = butter(1, [2 * 0.25 / fs, 2 * 5 / fs], btype="band", output="sos") accel_filt = ascontiguousarray(sosfiltfilt(sos, norm(accel, axis=1))) # window, data will already be in c-contiguous layout accel_w = get_windowed_view(accel_filt, wlen, wstep, ensure_c_contiguity=False) # get the feature bank feat_bank = Bank() # data is already windowed feat_bank.load(_resolve_path("skdh.gait.model", "final_features.json")) # compute the features accel_feats = feat_bank.compute(accel_w, fs=fs, axis=1, index_axis=None) # output shape is (18, 99), need to transpose when passing to classifier # load the classification model lgb_file = str( _resolve_path( "skdh.gait.model", f"lgbm_gait_classifier_no-stairs_{suffix}.lgbm" ) ) bst = lgb.Booster(model_file=lgb_file) # predict gait_predictions = ( bst.predict(accel_feats.T, raw_score=False) > thresh ).astype(int_) lengths, starts, vals = rle(gait_predictions) bout_starts = starts[vals == 1] bout_stops = bout_starts + lengths[vals == 1] # convert to actual values that match up with data bout_starts *= wstep bout_stops = bout_stops * wstep + ( wlen - wstep ) # account for edges, if windows overlap return bout_starts.astype("int"), bout_stops.astype("int")
0.551574
0.30767
from numpy import fft, argmax, std, abs, argsort, corrcoef, mean, sign from scipy.signal import detrend, butter, sosfiltfilt, find_peaks from scipy.integrate import cumtrapz from pywt import cwt from skdh.utility import correct_accelerometer_orientation from skdh.gait.gait_endpoints import gait_endpoints def get_cwt_scales(use_optimal_scale, vertical_velocity, original_scale, fs): """ Get the CWT scales for the IC and FC events. Parameters ---------- use_optimal_scale : bool Use the optimal scale based on step frequency. vertical_velocity : numpy.ndarray Vertical velocity, in units of "g". original_scale : int The original/default scale for the CWT. fs : float Sampling frequency, in Hz. Returns ------- scale1 : int First scale for the CWT. For initial contact events. scale2 : int Second scale for the CWT. For final contact events. """ if use_optimal_scale: coef_scale_original, _ = cwt(vertical_velocity, original_scale, "gaus1") F = abs(fft.rfft(coef_scale_original[0])) # compute an estimate of the step frequency step_freq = argmax(F) / vertical_velocity.size * fs # IC scale: -10 * sf + 56 # FC scale: -52 * sf + 131 # TODO verify the FC scale equation. This it not in the paper but is a # guess from the graph # original fs was 250hz, hence the conversion scale1 = min(max(round((-10 * step_freq + 56) * (fs / 250)), 1), 90) scale2 = min(max(round((-52 * step_freq + 131) * (fs / 250)), 1), 90) # scale range is between 1 and 90 else: scale1 = scale2 = original_scale return scale1, scale2 def get_gait_events( accel, fs, ts, orig_scale, filter_order, filter_cutoff, corr_accel_orient, use_optimal_scale, ): """ Get the bouts of gait from the acceleration during a gait bout Parameters ---------- accel : numpy.ndarray (N, 3) array of acceleration during the gait bout. fs : float Sampling frequency for the acceleration. ts : numpy.ndarray Array of timestmaps (in seconds) corresponding to acceleration sampling times. orig_scale : int Original scale for the CWT. filter_order : int Low-pass filter order. filter_cutoff : float Low-pass filter cutoff in Hz. corr_accel_orient : bool Correct the accelerometer orientation. use_optimal_scale : bool Use the optimal scale based on step frequency. Returns ------- init_contact : numpy.ndarray Indices of initial contacts final_contact : numpy.ndarray Indices of final contacts vert_accel : numpy.ndarray Filtered vertical acceleration v_axis : int The axis corresponding to the vertical acceleration """ assert accel.shape[0] == ts.size, "`vert_accel` and `ts` size must match" # figure out vertical axis on a per-bout basis acc_mean = mean(accel, axis=0) v_axis = argmax(abs(acc_mean)) va_sign = sign(acc_mean[v_axis]) # sign of the vertical acceleration # correct acceleration orientation if set if corr_accel_orient: # determine AP axis ac = gait_endpoints._autocovariancefn( accel, min(accel.shape[0] - 1, 1000), biased=True, axis=0 ) ap_axis = argsort(corrcoef(ac.T)[v_axis])[-2] # last is autocorrelation accel = correct_accelerometer_orientation(accel, v_axis=v_axis, ap_axis=ap_axis) vert_accel = detrend(accel[:, v_axis]) # detrend data just in case # low-pass filter if we can if 0 < (2 * filter_cutoff / fs) < 1: sos = butter(filter_order, 2 * filter_cutoff / fs, btype="low", output="sos") # multiply by 1 to ensure a copy and not a view filt_vert_accel = sosfiltfilt(sos, vert_accel) else: filt_vert_accel = vert_accel * 1 # first integrate the vertical accel to get velocity vert_velocity = cumtrapz(filt_vert_accel, x=ts - ts[0], initial=0) # get the CWT scales scale1, scale2 = get_cwt_scales(use_optimal_scale, vert_velocity, orig_scale, fs) coef1, _ = cwt(vert_velocity, [scale1, scale2], "gaus1") """ Find the local minima in the signal. This should technically always require using the negative signal in "find_peaks", however the way PyWavelets computes the CWT results in the opposite signal that we want. Therefore, if the sign of the acceleration was negative, we need to use the positve coefficient signal, and opposite for positive acceleration reading. """ init_contact, *_ = find_peaks(-va_sign * coef1[0], height=0.5 * std(coef1[0])) coef2, _ = cwt(coef1[1], scale2, "gaus1") """ Peaks are the final contact points Same issue as above """ final_contact, *_ = find_peaks(-va_sign * coef2[0], height=0.5 * std(coef2[0])) return init_contact, final_contact, filt_vert_accel, v_axis
scikit-digital-health
/scikit_digital_health-0.11.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl/skdh/gait/get_gait_events.py
get_gait_events.py
from numpy import fft, argmax, std, abs, argsort, corrcoef, mean, sign from scipy.signal import detrend, butter, sosfiltfilt, find_peaks from scipy.integrate import cumtrapz from pywt import cwt from skdh.utility import correct_accelerometer_orientation from skdh.gait.gait_endpoints import gait_endpoints def get_cwt_scales(use_optimal_scale, vertical_velocity, original_scale, fs): """ Get the CWT scales for the IC and FC events. Parameters ---------- use_optimal_scale : bool Use the optimal scale based on step frequency. vertical_velocity : numpy.ndarray Vertical velocity, in units of "g". original_scale : int The original/default scale for the CWT. fs : float Sampling frequency, in Hz. Returns ------- scale1 : int First scale for the CWT. For initial contact events. scale2 : int Second scale for the CWT. For final contact events. """ if use_optimal_scale: coef_scale_original, _ = cwt(vertical_velocity, original_scale, "gaus1") F = abs(fft.rfft(coef_scale_original[0])) # compute an estimate of the step frequency step_freq = argmax(F) / vertical_velocity.size * fs # IC scale: -10 * sf + 56 # FC scale: -52 * sf + 131 # TODO verify the FC scale equation. This it not in the paper but is a # guess from the graph # original fs was 250hz, hence the conversion scale1 = min(max(round((-10 * step_freq + 56) * (fs / 250)), 1), 90) scale2 = min(max(round((-52 * step_freq + 131) * (fs / 250)), 1), 90) # scale range is between 1 and 90 else: scale1 = scale2 = original_scale return scale1, scale2 def get_gait_events( accel, fs, ts, orig_scale, filter_order, filter_cutoff, corr_accel_orient, use_optimal_scale, ): """ Get the bouts of gait from the acceleration during a gait bout Parameters ---------- accel : numpy.ndarray (N, 3) array of acceleration during the gait bout. fs : float Sampling frequency for the acceleration. ts : numpy.ndarray Array of timestmaps (in seconds) corresponding to acceleration sampling times. orig_scale : int Original scale for the CWT. filter_order : int Low-pass filter order. filter_cutoff : float Low-pass filter cutoff in Hz. corr_accel_orient : bool Correct the accelerometer orientation. use_optimal_scale : bool Use the optimal scale based on step frequency. Returns ------- init_contact : numpy.ndarray Indices of initial contacts final_contact : numpy.ndarray Indices of final contacts vert_accel : numpy.ndarray Filtered vertical acceleration v_axis : int The axis corresponding to the vertical acceleration """ assert accel.shape[0] == ts.size, "`vert_accel` and `ts` size must match" # figure out vertical axis on a per-bout basis acc_mean = mean(accel, axis=0) v_axis = argmax(abs(acc_mean)) va_sign = sign(acc_mean[v_axis]) # sign of the vertical acceleration # correct acceleration orientation if set if corr_accel_orient: # determine AP axis ac = gait_endpoints._autocovariancefn( accel, min(accel.shape[0] - 1, 1000), biased=True, axis=0 ) ap_axis = argsort(corrcoef(ac.T)[v_axis])[-2] # last is autocorrelation accel = correct_accelerometer_orientation(accel, v_axis=v_axis, ap_axis=ap_axis) vert_accel = detrend(accel[:, v_axis]) # detrend data just in case # low-pass filter if we can if 0 < (2 * filter_cutoff / fs) < 1: sos = butter(filter_order, 2 * filter_cutoff / fs, btype="low", output="sos") # multiply by 1 to ensure a copy and not a view filt_vert_accel = sosfiltfilt(sos, vert_accel) else: filt_vert_accel = vert_accel * 1 # first integrate the vertical accel to get velocity vert_velocity = cumtrapz(filt_vert_accel, x=ts - ts[0], initial=0) # get the CWT scales scale1, scale2 = get_cwt_scales(use_optimal_scale, vert_velocity, orig_scale, fs) coef1, _ = cwt(vert_velocity, [scale1, scale2], "gaus1") """ Find the local minima in the signal. This should technically always require using the negative signal in "find_peaks", however the way PyWavelets computes the CWT results in the opposite signal that we want. Therefore, if the sign of the acceleration was negative, we need to use the positve coefficient signal, and opposite for positive acceleration reading. """ init_contact, *_ = find_peaks(-va_sign * coef1[0], height=0.5 * std(coef1[0])) coef2, _ = cwt(coef1[1], scale2, "gaus1") """ Peaks are the final contact points Same issue as above """ final_contact, *_ = find_peaks(-va_sign * coef2[0], height=0.5 * std(coef2[0])) return init_contact, final_contact, filt_vert_accel, v_axis
0.870625
0.564399
from numpy import ( max, min, mean, arccos, sum, array, sin, cos, full, nan, arctan2, unwrap, pi, sign, diff, abs, zeros, cross, ) from numpy.linalg import norm from skdh.utility.internal import rle def get_turns(gait, accel, gyro, fs, n_strides): """ Get the location of turns, to indicate if steps occur during a turn. Parameters ---------- gait : dictionary Dictionary of gait values needed for computation or the results. accel : numpy.ndarray Acceleration in units of 'g', for the current gait bout. gyro : numpy.ndarray Angular velocity in units of 'rad/s', for the current gait bout. fs : float Sampling frequency, in Hz. n_strides : int Number of strides in the current gait bout. Notes ----- Values indicate turns as follows: - -1: Turns not detected (lacking angular velocity data) - 0: No turn found - 1: Turn overlaps with either Initial or Final contact - 2: Turn overlaps with both Initial and Final contact References ---------- .. [1] M. H. Pham et al., “Algorithm for Turning Detection and Analysis Validated under Home-Like Conditions in Patients with Parkinson’s Disease and Older Adults using a 6 Degree-of-Freedom Inertial Measurement Unit at the Lower Back,” Front. Neurol., vol. 8, Apr. 2017, doi: 10.3389/fneur.2017.00135. """ # first check if we can detect turns if gyro is None or n_strides < 1: gait["Turn"].extend([-1] * n_strides) return # get the first available still period to start the yaw tracking n = int(0.05 * fs) # number of samples to use for still period min_slice = None for i in range(int(2 * fs)): tmp = norm(accel[i : i + n], axis=1) acc_range = max(tmp) - min(tmp) if acc_range < (0.2 / 9.81): # range defined by the Pham paper min_slice = accel[i : i + n] break if min_slice is None: min_slice = accel[:n] # compute the mean value over that time frame acc_init = mean(min_slice, axis=0) # compute the initial angle between this vector and global frame phi = arccos(sum(acc_init * array([0, 0, 1])) / norm(acc_init)) # create the rotation matrix/rotations from sensor frame to global frame gsZ = array([sin(phi), cos(phi), 0.0]) gsX = array([1.0, 0.0, 0.0]) gsY = cross(gsZ, gsX) gsY /= norm(gsY) gsX = cross(gsY, gsZ) gsX /= norm(gsX) gsR = array([gsX, gsY, gsZ]) # iterate over the gait bout alpha = full(gyro.shape[0], nan) # allocate the yaw angle around vertical axis alpha[0] = arctan2(gsR[2, 0], gsR[1, 0]) for i in range(1, gyro.shape[0]): theta = norm(gyro[i]) / fs c = cos(theta) s = sin(theta) t = 1 - c wx = gyro[i, 0] wy = gyro[i, 1] wz = gyro[i, 2] update_R = array( [ [t * wx**2 + c, t * wx * wy + s * wz, t * wx * wz - s * wy], [t * wx * wy - s * wz, t * wy**2 + c, t * wy * wz + s * wx], [t * wx * wz + s * wy, t * wy * wz - s * wx, t * wz**2 + c], ] ) gsR = update_R @ gsR alpha[i] = arctan2(gsR[2, 0], gsR[1, 0]) # unwrap the angle so there are no discontinuities alpha = unwrap(alpha, period=pi) # get the sign of the difference as initial turn indication turns = sign(diff(alpha)) # get the angles of the turns lengths, starts, values = rle(turns == 1) turn_angles = abs(alpha[starts + lengths] - alpha[starts]) # find hesitations in turns mask = (lengths / fs) < 0.5 # less than half a second mask[1:-1] &= turn_angles[:-2] >= (pi / 180 * 10) # adjacent turns > 10 degrees mask[1:-1] &= turn_angles[2:] >= (pi / 180 * 10) # one adjacent turn greater than 45 degrees mask[1:-1] &= (turn_angles[:-2] > pi / 4) | (turn_angles[2:] >= pi / 4) # magnitude of hesitation less than 10% of turn angle mask[1:-1] = turn_angles[1:-1] < (0.1 * (turn_angles[:-2] + turn_angles[2:])) # set hesitation turns to match surrounding for l, s in zip(lengths[mask], starts[mask]): turns[s : s + l] = turns[s - 1] # enforce the time limit (0.1 - 10s) and angle limit (90 deg) lengths, starts, values = rle(turns == 1) mask = abs(alpha[starts + lengths] - alpha[starts]) < (pi / 2) # exclusion mask mask |= ((lengths / fs) < 0.1) & ((lengths / fs) > 10) for l, s in zip(lengths[mask], starts[mask]): turns[s : s + l] = 0 # final list of turns lengths, starts, values = rle(turns != 0) # mask for strides in turn in_turn = zeros(n_strides, dtype="int") for d, s in zip(lengths[values == 1], starts[values == 1]): in_turn += (gait["IC"][-n_strides:] > s) & (gait["IC"][-n_strides:] < (s + d)) in_turn += (gait["FC"][-n_strides:] > s) & (gait["FC"][-n_strides:] < (s + d)) gait["Turn"].extend(in_turn)
scikit-digital-health
/scikit_digital_health-0.11.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl/skdh/gait/get_turns.py
get_turns.py
from numpy import ( max, min, mean, arccos, sum, array, sin, cos, full, nan, arctan2, unwrap, pi, sign, diff, abs, zeros, cross, ) from numpy.linalg import norm from skdh.utility.internal import rle def get_turns(gait, accel, gyro, fs, n_strides): """ Get the location of turns, to indicate if steps occur during a turn. Parameters ---------- gait : dictionary Dictionary of gait values needed for computation or the results. accel : numpy.ndarray Acceleration in units of 'g', for the current gait bout. gyro : numpy.ndarray Angular velocity in units of 'rad/s', for the current gait bout. fs : float Sampling frequency, in Hz. n_strides : int Number of strides in the current gait bout. Notes ----- Values indicate turns as follows: - -1: Turns not detected (lacking angular velocity data) - 0: No turn found - 1: Turn overlaps with either Initial or Final contact - 2: Turn overlaps with both Initial and Final contact References ---------- .. [1] M. H. Pham et al., “Algorithm for Turning Detection and Analysis Validated under Home-Like Conditions in Patients with Parkinson’s Disease and Older Adults using a 6 Degree-of-Freedom Inertial Measurement Unit at the Lower Back,” Front. Neurol., vol. 8, Apr. 2017, doi: 10.3389/fneur.2017.00135. """ # first check if we can detect turns if gyro is None or n_strides < 1: gait["Turn"].extend([-1] * n_strides) return # get the first available still period to start the yaw tracking n = int(0.05 * fs) # number of samples to use for still period min_slice = None for i in range(int(2 * fs)): tmp = norm(accel[i : i + n], axis=1) acc_range = max(tmp) - min(tmp) if acc_range < (0.2 / 9.81): # range defined by the Pham paper min_slice = accel[i : i + n] break if min_slice is None: min_slice = accel[:n] # compute the mean value over that time frame acc_init = mean(min_slice, axis=0) # compute the initial angle between this vector and global frame phi = arccos(sum(acc_init * array([0, 0, 1])) / norm(acc_init)) # create the rotation matrix/rotations from sensor frame to global frame gsZ = array([sin(phi), cos(phi), 0.0]) gsX = array([1.0, 0.0, 0.0]) gsY = cross(gsZ, gsX) gsY /= norm(gsY) gsX = cross(gsY, gsZ) gsX /= norm(gsX) gsR = array([gsX, gsY, gsZ]) # iterate over the gait bout alpha = full(gyro.shape[0], nan) # allocate the yaw angle around vertical axis alpha[0] = arctan2(gsR[2, 0], gsR[1, 0]) for i in range(1, gyro.shape[0]): theta = norm(gyro[i]) / fs c = cos(theta) s = sin(theta) t = 1 - c wx = gyro[i, 0] wy = gyro[i, 1] wz = gyro[i, 2] update_R = array( [ [t * wx**2 + c, t * wx * wy + s * wz, t * wx * wz - s * wy], [t * wx * wy - s * wz, t * wy**2 + c, t * wy * wz + s * wx], [t * wx * wz + s * wy, t * wy * wz - s * wx, t * wz**2 + c], ] ) gsR = update_R @ gsR alpha[i] = arctan2(gsR[2, 0], gsR[1, 0]) # unwrap the angle so there are no discontinuities alpha = unwrap(alpha, period=pi) # get the sign of the difference as initial turn indication turns = sign(diff(alpha)) # get the angles of the turns lengths, starts, values = rle(turns == 1) turn_angles = abs(alpha[starts + lengths] - alpha[starts]) # find hesitations in turns mask = (lengths / fs) < 0.5 # less than half a second mask[1:-1] &= turn_angles[:-2] >= (pi / 180 * 10) # adjacent turns > 10 degrees mask[1:-1] &= turn_angles[2:] >= (pi / 180 * 10) # one adjacent turn greater than 45 degrees mask[1:-1] &= (turn_angles[:-2] > pi / 4) | (turn_angles[2:] >= pi / 4) # magnitude of hesitation less than 10% of turn angle mask[1:-1] = turn_angles[1:-1] < (0.1 * (turn_angles[:-2] + turn_angles[2:])) # set hesitation turns to match surrounding for l, s in zip(lengths[mask], starts[mask]): turns[s : s + l] = turns[s - 1] # enforce the time limit (0.1 - 10s) and angle limit (90 deg) lengths, starts, values = rle(turns == 1) mask = abs(alpha[starts + lengths] - alpha[starts]) < (pi / 2) # exclusion mask mask |= ((lengths / fs) < 0.1) & ((lengths / fs) > 10) for l, s in zip(lengths[mask], starts[mask]): turns[s : s + l] = 0 # final list of turns lengths, starts, values = rle(turns != 0) # mask for strides in turn in_turn = zeros(n_strides, dtype="int") for d, s in zip(lengths[values == 1], starts[values == 1]): in_turn += (gait["IC"][-n_strides:] > s) & (gait["IC"][-n_strides:] < (s + d)) in_turn += (gait["FC"][-n_strides:] > s) & (gait["FC"][-n_strides:] < (s + d)) gait["Turn"].extend(in_turn)
0.835651
0.590455
import functools import logging from numpy import zeros, roll, full, nan, bool_, float_ def basic_asymmetry(f): @functools.wraps(f) def run_basic_asymmetry(self, *args, **kwargs): f(self, *args, **kwargs) self._predict_asymmetry(*args, **kwargs) return run_basic_asymmetry class GaitBoutEndpoint: def __str__(self): return self.name def __repr__(self): return self.name def __init__(self, name, logname, depends=None): """ Bout level endpoint base class Parameters ---------- name : str Name of the endpoint depends : Iterable Any other endpoints that are required to be computed beforehand """ self.name = name self.logger = logging.getLogger(logname) self.k_ = f"BOUTPARAM:{self.name}" self._depends = depends def predict(self, fs, leg_length, gait, gait_aux): """ Predict the bout level gait endpoint Parameters ---------- fs : float Sampling frequency in Hz leg_length : {None, float} Leg length in meters gait : dict Dictionary of gait items and results. Modified in place to add the endpoint being calculated gait_aux : dict Dictionary of acceleration, velocity, and position data for bouts, and the mapping from step to bout and inertial data """ if self.k_ in gait: return if self._depends is not None: for param in self._depends: param().predict(fs, leg_length, gait, gait_aux) self._predict(fs, leg_length, gait, gait_aux) class GaitEventEndpoint: def __str__(self): return self.name def __repr__(self): return self.name def __init__(self, name, logname, depends=None): """ Gait endpoint base class Parameters ---------- name : str Name of the endpoint """ self.name = name self.logger = logging.getLogger(logname) self.k_ = f"PARAM:{self.name}" self._depends = depends @staticmethod def _get_mask(gait, offset): if offset not in [1, 2]: raise ValueError("invalid offset") mask = zeros(gait["IC"].size, dtype=bool_) mask[:-offset] = (gait["Bout N"][offset:] - gait["Bout N"][:-offset]) == 0 # account for non-continuous gait bouts mask &= gait["forward cycles"] >= offset return mask def predict(self, fs, leg_length, gait, gait_aux): """ Predict the gait event-level endpoint Parameters ---------- fs : float Sampling frequency in Hz leg_length : {None, float} Leg length in meters gait : dict Dictionary of gait items and results. Modified in place to add the endpoint being calculated gait_aux : dict Dictionary of acceleration, velocity, and position data for bouts, and the mapping from step to bout and inertial data """ if self.k_ in gait: return if self._depends is not None: for param in self._depends: param().predict(fs, leg_length, gait, gait_aux) self._predict(fs, leg_length, gait, gait_aux) def _predict_asymmetry(self, dt, leg_length, gait, gait_aux): asy_name = f"{self.k_} asymmetry" gait[asy_name] = full(gait["IC"].size, nan, dtype=float_) mask = self._get_mask(gait, 1) mask_ofst = roll(mask, 1) gait[asy_name][mask] = gait[self.k_][mask_ofst] - gait[self.k_][mask] def _predict_init(self, gait, init=True, offset=None): if init: gait[self.k_] = full(gait["IC"].size, nan, dtype=float_) if offset is not None: mask = self._get_mask(gait, offset) mask_ofst = roll(mask, offset) return mask, mask_ofst
scikit-digital-health
/scikit_digital_health-0.11.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl/skdh/gait/gait_endpoints/base.py
base.py
import functools import logging from numpy import zeros, roll, full, nan, bool_, float_ def basic_asymmetry(f): @functools.wraps(f) def run_basic_asymmetry(self, *args, **kwargs): f(self, *args, **kwargs) self._predict_asymmetry(*args, **kwargs) return run_basic_asymmetry class GaitBoutEndpoint: def __str__(self): return self.name def __repr__(self): return self.name def __init__(self, name, logname, depends=None): """ Bout level endpoint base class Parameters ---------- name : str Name of the endpoint depends : Iterable Any other endpoints that are required to be computed beforehand """ self.name = name self.logger = logging.getLogger(logname) self.k_ = f"BOUTPARAM:{self.name}" self._depends = depends def predict(self, fs, leg_length, gait, gait_aux): """ Predict the bout level gait endpoint Parameters ---------- fs : float Sampling frequency in Hz leg_length : {None, float} Leg length in meters gait : dict Dictionary of gait items and results. Modified in place to add the endpoint being calculated gait_aux : dict Dictionary of acceleration, velocity, and position data for bouts, and the mapping from step to bout and inertial data """ if self.k_ in gait: return if self._depends is not None: for param in self._depends: param().predict(fs, leg_length, gait, gait_aux) self._predict(fs, leg_length, gait, gait_aux) class GaitEventEndpoint: def __str__(self): return self.name def __repr__(self): return self.name def __init__(self, name, logname, depends=None): """ Gait endpoint base class Parameters ---------- name : str Name of the endpoint """ self.name = name self.logger = logging.getLogger(logname) self.k_ = f"PARAM:{self.name}" self._depends = depends @staticmethod def _get_mask(gait, offset): if offset not in [1, 2]: raise ValueError("invalid offset") mask = zeros(gait["IC"].size, dtype=bool_) mask[:-offset] = (gait["Bout N"][offset:] - gait["Bout N"][:-offset]) == 0 # account for non-continuous gait bouts mask &= gait["forward cycles"] >= offset return mask def predict(self, fs, leg_length, gait, gait_aux): """ Predict the gait event-level endpoint Parameters ---------- fs : float Sampling frequency in Hz leg_length : {None, float} Leg length in meters gait : dict Dictionary of gait items and results. Modified in place to add the endpoint being calculated gait_aux : dict Dictionary of acceleration, velocity, and position data for bouts, and the mapping from step to bout and inertial data """ if self.k_ in gait: return if self._depends is not None: for param in self._depends: param().predict(fs, leg_length, gait, gait_aux) self._predict(fs, leg_length, gait, gait_aux) def _predict_asymmetry(self, dt, leg_length, gait, gait_aux): asy_name = f"{self.k_} asymmetry" gait[asy_name] = full(gait["IC"].size, nan, dtype=float_) mask = self._get_mask(gait, 1) mask_ofst = roll(mask, 1) gait[asy_name][mask] = gait[self.k_][mask_ofst] - gait[self.k_][mask] def _predict_init(self, gait, init=True, offset=None): if init: gait[self.k_] = full(gait["IC"].size, nan, dtype=float_) if offset is not None: mask = self._get_mask(gait, offset) mask_ofst = roll(mask, offset) return mask, mask_ofst
0.899953
0.286144
[![Build status](https://ci.appveyor.com/api/projects/status/tvumlfad69g6ap3u/branch/master?svg=true)](https://ci.appveyor.com/project/j-bac/scikit-dimension/branch/master) [![CircleCI](https://circleci.com/gh/scikit-learn-contrib/scikit-dimension/tree/master.svg?style=shield)](https://app.circleci.com/pipelines/github/scikit-learn-contrib/scikit-dimension) [![Documentation Status](https://readthedocs.org/projects/scikit-dimension/badge/?version=latest)](https://scikit-dimension.readthedocs.io/en/latest/?badge=latest) [![codecov](https://codecov.io/gh/j-bac/scikit-dimension/branch/master/graph/badge.svg)](https://codecov.io/gh/j-bac/scikit-dimension) [![Language grade: Python](https://img.shields.io/lgtm/grade/python/g/j-bac/scikit-dimension.svg?logo=lgtm&logoWidth=18&label=%20code%20quality)](https://lgtm.com/projects/g/j-bac/scikit-dimension/context:python) [![GitHub license](https://img.shields.io/github/license/j-bac/scikit-dimension)](https://github.com/j-bac/scikit-dimension/blob/master/LICENSE) [![Downloads](https://pepy.tech/badge/scikit-dimension)](https://pepy.tech/project/scikit-dimension) # scikit-dimension scikit-dimension is a Python module for intrinsic dimension estimation built according to the [scikit-learn](https://github.com/scikit-learn/scikit-learn) API and distributed under the 3-Clause BSD license. Please refer to the [documentation](https://scikit-dimension.readthedocs.io) and the [paper](https://www.mdpi.com/1099-4300/23/10/1368) for detailed API, examples and references ### Installation Using pip: ```bash pip install scikit-dimension ``` From source: ```bash git clone https://github.com/j-bac/scikit-dimension cd scikit-dimension pip install . ``` ### Quick start Local and global estimators can be used in this way: ```python import skdim import numpy as np #generate data : np.array (n_points x n_dim). Here a uniformly sampled 5-ball embedded in 10 dimensions data = np.zeros((1000,10)) data[:,:5] = skdim.datasets.hyperBall(n = 1000, d = 5, radius = 1, random_state = 0) #estimate global intrinsic dimension danco = skdim.id.DANCo().fit(data) #estimate local intrinsic dimension (dimension in k-nearest-neighborhoods around each point): lpca = skdim.id.lPCA().fit_pw(data, n_neighbors = 100, n_jobs = 1) #get estimated intrinsic dimension print(danco.dimension_, np.mean(lpca.dimension_pw_)) ```
scikit-dimension
/scikit-dimension-0.3.3.tar.gz/scikit-dimension-0.3.3/README.md
README.md
pip install scikit-dimension git clone https://github.com/j-bac/scikit-dimension cd scikit-dimension pip install . import skdim import numpy as np #generate data : np.array (n_points x n_dim). Here a uniformly sampled 5-ball embedded in 10 dimensions data = np.zeros((1000,10)) data[:,:5] = skdim.datasets.hyperBall(n = 1000, d = 5, radius = 1, random_state = 0) #estimate global intrinsic dimension danco = skdim.id.DANCo().fit(data) #estimate local intrinsic dimension (dimension in k-nearest-neighborhoods around each point): lpca = skdim.id.lPCA().fit_pw(data, n_neighbors = 100, n_jobs = 1) #get estimated intrinsic dimension print(danco.dimension_, np.mean(lpca.dimension_pw_))
0.659734
0.869548
import numpy as np from .._commonfuncs import LocalEstimator from scipy.spatial.distance import pdist, squareform class TLE(LocalEstimator): """Intrinsic dimension estimation using the Tight Local intrinsic dimensionality Estimator algorithm. [Amsaleg2019]_ [IDRadovanović]_ Parameters ---------- epsilon: float """ _N_NEIGHBORS = 20 def __init__( self, epsilon=1e-4, ): self.epsilon = epsilon def _fit(self, X, dists, knnidx): self.dimension_pw_ = np.zeros(len(X)) for i in range(len(X)): self.dimension_pw_[i] = self._idtle(X[knnidx[i, :]], dists[[i], :]) def _idtle(self, nn, dists): # nn - matrix of nearest neighbors (n_neighbors x d), sorted by distance # dists - nearest-neighbor distances (1 x n_neighbors), sorted r = dists[0, -1] # distance to n_neighbors-th neighbor # Boundary case 1: If $r = 0$, this is fatal, since the neighborhood would be degenerate. if r == 0: raise ValueError("All k-NN distances are zero!") # Main computation n_neighbors = dists.shape[1] V = squareform(pdist(nn)) Di = np.tile(dists.T, (1, n_neighbors)) Dj = Di.T Z2 = 2 * Di ** 2 + 2 * Dj ** 2 - V ** 2 S = ( r * ( ((Di ** 2 + V ** 2 - Dj ** 2) ** 2 + 4 * V ** 2 * (r ** 2 - Di ** 2)) ** 0.5 - (Di ** 2 + V ** 2 - Dj ** 2) ) / (2 * (r ** 2 - Di ** 2)) ) T = ( r * ( ((Di ** 2 + Z2 - Dj ** 2) ** 2 + 4 * Z2 * (r ** 2 - Di ** 2)) ** 0.5 - (Di ** 2 + Z2 - Dj ** 2) ) / (2 * (r ** 2 - Di ** 2)) ) # handle case of repeating k-NN distances Dr = (dists == r).squeeze() S[Dr, :] = r * V[Dr, :] ** 2 / (r ** 2 + V[Dr, :] ** 2 - Dj[Dr, :] ** 2) T[Dr, :] = r * Z2[Dr, :] / (r ** 2 + Z2[Dr, :] - Dj[Dr, :] ** 2) # Boundary case 2: If $u_i = 0$, then for all $1\leq j\leq n_neighbors$ the measurements $s_{ij}$ and $t_{ij}$ reduce to $u_j$. Di0 = (Di == 0).squeeze() T[Di0] = Dj[Di0] S[Di0] = Dj[Di0] # Boundary case 3: If $u_j = 0$, then for all $1\leq j\leq n_neighbors$ the measurements $s_{ij}$ and $t_{ij}$ reduce to $\frac{r v_{ij}}{r + v_{ij}}$. Dj0 = (Dj == 0).squeeze() T[Dj0] = r * V[Dj0] / (r + V[Dj0]) S[Dj0] = r * V[Dj0] / (r + V[Dj0]) # Boundary case 4: If $v_{ij} = 0$, then the measurement $s_{ij}$ is zero and must be dropped. The measurement $t_{ij}$ should be dropped as well. V0 = (V == 0).squeeze() np.fill_diagonal(V0, False) # by setting to r, $t_{ij}$ will not contribute to the sum s1t T[V0] = r # by setting to r, $s_{ij}$ will not contribute to the sum s1s S[V0] = r # will subtract twice this number during ID computation below nV0 = np.sum(V0) # Drop T & S measurements below epsilon (V4: If $s_{ij}$ is thrown out, then for the sake of balance, $t_{ij}$ should be thrown out as well (or vice versa).) TSeps = (T < self.epsilon) | (S < self.epsilon) np.fill_diagonal(TSeps, 0) nTSeps = np.sum(TSeps) T[TSeps] = r T = np.log(T / r) S[TSeps] = r S = np.log(S / r) np.fill_diagonal(T, 0) # delete diagonal elements np.fill_diagonal(S, 0) # Sum over the whole matrices s1t = np.sum(T) s1s = np.sum(S) # Drop distances below epsilon and compute sum Deps = dists < self.epsilon nDeps = np.sum(Deps, dtype=int) dists = dists[nDeps:] s2 = np.sum(np.log(dists / r)) # Compute ID, subtracting numbers of dropped measurements ID = -2 * (n_neighbors ** 2 - nTSeps - nDeps - nV0) / (s1t + s1s + 2 * s2) return ID
scikit-dimension
/scikit-dimension-0.3.3.tar.gz/scikit-dimension-0.3.3/skdim/id/_TLE.py
_TLE.py
import numpy as np from .._commonfuncs import LocalEstimator from scipy.spatial.distance import pdist, squareform class TLE(LocalEstimator): """Intrinsic dimension estimation using the Tight Local intrinsic dimensionality Estimator algorithm. [Amsaleg2019]_ [IDRadovanović]_ Parameters ---------- epsilon: float """ _N_NEIGHBORS = 20 def __init__( self, epsilon=1e-4, ): self.epsilon = epsilon def _fit(self, X, dists, knnidx): self.dimension_pw_ = np.zeros(len(X)) for i in range(len(X)): self.dimension_pw_[i] = self._idtle(X[knnidx[i, :]], dists[[i], :]) def _idtle(self, nn, dists): # nn - matrix of nearest neighbors (n_neighbors x d), sorted by distance # dists - nearest-neighbor distances (1 x n_neighbors), sorted r = dists[0, -1] # distance to n_neighbors-th neighbor # Boundary case 1: If $r = 0$, this is fatal, since the neighborhood would be degenerate. if r == 0: raise ValueError("All k-NN distances are zero!") # Main computation n_neighbors = dists.shape[1] V = squareform(pdist(nn)) Di = np.tile(dists.T, (1, n_neighbors)) Dj = Di.T Z2 = 2 * Di ** 2 + 2 * Dj ** 2 - V ** 2 S = ( r * ( ((Di ** 2 + V ** 2 - Dj ** 2) ** 2 + 4 * V ** 2 * (r ** 2 - Di ** 2)) ** 0.5 - (Di ** 2 + V ** 2 - Dj ** 2) ) / (2 * (r ** 2 - Di ** 2)) ) T = ( r * ( ((Di ** 2 + Z2 - Dj ** 2) ** 2 + 4 * Z2 * (r ** 2 - Di ** 2)) ** 0.5 - (Di ** 2 + Z2 - Dj ** 2) ) / (2 * (r ** 2 - Di ** 2)) ) # handle case of repeating k-NN distances Dr = (dists == r).squeeze() S[Dr, :] = r * V[Dr, :] ** 2 / (r ** 2 + V[Dr, :] ** 2 - Dj[Dr, :] ** 2) T[Dr, :] = r * Z2[Dr, :] / (r ** 2 + Z2[Dr, :] - Dj[Dr, :] ** 2) # Boundary case 2: If $u_i = 0$, then for all $1\leq j\leq n_neighbors$ the measurements $s_{ij}$ and $t_{ij}$ reduce to $u_j$. Di0 = (Di == 0).squeeze() T[Di0] = Dj[Di0] S[Di0] = Dj[Di0] # Boundary case 3: If $u_j = 0$, then for all $1\leq j\leq n_neighbors$ the measurements $s_{ij}$ and $t_{ij}$ reduce to $\frac{r v_{ij}}{r + v_{ij}}$. Dj0 = (Dj == 0).squeeze() T[Dj0] = r * V[Dj0] / (r + V[Dj0]) S[Dj0] = r * V[Dj0] / (r + V[Dj0]) # Boundary case 4: If $v_{ij} = 0$, then the measurement $s_{ij}$ is zero and must be dropped. The measurement $t_{ij}$ should be dropped as well. V0 = (V == 0).squeeze() np.fill_diagonal(V0, False) # by setting to r, $t_{ij}$ will not contribute to the sum s1t T[V0] = r # by setting to r, $s_{ij}$ will not contribute to the sum s1s S[V0] = r # will subtract twice this number during ID computation below nV0 = np.sum(V0) # Drop T & S measurements below epsilon (V4: If $s_{ij}$ is thrown out, then for the sake of balance, $t_{ij}$ should be thrown out as well (or vice versa).) TSeps = (T < self.epsilon) | (S < self.epsilon) np.fill_diagonal(TSeps, 0) nTSeps = np.sum(TSeps) T[TSeps] = r T = np.log(T / r) S[TSeps] = r S = np.log(S / r) np.fill_diagonal(T, 0) # delete diagonal elements np.fill_diagonal(S, 0) # Sum over the whole matrices s1t = np.sum(T) s1s = np.sum(S) # Drop distances below epsilon and compute sum Deps = dists < self.epsilon nDeps = np.sum(Deps, dtype=int) dists = dists[nDeps:] s2 = np.sum(np.log(dists / r)) # Compute ID, subtracting numbers of dropped measurements ID = -2 * (n_neighbors ** 2 - nTSeps - nDeps - nV0) / (s1t + s1s + 2 * s2) return ID
0.898555
0.875734
import numpy as np import warnings from .._commonfuncs import get_nn, GlobalEstimator from scipy.optimize import minimize from sklearn.utils.validation import check_array class MiND_ML(GlobalEstimator): # SPDX-License-Identifier: MIT, 2017 Kerstin Johnsson [IDJohnsson]_ """Intrinsic dimension estimation using the MiND_MLk and MiND_MLi algorithms. [Rozza2012]_ [IDJohnsson]_ Parameters ---------- k: int, default=20 Neighborhood parameter for ver='MLk' or ver='MLi'. ver: str 'MLk' or 'MLi'. See the reference paper """ def __init__(self, k=20, D=10, ver="MLk"): self.k = k self.D = D self.ver = ver def fit(self, X, y=None): """A reference implementation of a fitting function. Parameters ---------- X : {array-like}, shape (n_samples, n_features) The training input samples. y : dummy parameter to respect the sklearn API Returns ------- self : object Returns self. """ X = check_array(X, ensure_min_samples=2, ensure_min_features=2) if self.k + 1 >= len(X): warnings.warn("k+1 >= len(X), using k+1 = len(X)-1") self.dimension_ = self._MiND_MLx(X) self.is_fitted_ = True # `fit` should always return `self` return self def _MiND_MLx(self, X): nbh_data, idx = get_nn(X, min(self.k + 1, len(X) - 1)) # if (self.ver == 'ML1'): # return self._MiND_ML1(nbh_data) rhos = nbh_data[:, 0] / nbh_data[:, -1] d_MIND_MLi = self._MiND_MLi(rhos) if self.ver == "MLi": return d_MIND_MLi d_MIND_MLk = self._MiND_MLk(rhos, d_MIND_MLi) if self.ver == "MLk": return d_MIND_MLk else: raise ValueError("Unknown version: ", self.ver) # @staticmethod # def _MiND_ML1(nbh_data): # n = len(nbh_data) # #need only squared dists to first 2 neighbors # dists2 = nbh_data[:, :2]**2 # s = np.sum(np.log(dists2[:, 0]/dists2[:, 1])) # ID = -2/(s/n) # return ID def _MiND_MLi(self, rhos): # MiND MLi MLk REVERSED COMPARED TO R TO CORRESPOND TO PAPER N = len(rhos) d_lik = np.array([np.nan] * self.D) for d in range(self.D): d_lik[d] = self._lld(d + 1, rhos, N) return np.argmax(d_lik) + 1 def _MiND_MLk(self, rhos, dinit): # MiND MLi MLk REVERSED COMPARED TO R TO CORRESPOND TO PAPER res = minimize( fun=self._nlld, x0=np.array([dinit]), jac=self._nlld_gr, args=(rhos, len(rhos)), method="L-BFGS-B", bounds=[(0, self.D)], ) return res["x"][0] def _nlld(self, d, rhos, N): return -self._lld(d, rhos, N) def _lld(self, d, rhos, N): if d == 0: return np.array([-1e30]) else: return ( N * np.log(self.k * d) + (d - 1) * np.sum(np.log(rhos)) + (self.k - 1) * np.sum(np.log(1 - rhos ** d)) ) def _nlld_gr(self, d, rhos, N): if d == 0: return np.array([-1e30]) else: return -( N / d + np.sum( np.log(rhos) - (self.k - 1) * (rhos ** d) * np.log(rhos) / (1 - rhos ** d) ) )
scikit-dimension
/scikit-dimension-0.3.3.tar.gz/scikit-dimension-0.3.3/skdim/id/_MiND_ML.py
_MiND_ML.py
import numpy as np import warnings from .._commonfuncs import get_nn, GlobalEstimator from scipy.optimize import minimize from sklearn.utils.validation import check_array class MiND_ML(GlobalEstimator): # SPDX-License-Identifier: MIT, 2017 Kerstin Johnsson [IDJohnsson]_ """Intrinsic dimension estimation using the MiND_MLk and MiND_MLi algorithms. [Rozza2012]_ [IDJohnsson]_ Parameters ---------- k: int, default=20 Neighborhood parameter for ver='MLk' or ver='MLi'. ver: str 'MLk' or 'MLi'. See the reference paper """ def __init__(self, k=20, D=10, ver="MLk"): self.k = k self.D = D self.ver = ver def fit(self, X, y=None): """A reference implementation of a fitting function. Parameters ---------- X : {array-like}, shape (n_samples, n_features) The training input samples. y : dummy parameter to respect the sklearn API Returns ------- self : object Returns self. """ X = check_array(X, ensure_min_samples=2, ensure_min_features=2) if self.k + 1 >= len(X): warnings.warn("k+1 >= len(X), using k+1 = len(X)-1") self.dimension_ = self._MiND_MLx(X) self.is_fitted_ = True # `fit` should always return `self` return self def _MiND_MLx(self, X): nbh_data, idx = get_nn(X, min(self.k + 1, len(X) - 1)) # if (self.ver == 'ML1'): # return self._MiND_ML1(nbh_data) rhos = nbh_data[:, 0] / nbh_data[:, -1] d_MIND_MLi = self._MiND_MLi(rhos) if self.ver == "MLi": return d_MIND_MLi d_MIND_MLk = self._MiND_MLk(rhos, d_MIND_MLi) if self.ver == "MLk": return d_MIND_MLk else: raise ValueError("Unknown version: ", self.ver) # @staticmethod # def _MiND_ML1(nbh_data): # n = len(nbh_data) # #need only squared dists to first 2 neighbors # dists2 = nbh_data[:, :2]**2 # s = np.sum(np.log(dists2[:, 0]/dists2[:, 1])) # ID = -2/(s/n) # return ID def _MiND_MLi(self, rhos): # MiND MLi MLk REVERSED COMPARED TO R TO CORRESPOND TO PAPER N = len(rhos) d_lik = np.array([np.nan] * self.D) for d in range(self.D): d_lik[d] = self._lld(d + 1, rhos, N) return np.argmax(d_lik) + 1 def _MiND_MLk(self, rhos, dinit): # MiND MLi MLk REVERSED COMPARED TO R TO CORRESPOND TO PAPER res = minimize( fun=self._nlld, x0=np.array([dinit]), jac=self._nlld_gr, args=(rhos, len(rhos)), method="L-BFGS-B", bounds=[(0, self.D)], ) return res["x"][0] def _nlld(self, d, rhos, N): return -self._lld(d, rhos, N) def _lld(self, d, rhos, N): if d == 0: return np.array([-1e30]) else: return ( N * np.log(self.k * d) + (d - 1) * np.sum(np.log(rhos)) + (self.k - 1) * np.sum(np.log(1 - rhos ** d)) ) def _nlld_gr(self, d, rhos, N): if d == 0: return np.array([-1e30]) else: return -( N / d + np.sum( np.log(rhos) - (self.k - 1) * (rhos ** d) * np.log(rhos) / (1 - rhos ** d) ) )
0.824638
0.49939
import numpy as np from scipy.spatial.distance import pdist, squareform from sklearn.utils.validation import check_array from .._commonfuncs import GlobalEstimator class KNN(GlobalEstimator): # SPDX-License-Identifier: MIT, 2017 Kerstin Johnsson [IDJohnsson]_ """Intrinsic dimension estimation using the kNN algorithm. [Carter2010]_ [IDJohnsson]_ This is a simplified version of the kNN dimension estimation method described by Carter et al. (2010), the difference being that block bootstrapping is not used. Parameters ---------- X: 2D numeric array A 2D data set with each row describing a data point. k: int Number of distances to neighbors used at a time. ps: 1D numeric array Vector with sample sizes; each sample size has to be larger than k and smaller than nrow(data). M: int, default=1 Number of bootstrap samples for each sample size. gamma: int, default=2 Weighting constant. """ def __init__(self, k=None, ps=None, M=1, gamma=2): self.k = k self.ps = ps self.M = M self.gamma = gamma def fit(self, X, y=None): """A reference implementation of a fitting function. Parameters ---------- X : {array-like}, shape (n_samples, n_features) The training input samples. y : dummy parameter to respect the sklearn API Returns ------- self: object Returns self. self.dimension_: float The estimated intrinsic dimension self.residual_: float Residuals """ self._k = 2 if self.k is None else self.k self._ps = np.arange(self._k + 1, self._k + 5) if self.ps is None else self.ps X = check_array(X, ensure_min_samples=self._k + 1, ensure_min_features=2) self.dimension_, self.residual_ = self._knnDimEst(X) self.is_fitted_ = True # `fit` should always return `self` return self def _knnDimEst(self, X): n = len(X) Q = len(self._ps) if min(self._ps) <= self._k or max(self._ps) > n: raise ValueError("ps must satisfy k<ps<len(X)") # Compute the distance between any two points in the X set dist = squareform(pdist(X)) # Compute weighted graph length for each sample L = np.zeros((Q, self.M)) for i in range(Q): for j in range(self.M): samp_ind = np.random.randint(0, n, self._ps[i]) for l in samp_ind: L[i, j] += np.sum( np.sort(dist[l, samp_ind])[1 : (self._k + 1)] ** self.gamma ) # Add the weighted sum of the distances to the k nearest neighbors. # We should not include the sample itself, to which the distance is # zero. # Least squares solution for m d = X.shape[1] epsilon = np.repeat(np.nan, d) for m0, m in enumerate(np.arange(1, d + 1)): alpha = (m - self.gamma) / m ps_alpha = self._ps ** alpha hat_c = np.sum(ps_alpha * np.sum(L, axis=1)) / ( np.sum(ps_alpha ** 2) * self.M ) epsilon[m0] = np.sum( (L - np.tile((hat_c * ps_alpha)[:, None], self.M)) ** 2 ) # matrix(vec, nrow = length(vec), ncol = b) is a matrix with b # identical columns equal to vec # sum(matr) is the sum of all elements in the matrix matr de = np.argmin(epsilon) + 1 # Missing values are discarded return de, epsilon[de - 1]
scikit-dimension
/scikit-dimension-0.3.3.tar.gz/scikit-dimension-0.3.3/skdim/id/_KNN.py
_KNN.py
import numpy as np from scipy.spatial.distance import pdist, squareform from sklearn.utils.validation import check_array from .._commonfuncs import GlobalEstimator class KNN(GlobalEstimator): # SPDX-License-Identifier: MIT, 2017 Kerstin Johnsson [IDJohnsson]_ """Intrinsic dimension estimation using the kNN algorithm. [Carter2010]_ [IDJohnsson]_ This is a simplified version of the kNN dimension estimation method described by Carter et al. (2010), the difference being that block bootstrapping is not used. Parameters ---------- X: 2D numeric array A 2D data set with each row describing a data point. k: int Number of distances to neighbors used at a time. ps: 1D numeric array Vector with sample sizes; each sample size has to be larger than k and smaller than nrow(data). M: int, default=1 Number of bootstrap samples for each sample size. gamma: int, default=2 Weighting constant. """ def __init__(self, k=None, ps=None, M=1, gamma=2): self.k = k self.ps = ps self.M = M self.gamma = gamma def fit(self, X, y=None): """A reference implementation of a fitting function. Parameters ---------- X : {array-like}, shape (n_samples, n_features) The training input samples. y : dummy parameter to respect the sklearn API Returns ------- self: object Returns self. self.dimension_: float The estimated intrinsic dimension self.residual_: float Residuals """ self._k = 2 if self.k is None else self.k self._ps = np.arange(self._k + 1, self._k + 5) if self.ps is None else self.ps X = check_array(X, ensure_min_samples=self._k + 1, ensure_min_features=2) self.dimension_, self.residual_ = self._knnDimEst(X) self.is_fitted_ = True # `fit` should always return `self` return self def _knnDimEst(self, X): n = len(X) Q = len(self._ps) if min(self._ps) <= self._k or max(self._ps) > n: raise ValueError("ps must satisfy k<ps<len(X)") # Compute the distance between any two points in the X set dist = squareform(pdist(X)) # Compute weighted graph length for each sample L = np.zeros((Q, self.M)) for i in range(Q): for j in range(self.M): samp_ind = np.random.randint(0, n, self._ps[i]) for l in samp_ind: L[i, j] += np.sum( np.sort(dist[l, samp_ind])[1 : (self._k + 1)] ** self.gamma ) # Add the weighted sum of the distances to the k nearest neighbors. # We should not include the sample itself, to which the distance is # zero. # Least squares solution for m d = X.shape[1] epsilon = np.repeat(np.nan, d) for m0, m in enumerate(np.arange(1, d + 1)): alpha = (m - self.gamma) / m ps_alpha = self._ps ** alpha hat_c = np.sum(ps_alpha * np.sum(L, axis=1)) / ( np.sum(ps_alpha ** 2) * self.M ) epsilon[m0] = np.sum( (L - np.tile((hat_c * ps_alpha)[:, None], self.M)) ** 2 ) # matrix(vec, nrow = length(vec), ncol = b) is a matrix with b # identical columns equal to vec # sum(matr) is the sum of all elements in the matrix matr de = np.argmin(epsilon) + 1 # Missing values are discarded return de, epsilon[de - 1]
0.923846
0.760384
from sklearn.utils.validation import check_array import numpy as np from sklearn.metrics.pairwise import pairwise_distances_chunked from sklearn.linear_model import LinearRegression from .._commonfuncs import get_nn, GlobalEstimator class TwoNN(GlobalEstimator): # SPDX-License-Identifier: MIT, 2019 Francesco Mottes [IDMottes]_ """Intrinsic dimension estimation using the TwoNN algorithm. [Facco2019]_ [IDFacco]_ [IDMottes]_ Parameters ---------- discard_fraction: float Fraction (between 0 and 1) of largest distances to discard (heuristic from the paper) dist: bool Whether data is a precomputed distance matrix Attributes ---------- x_: 1d array np.array with the -log(mu) values. y_: 1d array np.array with the -log(F(mu_{sigma(i)})) values. """ def __init__(self, discard_fraction: float = 0.1, dist: bool = False): self.discard_fraction = discard_fraction self.dist = dist def fit(self, X, y=None): """A reference implementation of a fitting function. Parameters ---------- X : {array-like}, shape (n_samples, n_features) A data set for which the intrinsic dimension is estimated. y : dummy parameter to respect the sklearn API Returns ------- self : object Returns self. """ X = check_array(X, ensure_min_samples=2, ensure_min_features=2) self.dimension_, self.x_, self.y_ = self._twonn(X) self.is_fitted_ = True # `fit` should always return `self` return self def _twonn(self, X): """ Calculates intrinsic dimension of the provided data points with the TWO-NN algorithm. ----------- Parameters: X : 2d array-like 2d data matrix. Samples on rows and features on columns. return_xy : bool (default=False) Whether to return also the coordinate vectors used for the linear fit. discard_fraction : float between 0 and 1 Fraction of largest distances to discard (heuristic from the paper) dist : bool (default=False) Whether data is a precomputed distance matrix ----------- Returns: d : float Intrinsic dimension of the dataset according to TWO-NN. x : 1d np.array (optional) Array with the -log(mu) values. y : 1d np.array (optional) Array with the -log(F(mu_{sigma(i)})) values. ----------- References: E. Facco, M. d’Errico, A. Rodriguez & A. Laio Estimating the intrinsic dimension of datasets by a minimal neighborhood information (https://doi.org/10.1038/s41598-017-11873-y) """ N = len(X) if self.dist: r1, r2 = X[:, 0], X[:, 1] _mu = r2 / r1 # discard the largest distances mu = _mu[np.argsort(_mu)[: int(N * (1 - self.discard_fraction))]] else: # mu = r2/r1 for each data point # relatively high dimensional data, use distance matrix generator if X.shape[1] > 25: distmat_chunks = pairwise_distances_chunked(X) _mu = np.zeros((len(X))) i = 0 for x in distmat_chunks: x = np.sort(x, axis=1) r1, r2 = x[:, 1], x[:, 2] _mu[i : i + len(x)] = r2 / r1 i += len(x) # discard the largest distances mu = _mu[np.argsort(_mu)[: int(N * (1 - self.discard_fraction))]] else: # relatively low dimensional data, search nearest neighbors directly dists, _ = get_nn(X, k=2) r1, r2 = dists[:, 0], dists[:, 1] _mu = r2 / r1 # discard the largest distances mu = _mu[np.argsort(_mu)[: int(N * (1 - self.discard_fraction))]] # Empirical cumulate Femp = np.arange(int(N * (1 - self.discard_fraction))) / N # Fit line lr = LinearRegression(fit_intercept=False) lr.fit(np.log(mu).reshape(-1, 1), -np.log(1 - Femp).reshape(-1, 1)) d = lr.coef_[0][0] # extract slope return ( d, np.log(mu).reshape(-1, 1), -np.log(1 - Femp).reshape(-1, 1), )
scikit-dimension
/scikit-dimension-0.3.3.tar.gz/scikit-dimension-0.3.3/skdim/id/_TwoNN.py
_TwoNN.py
from sklearn.utils.validation import check_array import numpy as np from sklearn.metrics.pairwise import pairwise_distances_chunked from sklearn.linear_model import LinearRegression from .._commonfuncs import get_nn, GlobalEstimator class TwoNN(GlobalEstimator): # SPDX-License-Identifier: MIT, 2019 Francesco Mottes [IDMottes]_ """Intrinsic dimension estimation using the TwoNN algorithm. [Facco2019]_ [IDFacco]_ [IDMottes]_ Parameters ---------- discard_fraction: float Fraction (between 0 and 1) of largest distances to discard (heuristic from the paper) dist: bool Whether data is a precomputed distance matrix Attributes ---------- x_: 1d array np.array with the -log(mu) values. y_: 1d array np.array with the -log(F(mu_{sigma(i)})) values. """ def __init__(self, discard_fraction: float = 0.1, dist: bool = False): self.discard_fraction = discard_fraction self.dist = dist def fit(self, X, y=None): """A reference implementation of a fitting function. Parameters ---------- X : {array-like}, shape (n_samples, n_features) A data set for which the intrinsic dimension is estimated. y : dummy parameter to respect the sklearn API Returns ------- self : object Returns self. """ X = check_array(X, ensure_min_samples=2, ensure_min_features=2) self.dimension_, self.x_, self.y_ = self._twonn(X) self.is_fitted_ = True # `fit` should always return `self` return self def _twonn(self, X): """ Calculates intrinsic dimension of the provided data points with the TWO-NN algorithm. ----------- Parameters: X : 2d array-like 2d data matrix. Samples on rows and features on columns. return_xy : bool (default=False) Whether to return also the coordinate vectors used for the linear fit. discard_fraction : float between 0 and 1 Fraction of largest distances to discard (heuristic from the paper) dist : bool (default=False) Whether data is a precomputed distance matrix ----------- Returns: d : float Intrinsic dimension of the dataset according to TWO-NN. x : 1d np.array (optional) Array with the -log(mu) values. y : 1d np.array (optional) Array with the -log(F(mu_{sigma(i)})) values. ----------- References: E. Facco, M. d’Errico, A. Rodriguez & A. Laio Estimating the intrinsic dimension of datasets by a minimal neighborhood information (https://doi.org/10.1038/s41598-017-11873-y) """ N = len(X) if self.dist: r1, r2 = X[:, 0], X[:, 1] _mu = r2 / r1 # discard the largest distances mu = _mu[np.argsort(_mu)[: int(N * (1 - self.discard_fraction))]] else: # mu = r2/r1 for each data point # relatively high dimensional data, use distance matrix generator if X.shape[1] > 25: distmat_chunks = pairwise_distances_chunked(X) _mu = np.zeros((len(X))) i = 0 for x in distmat_chunks: x = np.sort(x, axis=1) r1, r2 = x[:, 1], x[:, 2] _mu[i : i + len(x)] = r2 / r1 i += len(x) # discard the largest distances mu = _mu[np.argsort(_mu)[: int(N * (1 - self.discard_fraction))]] else: # relatively low dimensional data, search nearest neighbors directly dists, _ = get_nn(X, k=2) r1, r2 = dists[:, 0], dists[:, 1] _mu = r2 / r1 # discard the largest distances mu = _mu[np.argsort(_mu)[: int(N * (1 - self.discard_fraction))]] # Empirical cumulate Femp = np.arange(int(N * (1 - self.discard_fraction))) / N # Fit line lr = LinearRegression(fit_intercept=False) lr.fit(np.log(mu).reshape(-1, 1), -np.log(1 - Femp).reshape(-1, 1)) d = lr.coef_[0][0] # extract slope return ( d, np.log(mu).reshape(-1, 1), -np.log(1 - Femp).reshape(-1, 1), )
0.963857
0.798344
import warnings import numpy as np from sklearn.metrics import pairwise_distances_chunked from .._commonfuncs import get_nn, GlobalEstimator from sklearn.utils.validation import check_array class CorrInt(GlobalEstimator): """Intrinsic dimension estimation using the Correlation Dimension. [Grassberger1983]_ [IDHino]_ Parameters ---------- k1: int First neighborhood size considered k2: int Last neighborhood size considered DM: bool, default=False Is the input a precomputed distance matrix (dense) """ def __init__(self, k1=10, k2=20, DM=False): self.k1 = k1 self.k2 = k2 self.DM = DM def fit(self, X, y=None): """A reference implementation of a fitting function. Parameters ---------- X : {array-like}, shape (n_samples, n_features) The training input samples. y : dummy parameter to respect the sklearn API Returns ------- self : object Returns self. """ X = check_array(X, ensure_min_samples=2, ensure_min_features=2) if self.k2 >= len(X): warnings.warn("k2 larger or equal to len(X), using len(X)-1") self.k2 = len(X) - 1 if self.k1 >= len(X) or self.k1 > self.k2: warnings.warn("k1 larger than k2 or len(X), using k2-1") self.k1 = self.k2 - 1 self.dimension_ = self._corrint(X) self.is_fitted_ = True # `fit` should always return `self` return self def _corrint(self, X): n_elements = len(X) ** 2 # number of elements dists, _ = get_nn(X, self.k2) if self.DM is False: chunked_distmat = pairwise_distances_chunked(X) else: chunked_distmat = X r1 = np.median(dists[:, self.k1 - 1]) r2 = np.median(dists[:, self.k2 - 1]) n_diagonal_entries = len(X) # remove diagonal from sum count s1 = -n_diagonal_entries s2 = -n_diagonal_entries for chunk in chunked_distmat: s1 += (chunk < r1).sum() s2 += (chunk < r2).sum() Cr = np.array([s1 / n_elements, s2 / n_elements]) estq = np.diff(np.log(Cr)) / np.log(r2 / r1) return estq[0]
scikit-dimension
/scikit-dimension-0.3.3.tar.gz/scikit-dimension-0.3.3/skdim/id/_CorrInt.py
_CorrInt.py
import warnings import numpy as np from sklearn.metrics import pairwise_distances_chunked from .._commonfuncs import get_nn, GlobalEstimator from sklearn.utils.validation import check_array class CorrInt(GlobalEstimator): """Intrinsic dimension estimation using the Correlation Dimension. [Grassberger1983]_ [IDHino]_ Parameters ---------- k1: int First neighborhood size considered k2: int Last neighborhood size considered DM: bool, default=False Is the input a precomputed distance matrix (dense) """ def __init__(self, k1=10, k2=20, DM=False): self.k1 = k1 self.k2 = k2 self.DM = DM def fit(self, X, y=None): """A reference implementation of a fitting function. Parameters ---------- X : {array-like}, shape (n_samples, n_features) The training input samples. y : dummy parameter to respect the sklearn API Returns ------- self : object Returns self. """ X = check_array(X, ensure_min_samples=2, ensure_min_features=2) if self.k2 >= len(X): warnings.warn("k2 larger or equal to len(X), using len(X)-1") self.k2 = len(X) - 1 if self.k1 >= len(X) or self.k1 > self.k2: warnings.warn("k1 larger than k2 or len(X), using k2-1") self.k1 = self.k2 - 1 self.dimension_ = self._corrint(X) self.is_fitted_ = True # `fit` should always return `self` return self def _corrint(self, X): n_elements = len(X) ** 2 # number of elements dists, _ = get_nn(X, self.k2) if self.DM is False: chunked_distmat = pairwise_distances_chunked(X) else: chunked_distmat = X r1 = np.median(dists[:, self.k1 - 1]) r2 = np.median(dists[:, self.k2 - 1]) n_diagonal_entries = len(X) # remove diagonal from sum count s1 = -n_diagonal_entries s2 = -n_diagonal_entries for chunk in chunked_distmat: s1 += (chunk < r1).sum() s2 += (chunk < r2).sum() Cr = np.array([s1 / n_elements, s2 / n_elements]) estq = np.diff(np.log(Cr)) / np.log(r2 / r1) return estq[0]
0.882453
0.662309
<p align="left"> <img alt="Scikit Discovery" src="https://github.com/MITHaystack/scikit-discovery/raw/master/skdiscovery/docs/images/skdiscovery_logo360x100.png"/> </p> - Explore scientific data with a set of tools for human-guided or automated discovery - Design & configure data processing pipelines - Define the parameter ranges for your algorithms, available algorithmic choices, and the framework will generate pipeline instances for you - Use automatically perturbed data processing pipelines to create different data products. - Easy to use with [scikit-dataaccess](https://github.com/MITHaystack/scikit-dataaccess) for integration of a variety of scientific data sets <p align="center"> <img alt="Scikit Discovery Overview" src="https://github.com/MITHaystack/scikit-discovery/raw/master/skdiscovery/docs/images/skdiscovery_overviewdiag.png"/> </p> ### Install ``` pip install scikit-discovery ``` ### Documentation See <https://github.com/MITHaystack/scikit-discovery/tree/master/skdiscovery/docs> ### Contributors Project lead: [Victor Pankratius (MIT)](http://www.victorpankratius.com)<br> Contributors: Cody M. Rude, Justin D. Li, David M. Blair, Michael G. Gowanlock, Evan Wojciechowski, Victor Pankratius ### Acknowledgements We acknowledge support from NASA AIST14-NNX15AG84G, NASA AIST16-80NSSC17K0125, NSF ACI-1442997, NSF AGS-1343967, and Amazon AWS computing access support. ## Examples Example code with complete science case studies are available as Jupyter Notebooks at: [/MITHaystack/science-casestudies](https://github.com/MITHaystack/science-casestudies)
scikit-discovery
/scikit-discovery-0.9.18.tar.gz/scikit-discovery-0.9.18/README.md
README.md
pip install scikit-discovery
0.637821
0.929184
The MIT License (MIT)<br> Copyright (c) 2017 Massachusetts Institute of Technology<br> Author: Cody Rude<br> This software has been created in projects supported by the US National<br> Science Foundation and NASA (PI: Pankratius)<br> Permission is hereby granted, free of charge, to any person obtaining a copy<br> of this software and associated documentation files (the "Software"), to deal<br> in the Software without restriction, including without limitation the rights<br> to use, copy, modify, merge, publish, distribute, sublicense, and/or sell<br> copies of the Software, and to permit persons to whom the Software is<br> furnished to do so, subject to the following conditions:<br> The above copyright notice and this permission notice shall be included in<br> all copies or substantial portions of the Software.<br> THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR<br> IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,<br> FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE<br> AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER<br> LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,<br> OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN<br> THE SOFTWARE.<br> Framework - Offloading Pipeline Processing to Amazon Demo ===================== This notebook demonstrates offloading work to an amazon server Initial imports ``` %matplotlib inline import matplotlib.pyplot as plt plt.rcParams['figure.figsize'] = (14.0, 3.0) import re ``` skdaccess imports ``` from skdaccess.framework.param_class import * from skdaccess.geo.groundwater import DataFetcher as GWDF ``` skdiscovery imports ``` from skdiscovery.data_structure.framework import DiscoveryPipeline from skdiscovery.data_structure.framework.stagecontainers import * from skdiscovery.data_structure.table.filters import MedianFilter from skdiscovery.data_structure.generic.accumulators import DataAccumulator ``` Configure groundwater data fetcher ``` # Setup time range start_date = '2000-01-01' end_date = '2015-12-31' # Select station station_id = 340503117104104 # Create Data Fetcher gwdf = GWDF([AutoList([station_id])],start_date,end_date) ``` Create Pipeline ``` ap_window = AutoParamListCycle([1, 15, 40, 70, 150, 300]) fl_median = MedianFilter('Median Filter',[ap_window],interpolate=False) sc_median = StageContainer(fl_median) acc_data = DataAccumulator('Data Accumulator',[]) sc_data = StageContainer(acc_data) pipeline = DiscoveryPipeline(gwdf,[sc_median, sc_data]) ``` Display pipeline ``` pipeline.plotPipelineInstance() ``` Run the pipeline, offloading the processing to a node on Amazon. While running, the amazon node can display the jobs: ![Amazon Node](images/amazon_run.png) ``` pipeline.run(num_runs=6,amazon=True) ``` Plot the results ``` # Get the results results = pipeline.getResults() metadata = pipeline.getMetadataHistory() # Loop over each pipeline run for index,(run,info) in enumerate(zip(results,metadata)): # Plot the depth to water level plt.plot(run['Data Accumulator'][340503117104104].loc[:,'Median Depth to Water']); # Set xlabel plt.xlabel('Date'); # Set ylabel plt.ylabel("Depth to Water Level"); # Set title plt.title('Median Filter Window: ' + re.search("\[\'(.*)\'\]",info[1]).group(1) + ' Days'); #Create new figure plt.figure(); ```
scikit-discovery
/scikit-discovery-0.9.18.tar.gz/scikit-discovery-0.9.18/skdiscovery/examples/Amazon_Offload.ipynb
Amazon_Offload.ipynb
%matplotlib inline import matplotlib.pyplot as plt plt.rcParams['figure.figsize'] = (14.0, 3.0) import re from skdaccess.framework.param_class import * from skdaccess.geo.groundwater import DataFetcher as GWDF from skdiscovery.data_structure.framework import DiscoveryPipeline from skdiscovery.data_structure.framework.stagecontainers import * from skdiscovery.data_structure.table.filters import MedianFilter from skdiscovery.data_structure.generic.accumulators import DataAccumulator # Setup time range start_date = '2000-01-01' end_date = '2015-12-31' # Select station station_id = 340503117104104 # Create Data Fetcher gwdf = GWDF([AutoList([station_id])],start_date,end_date) ap_window = AutoParamListCycle([1, 15, 40, 70, 150, 300]) fl_median = MedianFilter('Median Filter',[ap_window],interpolate=False) sc_median = StageContainer(fl_median) acc_data = DataAccumulator('Data Accumulator',[]) sc_data = StageContainer(acc_data) pipeline = DiscoveryPipeline(gwdf,[sc_median, sc_data]) pipeline.plotPipelineInstance() pipeline.run(num_runs=6,amazon=True) # Get the results results = pipeline.getResults() metadata = pipeline.getMetadataHistory() # Loop over each pipeline run for index,(run,info) in enumerate(zip(results,metadata)): # Plot the depth to water level plt.plot(run['Data Accumulator'][340503117104104].loc[:,'Median Depth to Water']); # Set xlabel plt.xlabel('Date'); # Set ylabel plt.ylabel("Depth to Water Level"); # Set title plt.title('Median Filter Window: ' + re.search("\[\'(.*)\'\]",info[1]).group(1) + ' Days'); #Create new figure plt.figure();
0.555918
0.699036
The MIT License (MIT)<br> Copyright (c) 2017 Massachusetts Institute of Technology<br> Author: Cody Rude<br> This software has been created in projects supported by the US National<br> Science Foundation and NASA (PI: Pankratius)<br> Permission is hereby granted, free of charge, to any person obtaining a copy<br> of this software and associated documentation files (the "Software"), to deal<br> in the Software without restriction, including without limitation the rights<br> to use, copy, modify, merge, publish, distribute, sublicense, and/or sell<br> copies of the Software, and to permit persons to whom the Software is<br> furnished to do so, subject to the following conditions:<br> The above copyright notice and this permission notice shall be included in<br> all copies or substantial portions of the Software.<br> THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR<br> IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,<br> FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE<br> AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER<br> LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,<br> OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN<br> THE SOFTWARE.<br> ``` from skdiscovery.utilities.cloud import amazon_gui as ag ag.init() ```
scikit-discovery
/scikit-discovery-0.9.18.tar.gz/scikit-discovery-0.9.18/skdiscovery/examples/Amazon_GUI.ipynb
Amazon_GUI.ipynb
from skdiscovery.utilities.cloud import amazon_gui as ag ag.init()
0.396886
0.432363
from skdiscovery.data_structure.framework import PipelineItem import numpy as np from sklearn.decomposition import PCA from sklearn.decomposition import FastICA class General_Component_Analysis(PipelineItem): ''' Performs either ICA or PCA analysis on series data ''' def __init__(self, str_description, ap_paramList): ''' Initialize Analysis object. @param str_description: String description of analysis @param ap_paramList[num_components]: Number of components @param ap_paramList[component_type]: Type of component analysis (CA); either PCA or ICA @param ap_paramList[start_time]: Starting time for CA @param ap_paramList[end_time]: ending time for CA @param ap_paramList[labels]: Optional list of label names ''' self.str_description = str_description self.ap_paramList = ap_paramList self.ap_paramNames = ['n_components','component_type','start_time','end_time','label_names'] self.results = dict() def process(self, obj_data): ''' Perform component analysis on data: Results are added to the data wrapper as a dictionary with results['CA'] = Eigenvenctors results['Projection'] = Projection on to the eigenvectors @param obj_data: Data wrapper containing the data ''' num_components = self.ap_paramList[0]() component_type = self.ap_paramList[1]() start_time = self.ap_paramList[2]() end_time = self.ap_paramList[3]() results = dict() results['start_date'] = start_time results['end_date'] = end_time if len(self.ap_paramList) >= 5: label_names = self.ap_paramList[4]() else: label_names = None cut_data = [] for label, data, err in obj_data.getIterator(): if label_names == None or label in label_names: cut_data.append(data[start_time:end_time]) cut_data = np.array(cut_data) if len(cut_data) > 0: if component_type == 'ICA' : ca = FastICA(n_components = num_components) else: ca = PCA(n_components = num_components) time_projection = ca.fit_transform(cut_data.T) results['CA'] = ca results['Projection'] = time_projection else: results['CA'] = None results['Projection'] = None obj_data.addResult(self.str_description, results)
scikit-discovery
/scikit-discovery-0.9.18.tar.gz/scikit-discovery-0.9.18/skdiscovery/data_structure/series/analysis/gca.py
gca.py
from skdiscovery.data_structure.framework import PipelineItem import numpy as np from sklearn.decomposition import PCA from sklearn.decomposition import FastICA class General_Component_Analysis(PipelineItem): ''' Performs either ICA or PCA analysis on series data ''' def __init__(self, str_description, ap_paramList): ''' Initialize Analysis object. @param str_description: String description of analysis @param ap_paramList[num_components]: Number of components @param ap_paramList[component_type]: Type of component analysis (CA); either PCA or ICA @param ap_paramList[start_time]: Starting time for CA @param ap_paramList[end_time]: ending time for CA @param ap_paramList[labels]: Optional list of label names ''' self.str_description = str_description self.ap_paramList = ap_paramList self.ap_paramNames = ['n_components','component_type','start_time','end_time','label_names'] self.results = dict() def process(self, obj_data): ''' Perform component analysis on data: Results are added to the data wrapper as a dictionary with results['CA'] = Eigenvenctors results['Projection'] = Projection on to the eigenvectors @param obj_data: Data wrapper containing the data ''' num_components = self.ap_paramList[0]() component_type = self.ap_paramList[1]() start_time = self.ap_paramList[2]() end_time = self.ap_paramList[3]() results = dict() results['start_date'] = start_time results['end_date'] = end_time if len(self.ap_paramList) >= 5: label_names = self.ap_paramList[4]() else: label_names = None cut_data = [] for label, data, err in obj_data.getIterator(): if label_names == None or label in label_names: cut_data.append(data[start_time:end_time]) cut_data = np.array(cut_data) if len(cut_data) > 0: if component_type == 'ICA' : ca = FastICA(n_components = num_components) else: ca = PCA(n_components = num_components) time_projection = ca.fit_transform(cut_data.T) results['CA'] = ca results['Projection'] = time_projection else: results['CA'] = None results['Projection'] = None obj_data.addResult(self.str_description, results)
0.705278
0.32142
import collections import numpy as np import scipy.optimize as optimize import skdaccess.utilities.pbo_util as pbo_utils from skdiscovery.data_structure.framework import PipelineItem from skdiscovery.utilities.patterns import pbo_tools from skdiscovery.utilities.patterns.pbo_tools import SourceWrapper, MogiVectors class Mogi_Inversion(PipelineItem): ''' Perform a Mogi source inversion on a set of gps series data The source is assumed to be a Mogi source (point source), but other source models can be selected. Assumes directions are named ('dN', 'dE', 'dU'). ''' def __init__(self, str_description, ap_paramList): ''' Initialize Mogi analysis item @param str_description: Description of the item @param ap_paramList[h_pca_name]: Name of the pca computed by General_Component_Analysis. Gets start and end date from the PCA fit. @param ap_paramList[source_type]: Type of magma chamber source model to use (mogi [default],finite_sphere,closed_pipe,constant_open_pipe,rising_open_pipe,sill) ''' super(Mogi_Inversion, self).__init__(str_description, ap_paramList) self.ap_paramNames = ['pca_name','source_type'] def FitPCA(self, hPCA_Proj): ''' Determine the timing of the inflation event. Uses the first component of the pca projection and fits A * arctan( (t - t0) / c ) + B to the first pca projection. @param hPCA_Proj: The sklearn PCA projection @return [t0, c] ''' fitfunc = lambda p,t: p[0]*np.arctan((t-p[1])/p[2])+p[3] errfunc = lambda p,x,y: fitfunc(p,x) - y dLen = len(hPCA_Proj[:,0]) pA, success = optimize.leastsq(errfunc,[1.,dLen/2.,1.,0.],args=(np.arange(dLen),hPCA_Proj[:,0])) ct = pA[1:3] return ct, pA[0] def FitTimeSeries(self, pd_series, ct): ''' Fits the amplitude and offset of an inflation event given the time and length of the event. Fits A and B in A * arctan( (t - t0) / c) + B @param pd_series: Time series to be fit @param ct: [t0, c] @return Amplitude of fit ''' fitfunc2 = lambda p,c,t: p[0]*np.arctan((t-c[0])/c[1])+p[1] errfunc2 = lambda p,c,x,y: fitfunc2(p,c,x) - y dLen = len(pd_series) pA, pcov = optimize.leastsq(errfunc2,[1.,0.],args=(ct,np.arange(dLen),pd_series)) # res = fitfunc2(pA,ct,np.arange(dLen))[-1]-fitfunc2(pA,ct,np.arange(dLen))[0] res = pA[0]*np.pi s_sq = (errfunc2(pA,ct,np.arange(dLen),pd_series)**2).sum()/(len(pd_series)-2) pcov = pcov * s_sq error = [] for i in range(len(pA)): try: error.append(np.absolute(pcov[i][i])**0.5) except: error.append( 0.00 ) perr_leastsq = np.array(error) return res, perr_leastsq def process(self, obj_data): ''' Finds the magma source (default-mogi) from PBO GPS data. Assumes time series columns are named ('dN', 'dE', 'dU'). Predicts location of the magma source using scipy.optimize.curve_fit The location of the magma source is stored in the data wrapper as a list res[0] = latitude res[1] = longitude res[2] = source depth (km) res[3] = volume change (meters^3) res[4] = extra parameters (depends on mogi fit type) @param obj_data: Data object containing the results from the PCA stage ''' h_pca_name = self.ap_paramList[0]() if len(self.ap_paramList)>=2: exN = {'mogi':0,'finite_sphere':1,'closed_pipe':1,'constant_open_pipe':1,'rising_open_pipe':2,'sill':0} try: mag_source = getattr(pbo_tools,self.ap_paramList[1]().lower()) ExScParams = tuple(np.ones((exN[self.ap_paramList[1]().lower()],))) except: mag_source = pbo_tools.mogi ExScParams = () print('No source type called '+self.ap_paramList[1]()+', defaulting to a Mogi source.') else: mag_source = pbo_tools.mogi ExScParams = () mag_source = SourceWrapper(mag_source) projection = obj_data.getResults()[h_pca_name]['Projection'] start_date = obj_data.getResults()[h_pca_name]['start_date'] end_date = obj_data.getResults()[h_pca_name]['end_date'] ct, pca_amp = self.FitPCA(projection) pca_amp *= np.pi tp_directions = ('dN', 'dE', 'dU') xvs = [] yvs = [] zvs = [] for label, data, err in obj_data.getIterator(): if label in tp_directions: distance,f_error = self.FitTimeSeries(data.loc[start_date:end_date], ct) if label == tp_directions[1]: xvs.append(distance) elif label == tp_directions[0]: yvs.append(distance) elif label == tp_directions[2]: zvs.append(distance) else: print('Ignoring column: ', label) xvs = np.array(xvs)*1e-6 yvs = np.array(yvs)*1e-6 zvs = np.array(zvs)*1e-6 ydata = np.hstack((xvs, yvs,zvs)).T station_list = obj_data.get().minor_axis meta_data = obj_data.info() station_coords = pbo_utils.getStationCoords(meta_data, station_list) dimensions = ('x','y','z') xdata = [] for dim in dimensions: for coord in station_coords: xdata.append((dim, coord[0], coord[1])) coord_range = np.array(pbo_utils.getLatLonRange(meta_data, station_list)) lat_guess = np.mean(coord_range[0,:]) lon_guess = np.mean(coord_range[1,:]) fit = optimize.curve_fit(mag_source, xdata, ydata, (lat_guess, lon_guess, 5, 1e-4)+ExScParams) res = collections.OrderedDict() res['lat'] = fit[0][0] res['lon'] = fit[0][1] res['depth'] = fit[0][2] res['amplitude'] = fit[0][3] if len(fit[0])>4: res['ex_params'] = fit[0][4:] else: res['ex_params'] = np.nan res['pca_amplitude'] = pca_amp if len(self.ap_paramList)>=2: res['source_type'] = self.ap_paramList[1]().lower() else: res['source_type'] = 'mogi' obj_data.addResult(self.str_description, res) # lat_fit_range = (np.min(lat_list)-0.15, np.max(lat_list)+0.15) # lon_fit_range = (np.min(lon_list)-0.15, np.max(lon_list)+0.15) # res = optimize.brute(self.mogi, (lat_fit_range, lon_fit_range, # (1,10), (1e-5, 1e-3)), # args = (xvs*1e-6, yvs*1e-6, zvs*1e-6, # station_list, meta_data))
scikit-discovery
/scikit-discovery-0.9.18.tar.gz/scikit-discovery-0.9.18/skdiscovery/data_structure/series/analysis/mogi.py
mogi.py
import collections import numpy as np import scipy.optimize as optimize import skdaccess.utilities.pbo_util as pbo_utils from skdiscovery.data_structure.framework import PipelineItem from skdiscovery.utilities.patterns import pbo_tools from skdiscovery.utilities.patterns.pbo_tools import SourceWrapper, MogiVectors class Mogi_Inversion(PipelineItem): ''' Perform a Mogi source inversion on a set of gps series data The source is assumed to be a Mogi source (point source), but other source models can be selected. Assumes directions are named ('dN', 'dE', 'dU'). ''' def __init__(self, str_description, ap_paramList): ''' Initialize Mogi analysis item @param str_description: Description of the item @param ap_paramList[h_pca_name]: Name of the pca computed by General_Component_Analysis. Gets start and end date from the PCA fit. @param ap_paramList[source_type]: Type of magma chamber source model to use (mogi [default],finite_sphere,closed_pipe,constant_open_pipe,rising_open_pipe,sill) ''' super(Mogi_Inversion, self).__init__(str_description, ap_paramList) self.ap_paramNames = ['pca_name','source_type'] def FitPCA(self, hPCA_Proj): ''' Determine the timing of the inflation event. Uses the first component of the pca projection and fits A * arctan( (t - t0) / c ) + B to the first pca projection. @param hPCA_Proj: The sklearn PCA projection @return [t0, c] ''' fitfunc = lambda p,t: p[0]*np.arctan((t-p[1])/p[2])+p[3] errfunc = lambda p,x,y: fitfunc(p,x) - y dLen = len(hPCA_Proj[:,0]) pA, success = optimize.leastsq(errfunc,[1.,dLen/2.,1.,0.],args=(np.arange(dLen),hPCA_Proj[:,0])) ct = pA[1:3] return ct, pA[0] def FitTimeSeries(self, pd_series, ct): ''' Fits the amplitude and offset of an inflation event given the time and length of the event. Fits A and B in A * arctan( (t - t0) / c) + B @param pd_series: Time series to be fit @param ct: [t0, c] @return Amplitude of fit ''' fitfunc2 = lambda p,c,t: p[0]*np.arctan((t-c[0])/c[1])+p[1] errfunc2 = lambda p,c,x,y: fitfunc2(p,c,x) - y dLen = len(pd_series) pA, pcov = optimize.leastsq(errfunc2,[1.,0.],args=(ct,np.arange(dLen),pd_series)) # res = fitfunc2(pA,ct,np.arange(dLen))[-1]-fitfunc2(pA,ct,np.arange(dLen))[0] res = pA[0]*np.pi s_sq = (errfunc2(pA,ct,np.arange(dLen),pd_series)**2).sum()/(len(pd_series)-2) pcov = pcov * s_sq error = [] for i in range(len(pA)): try: error.append(np.absolute(pcov[i][i])**0.5) except: error.append( 0.00 ) perr_leastsq = np.array(error) return res, perr_leastsq def process(self, obj_data): ''' Finds the magma source (default-mogi) from PBO GPS data. Assumes time series columns are named ('dN', 'dE', 'dU'). Predicts location of the magma source using scipy.optimize.curve_fit The location of the magma source is stored in the data wrapper as a list res[0] = latitude res[1] = longitude res[2] = source depth (km) res[3] = volume change (meters^3) res[4] = extra parameters (depends on mogi fit type) @param obj_data: Data object containing the results from the PCA stage ''' h_pca_name = self.ap_paramList[0]() if len(self.ap_paramList)>=2: exN = {'mogi':0,'finite_sphere':1,'closed_pipe':1,'constant_open_pipe':1,'rising_open_pipe':2,'sill':0} try: mag_source = getattr(pbo_tools,self.ap_paramList[1]().lower()) ExScParams = tuple(np.ones((exN[self.ap_paramList[1]().lower()],))) except: mag_source = pbo_tools.mogi ExScParams = () print('No source type called '+self.ap_paramList[1]()+', defaulting to a Mogi source.') else: mag_source = pbo_tools.mogi ExScParams = () mag_source = SourceWrapper(mag_source) projection = obj_data.getResults()[h_pca_name]['Projection'] start_date = obj_data.getResults()[h_pca_name]['start_date'] end_date = obj_data.getResults()[h_pca_name]['end_date'] ct, pca_amp = self.FitPCA(projection) pca_amp *= np.pi tp_directions = ('dN', 'dE', 'dU') xvs = [] yvs = [] zvs = [] for label, data, err in obj_data.getIterator(): if label in tp_directions: distance,f_error = self.FitTimeSeries(data.loc[start_date:end_date], ct) if label == tp_directions[1]: xvs.append(distance) elif label == tp_directions[0]: yvs.append(distance) elif label == tp_directions[2]: zvs.append(distance) else: print('Ignoring column: ', label) xvs = np.array(xvs)*1e-6 yvs = np.array(yvs)*1e-6 zvs = np.array(zvs)*1e-6 ydata = np.hstack((xvs, yvs,zvs)).T station_list = obj_data.get().minor_axis meta_data = obj_data.info() station_coords = pbo_utils.getStationCoords(meta_data, station_list) dimensions = ('x','y','z') xdata = [] for dim in dimensions: for coord in station_coords: xdata.append((dim, coord[0], coord[1])) coord_range = np.array(pbo_utils.getLatLonRange(meta_data, station_list)) lat_guess = np.mean(coord_range[0,:]) lon_guess = np.mean(coord_range[1,:]) fit = optimize.curve_fit(mag_source, xdata, ydata, (lat_guess, lon_guess, 5, 1e-4)+ExScParams) res = collections.OrderedDict() res['lat'] = fit[0][0] res['lon'] = fit[0][1] res['depth'] = fit[0][2] res['amplitude'] = fit[0][3] if len(fit[0])>4: res['ex_params'] = fit[0][4:] else: res['ex_params'] = np.nan res['pca_amplitude'] = pca_amp if len(self.ap_paramList)>=2: res['source_type'] = self.ap_paramList[1]().lower() else: res['source_type'] = 'mogi' obj_data.addResult(self.str_description, res) # lat_fit_range = (np.min(lat_list)-0.15, np.max(lat_list)+0.15) # lon_fit_range = (np.min(lon_list)-0.15, np.max(lon_list)+0.15) # res = optimize.brute(self.mogi, (lat_fit_range, lon_fit_range, # (1,10), (1e-5, 1e-3)), # args = (xvs*1e-6, yvs*1e-6, zvs*1e-6, # station_list, meta_data))
0.677154
0.442215
from skdiscovery.data_structure.framework import PipelineItem import numpy as np import pandas as pd from sklearn.tree import DecisionTreeRegressor class OffsetDetrend(PipelineItem): ''' Trend filter that fits a stepwise function to linearly detrended series data On detrended data this filter fits a stepwise function (number of steps provided by the user) to correct the linear fit by accounting for discontinuous offsets, such as due to a change in the antenna or from an earthquake. The final linear fit handles each portion of the offset independently. If the number of discontinuities is not provided as an autoparam, the filter assumes a single discontinuity. ''' def __init__(self, str_description, ap_paramList = [], labels=None, column_names=None, time_point=None, time_interval=None): ''' Initialize OffsetDetrend filter @param str_description: String describing filter @param ap_paramList[step_count]: Number of steps to remove from data (Default: 1) @param labels: List of labels used to select data to be removed (using None will apply to all labels) @param column_names: List of column names to select data to be removed (using None will apply to all columns) @param time_point: Time of offset @param time_interval: Interval within which the offset occurs ''' self.labels = labels self.column_names = column_names self.time_point = time_point if time_interval == None: self.time_interval = [-500,500] else: if type(time_interval) == int: self.time_interval = [-time_interval,time_interval] else: self.time_interval = time_interval self.ap_paramNames = ['step_count'] super(OffsetDetrend, self).__init__(str_description, ap_paramList) def process(self, obj_data): ''' Apply offset estimation and detrending filter to data set. @param obj_data: Input data. Changes are made in place. ''' labels = self.labels column_names = self.column_names # user provided number of steps/offsets in the data step_count = 1 if len(self.ap_paramList) != 0: step_count = self.ap_paramList[0]() for label, data, err in obj_data.getIterator(): if (labels is None or label in labels) and \ (column_names is None or data.name in column_names): # keep track of the time index and the location of nan's tindex = data.index reind = np.array(np.isnan(data)) # a temporary time index and data array without nan's nts = np.arange(len(data)) nts = np.delete(nts,nts[reind]) nys = data[reind==False] # Decision Tree Regressor for finding the discontinuities regr_1 = DecisionTreeRegressor(max_depth=step_count) if self.time_point == None: regr_1.fit(nts[:,np.newaxis], nys) else: # make time_point (a string) into an index time_point = np.where(tindex==self.time_point)[0][0] regr_1.fit(nts[(time_point+self.time_interval[0]):(time_point+self.time_interval[1]),np.newaxis], nys[(time_point+self.time_interval[0]):(time_point+self.time_interval[1])]) r1 = regr_1.predict(nts[:,np.newaxis]) # offset the discontinuity to be continous and fit a single line # (using median of 5 points on either side of discontinuity) nys[r1==r1[-1]] += np.median(nys[r1==r1[0]][-5:-1]) - np.median(nys[r1==r1[-1]][0:5]) z3 = np.polyfit(nts, nys, 1) # make the data into a pd series and correctly index x3 = pd.Series(data=nys-(z3[0]*nts+z3[1]),index=tindex[reind==False]) x3 = x3.reindex(tindex) # and then use that to update in place data.update(x3)
scikit-discovery
/scikit-discovery-0.9.18.tar.gz/scikit-discovery-0.9.18/skdiscovery/data_structure/series/filters/offset_detrend.py
offset_detrend.py
from skdiscovery.data_structure.framework import PipelineItem import numpy as np import pandas as pd from sklearn.tree import DecisionTreeRegressor class OffsetDetrend(PipelineItem): ''' Trend filter that fits a stepwise function to linearly detrended series data On detrended data this filter fits a stepwise function (number of steps provided by the user) to correct the linear fit by accounting for discontinuous offsets, such as due to a change in the antenna or from an earthquake. The final linear fit handles each portion of the offset independently. If the number of discontinuities is not provided as an autoparam, the filter assumes a single discontinuity. ''' def __init__(self, str_description, ap_paramList = [], labels=None, column_names=None, time_point=None, time_interval=None): ''' Initialize OffsetDetrend filter @param str_description: String describing filter @param ap_paramList[step_count]: Number of steps to remove from data (Default: 1) @param labels: List of labels used to select data to be removed (using None will apply to all labels) @param column_names: List of column names to select data to be removed (using None will apply to all columns) @param time_point: Time of offset @param time_interval: Interval within which the offset occurs ''' self.labels = labels self.column_names = column_names self.time_point = time_point if time_interval == None: self.time_interval = [-500,500] else: if type(time_interval) == int: self.time_interval = [-time_interval,time_interval] else: self.time_interval = time_interval self.ap_paramNames = ['step_count'] super(OffsetDetrend, self).__init__(str_description, ap_paramList) def process(self, obj_data): ''' Apply offset estimation and detrending filter to data set. @param obj_data: Input data. Changes are made in place. ''' labels = self.labels column_names = self.column_names # user provided number of steps/offsets in the data step_count = 1 if len(self.ap_paramList) != 0: step_count = self.ap_paramList[0]() for label, data, err in obj_data.getIterator(): if (labels is None or label in labels) and \ (column_names is None or data.name in column_names): # keep track of the time index and the location of nan's tindex = data.index reind = np.array(np.isnan(data)) # a temporary time index and data array without nan's nts = np.arange(len(data)) nts = np.delete(nts,nts[reind]) nys = data[reind==False] # Decision Tree Regressor for finding the discontinuities regr_1 = DecisionTreeRegressor(max_depth=step_count) if self.time_point == None: regr_1.fit(nts[:,np.newaxis], nys) else: # make time_point (a string) into an index time_point = np.where(tindex==self.time_point)[0][0] regr_1.fit(nts[(time_point+self.time_interval[0]):(time_point+self.time_interval[1]),np.newaxis], nys[(time_point+self.time_interval[0]):(time_point+self.time_interval[1])]) r1 = regr_1.predict(nts[:,np.newaxis]) # offset the discontinuity to be continous and fit a single line # (using median of 5 points on either side of discontinuity) nys[r1==r1[-1]] += np.median(nys[r1==r1[0]][-5:-1]) - np.median(nys[r1==r1[-1]][0:5]) z3 = np.polyfit(nts, nys, 1) # make the data into a pd series and correctly index x3 = pd.Series(data=nys-(z3[0]*nts+z3[1]),index=tindex[reind==False]) x3 = x3.reindex(tindex) # and then use that to update in place data.update(x3)
0.736211
0.637905
from collections import OrderedDict from skdiscovery.data_structure.framework.base import PipelineItem from skdiscovery.utilities.patterns.image_tools import divideIntoSquares import numpy as np class TileImage(PipelineItem): ''' Create several smaller images from a larger image ''' def __init__(self, str_description, ap_paramList, size, min_deviation=None, min_fraction=None, deviation_as_percent=False): ''' Initialize TileImage item @param str_description: String description of item @param ap_paramList[stride]: Distance between neighboring tiles @param size: Size of tile (length of one side of a square) @param min_deviation = Minimum deviation to use when determining to keep tile @param min_fraction: Minimum fraction of pixels above min_deviation needed to keep tile @param deviation_as_percent: Treat min_deviation as a percentage of the max value of the original image ''' if deviation_as_percent and min_deviation is None: raise RuntimeError('Must supply min_deviation when deviation_as_percent is True') self.size = size self._min_deviation = min_deviation self._min_fraction = min_fraction self._deviation_as_percent = deviation_as_percent super(TileImage, self).__init__(str_description, ap_paramList) def process(self, obj_data): ''' Genrate new images by tiling input images @param obj_data: Input image wrapper ''' stride = self.ap_paramList[0]() if len(self.ap_paramList) > 1: threshold_function = self.ap_paramList[1]() else: threshold_function = None if threshold_function is not None and self._min_fraction is None: raise RuntimeError('Must supply min_fraction with threshold function') if threshold_function is not None and self._min_deviation is not None: raise RuntimeError('Cannot supply both min_deviation and threshold function') results = OrderedDict() metadata = OrderedDict() for label, data in obj_data.getIterator(): extents, patches = divideIntoSquares(data, self.size, stride) if self._deviation_as_percent: min_deviation = self._min_deviation * np.max(data) else: min_deviation = self._min_deviation if self._min_fraction is not None: if min_deviation is not None: valid_index = np.count_nonzero(np.abs(patches) < min_deviation, axis=(1,2)) / np.prod(patches.shape[1:]) > self._min_fraction else: threshold = threshold_function(np.abs(data)) threshold_data = np.abs(patches.copy()) threshold_data[threshold_data < threshold] = np.nan valid_index = np.count_nonzero(~np.isnan(threshold_data), axis=(1,2)) / np.prod(patches.shape[1:]) > self._min_fraction patches = patches[valid_index] extents = extents[valid_index] try: metadata[label] = obj_data.info(label) except TypeError: pass for index in range(0,patches.shape[0]): new_label = label + ', Square: ' + str(index) results[new_label] = patches[index, ...] metadata[new_label] = OrderedDict() metadata[new_label]['extent'] = extents[index,...] obj_data.update(results) obj_data.updateMetadata(metadata)
scikit-discovery
/scikit-discovery-0.9.18.tar.gz/scikit-discovery-0.9.18/skdiscovery/data_structure/image/generate/tile_image.py
tile_image.py
from collections import OrderedDict from skdiscovery.data_structure.framework.base import PipelineItem from skdiscovery.utilities.patterns.image_tools import divideIntoSquares import numpy as np class TileImage(PipelineItem): ''' Create several smaller images from a larger image ''' def __init__(self, str_description, ap_paramList, size, min_deviation=None, min_fraction=None, deviation_as_percent=False): ''' Initialize TileImage item @param str_description: String description of item @param ap_paramList[stride]: Distance between neighboring tiles @param size: Size of tile (length of one side of a square) @param min_deviation = Minimum deviation to use when determining to keep tile @param min_fraction: Minimum fraction of pixels above min_deviation needed to keep tile @param deviation_as_percent: Treat min_deviation as a percentage of the max value of the original image ''' if deviation_as_percent and min_deviation is None: raise RuntimeError('Must supply min_deviation when deviation_as_percent is True') self.size = size self._min_deviation = min_deviation self._min_fraction = min_fraction self._deviation_as_percent = deviation_as_percent super(TileImage, self).__init__(str_description, ap_paramList) def process(self, obj_data): ''' Genrate new images by tiling input images @param obj_data: Input image wrapper ''' stride = self.ap_paramList[0]() if len(self.ap_paramList) > 1: threshold_function = self.ap_paramList[1]() else: threshold_function = None if threshold_function is not None and self._min_fraction is None: raise RuntimeError('Must supply min_fraction with threshold function') if threshold_function is not None and self._min_deviation is not None: raise RuntimeError('Cannot supply both min_deviation and threshold function') results = OrderedDict() metadata = OrderedDict() for label, data in obj_data.getIterator(): extents, patches = divideIntoSquares(data, self.size, stride) if self._deviation_as_percent: min_deviation = self._min_deviation * np.max(data) else: min_deviation = self._min_deviation if self._min_fraction is not None: if min_deviation is not None: valid_index = np.count_nonzero(np.abs(patches) < min_deviation, axis=(1,2)) / np.prod(patches.shape[1:]) > self._min_fraction else: threshold = threshold_function(np.abs(data)) threshold_data = np.abs(patches.copy()) threshold_data[threshold_data < threshold] = np.nan valid_index = np.count_nonzero(~np.isnan(threshold_data), axis=(1,2)) / np.prod(patches.shape[1:]) > self._min_fraction patches = patches[valid_index] extents = extents[valid_index] try: metadata[label] = obj_data.info(label) except TypeError: pass for index in range(0,patches.shape[0]): new_label = label + ', Square: ' + str(index) results[new_label] = patches[index, ...] metadata[new_label] = OrderedDict() metadata[new_label]['extent'] = extents[index,...] obj_data.update(results) obj_data.updateMetadata(metadata)
0.77223
0.371507
from skdiscovery.data_structure.framework.base import PipelineItem from skdiscovery.data_structure.framework import DiscoveryPipeline from skdiscovery.data_structure.generic.accumulators import DataAccumulator from skdiscovery.data_structure.table.filters import CalibrateGRACE, Resample, CalibrateGRACEMascon from skdiscovery.data_structure.framework.stagecontainers import * from skdaccess.framework.param_class import * from skdaccess.geo.grace import DataFetcher as GDF from skdaccess.geo.grace.mascon.cache import DataFetcher as MasconDF from skdaccess.geo.gldas import DataFetcher as GLDASDF import numpy as np class GraceFusion(PipelineItem): ''' Fuses GRACE equivelent water depth time series Works on table data (original data from http://grace.jpl.nasa.gov/data/get-data/monthly-mass-grids-land/) ''' def __init__(self, str_description, ap_paramList, metadata, column_data_name = 'Grace', column_error_name = 'Grace_Uncertainty'): ''' Initialize Grace Fusion item @param str_description: String describing item @param ap_paramList[gldas]: How to use of the global land data assimilation water model @param ap_paramList[mascons]: Boolean indicating if the mascon solution should be used @param ap_paramList[apply_scale_factor]: Boolean indicating if the scaling factors shoud be applied @param metadata: Metadata that contains lat,lon coordinates based on data labels @param column_data_name: Name of column for GRACE data @param column_error_name: Grace Uncertainty column name ''' super(GraceFusion, self).__init__(str_description, ap_paramList) self.metadata = metadata.copy() self.column_data_name = column_data_name self.column_error_name = column_error_name # remove_sm_and_snow self._tileCache = None def process(self, obj_data): ''' Adds columns for GRACE data and uncertainties @param obj_data: Input DataWrapper, will be modified in place ''' # Only perform fusion if data exists gldas = self.ap_paramList[0]() use_mascons = self.ap_paramList[1]() apply_scale_factor = self.ap_paramList[2]() if obj_data.getLength() > 0: start_date = None end_date = None for label, data in obj_data.getIterator(): try: lat = self.metadata[label]['Lat'] lon = self.metadata[label]['Lon'] except: lat = self.metadata.loc[label,'Lat'] lon = self.metadata.loc[label,'Lon'] locations = [(lat,lon)] if start_date == None: start_date = data.index[0] end_date = data.index[-1] else: if start_date != data.index[0] \ or end_date != data.index[-1]: raise RuntimeError("Varying starting and ending dates not supported") al_locations = AutoList(locations) al_locations_gldas = AutoList(locations) if use_mascons == False: graceDF = GDF([al_locations], start_date, end_date) else: graceDF = MasconDF([al_locations], start_date, end_date) gldasDF = GLDASDF([al_locations_gldas], start_date, end_date) def getData(datafetcher, pipe_type): ac_data = DataAccumulator('Data',[]) sc_data = StageContainer(ac_data) fl_grace = CalibrateGRACE('Calibrate', apply_scale_factor = apply_scale_factor) sc_grace = StageContainer(fl_grace) fl_mascon = CalibrateGRACEMascon('CalibrateMascon', apply_scale_factor = apply_scale_factor) sc_mascon = StageContainer(fl_mascon) fl_resample = Resample('Resample',start_date, end_date) sc_resample = StageContainer(fl_resample) if pipe_type == 'grace': pipeline = DiscoveryPipeline(datafetcher, [sc_grace, sc_resample, sc_data]) elif pipe_type == 'mascon': pipeline = DiscoveryPipeline(datafetcher, [sc_mascon, sc_resample, sc_data]) elif pipe_type == 'gldas': pipeline = DiscoveryPipeline(datafetcher, [sc_resample, sc_data]) else: raise RuntimeError('pipe_type: ' + str(pipe_type) + ' not understood') pipeline.run(num_cores=1) key = list(pipeline.getResults(0)['Data'].keys())[0] return pipeline.getResults(0)['Data'][key] # Load GRACE data if use_mascons == False: grace_data = getData(graceDF, 'grace') else: grace_data = getData(graceDF, 'mascon') if gldas.lower() == 'off': # We are not removing sm and snow obj_data.addColumn(label, self.column_data_name, grace_data['EWD']) obj_data.addColumn(label, self.column_error_name, grace_data['EWD_Error']) elif gldas.lower() == 'remove': # If we are removing sm and snow gldas_data = getData(gldasDF, 'gldas') grace = grace_data['Data'] gldas = gldas_data['Data'] grace_index = grace.index grace.dropna(inplace=True) # If no grace data available, no need to remove gldas if len(grace) == 0: continue # Get matching start and end start_grace = grace.index[0] end_grace = grace.index[-1] start_gldas = gldas.index[0] end_gldas = gldas.index[-1] start_month = np.max([start_gldas,start_grace]).strftime('%Y-%m') end_month = np.min([end_gldas,end_grace]).strftime('%Y-%m') # Convert gldas to a data frame # and save index # gldas = gldas.loc[:,:,'GLDAS'].copy() gldas.loc[:,'Date'] = gldas.index # Index GLDAS data by month new_index = [date.strftime('%Y-%m') for date in gldas.index] gldas.loc[:,'Month'] = new_index gldas.set_index('Month',inplace=True) # select only months that are also in GRACE cut_gldas = gldas.loc[[date.strftime('%Y-%m') for date in grace.loc[start_month:end_month,:].index],:] # index GLDAS data to GRACE dates cut_gldas.loc[:,'Grace Index'] = grace.loc[start_month:end_month,:].index cut_gldas.set_index('Grace Index', inplace=True) # Calculate distance between days offset_days = cut_gldas.index - cut_gldas.loc[:,'Date'] offset_days = offset_days.apply(lambda t: t.days) cut_gldas.loc[:,'Offset'] = offset_days # Remove any data where the difference between gldas and grace are > 10 days cut_gldas = cut_gldas[np.abs(cut_gldas.loc[:,'Offset']) < 10].copy() # Select appropriate Grace Data cut_grace = grace.loc[cut_gldas.index,:] # Remove contribution of snow + sm to GRACE cut_grace.loc[:,'Grace'] = cut_grace.loc[:,'Grace'] - cut_gldas['GLDAS'] # Now restore to original index, filling in with NaN's grace = cut_grace.reindex(grace_index) # index, place the result back into the grace_data[key]['Data'] = grace # All the snow and sm contribution has been removed, # so the dictionary can now be returned obj_data.addColumn(label, self.column_data_name, grace_data['EWD']) obj_data.addColumn(label, self.column_error_name, grace_data['EWD_Error']) elif gldas.lower() == 'only': obj_data.addColumn(label, self.column_data_name, ['EWD']) else: raise ValueError('Did not understand gldas option: ' + gldas.lower())
scikit-discovery
/scikit-discovery-0.9.18.tar.gz/scikit-discovery-0.9.18/skdiscovery/data_structure/table/fusion/grace.py
grace.py
from skdiscovery.data_structure.framework.base import PipelineItem from skdiscovery.data_structure.framework import DiscoveryPipeline from skdiscovery.data_structure.generic.accumulators import DataAccumulator from skdiscovery.data_structure.table.filters import CalibrateGRACE, Resample, CalibrateGRACEMascon from skdiscovery.data_structure.framework.stagecontainers import * from skdaccess.framework.param_class import * from skdaccess.geo.grace import DataFetcher as GDF from skdaccess.geo.grace.mascon.cache import DataFetcher as MasconDF from skdaccess.geo.gldas import DataFetcher as GLDASDF import numpy as np class GraceFusion(PipelineItem): ''' Fuses GRACE equivelent water depth time series Works on table data (original data from http://grace.jpl.nasa.gov/data/get-data/monthly-mass-grids-land/) ''' def __init__(self, str_description, ap_paramList, metadata, column_data_name = 'Grace', column_error_name = 'Grace_Uncertainty'): ''' Initialize Grace Fusion item @param str_description: String describing item @param ap_paramList[gldas]: How to use of the global land data assimilation water model @param ap_paramList[mascons]: Boolean indicating if the mascon solution should be used @param ap_paramList[apply_scale_factor]: Boolean indicating if the scaling factors shoud be applied @param metadata: Metadata that contains lat,lon coordinates based on data labels @param column_data_name: Name of column for GRACE data @param column_error_name: Grace Uncertainty column name ''' super(GraceFusion, self).__init__(str_description, ap_paramList) self.metadata = metadata.copy() self.column_data_name = column_data_name self.column_error_name = column_error_name # remove_sm_and_snow self._tileCache = None def process(self, obj_data): ''' Adds columns for GRACE data and uncertainties @param obj_data: Input DataWrapper, will be modified in place ''' # Only perform fusion if data exists gldas = self.ap_paramList[0]() use_mascons = self.ap_paramList[1]() apply_scale_factor = self.ap_paramList[2]() if obj_data.getLength() > 0: start_date = None end_date = None for label, data in obj_data.getIterator(): try: lat = self.metadata[label]['Lat'] lon = self.metadata[label]['Lon'] except: lat = self.metadata.loc[label,'Lat'] lon = self.metadata.loc[label,'Lon'] locations = [(lat,lon)] if start_date == None: start_date = data.index[0] end_date = data.index[-1] else: if start_date != data.index[0] \ or end_date != data.index[-1]: raise RuntimeError("Varying starting and ending dates not supported") al_locations = AutoList(locations) al_locations_gldas = AutoList(locations) if use_mascons == False: graceDF = GDF([al_locations], start_date, end_date) else: graceDF = MasconDF([al_locations], start_date, end_date) gldasDF = GLDASDF([al_locations_gldas], start_date, end_date) def getData(datafetcher, pipe_type): ac_data = DataAccumulator('Data',[]) sc_data = StageContainer(ac_data) fl_grace = CalibrateGRACE('Calibrate', apply_scale_factor = apply_scale_factor) sc_grace = StageContainer(fl_grace) fl_mascon = CalibrateGRACEMascon('CalibrateMascon', apply_scale_factor = apply_scale_factor) sc_mascon = StageContainer(fl_mascon) fl_resample = Resample('Resample',start_date, end_date) sc_resample = StageContainer(fl_resample) if pipe_type == 'grace': pipeline = DiscoveryPipeline(datafetcher, [sc_grace, sc_resample, sc_data]) elif pipe_type == 'mascon': pipeline = DiscoveryPipeline(datafetcher, [sc_mascon, sc_resample, sc_data]) elif pipe_type == 'gldas': pipeline = DiscoveryPipeline(datafetcher, [sc_resample, sc_data]) else: raise RuntimeError('pipe_type: ' + str(pipe_type) + ' not understood') pipeline.run(num_cores=1) key = list(pipeline.getResults(0)['Data'].keys())[0] return pipeline.getResults(0)['Data'][key] # Load GRACE data if use_mascons == False: grace_data = getData(graceDF, 'grace') else: grace_data = getData(graceDF, 'mascon') if gldas.lower() == 'off': # We are not removing sm and snow obj_data.addColumn(label, self.column_data_name, grace_data['EWD']) obj_data.addColumn(label, self.column_error_name, grace_data['EWD_Error']) elif gldas.lower() == 'remove': # If we are removing sm and snow gldas_data = getData(gldasDF, 'gldas') grace = grace_data['Data'] gldas = gldas_data['Data'] grace_index = grace.index grace.dropna(inplace=True) # If no grace data available, no need to remove gldas if len(grace) == 0: continue # Get matching start and end start_grace = grace.index[0] end_grace = grace.index[-1] start_gldas = gldas.index[0] end_gldas = gldas.index[-1] start_month = np.max([start_gldas,start_grace]).strftime('%Y-%m') end_month = np.min([end_gldas,end_grace]).strftime('%Y-%m') # Convert gldas to a data frame # and save index # gldas = gldas.loc[:,:,'GLDAS'].copy() gldas.loc[:,'Date'] = gldas.index # Index GLDAS data by month new_index = [date.strftime('%Y-%m') for date in gldas.index] gldas.loc[:,'Month'] = new_index gldas.set_index('Month',inplace=True) # select only months that are also in GRACE cut_gldas = gldas.loc[[date.strftime('%Y-%m') for date in grace.loc[start_month:end_month,:].index],:] # index GLDAS data to GRACE dates cut_gldas.loc[:,'Grace Index'] = grace.loc[start_month:end_month,:].index cut_gldas.set_index('Grace Index', inplace=True) # Calculate distance between days offset_days = cut_gldas.index - cut_gldas.loc[:,'Date'] offset_days = offset_days.apply(lambda t: t.days) cut_gldas.loc[:,'Offset'] = offset_days # Remove any data where the difference between gldas and grace are > 10 days cut_gldas = cut_gldas[np.abs(cut_gldas.loc[:,'Offset']) < 10].copy() # Select appropriate Grace Data cut_grace = grace.loc[cut_gldas.index,:] # Remove contribution of snow + sm to GRACE cut_grace.loc[:,'Grace'] = cut_grace.loc[:,'Grace'] - cut_gldas['GLDAS'] # Now restore to original index, filling in with NaN's grace = cut_grace.reindex(grace_index) # index, place the result back into the grace_data[key]['Data'] = grace # All the snow and sm contribution has been removed, # so the dictionary can now be returned obj_data.addColumn(label, self.column_data_name, grace_data['EWD']) obj_data.addColumn(label, self.column_error_name, grace_data['EWD_Error']) elif gldas.lower() == 'only': obj_data.addColumn(label, self.column_data_name, ['EWD']) else: raise ValueError('Did not understand gldas option: ' + gldas.lower())
0.675122
0.286063
from skdiscovery.data_structure.framework import PipelineItem import numpy as np from sklearn.decomposition import PCA from sklearn.decomposition import FastICA class General_Component_Analysis(PipelineItem): ''' Performs a general component analysis on table data. Currently, the two built-in types of analysis are either ICA or PCA. ''' def __init__(self, str_description, ap_paramList, n_components, column_names, **kwargs): ''' Initialize Analysis object @param str_description: String description of analysis @param ap_paramList[component_type]: Type of CA; either PCA or ICA @param ap_paramList[start_time]: Starting time for CA @param ap_paramList[end_time]: ending time for CA @param n_components: Number of components to compute @param column_names: Columns names to use @param kwargs: Extra keyword arguments to pass on to ICA (ignored for PCA) ''' self.str_description = str_description self.ap_paramList = ap_paramList self.ap_paramNames = ['component_type','start_time','end_time'] self.n_components = n_components self.column_names = column_names self.kwargs = kwargs self.results = dict() def process(self, obj_data): ''' Perform component analysis on data Results are added to the data wrapper as a dictionary with results['CA'] = Eigenvenctors results['Projection'] = Projection on to the eigenvectors @param obj_data: Data wrapper ''' component_type = self.ap_paramList[0]() start_time = self.ap_paramList[1]() end_time = self.ap_paramList[2]() num_components = self.n_components results = dict() results['start_date'] = start_time results['end_date'] = end_time cut_data = [] label_list = [] for label, data in obj_data.getIterator(): for column in self.column_names: cut_data.append(data.loc[start_time:end_time, column]) label_list.append(label) cut_data = np.array(cut_data) if len(cut_data) > 0: if component_type == 'ICA' : ca = FastICA(n_components = num_components, **self.kwargs) else: ca = PCA(n_components = num_components) time_projection = ca.fit_transform(cut_data.T) results['CA'] = ca results['Projection'] = time_projection else: results['CA'] = None results['Projection'] = None results['labels'] = label_list obj_data.addResult(self.str_description, results)
scikit-discovery
/scikit-discovery-0.9.18.tar.gz/scikit-discovery-0.9.18/skdiscovery/data_structure/table/analysis/gca.py
gca.py
from skdiscovery.data_structure.framework import PipelineItem import numpy as np from sklearn.decomposition import PCA from sklearn.decomposition import FastICA class General_Component_Analysis(PipelineItem): ''' Performs a general component analysis on table data. Currently, the two built-in types of analysis are either ICA or PCA. ''' def __init__(self, str_description, ap_paramList, n_components, column_names, **kwargs): ''' Initialize Analysis object @param str_description: String description of analysis @param ap_paramList[component_type]: Type of CA; either PCA or ICA @param ap_paramList[start_time]: Starting time for CA @param ap_paramList[end_time]: ending time for CA @param n_components: Number of components to compute @param column_names: Columns names to use @param kwargs: Extra keyword arguments to pass on to ICA (ignored for PCA) ''' self.str_description = str_description self.ap_paramList = ap_paramList self.ap_paramNames = ['component_type','start_time','end_time'] self.n_components = n_components self.column_names = column_names self.kwargs = kwargs self.results = dict() def process(self, obj_data): ''' Perform component analysis on data Results are added to the data wrapper as a dictionary with results['CA'] = Eigenvenctors results['Projection'] = Projection on to the eigenvectors @param obj_data: Data wrapper ''' component_type = self.ap_paramList[0]() start_time = self.ap_paramList[1]() end_time = self.ap_paramList[2]() num_components = self.n_components results = dict() results['start_date'] = start_time results['end_date'] = end_time cut_data = [] label_list = [] for label, data in obj_data.getIterator(): for column in self.column_names: cut_data.append(data.loc[start_time:end_time, column]) label_list.append(label) cut_data = np.array(cut_data) if len(cut_data) > 0: if component_type == 'ICA' : ca = FastICA(n_components = num_components, **self.kwargs) else: ca = PCA(n_components = num_components) time_projection = ca.fit_transform(cut_data.T) results['CA'] = ca results['Projection'] = time_projection else: results['CA'] = None results['Projection'] = None results['labels'] = label_list obj_data.addResult(self.str_description, results)
0.847021
0.349089
# 3rd part imports import numpy as np import pandas as pd from scipy.optimize import brute from fastdtw import fastdtw # scikit discovery imports from skdiscovery.data_structure.framework import PipelineItem from skdiscovery.utilities.patterns import trend_tools as tt # Standard library imports from collections import OrderedDict class RotatePCA(PipelineItem): """ *** In Development *** Class for rotating PCA to seperate superimposed signals """ def __init__(self, str_description, ap_paramList, pca_name, model, norm=None, num_components=3): ''' @param str_description: String description of this item @param ap_paramList[fit_type]: Fitness test to use (either 'dtw' or 'remove') @param ap_paramList[resolution]: Fitting resolution when using brute force @param pca_name: Name of pca results @param model: Model to compare to (used in dtw) @param norm: Normalization to use when comparing data and model (if None, absolute differences are used) @param num_components: Number of pca components to use ''' self._pca_name = pca_name self._model = tt.normalize(model) self.norm = norm if num_components not in (3,4): raise NotImplementedError('Only 3 or 4 components implemented') self.num_components = num_components super(RotatePCA, self).__init__(str_description, ap_paramList) def _rotate(self, col_vector, az, ay, ax): ''' Rotate column vectors in three dimensions Rx * Ry * Rz * col_vectors @param col_vector: Data as a column vector @param az: Z angle @param ay: Y angle @param ax: X angle @return rotated column vectors ''' rz = np.array([[np.cos(az), -np.sin(az), 0], [np.sin(az), np.cos(az), 0], [0, 0, 1]]) ry = np.array([[np.cos(ay), 0, np.sin(ay)], [0, 1, 0], [-np.sin(ay), 0, np.cos(ay)]]) rx = np.array([[ 1, 0, 0], [0, np.cos(ax), -np.sin(ax)], [0, np.sin(ax), np.cos(ax)]]) rot = rx @ ry @ rz return rot @ col_vector def _rotate4d(self, col_vector, rot_angles): ''' Rotate column vectors in four dimensions @param col_vector: Data as a column vector @param rot_angles: Rotation angles ('xy', 'yz', 'zx', 'xw', 'yw', 'zw') @return rotated column vectors ''' index_list = [] index_list.append([0,1]) index_list.append([1,2]) index_list.append([0,2]) index_list.append([0,3]) index_list.append([1,3]) index_list.append([2,3]) # Two different types: # left sine is negative: Type 0 # right sine is negative: Type 1 type_list = [0, 0, 1, 0, 1, 1] rotation_dict = OrderedDict() # The order of the rotation matrix is as follows: # (see https://hollasch.github.io/ray4/Four-Space_Visualization_of_4D_Objects.html#s2.2) label_list = ['xy', 'yz', 'zx', 'xw', 'yw', 'zw'] for angle, label, index, negative_type in zip(rot_angles, label_list, index_list, type_list): ct = np.cos(angle) st = np.sin(angle) rotation_matrix = np.eye(4) rotation_matrix[index[0], index[0]] = ct rotation_matrix[index[1], index[1]] = ct rotation_matrix[index[0], index[1]] = st rotation_matrix[index[1], index[0]] = st if negative_type == 0: rotation_matrix[index[1], index[0]] *= -1 elif negative_type == 1: rotation_matrix[index[0], index[1]] *= -1 else: raise RuntimeError('Invalid value of negative_type') rotation_dict[label]=rotation_matrix rot_matrix = np.eye(4) for label, matrix in rotation_dict.items(): rot_matrix = rot_matrix @ matrix return rot_matrix @ col_vector def _rollFastDTW(self, data, centered_tiled_model, model_size): ''' Compute minimum fastdtw distance for a model to match length of real data at all possible phases @param data: Real input data @param centered_tiled_model: Model after being tiled to appropriate length and normalized (mean removed an scaled by standard devation) @param model_size: Size of the original model (before tiling) @return Index of minimum distance, minimum distance ''' centered_data = tt.normalize(data) fitness_values = [fastdtw(centered_data, np.roll(centered_tiled_model, i), dist=self.norm)[0] for i in range(model_size)] min_index = np.argmin(fitness_values) return min_index, fitness_values[min_index] def _tileModel(self, in_model, new_size): ''' Tile a model to increase its length @param in_model: Input model @param new_size: Size of tiled model @return Tiled model ''' num_models = int(np.ceil(new_size / len(in_model))) return np.tile(in_model, num_models)[:new_size] def _fitness(self, z, data, model, fit_type = 'dtw', num_components=3): ''' Compute fitness of data given a model and rotation @param z: Rotation angles @param data: Input data @param model: Input model @param fit_type: Choose fitness computation between dynamic time warping ('dtw') or by comparing to an seasonal and linear signal ('remove') @param num_components: Number of pca components to use. Can be 3 or 4 for fit_type='dtw' or 3 for fit_type='remove' @return fitness value ''' if num_components == 3: new_data = self._rotate(data.as_matrix().T, *z) elif num_components == 4: new_data = self._rotate4d(data.as_matrix().T, z) if fit_type == 'dtw': return self._fitnessDTW(new_data, model, num_components) elif fit_type == 'remove' and num_components == 3: return self._fitnessRemove(pd.DataFrame(new_data.T, columns=['PC1','PC2','PC3'], index=data.index)) elif fit_type == 'remove': raise NotImplementedError("The 'remove' fitness type only works with 3 components") else: raise NotImplementedError('Only "dtw" and "remove" fitness types implemented') def _fitnessDTW(self, new_data, model, num_components=3): ''' Compute fitness value using dynamic time warping @param new_data: Input data @param model: Input model @param: Number of pca components to use (3 or 4) @return fitness value using dynamic time warping ''' tiled_model = tt.normalize(self._tileModel(model, new_data.shape[1])) roll, primary_results = self._rollFastDTW(new_data[num_components-1,:], tiled_model, len(model)) # pc1_results = np.min([fastdtw(tt.normalize(new_data[0,:]), np.roll(tiled_model, roll))[0], # fastdtw(-tt.normalize(-new_data[0,:]), np.roll(tiled_model, roll))[0]]) # pc2_results = np.min([fastdtw(tt.normalize(new_data[1,:]), np.roll(tiled_model, roll))[0], # fastdtw(tt.normalize(-new_data[1,:]), np.roll(tiled_model, roll))[0]]) other_pc_results = 0 for i in range(num_components-1): other_pc_results += self._rollFastDTW(new_data[i,:], tiled_model, len(model))[1] return primary_results - other_pc_results def _fitnessRemove(self, new_data): ''' fitness value determined by how well seasonal and linear signals can be removed frm first two components @param new_data: Input data @return fitness value determined by comparison of first two components to seasonal and linear signals ''' linear_removed = tt.getTrend(new_data['PC1'].asfreq('D'))[0] annual_removed = tt.sinuFits(new_data['PC2'].asfreq('D'), 1, 1) return linear_removed.var() + annual_removed.var() def process(self, obj_data): ''' Compute rotation angles for PCA @param obj_data: Input table data wrapper ''' fit_type = self.ap_paramList[0]() resolution = self.ap_paramList[1]() pca_results = obj_data.getResults()[self._pca_name] date_range = pd.date_range(pca_results['start_date'], pca_results['end_date']) column_names = ['PC' + str(i+1) for i in range(pca_results['CA'].n_components)] pca = pd.DataFrame(data = pca_results['Projection'], index = date_range, columns=column_names) pca.index.name='Date' pca = pca.loc[:,['PC' + str(i+1) for i in range(self.num_components)]] end_point = 360 - (360/resolution) if self.num_components == 3: num_ranges = 3 elif self.num_components == 4: num_ranges = 4 else: raise ValueError('Wrong number of components') ranges = [] for i in range(num_ranges): ranges.append((0, np.deg2rad(end_point))) new_angles = brute(func=self._fitness, ranges=ranges, Ns=resolution, args=(pca, self._model, fit_type, self.num_components)) final_score = self._fitness(new_angles, pca, self._model, fit_type, self.num_components) rotated_pcs = pd.DataFrame(self._rotate(pca.T, *new_angles).T, index=pca.index, columns = pca.columns) results = OrderedDict() results['rotation_angles'] = new_angles results['rotated_pcs'] = rotated_pcs results['final_score'] = final_score results['rotated_components'] = self._rotate(pca_results['CA'].components_, *new_angles) obj_data.addResult(self.str_description, results)
scikit-discovery
/scikit-discovery-0.9.18.tar.gz/scikit-discovery-0.9.18/skdiscovery/data_structure/table/analysis/rotate_pca.py
rotate_pca.py
# 3rd part imports import numpy as np import pandas as pd from scipy.optimize import brute from fastdtw import fastdtw # scikit discovery imports from skdiscovery.data_structure.framework import PipelineItem from skdiscovery.utilities.patterns import trend_tools as tt # Standard library imports from collections import OrderedDict class RotatePCA(PipelineItem): """ *** In Development *** Class for rotating PCA to seperate superimposed signals """ def __init__(self, str_description, ap_paramList, pca_name, model, norm=None, num_components=3): ''' @param str_description: String description of this item @param ap_paramList[fit_type]: Fitness test to use (either 'dtw' or 'remove') @param ap_paramList[resolution]: Fitting resolution when using brute force @param pca_name: Name of pca results @param model: Model to compare to (used in dtw) @param norm: Normalization to use when comparing data and model (if None, absolute differences are used) @param num_components: Number of pca components to use ''' self._pca_name = pca_name self._model = tt.normalize(model) self.norm = norm if num_components not in (3,4): raise NotImplementedError('Only 3 or 4 components implemented') self.num_components = num_components super(RotatePCA, self).__init__(str_description, ap_paramList) def _rotate(self, col_vector, az, ay, ax): ''' Rotate column vectors in three dimensions Rx * Ry * Rz * col_vectors @param col_vector: Data as a column vector @param az: Z angle @param ay: Y angle @param ax: X angle @return rotated column vectors ''' rz = np.array([[np.cos(az), -np.sin(az), 0], [np.sin(az), np.cos(az), 0], [0, 0, 1]]) ry = np.array([[np.cos(ay), 0, np.sin(ay)], [0, 1, 0], [-np.sin(ay), 0, np.cos(ay)]]) rx = np.array([[ 1, 0, 0], [0, np.cos(ax), -np.sin(ax)], [0, np.sin(ax), np.cos(ax)]]) rot = rx @ ry @ rz return rot @ col_vector def _rotate4d(self, col_vector, rot_angles): ''' Rotate column vectors in four dimensions @param col_vector: Data as a column vector @param rot_angles: Rotation angles ('xy', 'yz', 'zx', 'xw', 'yw', 'zw') @return rotated column vectors ''' index_list = [] index_list.append([0,1]) index_list.append([1,2]) index_list.append([0,2]) index_list.append([0,3]) index_list.append([1,3]) index_list.append([2,3]) # Two different types: # left sine is negative: Type 0 # right sine is negative: Type 1 type_list = [0, 0, 1, 0, 1, 1] rotation_dict = OrderedDict() # The order of the rotation matrix is as follows: # (see https://hollasch.github.io/ray4/Four-Space_Visualization_of_4D_Objects.html#s2.2) label_list = ['xy', 'yz', 'zx', 'xw', 'yw', 'zw'] for angle, label, index, negative_type in zip(rot_angles, label_list, index_list, type_list): ct = np.cos(angle) st = np.sin(angle) rotation_matrix = np.eye(4) rotation_matrix[index[0], index[0]] = ct rotation_matrix[index[1], index[1]] = ct rotation_matrix[index[0], index[1]] = st rotation_matrix[index[1], index[0]] = st if negative_type == 0: rotation_matrix[index[1], index[0]] *= -1 elif negative_type == 1: rotation_matrix[index[0], index[1]] *= -1 else: raise RuntimeError('Invalid value of negative_type') rotation_dict[label]=rotation_matrix rot_matrix = np.eye(4) for label, matrix in rotation_dict.items(): rot_matrix = rot_matrix @ matrix return rot_matrix @ col_vector def _rollFastDTW(self, data, centered_tiled_model, model_size): ''' Compute minimum fastdtw distance for a model to match length of real data at all possible phases @param data: Real input data @param centered_tiled_model: Model after being tiled to appropriate length and normalized (mean removed an scaled by standard devation) @param model_size: Size of the original model (before tiling) @return Index of minimum distance, minimum distance ''' centered_data = tt.normalize(data) fitness_values = [fastdtw(centered_data, np.roll(centered_tiled_model, i), dist=self.norm)[0] for i in range(model_size)] min_index = np.argmin(fitness_values) return min_index, fitness_values[min_index] def _tileModel(self, in_model, new_size): ''' Tile a model to increase its length @param in_model: Input model @param new_size: Size of tiled model @return Tiled model ''' num_models = int(np.ceil(new_size / len(in_model))) return np.tile(in_model, num_models)[:new_size] def _fitness(self, z, data, model, fit_type = 'dtw', num_components=3): ''' Compute fitness of data given a model and rotation @param z: Rotation angles @param data: Input data @param model: Input model @param fit_type: Choose fitness computation between dynamic time warping ('dtw') or by comparing to an seasonal and linear signal ('remove') @param num_components: Number of pca components to use. Can be 3 or 4 for fit_type='dtw' or 3 for fit_type='remove' @return fitness value ''' if num_components == 3: new_data = self._rotate(data.as_matrix().T, *z) elif num_components == 4: new_data = self._rotate4d(data.as_matrix().T, z) if fit_type == 'dtw': return self._fitnessDTW(new_data, model, num_components) elif fit_type == 'remove' and num_components == 3: return self._fitnessRemove(pd.DataFrame(new_data.T, columns=['PC1','PC2','PC3'], index=data.index)) elif fit_type == 'remove': raise NotImplementedError("The 'remove' fitness type only works with 3 components") else: raise NotImplementedError('Only "dtw" and "remove" fitness types implemented') def _fitnessDTW(self, new_data, model, num_components=3): ''' Compute fitness value using dynamic time warping @param new_data: Input data @param model: Input model @param: Number of pca components to use (3 or 4) @return fitness value using dynamic time warping ''' tiled_model = tt.normalize(self._tileModel(model, new_data.shape[1])) roll, primary_results = self._rollFastDTW(new_data[num_components-1,:], tiled_model, len(model)) # pc1_results = np.min([fastdtw(tt.normalize(new_data[0,:]), np.roll(tiled_model, roll))[0], # fastdtw(-tt.normalize(-new_data[0,:]), np.roll(tiled_model, roll))[0]]) # pc2_results = np.min([fastdtw(tt.normalize(new_data[1,:]), np.roll(tiled_model, roll))[0], # fastdtw(tt.normalize(-new_data[1,:]), np.roll(tiled_model, roll))[0]]) other_pc_results = 0 for i in range(num_components-1): other_pc_results += self._rollFastDTW(new_data[i,:], tiled_model, len(model))[1] return primary_results - other_pc_results def _fitnessRemove(self, new_data): ''' fitness value determined by how well seasonal and linear signals can be removed frm first two components @param new_data: Input data @return fitness value determined by comparison of first two components to seasonal and linear signals ''' linear_removed = tt.getTrend(new_data['PC1'].asfreq('D'))[0] annual_removed = tt.sinuFits(new_data['PC2'].asfreq('D'), 1, 1) return linear_removed.var() + annual_removed.var() def process(self, obj_data): ''' Compute rotation angles for PCA @param obj_data: Input table data wrapper ''' fit_type = self.ap_paramList[0]() resolution = self.ap_paramList[1]() pca_results = obj_data.getResults()[self._pca_name] date_range = pd.date_range(pca_results['start_date'], pca_results['end_date']) column_names = ['PC' + str(i+1) for i in range(pca_results['CA'].n_components)] pca = pd.DataFrame(data = pca_results['Projection'], index = date_range, columns=column_names) pca.index.name='Date' pca = pca.loc[:,['PC' + str(i+1) for i in range(self.num_components)]] end_point = 360 - (360/resolution) if self.num_components == 3: num_ranges = 3 elif self.num_components == 4: num_ranges = 4 else: raise ValueError('Wrong number of components') ranges = [] for i in range(num_ranges): ranges.append((0, np.deg2rad(end_point))) new_angles = brute(func=self._fitness, ranges=ranges, Ns=resolution, args=(pca, self._model, fit_type, self.num_components)) final_score = self._fitness(new_angles, pca, self._model, fit_type, self.num_components) rotated_pcs = pd.DataFrame(self._rotate(pca.T, *new_angles).T, index=pca.index, columns = pca.columns) results = OrderedDict() results['rotation_angles'] = new_angles results['rotated_pcs'] = rotated_pcs results['final_score'] = final_score results['rotated_components'] = self._rotate(pca_results['CA'].components_, *new_angles) obj_data.addResult(self.str_description, results)
0.761006
0.525125
from skdiscovery.data_structure.framework.base import PipelineItem import numpy as np import pandas as pd from statsmodels.robust import mad class MIDAS(PipelineItem): ''' *In Development* A basic MIDAS trend estimator See http://onlinelibrary.wiley.com/doi/10.1002/2015JB012552/full ''' def __init__(self, str_description,column_names = None): ''' Initiatlize the MIDAS filtering item @param str_description: String description of filter @param column_names: List of column names to analyze ''' super(MIDAS, self).__init__(str_description, []) self.column_names = column_names def process(self, obj_data): ''' Apply the MIDAS estimator to generate velocity estimates Adds the result to the data wrapper @param obj_data: Data wrapper ''' if self.column_names == None: column_names = obj_data.getDefaultColumns() else: column_names = self.column_names time_diff = pd.to_timedelta('365d') results = dict() for label, data in obj_data.getIterator(): start_date = data.index[0] end_date = data.index[-1] for column in column_names: start_data = data.loc[start_date:(end_date-time_diff), column] end_data = data.loc[start_date+time_diff:end_date, column] offsets = end_data.values - start_data.values offsets = offsets[~np.isnan(offsets)] med_off = np.median(offsets) mad_off = mad(offsets) cut_offsets = offsets[np.logical_and(offsets < med_off + 2*mad_off, offsets > med_off - 2*mad_off)] final_vel = np.median(cut_offsets) final_unc = np.sqrt(np.pi/2) * mad(cut_offsets) / np.sqrt(len(cut_offsets)) results[label] = pd.DataFrame([final_vel,final_unc], ['velocity', 'uncertainty'] ,[column]) obj_data.addResult(self.str_description, pd.Panel.fromDict(results,orient='minor'))
scikit-discovery
/scikit-discovery-0.9.18.tar.gz/scikit-discovery-0.9.18/skdiscovery/data_structure/table/analysis/midas.py
midas.py
from skdiscovery.data_structure.framework.base import PipelineItem import numpy as np import pandas as pd from statsmodels.robust import mad class MIDAS(PipelineItem): ''' *In Development* A basic MIDAS trend estimator See http://onlinelibrary.wiley.com/doi/10.1002/2015JB012552/full ''' def __init__(self, str_description,column_names = None): ''' Initiatlize the MIDAS filtering item @param str_description: String description of filter @param column_names: List of column names to analyze ''' super(MIDAS, self).__init__(str_description, []) self.column_names = column_names def process(self, obj_data): ''' Apply the MIDAS estimator to generate velocity estimates Adds the result to the data wrapper @param obj_data: Data wrapper ''' if self.column_names == None: column_names = obj_data.getDefaultColumns() else: column_names = self.column_names time_diff = pd.to_timedelta('365d') results = dict() for label, data in obj_data.getIterator(): start_date = data.index[0] end_date = data.index[-1] for column in column_names: start_data = data.loc[start_date:(end_date-time_diff), column] end_data = data.loc[start_date+time_diff:end_date, column] offsets = end_data.values - start_data.values offsets = offsets[~np.isnan(offsets)] med_off = np.median(offsets) mad_off = mad(offsets) cut_offsets = offsets[np.logical_and(offsets < med_off + 2*mad_off, offsets > med_off - 2*mad_off)] final_vel = np.median(cut_offsets) final_unc = np.sqrt(np.pi/2) * mad(cut_offsets) / np.sqrt(len(cut_offsets)) results[label] = pd.DataFrame([final_vel,final_unc], ['velocity', 'uncertainty'] ,[column]) obj_data.addResult(self.str_description, pd.Panel.fromDict(results,orient='minor'))
0.841109
0.362743
from skdiscovery.data_structure.framework import PipelineItem import pandas as pd import numpy as np class Correlate(PipelineItem): ''' Computes the correlation for table data and stores the result as a matrix. ''' def __init__(self, str_description, column_names = None, local_match = False, correlation_type = 'pearson'): ''' Initialize Correlate analysis item for use on tables @param str_description: String describing analysis item @param column_names: List of column names to correlate @param local_match: Only correlate data on the same frames @param correlation_type: Type of correlation to be passed to pandas ('pearson', 'kendall', 'spearman') ''' super(Correlate, self).__init__(str_description,[]) self.column_names = column_names self.local_match = local_match self.corr_type = correlation_type def process(self, obj_data): ''' Computes the correlation between columns and stores the results in obj_data @param obj_data: Data wrapper ''' if self.column_names == None: column_names = obj_data.getDefaultColumns() else: column_names = self.column_names if self.local_match == False: data = [] index = [] for label, data_in in obj_data.getIterator(): for column in column_names: data.append(data_in[column]) index.append(label + '.' + column) index = np.array(index) result = [] for s1 in data: row = [] for s2 in data: row.append(s1.corr(s2, method=self.corr_type)) result.append(row) obj_data.addResult(self.str_description, pd.DataFrame(result, index=index, columns=index)) else: full_results = dict() for label, data_in in obj_data.getIterator(): data = [] index = [] for column in column_names: data.append(data_in[column]) index.append(column) result = [] for s1 in data: row = [] for s2 in data: row.append(s1.corr(s2, method=self.corr_type)) result.append(row) full_results[label] = pd.DataFrame(result,index=index,columns=index) obj_data.addResult(self.str_description, pd.Panel.from_dict(full_results))
scikit-discovery
/scikit-discovery-0.9.18.tar.gz/scikit-discovery-0.9.18/skdiscovery/data_structure/table/analysis/correlate.py
correlate.py
from skdiscovery.data_structure.framework import PipelineItem import pandas as pd import numpy as np class Correlate(PipelineItem): ''' Computes the correlation for table data and stores the result as a matrix. ''' def __init__(self, str_description, column_names = None, local_match = False, correlation_type = 'pearson'): ''' Initialize Correlate analysis item for use on tables @param str_description: String describing analysis item @param column_names: List of column names to correlate @param local_match: Only correlate data on the same frames @param correlation_type: Type of correlation to be passed to pandas ('pearson', 'kendall', 'spearman') ''' super(Correlate, self).__init__(str_description,[]) self.column_names = column_names self.local_match = local_match self.corr_type = correlation_type def process(self, obj_data): ''' Computes the correlation between columns and stores the results in obj_data @param obj_data: Data wrapper ''' if self.column_names == None: column_names = obj_data.getDefaultColumns() else: column_names = self.column_names if self.local_match == False: data = [] index = [] for label, data_in in obj_data.getIterator(): for column in column_names: data.append(data_in[column]) index.append(label + '.' + column) index = np.array(index) result = [] for s1 in data: row = [] for s2 in data: row.append(s1.corr(s2, method=self.corr_type)) result.append(row) obj_data.addResult(self.str_description, pd.DataFrame(result, index=index, columns=index)) else: full_results = dict() for label, data_in in obj_data.getIterator(): data = [] index = [] for column in column_names: data.append(data_in[column]) index.append(column) result = [] for s1 in data: row = [] for s2 in data: row.append(s1.corr(s2, method=self.corr_type)) result.append(row) full_results[label] = pd.DataFrame(result,index=index,columns=index) obj_data.addResult(self.str_description, pd.Panel.from_dict(full_results))
0.708414
0.39158
import collections import numpy as np import scipy.optimize as optimize import skdaccess.utilities.pbo_util as pbo_utils from skdiscovery.data_structure.framework import PipelineItem import skdiscovery.utilities.patterns.pbo_tools as pbo_tools from skdiscovery.utilities.patterns.pbo_tools import SourceWrapper, MogiVectors class Mogi_Inversion(PipelineItem): ''' Perform a mogi source inversion on a set of gps table data The source is assumed to be a mogi source (point source), but other source models can be selected. Assumes directions are named ('dN', 'dE', 'dU'). ''' def __init__(self, str_description, ap_paramList, pca_name, column_names=['dN', 'dE', 'dU']): ''' Initialize Mogi analysis item @param str_description: Description of item @param ap_paramList[source_type]: Type of magma chamber source model to use (default-mogi,finite_sphere,closed_pipe,constant_open_pipe,rising_open_pipe,sill) @param pca_name: Name of pca result @param column_names: The data direction column names ''' self.pca_name = pca_name self.column_names = column_names super(Mogi_Inversion, self).__init__(str_description, ap_paramList) self.ap_paramNames = ['source_type'] def FitPCA(self, hPCA_Proj): ''' Determine the timing of the inflation event from the first component of the pca projection fits A * arctan( (t - t0) / c ) + B to the first pca projection, in order to estimate source amplitude parameters @param hPCA_Proj: The sklearn PCA @return ct: the t0, c, and B parameters from the fit @return pA[0]: the fitted amplitude parameter ''' fitfunc = lambda p,t: p[0]*np.arctan((t-p[1])/p[2])+p[3] errfunc = lambda p,x,y: fitfunc(p,x) - y dLen = len(hPCA_Proj[:,0]) pA, success = optimize.leastsq(errfunc,[1.,dLen/2.,1.,0.],args=(np.arange(dLen),hPCA_Proj[:,0])) ct = pA[1:3] return ct, pA[0] def FitTimeSeries(self, pd_series, ct): ''' Fits the amplitude and offset of an inflation event given the time and length of the event Fits A and B in A * arctan( (t - t0) / c) + B @param pd_series: Time series to be fit @param ct: the time constants for the arctan @return res: Amplitude of the fit @return perr_leastsq: Error of the fit ''' fitfunc2 = lambda p,c,t: p[0]*np.arctan((t-c[0])/c[1])+p[1] errfunc2 = lambda p,c,x,y: fitfunc2(p,c,x) - y dLen = len(pd_series) pA, pcov = optimize.leastsq(errfunc2,[1.,0.],args=(ct,np.arange(dLen),pd_series)) # res = fitfunc2(pA,ct,np.arange(dLen))[-1]-fitfunc2(pA,ct,np.arange(dLen))[0] res = pA[0]*np.pi s_sq = (errfunc2(pA,ct,np.arange(dLen),pd_series)**2).sum()/(len(pd_series)-2) pcov = pcov * s_sq error = [] for i in range(len(pA)): try: error.append(np.absolute(pcov[i][i])**0.5) except: error.append( 0.00 ) perr_leastsq = np.array(error) return res, perr_leastsq def process(self, obj_data): ''' Finds the magma source (default-mogi) from PBO GPS data. Assumes time series columns are named ('dN', 'dE', 'dU'). Predicts the location of the magma source using scipy.optimize.curve_fit The result is added to the data wrapper as a list, with the four elements describing the location of the magma source: res[0] = latitude res[1] = longitude res[2] = source depth (km) res[3] = volume change (meters^3) @param obj_data: ''' h_pca_name = self.pca_name exN = {'mogi':0,'finite_sphere':1,'closed_pipe':1,'constant_open_pipe':1,'rising_open_pipe':1,'sill':0} try: mag_source = getattr(pbo_tools,self.ap_paramList[0]().lower()) ExScParams = tuple(np.ones((exN[self.ap_paramList[0]().lower()],))) except: mag_source = pbo_tools.mogi ExScParams = () print('No source type called '+self.ap_paramList[0]()+', defaulting to a Mogi source.') wrapped_mag_source = SourceWrapper(mag_source) projection = obj_data.getResults()[h_pca_name]['Projection'] start_date = obj_data.getResults()[h_pca_name]['start_date'] end_date = obj_data.getResults()[h_pca_name]['end_date'] ct, pca_amp = self.FitPCA(projection) pca_amp *= np.pi xvs = [] yvs = [] zvs = [] label_list = [] for label, data in obj_data.getIterator(): label_list.append(label) for column in self.column_names: distance,f_error = self.FitTimeSeries(data.loc[start_date:end_date,column], ct) if column == self.column_names[1]: xvs.append(distance) elif column == self.column_names[0]: yvs.append(distance) elif column == self.column_names[2]: zvs.append(distance) else: print('Ignoring column: ', label) xvs = np.array(xvs)*1e-6 yvs = np.array(yvs)*1e-6 zvs = np.array(zvs)*1e-6 ydata = np.hstack((xvs, yvs,zvs)).T station_list = obj_data.get().keys() meta_data = obj_data.info() station_coords = pbo_utils.getStationCoords(meta_data, station_list) dimensions = ('x','y','z') xdata = [] for dim in dimensions: for coord in station_coords: xdata.append((dim, coord[0], coord[1])) coord_range = np.array(pbo_utils.getLatLonRange(meta_data, station_list)) lat_guess = np.mean(coord_range[0,:]) lon_guess = np.mean(coord_range[1,:]) fit = optimize.curve_fit(wrapped_mag_source, xdata, ydata, (lat_guess, lon_guess, 5, 1e-4)+ExScParams) res = collections.OrderedDict() res['lat'] = fit[0][0] res['lon'] = fit[0][1] res['depth'] = fit[0][2] res['amplitude'] = fit[0][3] res['labels'] = label_list if len(fit[0])>4: res['ex_params'] = fit[0][4:] else: res['ex_params'] = np.nan res['pca_amplitude'] = pca_amp res['source_type'] = self.ap_paramList[0]().lower() obj_data.addResult(self.str_description, res) # lat_fit_range = (np.min(lat_list)-0.15, np.max(lat_list)+0.15) # lon_fit_range = (np.min(lon_list)-0.15, np.max(lon_list)+0.15) # res = optimize.brute(self.mogi, (lat_fit_range, lon_fit_range, # (1,10), (1e-5, 1e-3)), # args = (xvs*1e-6, yvs*1e-6, zvs*1e-6, # station_list, meta_data))
scikit-discovery
/scikit-discovery-0.9.18.tar.gz/scikit-discovery-0.9.18/skdiscovery/data_structure/table/analysis/mogi.py
mogi.py
import collections import numpy as np import scipy.optimize as optimize import skdaccess.utilities.pbo_util as pbo_utils from skdiscovery.data_structure.framework import PipelineItem import skdiscovery.utilities.patterns.pbo_tools as pbo_tools from skdiscovery.utilities.patterns.pbo_tools import SourceWrapper, MogiVectors class Mogi_Inversion(PipelineItem): ''' Perform a mogi source inversion on a set of gps table data The source is assumed to be a mogi source (point source), but other source models can be selected. Assumes directions are named ('dN', 'dE', 'dU'). ''' def __init__(self, str_description, ap_paramList, pca_name, column_names=['dN', 'dE', 'dU']): ''' Initialize Mogi analysis item @param str_description: Description of item @param ap_paramList[source_type]: Type of magma chamber source model to use (default-mogi,finite_sphere,closed_pipe,constant_open_pipe,rising_open_pipe,sill) @param pca_name: Name of pca result @param column_names: The data direction column names ''' self.pca_name = pca_name self.column_names = column_names super(Mogi_Inversion, self).__init__(str_description, ap_paramList) self.ap_paramNames = ['source_type'] def FitPCA(self, hPCA_Proj): ''' Determine the timing of the inflation event from the first component of the pca projection fits A * arctan( (t - t0) / c ) + B to the first pca projection, in order to estimate source amplitude parameters @param hPCA_Proj: The sklearn PCA @return ct: the t0, c, and B parameters from the fit @return pA[0]: the fitted amplitude parameter ''' fitfunc = lambda p,t: p[0]*np.arctan((t-p[1])/p[2])+p[3] errfunc = lambda p,x,y: fitfunc(p,x) - y dLen = len(hPCA_Proj[:,0]) pA, success = optimize.leastsq(errfunc,[1.,dLen/2.,1.,0.],args=(np.arange(dLen),hPCA_Proj[:,0])) ct = pA[1:3] return ct, pA[0] def FitTimeSeries(self, pd_series, ct): ''' Fits the amplitude and offset of an inflation event given the time and length of the event Fits A and B in A * arctan( (t - t0) / c) + B @param pd_series: Time series to be fit @param ct: the time constants for the arctan @return res: Amplitude of the fit @return perr_leastsq: Error of the fit ''' fitfunc2 = lambda p,c,t: p[0]*np.arctan((t-c[0])/c[1])+p[1] errfunc2 = lambda p,c,x,y: fitfunc2(p,c,x) - y dLen = len(pd_series) pA, pcov = optimize.leastsq(errfunc2,[1.,0.],args=(ct,np.arange(dLen),pd_series)) # res = fitfunc2(pA,ct,np.arange(dLen))[-1]-fitfunc2(pA,ct,np.arange(dLen))[0] res = pA[0]*np.pi s_sq = (errfunc2(pA,ct,np.arange(dLen),pd_series)**2).sum()/(len(pd_series)-2) pcov = pcov * s_sq error = [] for i in range(len(pA)): try: error.append(np.absolute(pcov[i][i])**0.5) except: error.append( 0.00 ) perr_leastsq = np.array(error) return res, perr_leastsq def process(self, obj_data): ''' Finds the magma source (default-mogi) from PBO GPS data. Assumes time series columns are named ('dN', 'dE', 'dU'). Predicts the location of the magma source using scipy.optimize.curve_fit The result is added to the data wrapper as a list, with the four elements describing the location of the magma source: res[0] = latitude res[1] = longitude res[2] = source depth (km) res[3] = volume change (meters^3) @param obj_data: ''' h_pca_name = self.pca_name exN = {'mogi':0,'finite_sphere':1,'closed_pipe':1,'constant_open_pipe':1,'rising_open_pipe':1,'sill':0} try: mag_source = getattr(pbo_tools,self.ap_paramList[0]().lower()) ExScParams = tuple(np.ones((exN[self.ap_paramList[0]().lower()],))) except: mag_source = pbo_tools.mogi ExScParams = () print('No source type called '+self.ap_paramList[0]()+', defaulting to a Mogi source.') wrapped_mag_source = SourceWrapper(mag_source) projection = obj_data.getResults()[h_pca_name]['Projection'] start_date = obj_data.getResults()[h_pca_name]['start_date'] end_date = obj_data.getResults()[h_pca_name]['end_date'] ct, pca_amp = self.FitPCA(projection) pca_amp *= np.pi xvs = [] yvs = [] zvs = [] label_list = [] for label, data in obj_data.getIterator(): label_list.append(label) for column in self.column_names: distance,f_error = self.FitTimeSeries(data.loc[start_date:end_date,column], ct) if column == self.column_names[1]: xvs.append(distance) elif column == self.column_names[0]: yvs.append(distance) elif column == self.column_names[2]: zvs.append(distance) else: print('Ignoring column: ', label) xvs = np.array(xvs)*1e-6 yvs = np.array(yvs)*1e-6 zvs = np.array(zvs)*1e-6 ydata = np.hstack((xvs, yvs,zvs)).T station_list = obj_data.get().keys() meta_data = obj_data.info() station_coords = pbo_utils.getStationCoords(meta_data, station_list) dimensions = ('x','y','z') xdata = [] for dim in dimensions: for coord in station_coords: xdata.append((dim, coord[0], coord[1])) coord_range = np.array(pbo_utils.getLatLonRange(meta_data, station_list)) lat_guess = np.mean(coord_range[0,:]) lon_guess = np.mean(coord_range[1,:]) fit = optimize.curve_fit(wrapped_mag_source, xdata, ydata, (lat_guess, lon_guess, 5, 1e-4)+ExScParams) res = collections.OrderedDict() res['lat'] = fit[0][0] res['lon'] = fit[0][1] res['depth'] = fit[0][2] res['amplitude'] = fit[0][3] res['labels'] = label_list if len(fit[0])>4: res['ex_params'] = fit[0][4:] else: res['ex_params'] = np.nan res['pca_amplitude'] = pca_amp res['source_type'] = self.ap_paramList[0]().lower() obj_data.addResult(self.str_description, res) # lat_fit_range = (np.min(lat_list)-0.15, np.max(lat_list)+0.15) # lon_fit_range = (np.min(lon_list)-0.15, np.max(lon_list)+0.15) # res = optimize.brute(self.mogi, (lat_fit_range, lon_fit_range, # (1,10), (1e-5, 1e-3)), # args = (xvs*1e-6, yvs*1e-6, zvs*1e-6, # station_list, meta_data))
0.612657
0.453927
from skdiscovery.data_structure.framework import PipelineItem import numpy as np import matplotlib.pyplot as plt import math class Plotter(PipelineItem): ''' Make a plot of table data ''' def __init__(self, str_description, column_names=None, error_column_names = None, num_columns = 3, width=13, height=4, columns_together=False, annotate_column = None, annotate_data = None, xlim = None, ylim = None, **kwargs): ''' Initialize Plotter @param str_description: String describing accumulator @param column_names: Columns to be plot @param error_column_names Columns containing uncertainties to be plot, no errorbars if None @param num_columns: Number of columns to use when plotting data @param width: Total width of all columns combined @param height: Height of single row of plots @param columns_together: If true, plot the columns on the same graph @param annotate_column: Column of annotation data to use for annotation @param annotate_data: Annotation data @param xlim: The x limit @param ylim: The y limit @param **kwargs: Any additional keyword arguments are passed on to matplotlib ''' self.xlim = xlim self.ylim = ylim self.kwargs = kwargs self.num_columns = num_columns self.height = height self.width = width self.column_names = column_names self.annotate_column = annotate_column self.annotate_data = annotate_data self.error_column_names = error_column_names self.columns_together = columns_together super(Plotter, self).__init__(str_description, []) def process(self, obj_data): ''' Plot each column in obj_data @param obj_data: Data Wrapper ''' if self.column_names == None: column_names = obj_data.getDefaultColumns() else: column_names = self.column_names width = self.width height = self.height # Determine total number of figures needed if self.columns_together == False: num_figures = obj_data.getLength() * len(column_names) else: num_figures = obj_data.getLength() if num_figures > 0: # Determine number of rows and height needed to plot all figures rows = math.ceil( num_figures / self.num_columns) height *= rows figure = plt.figure() figure.set_size_inches(width, height, True) if self.xlim != None: plt.xlim(*self.xlim) if self.ylim != None: plt.ylim(*self.ylim) num = 0 # Main loop that iterates over all data for label, data in obj_data.getIterator(): if self.columns_together == True: num += 1 # Plotting with errorbars if self.error_column_names != None: for column, err_column in zip(column_names, self.error_column_names): if self.columns_together == False: num += 1 plt.subplot(rows, self.num_columns, num) plt.title(label) plt.ylabel(column) plt.xticks(rotation=45) plt.errorbar(np.array(data.index),np.array(data[column]), yerr=np.array(data[err_column]), **self.kwargs) if self.annotate_column is not None: try: for vline in self.annotate_data[label][self.annotate_column]: plt.axvline(vline,color='black',linewidth=3,alpha=0.5) except KeyError: pass # print('cannot find info') elif self.annotate_data is not None: try: for vline in self.annotate_data[label]: plt.axvline(vline,color='black',linewidth=3,alpha=0.5) except KeyError: pass # print('cannot find info') # Plotting without errorbars else: for column in column_names: if self.columns_together == False: num += 1 plt.subplot(rows, self.num_columns, num) plt.title(label) plt.ylabel(column) plt.xticks(rotation=45) plt.plot(data[column], **self.kwargs) if self.annotate_column is not None: try: for vline in self.annotate_data[label][self.annotate_column]: plt.axvline(vline,color='black',linewidth=3,alpha=0.5) except KeyError: pass elif self.annotate_data is not None: try: for vline in self.annotate_data[label]: plt.axvline(vline,color='black',linewidth=3,alpha=0.5) except KeyError: pass # Tight layout usually dispalys nicer plt.tight_layout() # If run_id is > -1, display run number on figure if(obj_data.run_id > -1): figure.suptitle( "Run: " + str(obj_data.run_id), y=1.02)
scikit-discovery
/scikit-discovery-0.9.18.tar.gz/scikit-discovery-0.9.18/skdiscovery/data_structure/table/accumulators/plotter.py
plotter.py
from skdiscovery.data_structure.framework import PipelineItem import numpy as np import matplotlib.pyplot as plt import math class Plotter(PipelineItem): ''' Make a plot of table data ''' def __init__(self, str_description, column_names=None, error_column_names = None, num_columns = 3, width=13, height=4, columns_together=False, annotate_column = None, annotate_data = None, xlim = None, ylim = None, **kwargs): ''' Initialize Plotter @param str_description: String describing accumulator @param column_names: Columns to be plot @param error_column_names Columns containing uncertainties to be plot, no errorbars if None @param num_columns: Number of columns to use when plotting data @param width: Total width of all columns combined @param height: Height of single row of plots @param columns_together: If true, plot the columns on the same graph @param annotate_column: Column of annotation data to use for annotation @param annotate_data: Annotation data @param xlim: The x limit @param ylim: The y limit @param **kwargs: Any additional keyword arguments are passed on to matplotlib ''' self.xlim = xlim self.ylim = ylim self.kwargs = kwargs self.num_columns = num_columns self.height = height self.width = width self.column_names = column_names self.annotate_column = annotate_column self.annotate_data = annotate_data self.error_column_names = error_column_names self.columns_together = columns_together super(Plotter, self).__init__(str_description, []) def process(self, obj_data): ''' Plot each column in obj_data @param obj_data: Data Wrapper ''' if self.column_names == None: column_names = obj_data.getDefaultColumns() else: column_names = self.column_names width = self.width height = self.height # Determine total number of figures needed if self.columns_together == False: num_figures = obj_data.getLength() * len(column_names) else: num_figures = obj_data.getLength() if num_figures > 0: # Determine number of rows and height needed to plot all figures rows = math.ceil( num_figures / self.num_columns) height *= rows figure = plt.figure() figure.set_size_inches(width, height, True) if self.xlim != None: plt.xlim(*self.xlim) if self.ylim != None: plt.ylim(*self.ylim) num = 0 # Main loop that iterates over all data for label, data in obj_data.getIterator(): if self.columns_together == True: num += 1 # Plotting with errorbars if self.error_column_names != None: for column, err_column in zip(column_names, self.error_column_names): if self.columns_together == False: num += 1 plt.subplot(rows, self.num_columns, num) plt.title(label) plt.ylabel(column) plt.xticks(rotation=45) plt.errorbar(np.array(data.index),np.array(data[column]), yerr=np.array(data[err_column]), **self.kwargs) if self.annotate_column is not None: try: for vline in self.annotate_data[label][self.annotate_column]: plt.axvline(vline,color='black',linewidth=3,alpha=0.5) except KeyError: pass # print('cannot find info') elif self.annotate_data is not None: try: for vline in self.annotate_data[label]: plt.axvline(vline,color='black',linewidth=3,alpha=0.5) except KeyError: pass # print('cannot find info') # Plotting without errorbars else: for column in column_names: if self.columns_together == False: num += 1 plt.subplot(rows, self.num_columns, num) plt.title(label) plt.ylabel(column) plt.xticks(rotation=45) plt.plot(data[column], **self.kwargs) if self.annotate_column is not None: try: for vline in self.annotate_data[label][self.annotate_column]: plt.axvline(vline,color='black',linewidth=3,alpha=0.5) except KeyError: pass elif self.annotate_data is not None: try: for vline in self.annotate_data[label]: plt.axvline(vline,color='black',linewidth=3,alpha=0.5) except KeyError: pass # Tight layout usually dispalys nicer plt.tight_layout() # If run_id is > -1, display run number on figure if(obj_data.run_id > -1): figure.suptitle( "Run: " + str(obj_data.run_id), y=1.02)
0.842669
0.441312
# Framework import from skdiscovery.data_structure.framework.base import PipelineItem # 3rd party libraries import import pandas as pd class CombineColumns(PipelineItem): ''' Create a new column by selecting data from a column Fills in any missing values using a second column ''' def __init__(self, str_description, column_1, column_2, new_column_name): ''' Initialize a CombineColumns object @param str_description: String describing filter @param column_1: Name of primary column @param column_2: Name of secondary column to be used when data from the primary column is not avaiable @param new_column_name: Name of resulting column ''' self.column_1 = column_1 self.column_2 = column_2 self.new_column_name = new_column_name super(CombineColumns,self).__init__(str_description) def process(self, obj_data): ''' Apply combine column filter to data set, operating on the data_obj @param obj_data: Table data wrapper. ''' for label, data in obj_data.getIterator(): if self.column_1 in data.columns and self.column_2 in data.columns: # replacing all null median data with mean data col1_null_index = pd.isnull(data.loc[:,self.column_1]) data.loc[:,self.new_column_name] = data.loc[:,self.column_1] # Check if there is any replacement data available if (~pd.isnull(data.loc[col1_null_index, self.column_2])).sum() > 0: data.loc[col1_null_index, self.new_column_name] = data.loc[col1_null_index, self.column_2] elif self.column_2 in data.columns and self.column_1 not in data.columns: data.loc[:,self.new_column_name] = data.loc[:,self.column_2] elif self.column_2 not in data.columns and self.column_1 in data.columns: data.loc[:,self.new_column_name] = data.loc[:,self.column_1] else: raise KeyError('data needs either "' + self.column_2 + '" or "' + self.column_1 + '" or both')
scikit-discovery
/scikit-discovery-0.9.18.tar.gz/scikit-discovery-0.9.18/skdiscovery/data_structure/table/filters/combine_columns.py
combine_columns.py
# Framework import from skdiscovery.data_structure.framework.base import PipelineItem # 3rd party libraries import import pandas as pd class CombineColumns(PipelineItem): ''' Create a new column by selecting data from a column Fills in any missing values using a second column ''' def __init__(self, str_description, column_1, column_2, new_column_name): ''' Initialize a CombineColumns object @param str_description: String describing filter @param column_1: Name of primary column @param column_2: Name of secondary column to be used when data from the primary column is not avaiable @param new_column_name: Name of resulting column ''' self.column_1 = column_1 self.column_2 = column_2 self.new_column_name = new_column_name super(CombineColumns,self).__init__(str_description) def process(self, obj_data): ''' Apply combine column filter to data set, operating on the data_obj @param obj_data: Table data wrapper. ''' for label, data in obj_data.getIterator(): if self.column_1 in data.columns and self.column_2 in data.columns: # replacing all null median data with mean data col1_null_index = pd.isnull(data.loc[:,self.column_1]) data.loc[:,self.new_column_name] = data.loc[:,self.column_1] # Check if there is any replacement data available if (~pd.isnull(data.loc[col1_null_index, self.column_2])).sum() > 0: data.loc[col1_null_index, self.new_column_name] = data.loc[col1_null_index, self.column_2] elif self.column_2 in data.columns and self.column_1 not in data.columns: data.loc[:,self.new_column_name] = data.loc[:,self.column_2] elif self.column_2 not in data.columns and self.column_1 in data.columns: data.loc[:,self.new_column_name] = data.loc[:,self.column_1] else: raise KeyError('data needs either "' + self.column_2 + '" or "' + self.column_1 + '" or both')
0.641198
0.498047
import numpy as np import pandas as pd from skdiscovery.data_structure.framework import PipelineItem from skdiscovery.utilities.patterns import kalman_smoother class KalmanFilter(PipelineItem): ''' Runs a forward and backward Kalman Smoother with a FOGM state on table data For more information see: Ji, K. H. 2011, PhD thesis, MIT, and Fraser, D. C., and Potter, J. E. 1969, IEEE Trans. Automat. Contr., Acl4, 4, 387-390 ''' def __init__(self, str_description, ap_paramList, uncertainty_clip=5, column_names=None, error_column_names = None, fillna=True): ''' Initialize Kalman Smoother @param str_description: String describing filter @param ap_paramList[ap_tau]: the correlation time @param ap_paramList[ap_sigmaSq]: the data noise @param ap_paramList[ap_R]: the process noise @param uncertainty_clip: Clip data with uncertainties greater than uncertainty_clip * median uncertainty @param column_names: List of column names to smooth (using None will apply to all columns) @param error_column_names: List of error column names to smooth (using None will use default error columns) @param fillna: Fill in missing values ''' super(KalmanFilter, self).__init__(str_description, ap_paramList) self.uncertainty_clip = uncertainty_clip self.ap_paramNames = ['Tau','SigmaSq','R'] self.column_names = column_names self.error_column_names = error_column_names self.fillna = fillna def process(self, obj_data): ''' Apply kalman smoother to data set @param obj_data: Input data. Changes are made in place. ''' uncertainty_clip = self.uncertainty_clip ap_tau = self.ap_paramList[0]() ap_sigmaSq = self.ap_paramList[1]() ap_R = self.ap_paramList[2]() if self.column_names is None: column_names = obj_data.getDefaultColumns() else: column_names = self.column_names if self.error_column_names is None: error_column_names = obj_data.getDefaultErrorColumns() else: error_column_names = self.error_column_names for label, dataframe in obj_data.getIterator(): for column, error_column in zip(column_names, error_column_names): data = dataframe.loc[:,column].copy() err = dataframe.loc[:,error_column].copy() # Clip data with high uncertainties data.loc[np.logical_and(~pd.isnull(err), err > np.nanmedian(err) * uncertainty_clip)] = np.nan # clip = np.nanmedian(err) * uncertainty_clip err.loc[np.logical_and(~pd.isnull(err), err > np.nanmedian(err) * uncertainty_clip)] = np.nan # If the beginning is missing data, the smoother will diverge if np.sum(~np.isnan(data.iloc[:20])) == 0: data.iloc[:2] = np.nanmedian(data) if ap_R == 'formal': R = err else: R = ap_R # Smooth the data smoothed, variance, t, sigma_sq, R = kalman_smoother.KalmanSmoother(data, t = ap_tau, sigma_sq = ap_sigmaSq, R = R) # Set uncertainties for missing data to those estimated from # the filter. err.loc[pd.isnull(err)] = variance[pd.isnull(err)] # Calculate the sample variance T = len(data) r = np.exp(-1 / t) sample_var = sigma_sq * (T / (T - 1)) * ( 1 - ((1+r) / (T * (1-r))) + ((2*r*(1-r**T)) / (T**2 * (1-r)**2))) if self.fillna == True: obj_data.updateData(label, data.index, error_column, np.sqrt(err**2 + sample_var)) obj_data.updateData(label, data.index, column, smoothed) else: obj_data.updateData(label, dataframe.loc[:,error_column].dropna().index, error_column, np.sqrt(err**2 + sample_var)) obj_data.updateData(label, dataframe.loc[:,column].dropna().index, column, smoothed) def _applyKalman(self,label_dataframe,obj_data,run_Params): column_names = run_Params[0] error_column_names = run_Params[1] uncertainty_clip = run_Params[2] ap_tau = run_Params[3] ap_sigmaSq = run_Params[4] ap_R = run_Params[5] label = label_dataframe[0] dataframe = label_dataframe[1] result = {label:dict()} for column, error_column in zip(column_names, error_column_names): data = dataframe.loc[:,column].copy() err = dataframe.loc[:,error_column].copy() # Clip data with high uncertainties data.loc[np.logical_and(~pd.isnull(err), err > np.nanmedian(err) * uncertainty_clip)] = np.nan # clip = np.nanmedian(err) * uncertainty_clip err.loc[np.logical_and(~pd.isnull(err), err > np.nanmedian(err) * uncertainty_clip)] = np.nan # If the beginning is missing data, the smoother will diverge if np.sum(~np.isnan(data.iloc[:20])) == 0: data.iloc[:2] = np.nanmedian(data) if ap_R == 'formal': R = err else: R = ap_R # Smooth the data smoothed, variance, t, sigma_sq, R = kalman_smoother.KalmanSmoother(data, t = ap_tau, sigma_sq = ap_sigmaSq, R = R) # Set uncertainties for missing data to those estimated from # the filter. err.loc[pd.isnull(err)] = variance[pd.isnull(err)] # Calculate the sample variance T = len(data) r = np.exp(-1 / t) sample_var = sigma_sq * (T / (T - 1)) * ( 1 - ((1+r) / (T * (1-r))) + ((2*r*(1-r**T)) / (T**2 * (1-r)**2))) if obj_data != None: obj_data.updateData(label, data.index, error_column, np.sqrt(err**2 + sample_var)) obj_data.updateData(label, data.index, column, smoothed) if obj_data == None: result[label]['index'] = data.index result[label][error_column] = np.sqrt(err**2 + sample_var) result[label][column] = smoothed if obj_data == None: return result, label
scikit-discovery
/scikit-discovery-0.9.18.tar.gz/scikit-discovery-0.9.18/skdiscovery/data_structure/table/filters/kalman.py
kalman.py
import numpy as np import pandas as pd from skdiscovery.data_structure.framework import PipelineItem from skdiscovery.utilities.patterns import kalman_smoother class KalmanFilter(PipelineItem): ''' Runs a forward and backward Kalman Smoother with a FOGM state on table data For more information see: Ji, K. H. 2011, PhD thesis, MIT, and Fraser, D. C., and Potter, J. E. 1969, IEEE Trans. Automat. Contr., Acl4, 4, 387-390 ''' def __init__(self, str_description, ap_paramList, uncertainty_clip=5, column_names=None, error_column_names = None, fillna=True): ''' Initialize Kalman Smoother @param str_description: String describing filter @param ap_paramList[ap_tau]: the correlation time @param ap_paramList[ap_sigmaSq]: the data noise @param ap_paramList[ap_R]: the process noise @param uncertainty_clip: Clip data with uncertainties greater than uncertainty_clip * median uncertainty @param column_names: List of column names to smooth (using None will apply to all columns) @param error_column_names: List of error column names to smooth (using None will use default error columns) @param fillna: Fill in missing values ''' super(KalmanFilter, self).__init__(str_description, ap_paramList) self.uncertainty_clip = uncertainty_clip self.ap_paramNames = ['Tau','SigmaSq','R'] self.column_names = column_names self.error_column_names = error_column_names self.fillna = fillna def process(self, obj_data): ''' Apply kalman smoother to data set @param obj_data: Input data. Changes are made in place. ''' uncertainty_clip = self.uncertainty_clip ap_tau = self.ap_paramList[0]() ap_sigmaSq = self.ap_paramList[1]() ap_R = self.ap_paramList[2]() if self.column_names is None: column_names = obj_data.getDefaultColumns() else: column_names = self.column_names if self.error_column_names is None: error_column_names = obj_data.getDefaultErrorColumns() else: error_column_names = self.error_column_names for label, dataframe in obj_data.getIterator(): for column, error_column in zip(column_names, error_column_names): data = dataframe.loc[:,column].copy() err = dataframe.loc[:,error_column].copy() # Clip data with high uncertainties data.loc[np.logical_and(~pd.isnull(err), err > np.nanmedian(err) * uncertainty_clip)] = np.nan # clip = np.nanmedian(err) * uncertainty_clip err.loc[np.logical_and(~pd.isnull(err), err > np.nanmedian(err) * uncertainty_clip)] = np.nan # If the beginning is missing data, the smoother will diverge if np.sum(~np.isnan(data.iloc[:20])) == 0: data.iloc[:2] = np.nanmedian(data) if ap_R == 'formal': R = err else: R = ap_R # Smooth the data smoothed, variance, t, sigma_sq, R = kalman_smoother.KalmanSmoother(data, t = ap_tau, sigma_sq = ap_sigmaSq, R = R) # Set uncertainties for missing data to those estimated from # the filter. err.loc[pd.isnull(err)] = variance[pd.isnull(err)] # Calculate the sample variance T = len(data) r = np.exp(-1 / t) sample_var = sigma_sq * (T / (T - 1)) * ( 1 - ((1+r) / (T * (1-r))) + ((2*r*(1-r**T)) / (T**2 * (1-r)**2))) if self.fillna == True: obj_data.updateData(label, data.index, error_column, np.sqrt(err**2 + sample_var)) obj_data.updateData(label, data.index, column, smoothed) else: obj_data.updateData(label, dataframe.loc[:,error_column].dropna().index, error_column, np.sqrt(err**2 + sample_var)) obj_data.updateData(label, dataframe.loc[:,column].dropna().index, column, smoothed) def _applyKalman(self,label_dataframe,obj_data,run_Params): column_names = run_Params[0] error_column_names = run_Params[1] uncertainty_clip = run_Params[2] ap_tau = run_Params[3] ap_sigmaSq = run_Params[4] ap_R = run_Params[5] label = label_dataframe[0] dataframe = label_dataframe[1] result = {label:dict()} for column, error_column in zip(column_names, error_column_names): data = dataframe.loc[:,column].copy() err = dataframe.loc[:,error_column].copy() # Clip data with high uncertainties data.loc[np.logical_and(~pd.isnull(err), err > np.nanmedian(err) * uncertainty_clip)] = np.nan # clip = np.nanmedian(err) * uncertainty_clip err.loc[np.logical_and(~pd.isnull(err), err > np.nanmedian(err) * uncertainty_clip)] = np.nan # If the beginning is missing data, the smoother will diverge if np.sum(~np.isnan(data.iloc[:20])) == 0: data.iloc[:2] = np.nanmedian(data) if ap_R == 'formal': R = err else: R = ap_R # Smooth the data smoothed, variance, t, sigma_sq, R = kalman_smoother.KalmanSmoother(data, t = ap_tau, sigma_sq = ap_sigmaSq, R = R) # Set uncertainties for missing data to those estimated from # the filter. err.loc[pd.isnull(err)] = variance[pd.isnull(err)] # Calculate the sample variance T = len(data) r = np.exp(-1 / t) sample_var = sigma_sq * (T / (T - 1)) * ( 1 - ((1+r) / (T * (1-r))) + ((2*r*(1-r**T)) / (T**2 * (1-r)**2))) if obj_data != None: obj_data.updateData(label, data.index, error_column, np.sqrt(err**2 + sample_var)) obj_data.updateData(label, data.index, column, smoothed) if obj_data == None: result[label]['index'] = data.index result[label][error_column] = np.sqrt(err**2 + sample_var) result[label][column] = smoothed if obj_data == None: return result, label
0.688678
0.500244
from skdiscovery.data_structure.framework import PipelineItem import numpy as np import pandas as pd from sklearn.tree import DecisionTreeRegressor class OffsetDetrend(PipelineItem): ''' Trend filter that fits a stepwise function to linearly detrended table data On detrended data this filter fits a stepwise function (number of steps provided by the user) to correct the linear fit by accounting for discontinuous offsets, such as due to a change in the antenna or from an earthquake. The final linear fit handles each portion of the offset independently. If the number of discontinuities is not provided as an autoparam, the filter assumes a single discontinuity. ''' def __init__(self, str_description, column_names, ap_paramList = [], labels=None, time_point=None, time_interval=None): ''' Initialize OffsetDetrend filter for use on table data @param str_description: String describing filter @param column_names: List of column names to select data to be removed (using None will apply to all columns) @param ap_paramList[step_count]: Number of steps to remove from data (Default: 1) @param labels: List of labels used to select data to be removed (using None will apply to all labels) @param time_point: Time of offset @param time_interval: Interval within which the offset occurs ''' self.labels = labels self.column_names = column_names self.time_point = time_point if time_interval == None: self.time_interval = [-500,500] else: if type(time_interval) == int: self.time_interval = [-time_interval,time_interval] else: self.time_interval = time_interval self.ap_paramNames = ['step_count'] super(OffsetDetrend, self).__init__(str_description, ap_paramList) def process(self, obj_data): ''' Apply offset estimation and detrending filter to data set. @param obj_data: Input data. Changes are made in place. ''' labels = self.labels column_names = self.column_names # user provided number of steps/offsets in the data step_count = 1 if len(self.ap_paramList) != 0: step_count = self.ap_paramList[0]() for label, data in obj_data.getIterator(): for column in column_names: if (labels is None or label in labels): # keep track of the time index and the location of nan's tindex = data.index reind = np.array(np.isnan(data)) # a temporary time index and data array without nan's nts = np.arange(len(data)) nts = np.delete(nts,nts[reind]) nys = data[reind==False] # Decision Tree Regressor for finding the discontinuities regr_1 = DecisionTreeRegressor(max_depth=step_count) if self.time_point == None: regr_1.fit(nts[:,np.newaxis], nys) else: # make time_point (a string) into an index time_point = np.where(tindex==self.time_point)[0][0] regr_1.fit(nts[(time_point+self.time_interval[0]):(time_point+self.time_interval[1]),np.newaxis], nys[(time_point+self.time_interval[0]):(time_point+self.time_interval[1])]) r1 = regr_1.predict(nts[:,np.newaxis]) # offset the discontinuity to be continous and fit a single line # (using median of 5 points on either side of discontinuity) nys[r1==r1[-1]] += np.median(nys[r1==r1[0]][-5:-1]) - np.median(nys[r1==r1[-1]][0:5]) z3 = np.polyfit(nts, nys, 1) # make the data into a pd series and correctly index x3 = pd.Series(data=nys-(z3[0]*nts+z3[1]),index=tindex[reind==False]) x3 = x3.reindex(tindex) # and then use that to update in place obj_data.updateData(label, x3.index, column, x3)
scikit-discovery
/scikit-discovery-0.9.18.tar.gz/scikit-discovery-0.9.18/skdiscovery/data_structure/table/filters/offset_detrend.py
offset_detrend.py
from skdiscovery.data_structure.framework import PipelineItem import numpy as np import pandas as pd from sklearn.tree import DecisionTreeRegressor class OffsetDetrend(PipelineItem): ''' Trend filter that fits a stepwise function to linearly detrended table data On detrended data this filter fits a stepwise function (number of steps provided by the user) to correct the linear fit by accounting for discontinuous offsets, such as due to a change in the antenna or from an earthquake. The final linear fit handles each portion of the offset independently. If the number of discontinuities is not provided as an autoparam, the filter assumes a single discontinuity. ''' def __init__(self, str_description, column_names, ap_paramList = [], labels=None, time_point=None, time_interval=None): ''' Initialize OffsetDetrend filter for use on table data @param str_description: String describing filter @param column_names: List of column names to select data to be removed (using None will apply to all columns) @param ap_paramList[step_count]: Number of steps to remove from data (Default: 1) @param labels: List of labels used to select data to be removed (using None will apply to all labels) @param time_point: Time of offset @param time_interval: Interval within which the offset occurs ''' self.labels = labels self.column_names = column_names self.time_point = time_point if time_interval == None: self.time_interval = [-500,500] else: if type(time_interval) == int: self.time_interval = [-time_interval,time_interval] else: self.time_interval = time_interval self.ap_paramNames = ['step_count'] super(OffsetDetrend, self).__init__(str_description, ap_paramList) def process(self, obj_data): ''' Apply offset estimation and detrending filter to data set. @param obj_data: Input data. Changes are made in place. ''' labels = self.labels column_names = self.column_names # user provided number of steps/offsets in the data step_count = 1 if len(self.ap_paramList) != 0: step_count = self.ap_paramList[0]() for label, data in obj_data.getIterator(): for column in column_names: if (labels is None or label in labels): # keep track of the time index and the location of nan's tindex = data.index reind = np.array(np.isnan(data)) # a temporary time index and data array without nan's nts = np.arange(len(data)) nts = np.delete(nts,nts[reind]) nys = data[reind==False] # Decision Tree Regressor for finding the discontinuities regr_1 = DecisionTreeRegressor(max_depth=step_count) if self.time_point == None: regr_1.fit(nts[:,np.newaxis], nys) else: # make time_point (a string) into an index time_point = np.where(tindex==self.time_point)[0][0] regr_1.fit(nts[(time_point+self.time_interval[0]):(time_point+self.time_interval[1]),np.newaxis], nys[(time_point+self.time_interval[0]):(time_point+self.time_interval[1])]) r1 = regr_1.predict(nts[:,np.newaxis]) # offset the discontinuity to be continous and fit a single line # (using median of 5 points on either side of discontinuity) nys[r1==r1[-1]] += np.median(nys[r1==r1[0]][-5:-1]) - np.median(nys[r1==r1[-1]][0:5]) z3 = np.polyfit(nts, nys, 1) # make the data into a pd series and correctly index x3 = pd.Series(data=nys-(z3[0]*nts+z3[1]),index=tindex[reind==False]) x3 = x3.reindex(tindex) # and then use that to update in place obj_data.updateData(label, x3.index, column, x3)
0.742422
0.626153
from skdiscovery.data_structure.framework import PipelineItem from skdiscovery.utilities.patterns import trend_tools class MedianFilter(PipelineItem): ''' A Median filter for table data ''' def __init__(self, str_description, ap_paramList, interpolate=True, subtract = False,regular_period=True, min_periods=1): ''' Initialize MedianFilter @param str_description: String describing filter @param ap_paramList[ap_window]: median filter window width @param interpolate: Interpolate data points before filtering @param subtract: Subtract filtered result from original @param regular_period: Assume the data is regularly sampled @param min_periods: Minimum required number of data points in window ''' self.interpolate = interpolate self.subtract = subtract self.ap_paramNames = ['windowSize'] self.regular_period = regular_period self.min_periods = min_periods super(MedianFilter, self).__init__(str_description, ap_paramList) def process(self, obj_data): ''' Apply median filter to data set @param obj_data: Input panda's data series. Changes are made in place. ''' ap_window = self.ap_paramList[0]() column_names = obj_data.getDefaultColumns() for label, data in obj_data.getIterator(): for column in column_names: if self.interpolate == True or self.regular_period == False: result = trend_tools.medianFilter(data[column], ap_window, self.interpolate) else: result = data[column].rolling(ap_window,min_periods=self.min_periods, center=True).median() if self.subtract == True: obj_data.updateData(label, data.index, column, data[column] - result) else: obj_data.updateData(label, data.index, column, result)
scikit-discovery
/scikit-discovery-0.9.18.tar.gz/scikit-discovery-0.9.18/skdiscovery/data_structure/table/filters/median.py
median.py
from skdiscovery.data_structure.framework import PipelineItem from skdiscovery.utilities.patterns import trend_tools class MedianFilter(PipelineItem): ''' A Median filter for table data ''' def __init__(self, str_description, ap_paramList, interpolate=True, subtract = False,regular_period=True, min_periods=1): ''' Initialize MedianFilter @param str_description: String describing filter @param ap_paramList[ap_window]: median filter window width @param interpolate: Interpolate data points before filtering @param subtract: Subtract filtered result from original @param regular_period: Assume the data is regularly sampled @param min_periods: Minimum required number of data points in window ''' self.interpolate = interpolate self.subtract = subtract self.ap_paramNames = ['windowSize'] self.regular_period = regular_period self.min_periods = min_periods super(MedianFilter, self).__init__(str_description, ap_paramList) def process(self, obj_data): ''' Apply median filter to data set @param obj_data: Input panda's data series. Changes are made in place. ''' ap_window = self.ap_paramList[0]() column_names = obj_data.getDefaultColumns() for label, data in obj_data.getIterator(): for column in column_names: if self.interpolate == True or self.regular_period == False: result = trend_tools.medianFilter(data[column], ap_window, self.interpolate) else: result = data[column].rolling(ap_window,min_periods=self.min_periods, center=True).median() if self.subtract == True: obj_data.updateData(label, data.index, column, data[column] - result) else: obj_data.updateData(label, data.index, column, result)
0.897395
0.328812
from skdiscovery.data_structure.framework.base import PipelineItem import numpy as np class WeightedAverage(PipelineItem): ''' This filter performs a rolling weighted average using standard deviations as weight ''' def __init__(self, str_description, ap_paramList, column_names, std_dev_column_names=None, propagate_uncertainties=False): ''' Initializes a WeightedAverage object @param str_description: String describing filter @param ap_paramList[window]: Window to use for computing rolling weighted average @param column_names: Names of columns to apply the weighted average @param std_dev_column_names: Names of columns of the standard deviations. If none a regular mean is computed. @param propagate_uncertainties: Propagate uncertainties assuming uncorrelated errors ''' super(WeightedAverage,self).__init__(str_description, ap_paramList) self.column_names = column_names self.std_dev_column_names = std_dev_column_names self.propagate_uncertainties = propagate_uncertainties def process(self, obj_data): ''' Apply the moving (weighted) average filter to a table data wrapper.n Changes are made in place. @param obj_data: Input table data wrapper ''' window = self.ap_paramList[0]() for label, data in obj_data.getIterator(): if self.std_dev_column_names != None: for column, std_dev_column in zip(self.column_names, self.std_dev_column_names): weights = 1 / data[std_dev_column]**2 weighted_data = data[column] * weights scale = weights.rolling(window=window,center=True, min_periods=1).sum() weighted_average = weighted_data.rolling(window=window, center=True, min_periods=1).sum() / scale obj_data.updateData(label, weighted_average.index, column,weighted_average) if self.propagate_uncertainties: # Uncertainty determined using the standard error propagation technique # Assumes data is uncorrelated uncertainty = 1 / np.sqrt(scale) obj_data.updateData(label, uncertainty.index, std_dev_column, uncertainty) else: for column in self.column_names: weighted_average = data[column].rolling(window=window, center=True, min_periods=1).mean() obj_data.updateData(label,weighted_average.index,column,weighted_average)
scikit-discovery
/scikit-discovery-0.9.18.tar.gz/scikit-discovery-0.9.18/skdiscovery/data_structure/table/filters/weighted_average.py
weighted_average.py
from skdiscovery.data_structure.framework.base import PipelineItem import numpy as np class WeightedAverage(PipelineItem): ''' This filter performs a rolling weighted average using standard deviations as weight ''' def __init__(self, str_description, ap_paramList, column_names, std_dev_column_names=None, propagate_uncertainties=False): ''' Initializes a WeightedAverage object @param str_description: String describing filter @param ap_paramList[window]: Window to use for computing rolling weighted average @param column_names: Names of columns to apply the weighted average @param std_dev_column_names: Names of columns of the standard deviations. If none a regular mean is computed. @param propagate_uncertainties: Propagate uncertainties assuming uncorrelated errors ''' super(WeightedAverage,self).__init__(str_description, ap_paramList) self.column_names = column_names self.std_dev_column_names = std_dev_column_names self.propagate_uncertainties = propagate_uncertainties def process(self, obj_data): ''' Apply the moving (weighted) average filter to a table data wrapper.n Changes are made in place. @param obj_data: Input table data wrapper ''' window = self.ap_paramList[0]() for label, data in obj_data.getIterator(): if self.std_dev_column_names != None: for column, std_dev_column in zip(self.column_names, self.std_dev_column_names): weights = 1 / data[std_dev_column]**2 weighted_data = data[column] * weights scale = weights.rolling(window=window,center=True, min_periods=1).sum() weighted_average = weighted_data.rolling(window=window, center=True, min_periods=1).sum() / scale obj_data.updateData(label, weighted_average.index, column,weighted_average) if self.propagate_uncertainties: # Uncertainty determined using the standard error propagation technique # Assumes data is uncorrelated uncertainty = 1 / np.sqrt(scale) obj_data.updateData(label, uncertainty.index, std_dev_column, uncertainty) else: for column in self.column_names: weighted_average = data[column].rolling(window=window, center=True, min_periods=1).mean() obj_data.updateData(label,weighted_average.index,column,weighted_average)
0.907093
0.369941
import pandas as pd from skdiscovery.data_structure.framework import PipelineItem from skdiscovery.utilities.patterns import trend_tools class TrendFilter(PipelineItem): ''' Trend Filter that removes linear and sinusoidal (annual, semi-annual) trends on series data. Works on table data ''' def __init__(self, str_description, ap_paramList, columns = None): ''' Initialize Trend Filter @param str_description: String describing filter @param ap_paramList[list_trendTypes]: List of trend types. List can contain "linear", "annual", or "semiannual" @param columns: List of column names to filter ''' super(TrendFilter, self).__init__(str_description, ap_paramList) self.columns = columns self.ap_paramNames = ['trend_list'] def process(self, obj_data): ''' Apply trend filter to data set. @param obj_data: Input data. Changes are made in place. ''' if self.columns == None: column_names = obj_data.getDefaultColumns() else: column_names = self.columns filter_list = None if len(self.ap_paramList) != 0: filter_list = self.ap_paramList[0].val() for label, dataframe in obj_data.getIterator(): for column in column_names: data = dataframe.loc[:,column] good_index = pd.notnull(data) if good_index.sum() == 0: continue if filter_list == None or 'linear' in filter_list: obj_data.updateData(label, data.index[good_index], column, pd.Series(trend_tools.getTrend(data)[0], index=data.index)[good_index]) if filter_list == None or 'semiannual' in filter_list: obj_data.updateData(label, data.index[good_index], column, pd.Series(trend_tools.sinuFits(data), index=data.index)[good_index]) elif 'annual' in filter_list: obj_data.updateData(label, data.index[good_index], column, pd.Series( trend_tools.sinuFits(data, fitN=1), index=data.index)[good_index])
scikit-discovery
/scikit-discovery-0.9.18.tar.gz/scikit-discovery-0.9.18/skdiscovery/data_structure/table/filters/trend.py
trend.py
import pandas as pd from skdiscovery.data_structure.framework import PipelineItem from skdiscovery.utilities.patterns import trend_tools class TrendFilter(PipelineItem): ''' Trend Filter that removes linear and sinusoidal (annual, semi-annual) trends on series data. Works on table data ''' def __init__(self, str_description, ap_paramList, columns = None): ''' Initialize Trend Filter @param str_description: String describing filter @param ap_paramList[list_trendTypes]: List of trend types. List can contain "linear", "annual", or "semiannual" @param columns: List of column names to filter ''' super(TrendFilter, self).__init__(str_description, ap_paramList) self.columns = columns self.ap_paramNames = ['trend_list'] def process(self, obj_data): ''' Apply trend filter to data set. @param obj_data: Input data. Changes are made in place. ''' if self.columns == None: column_names = obj_data.getDefaultColumns() else: column_names = self.columns filter_list = None if len(self.ap_paramList) != 0: filter_list = self.ap_paramList[0].val() for label, dataframe in obj_data.getIterator(): for column in column_names: data = dataframe.loc[:,column] good_index = pd.notnull(data) if good_index.sum() == 0: continue if filter_list == None or 'linear' in filter_list: obj_data.updateData(label, data.index[good_index], column, pd.Series(trend_tools.getTrend(data)[0], index=data.index)[good_index]) if filter_list == None or 'semiannual' in filter_list: obj_data.updateData(label, data.index[good_index], column, pd.Series(trend_tools.sinuFits(data), index=data.index)[good_index]) elif 'annual' in filter_list: obj_data.updateData(label, data.index[good_index], column, pd.Series( trend_tools.sinuFits(data, fitN=1), index=data.index)[good_index])
0.639286
0.458652
class PipelineItem(object): ''' The general class used to create pipeline items. ''' def __init__(self, str_description, ap_paramList=[]): ''' Initialize an object @param str_description: String description of filter @param ap_paramList: List of AutoParam parameters. ''' self.str_description = str_description self.ap_paramList = ap_paramList self.ap_paramNames = [] def perturbParams(self): '''choose other random value for all parameters''' for param in self.ap_paramList: param.perturb() def resetParams(self): '''set all parameters to initial value''' for param in self.ap_paramList: param.reset() def process(self, obj_data): ''' The actual filter processing. Empty in this generic filter. @param obj_data: Data wrapper that will be processed ''' pass def __str__(self): ''' String represntation of object. @return String listing all currenter parameters ''' return str([str(p) for p in self.ap_paramList]) def getMetadata(self): ''' Retrieve metadata about filter @return String containing the item description and current parameters for filter. ''' return self.str_description + str([str(p) for p in self.ap_paramList]) class TablePipelineItem(PipelineItem): """ Pipeline item for Table data """ def __init__(self, str_description, ap_paramList, column_list=None, error_column_list=None): """ Initialize Table Pipeline item @param str_description: String describing filter @param ap_paramList: List of AutoParams and AutoLists @param column_list: List of columns to process @param error_column_list: List of the associated error columns """ super(TablePipelineItem, self).__init__(str_description, ap_paramList) self._column_list = column_list self._error_column_list = error_column_list def _getColumns(self, obj_data): """ Get the columns that need to be processed Returns the columns set in this item, otherwise returns the default columns defined the data wrapper @param obj_data: Table data wrapper @return Columns to process """ if self._column_list is None: return obj_data.getDefaultColumns() else: return self._column_list def _getErrorColumns(self, obj_data): """ Get the columns that need to be processed Returns the columns set in this item, otherwise returns the default columns defined the data wrapper @param obj_data: Table data wrapper @return Columns to process """ if self._column_list is None: return obj_data.getDefaultErrorColumns() else: return self._error_column_list
scikit-discovery
/scikit-discovery-0.9.18.tar.gz/scikit-discovery-0.9.18/skdiscovery/data_structure/framework/base.py
base.py
class PipelineItem(object): ''' The general class used to create pipeline items. ''' def __init__(self, str_description, ap_paramList=[]): ''' Initialize an object @param str_description: String description of filter @param ap_paramList: List of AutoParam parameters. ''' self.str_description = str_description self.ap_paramList = ap_paramList self.ap_paramNames = [] def perturbParams(self): '''choose other random value for all parameters''' for param in self.ap_paramList: param.perturb() def resetParams(self): '''set all parameters to initial value''' for param in self.ap_paramList: param.reset() def process(self, obj_data): ''' The actual filter processing. Empty in this generic filter. @param obj_data: Data wrapper that will be processed ''' pass def __str__(self): ''' String represntation of object. @return String listing all currenter parameters ''' return str([str(p) for p in self.ap_paramList]) def getMetadata(self): ''' Retrieve metadata about filter @return String containing the item description and current parameters for filter. ''' return self.str_description + str([str(p) for p in self.ap_paramList]) class TablePipelineItem(PipelineItem): """ Pipeline item for Table data """ def __init__(self, str_description, ap_paramList, column_list=None, error_column_list=None): """ Initialize Table Pipeline item @param str_description: String describing filter @param ap_paramList: List of AutoParams and AutoLists @param column_list: List of columns to process @param error_column_list: List of the associated error columns """ super(TablePipelineItem, self).__init__(str_description, ap_paramList) self._column_list = column_list self._error_column_list = error_column_list def _getColumns(self, obj_data): """ Get the columns that need to be processed Returns the columns set in this item, otherwise returns the default columns defined the data wrapper @param obj_data: Table data wrapper @return Columns to process """ if self._column_list is None: return obj_data.getDefaultColumns() else: return self._column_list def _getErrorColumns(self, obj_data): """ Get the columns that need to be processed Returns the columns set in this item, otherwise returns the default columns defined the data wrapper @param obj_data: Table data wrapper @return Columns to process """ if self._column_list is None: return obj_data.getDefaultErrorColumns() else: return self._error_column_list
0.749729
0.30243
import numpy as np from shapely.geometry import Polygon, Point from collections import OrderedDict def shoelaceArea(in_vertices): """ Determine the area of a polygon using the shoelace method https://en.wikipedia.org/wiki/Shoelace_formula @param in_vertices: The vertices of a polygon. 2d Array where the first column is the x coordinates and the second column is the y coordinates @return: Area of the polygon """ x = in_vertices[:,0] y = in_vertices[:,1] return 0.5 *(np.sum(x * np.roll(y,shift=-1)) - np.sum(np.roll(x,shift=-1) * y)) def parseBasemapShape(aquifers, aquifers_info): """ Create shapely polygons from shapefile read in with basemap @param aquifers: Data read in shapefile from basemap @param aquifers_info: Metadata read from shapefile from basemap @return: Dictionary containing information about shapes and shapely polygon of shapefile data """ polygon_data = [] test_list = [] for index,(aquifer,info) in enumerate(zip(aquifers,aquifers_info)): if shoelaceArea(np.array(aquifer)) < 0: new_data = OrderedDict() new_data['shell'] = aquifer new_data['info'] = info new_data['holes'] = [] polygon_data.append(new_data) else: polygon_data[-1]['holes'].append(aquifer) for data in polygon_data: data['polygon'] = Polygon(shell=data['shell'],holes=data['holes']) return polygon_data def nearestEdgeDistance(x,y,poly): """ Determine the distance to the closest edge of a polygon @param x: x coordinate @param y: y coordinate @param poly: Shapely polygon @return distance from x,y to nearest edge of the polygon """ point = Point(x,y) ext_dist = poly.exterior.distance(point) if len(poly.interiors) > 0: int_dist = np.min([interior.distance(point) for interior in poly.interiors]) return np.min([ext_dist, int_dist]) else: return ext_dist def findPolygon(in_data, in_point): """ Find the polygon that a point resides in @param in_data: Input data containing polygons as read in by parseBasemapShape @param in_point: Shapely point @return: Index of shape in in_data that contains in_point """ result_num = None for index, data in enumerate(in_data): if data['polygon'].contains(in_point): if result_num == None: result_num = index else: raise RuntimeError("Multiple polygons contains point") if result_num == None: return -1 return result_num def getInfo(row, key, fill, polygon_data): """ Retrieve information from polygon data: @param row: Container with key 'ShapeIndex' @param key: Key of data to retrieve from polygon_data element @param fill: Value to return if key does not exist in polygon_data element @param polygon_data: Polygon data as read in by parseBasemapShape """ try: return polygon_data[int(row['ShapeIndex'])]['info'][key] except KeyError: return fill def findClosestPolygonDistance(x,y,polygon_data): """ Find the distance to the closest polygon @param x: x coordinate @param y: y coordinate @param polygon_data: Polygon data as read in by parseBasemapShape @return Distance from x, y to the closest polygon polygon_data """ min_dist = np.inf shape_index = -1 point = Point(x,y) for index, data in enumerate(polygon_data): if not data['polygon'].contains(point) and data['info']['AQ_CODE'] != 999: new_distance = data['polygon'].distance(point) if new_distance < min_dist: min_dist = new_distance shape_index = index return min_dist, shape_index
scikit-discovery
/scikit-discovery-0.9.18.tar.gz/scikit-discovery-0.9.18/skdiscovery/utilities/patterns/polygon_utils.py
polygon_utils.py
import numpy as np from shapely.geometry import Polygon, Point from collections import OrderedDict def shoelaceArea(in_vertices): """ Determine the area of a polygon using the shoelace method https://en.wikipedia.org/wiki/Shoelace_formula @param in_vertices: The vertices of a polygon. 2d Array where the first column is the x coordinates and the second column is the y coordinates @return: Area of the polygon """ x = in_vertices[:,0] y = in_vertices[:,1] return 0.5 *(np.sum(x * np.roll(y,shift=-1)) - np.sum(np.roll(x,shift=-1) * y)) def parseBasemapShape(aquifers, aquifers_info): """ Create shapely polygons from shapefile read in with basemap @param aquifers: Data read in shapefile from basemap @param aquifers_info: Metadata read from shapefile from basemap @return: Dictionary containing information about shapes and shapely polygon of shapefile data """ polygon_data = [] test_list = [] for index,(aquifer,info) in enumerate(zip(aquifers,aquifers_info)): if shoelaceArea(np.array(aquifer)) < 0: new_data = OrderedDict() new_data['shell'] = aquifer new_data['info'] = info new_data['holes'] = [] polygon_data.append(new_data) else: polygon_data[-1]['holes'].append(aquifer) for data in polygon_data: data['polygon'] = Polygon(shell=data['shell'],holes=data['holes']) return polygon_data def nearestEdgeDistance(x,y,poly): """ Determine the distance to the closest edge of a polygon @param x: x coordinate @param y: y coordinate @param poly: Shapely polygon @return distance from x,y to nearest edge of the polygon """ point = Point(x,y) ext_dist = poly.exterior.distance(point) if len(poly.interiors) > 0: int_dist = np.min([interior.distance(point) for interior in poly.interiors]) return np.min([ext_dist, int_dist]) else: return ext_dist def findPolygon(in_data, in_point): """ Find the polygon that a point resides in @param in_data: Input data containing polygons as read in by parseBasemapShape @param in_point: Shapely point @return: Index of shape in in_data that contains in_point """ result_num = None for index, data in enumerate(in_data): if data['polygon'].contains(in_point): if result_num == None: result_num = index else: raise RuntimeError("Multiple polygons contains point") if result_num == None: return -1 return result_num def getInfo(row, key, fill, polygon_data): """ Retrieve information from polygon data: @param row: Container with key 'ShapeIndex' @param key: Key of data to retrieve from polygon_data element @param fill: Value to return if key does not exist in polygon_data element @param polygon_data: Polygon data as read in by parseBasemapShape """ try: return polygon_data[int(row['ShapeIndex'])]['info'][key] except KeyError: return fill def findClosestPolygonDistance(x,y,polygon_data): """ Find the distance to the closest polygon @param x: x coordinate @param y: y coordinate @param polygon_data: Polygon data as read in by parseBasemapShape @return Distance from x, y to the closest polygon polygon_data """ min_dist = np.inf shape_index = -1 point = Point(x,y) for index, data in enumerate(polygon_data): if not data['polygon'].contains(point) and data['info']['AQ_CODE'] != 999: new_distance = data['polygon'].distance(point) if new_distance < min_dist: min_dist = new_distance shape_index = index return min_dist, shape_index
0.758555
0.852445
import statsmodels.api as sm import numpy as np import imreg_dft as ird import shapely import scipy as sp def buildMatchedPoints(in_matches, query_kp, train_kp): ''' Get postions of matched points @param in_matches: Input matches @param query_kp: Query key points @param train_kp: Training key points @return Tuple containing the matched query and training positions ''' query_index = [match.queryIdx for match in in_matches] train_index = [match.trainIdx for match in in_matches] sorted_query_kp = [query_kp[i] for i in query_index] sorted_train_kp = [train_kp[i] for i in train_index] query_positions = [[kp.pt[0], kp.pt[1]] for kp in sorted_query_kp] train_positions = [[kp.pt[0], kp.pt[1]] for kp in sorted_train_kp] return query_positions, train_positions def scaleImage(input_data, vmin=None, vmax=None): ''' Scale image values to be within 0 and 255 @param input_data: Input data @param vmin: Minimum value for scaled data, where smaller values are clipped, defaults to Median - stddev as determined by mad @param vmax: Maximum value for scaled data, where larger values are clipped, defaults to Median - stddev as determined by mad) @return input_data scaled to be within 0 and 255 as an 8 bit integer ''' if vmin==None or vmax==None: stddev = sm.robust.mad(input_data.ravel()) middle = np.median(input_data.ravel()) if vmin == None: vmin = middle - 1*stddev if vmax == None: vmax = middle + 1*stddev input_data = input_data.astype(np.float) input_data[input_data<vmin] = vmin input_data[input_data>vmax] = vmax input_data = np.round((input_data - vmin) * 255 / (vmax-vmin)).astype(np.uint8) return input_data def divideIntoSquares(image, size, stride): """ Create many patches from an image Will drop any patches that contain NaN's @param image: Source image @param size: Size of one side of the square patch @param stride: Spacing between patches (must be an integer greater than 0) @return Array containing the extent [x_start, x_end, y_start, y_end] of each patch and an array of the patches """ def compute_len(size, stride): return (size-1) // stride + 1 num_x = compute_len(image.shape[-1]-size, stride) num_y = compute_len(image.shape[-2]-size, stride) if image.ndim == 2: array_data = np.zeros((num_x * num_y, size, size), dtype = image.dtype) elif image.ndim == 3: array_data = np.zeros((num_x * num_y, image.shape[0], size, size), dtype = image.dtype) extent_data = np.zeros((num_x * num_y, 4), dtype = np.int) index = 0 for x in range(0, image.shape[-1]-size, stride): for y in range(0, image.shape[-2]-size, stride): if image.ndim == 2: cut_box = image[y:y+size, x:x+size] elif image.ndim == 3: cut_box = image[:, y:y+size, x:x+size] array_data[index, ...] = cut_box extent_data[index, :] = np.array([x, x+size, y, y+size]) index += 1 if image.ndim==2: valid_index = ~np.any(np.isnan(array_data), axis=(1,2)) else: valid_index = ~np.any(np.isnan(array_data), axis=(1,2,3)) return extent_data[valid_index], array_data[valid_index] def generateSquaresAroundPoly(poly, size=100, stride=20): ''' Generate that may touch a shapely polygon @param poly: Shapely polygon @param size: Size of boxes to create @param stride: Distance between squares @return list of Shapely squares that may touch input polygon ''' x_start, x_end = np.min(poly.bounds[0]-size).astype(np.int), np.max(poly.bounds[2]+size).astype(np.int) y_start, y_end = np.min(poly.bounds[1]-size).astype(np.int), np.max(poly.bounds[3]+size).astype(np.int) x_coords = np.arange(x_start, x_end+1, stride) y_coords = np.arange(y_start, y_end+1, stride) x_mesh, y_mesh = np.meshgrid(x_coords, y_coords) return [shapely.geometry.box(x, y, x+size, y+size) for x, y in zip(x_mesh.ravel(), y_mesh.ravel())]
scikit-discovery
/scikit-discovery-0.9.18.tar.gz/scikit-discovery-0.9.18/skdiscovery/utilities/patterns/image_tools.py
image_tools.py
import statsmodels.api as sm import numpy as np import imreg_dft as ird import shapely import scipy as sp def buildMatchedPoints(in_matches, query_kp, train_kp): ''' Get postions of matched points @param in_matches: Input matches @param query_kp: Query key points @param train_kp: Training key points @return Tuple containing the matched query and training positions ''' query_index = [match.queryIdx for match in in_matches] train_index = [match.trainIdx for match in in_matches] sorted_query_kp = [query_kp[i] for i in query_index] sorted_train_kp = [train_kp[i] for i in train_index] query_positions = [[kp.pt[0], kp.pt[1]] for kp in sorted_query_kp] train_positions = [[kp.pt[0], kp.pt[1]] for kp in sorted_train_kp] return query_positions, train_positions def scaleImage(input_data, vmin=None, vmax=None): ''' Scale image values to be within 0 and 255 @param input_data: Input data @param vmin: Minimum value for scaled data, where smaller values are clipped, defaults to Median - stddev as determined by mad @param vmax: Maximum value for scaled data, where larger values are clipped, defaults to Median - stddev as determined by mad) @return input_data scaled to be within 0 and 255 as an 8 bit integer ''' if vmin==None or vmax==None: stddev = sm.robust.mad(input_data.ravel()) middle = np.median(input_data.ravel()) if vmin == None: vmin = middle - 1*stddev if vmax == None: vmax = middle + 1*stddev input_data = input_data.astype(np.float) input_data[input_data<vmin] = vmin input_data[input_data>vmax] = vmax input_data = np.round((input_data - vmin) * 255 / (vmax-vmin)).astype(np.uint8) return input_data def divideIntoSquares(image, size, stride): """ Create many patches from an image Will drop any patches that contain NaN's @param image: Source image @param size: Size of one side of the square patch @param stride: Spacing between patches (must be an integer greater than 0) @return Array containing the extent [x_start, x_end, y_start, y_end] of each patch and an array of the patches """ def compute_len(size, stride): return (size-1) // stride + 1 num_x = compute_len(image.shape[-1]-size, stride) num_y = compute_len(image.shape[-2]-size, stride) if image.ndim == 2: array_data = np.zeros((num_x * num_y, size, size), dtype = image.dtype) elif image.ndim == 3: array_data = np.zeros((num_x * num_y, image.shape[0], size, size), dtype = image.dtype) extent_data = np.zeros((num_x * num_y, 4), dtype = np.int) index = 0 for x in range(0, image.shape[-1]-size, stride): for y in range(0, image.shape[-2]-size, stride): if image.ndim == 2: cut_box = image[y:y+size, x:x+size] elif image.ndim == 3: cut_box = image[:, y:y+size, x:x+size] array_data[index, ...] = cut_box extent_data[index, :] = np.array([x, x+size, y, y+size]) index += 1 if image.ndim==2: valid_index = ~np.any(np.isnan(array_data), axis=(1,2)) else: valid_index = ~np.any(np.isnan(array_data), axis=(1,2,3)) return extent_data[valid_index], array_data[valid_index] def generateSquaresAroundPoly(poly, size=100, stride=20): ''' Generate that may touch a shapely polygon @param poly: Shapely polygon @param size: Size of boxes to create @param stride: Distance between squares @return list of Shapely squares that may touch input polygon ''' x_start, x_end = np.min(poly.bounds[0]-size).astype(np.int), np.max(poly.bounds[2]+size).astype(np.int) y_start, y_end = np.min(poly.bounds[1]-size).astype(np.int), np.max(poly.bounds[3]+size).astype(np.int) x_coords = np.arange(x_start, x_end+1, stride) y_coords = np.arange(y_start, y_end+1, stride) x_mesh, y_mesh = np.meshgrid(x_coords, y_coords) return [shapely.geometry.box(x, y, x+size, y+size) for x, y in zip(x_mesh.ravel(), y_mesh.ravel())]
0.589598
0.684679
# 3rd party imports import numpy as np import pandas as pd def getPCAComponents(pca_results): ''' Retrieve PCA components from PCA results @param pca_results: PCA results from a pipeline run @return Pandas DataFrame containing the pca components ''' date_range = pd.date_range(pca_results['start_date'], pca_results['end_date']) column_names = ['PC' + str(i+1) for i in range(pca_results['CA'].n_components)] pca = pd.DataFrame(data = pca_results['Projection'], index = date_range, columns=column_names) pca.index.name='Date' return pca def rotate(col_vectors, az, ay, ax): ''' Rotate col vectors in three dimensions Rx * Ry * Rz * row_vectors @param col_vectors: Three dimensional Column vectors @param az: Z angle @param ay: Y angle @param ax: X angle @return rotated col vectors ''' rz = np.array([[np.cos(az), -np.sin(az), 0], [np.sin(az), np.cos(az), 0], [0, 0, 1]]) ry = np.array([[np.cos(ay), 0, np.sin(ay)], [0, 1, 0], [-np.sin(ay), 0, np.cos(ay)]]) rx = np.array([[ 1, 0, 0], [0, np.cos(ax), -np.sin(ax)], [0, np.sin(ax), np.cos(ax)]]) rot = rx @ ry @ rz return rot @ col_vector def translate(col_vectors, delta_x, delta_y, delta_z): ''' Translate col vectors by x, y, and z @param col_vectors: Row vectors of positions @param delta_x: Amount to translate in the x direction @param delta_y: Amount to translate in the y direction @param delta_z: Amount to translate in the y direction ''' col_vectors = col_vectors.copy() col_vectors[0,:] += delta_x col_vectors[1,:] += delta_y col_vectors[2,:] += delta_z return col_vectors def formatColorbarLabels(colorbar, pad=29): """ Adjust the labels on a colorbar so they are right aligned @param colorbar: Input matplotlib colorbar @param pad: Amount of padding to use """ for t in colorbar.ax.get_yticklabels(): t.set_horizontalalignment('right') colorbar.ax.yaxis.set_tick_params(pad=pad)
scikit-discovery
/scikit-discovery-0.9.18.tar.gz/scikit-discovery-0.9.18/skdiscovery/utilities/patterns/general_tools.py
general_tools.py
# 3rd party imports import numpy as np import pandas as pd def getPCAComponents(pca_results): ''' Retrieve PCA components from PCA results @param pca_results: PCA results from a pipeline run @return Pandas DataFrame containing the pca components ''' date_range = pd.date_range(pca_results['start_date'], pca_results['end_date']) column_names = ['PC' + str(i+1) for i in range(pca_results['CA'].n_components)] pca = pd.DataFrame(data = pca_results['Projection'], index = date_range, columns=column_names) pca.index.name='Date' return pca def rotate(col_vectors, az, ay, ax): ''' Rotate col vectors in three dimensions Rx * Ry * Rz * row_vectors @param col_vectors: Three dimensional Column vectors @param az: Z angle @param ay: Y angle @param ax: X angle @return rotated col vectors ''' rz = np.array([[np.cos(az), -np.sin(az), 0], [np.sin(az), np.cos(az), 0], [0, 0, 1]]) ry = np.array([[np.cos(ay), 0, np.sin(ay)], [0, 1, 0], [-np.sin(ay), 0, np.cos(ay)]]) rx = np.array([[ 1, 0, 0], [0, np.cos(ax), -np.sin(ax)], [0, np.sin(ax), np.cos(ax)]]) rot = rx @ ry @ rz return rot @ col_vector def translate(col_vectors, delta_x, delta_y, delta_z): ''' Translate col vectors by x, y, and z @param col_vectors: Row vectors of positions @param delta_x: Amount to translate in the x direction @param delta_y: Amount to translate in the y direction @param delta_z: Amount to translate in the y direction ''' col_vectors = col_vectors.copy() col_vectors[0,:] += delta_x col_vectors[1,:] += delta_y col_vectors[2,:] += delta_z return col_vectors def formatColorbarLabels(colorbar, pad=29): """ Adjust the labels on a colorbar so they are right aligned @param colorbar: Input matplotlib colorbar @param pad: Amount of padding to use """ for t in colorbar.ax.get_yticklabels(): t.set_horizontalalignment('right') colorbar.ax.yaxis.set_tick_params(pad=pad)
0.882326
0.52975
import socket import threading import select import paramiko def print_verbose(s, verbose=False): ''' Print statement if verbose is True @param s: Statement to print @param verbose: Print only if verbose is True ''' if verbose: print(s) def handler(chan, host, port, verbose=False): ''' Handler is responsible for sending and receiving data through ssh tunnel @param chan: SSH Channel for transferring data @param host: Address of remote host @param port: Port to forward @param verbose: Print status information ''' sock = socket.socket() try: sock.connect((host, port)) except Exception as e: print_verbose('Forwarding request to %s:%d failed: %r' % (host, port, e), verbose) return print_verbose('Connected! Tunnel open %r -> %r -> %r' % (chan.origin_addr, chan.getpeername(), (host, port)), verbose) while True: r, w, x = select.select([sock, chan], [], []) if sock in r: data = sock.recv(1024) if len(data) == 0: break chan.send(data) if chan in r: data = chan.recv(1024) if len(data) == 0: break sock.send(data) chan.close() sock.close() print_verbose('Tunnel closed from %r' % (chan.origin_addr,), verbose) def reverse_forward_tunnel(server_port, remote_host, remote_port, transport, check=30, verbose=False): ''' Creates a reverse ssh tunnel @param server_port: Port on local host @param remote_host: Address of remote host @param remote_port: Port of remote host @param transport: SSH Transport @param check: Amount of time to wait in seconds when opening up a channel @param verbose: Print status information @return Thread running reverse ssh tunnel, event used to close ssh tunnel, list of child threads started by main thread ''' transport.request_port_forward('', server_port) event = threading.Event() child_threads = [] def accept_tunnels(event): ''' This function spawns new connections as they are needed @param event: When this event is set, this function will complete ''' while not event.is_set(): chan = transport.accept(check) if chan is None: continue thr = threading.Thread(target=handler, args=(chan, remote_host, remote_port, verbose)) thr.setDaemon(True) thr.start() child_threads.append(thr) accept_thread = threading.Thread(target=accept_tunnels,args=[event]) accept_thread.setDaemon(True) accept_thread.start() return accept_thread, event, child_threads class ReverseTunnel(object): ''' Create a reverse ssh tunnel ''' def __init__(self, server_address, username, key_filename, server_port, remote_host, remote_port, check=30, verbose=False): ''' Initialize ReverseTunnel object @param server_address: Local server address @param username: Valid username on remote host @param key_filename: Filename of ssh key associated with remote host @param server_port: Local port @param remote_host: Address of remote host @param remote_port: Remote port @param check: Amount of time to wait in seconds when opening up a channel @param verbose: Print status information ''' self.server_address = server_address self.username = username self.key_filename = key_filename self.server_port = server_port self.remote_host = remote_host self.remote_port = remote_port self.check = check self.verbose = verbose self.ssh = None self.event = None def create_reverse_tunnel(self): ''' Create the reverse tunnel ''' self.ssh = paramiko.SSHClient() self.ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy()) self.ssh.connect(self.server_address, username=self.username, key_filename=self.key_filename) self.running_thread, self.event, self.child_threads = reverse_forward_tunnel(self.server_port, self.remote_host, self.remote_port, self.ssh.get_transport(), self.check) def __del__(self): ''' Deconstructor ''' if self.ssh != None: self.ssh.close() if self.event != None: self.event.set()
scikit-discovery
/scikit-discovery-0.9.18.tar.gz/scikit-discovery-0.9.18/skdiscovery/utilities/cloud/ssh_reverse.py
ssh_reverse.py
import socket import threading import select import paramiko def print_verbose(s, verbose=False): ''' Print statement if verbose is True @param s: Statement to print @param verbose: Print only if verbose is True ''' if verbose: print(s) def handler(chan, host, port, verbose=False): ''' Handler is responsible for sending and receiving data through ssh tunnel @param chan: SSH Channel for transferring data @param host: Address of remote host @param port: Port to forward @param verbose: Print status information ''' sock = socket.socket() try: sock.connect((host, port)) except Exception as e: print_verbose('Forwarding request to %s:%d failed: %r' % (host, port, e), verbose) return print_verbose('Connected! Tunnel open %r -> %r -> %r' % (chan.origin_addr, chan.getpeername(), (host, port)), verbose) while True: r, w, x = select.select([sock, chan], [], []) if sock in r: data = sock.recv(1024) if len(data) == 0: break chan.send(data) if chan in r: data = chan.recv(1024) if len(data) == 0: break sock.send(data) chan.close() sock.close() print_verbose('Tunnel closed from %r' % (chan.origin_addr,), verbose) def reverse_forward_tunnel(server_port, remote_host, remote_port, transport, check=30, verbose=False): ''' Creates a reverse ssh tunnel @param server_port: Port on local host @param remote_host: Address of remote host @param remote_port: Port of remote host @param transport: SSH Transport @param check: Amount of time to wait in seconds when opening up a channel @param verbose: Print status information @return Thread running reverse ssh tunnel, event used to close ssh tunnel, list of child threads started by main thread ''' transport.request_port_forward('', server_port) event = threading.Event() child_threads = [] def accept_tunnels(event): ''' This function spawns new connections as they are needed @param event: When this event is set, this function will complete ''' while not event.is_set(): chan = transport.accept(check) if chan is None: continue thr = threading.Thread(target=handler, args=(chan, remote_host, remote_port, verbose)) thr.setDaemon(True) thr.start() child_threads.append(thr) accept_thread = threading.Thread(target=accept_tunnels,args=[event]) accept_thread.setDaemon(True) accept_thread.start() return accept_thread, event, child_threads class ReverseTunnel(object): ''' Create a reverse ssh tunnel ''' def __init__(self, server_address, username, key_filename, server_port, remote_host, remote_port, check=30, verbose=False): ''' Initialize ReverseTunnel object @param server_address: Local server address @param username: Valid username on remote host @param key_filename: Filename of ssh key associated with remote host @param server_port: Local port @param remote_host: Address of remote host @param remote_port: Remote port @param check: Amount of time to wait in seconds when opening up a channel @param verbose: Print status information ''' self.server_address = server_address self.username = username self.key_filename = key_filename self.server_port = server_port self.remote_host = remote_host self.remote_port = remote_port self.check = check self.verbose = verbose self.ssh = None self.event = None def create_reverse_tunnel(self): ''' Create the reverse tunnel ''' self.ssh = paramiko.SSHClient() self.ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy()) self.ssh.connect(self.server_address, username=self.username, key_filename=self.key_filename) self.running_thread, self.event, self.child_threads = reverse_forward_tunnel(self.server_port, self.remote_host, self.remote_port, self.ssh.get_transport(), self.check) def __del__(self): ''' Deconstructor ''' if self.ssh != None: self.ssh.close() if self.event != None: self.event.set()
0.431105
0.118717
import skdaccess.utilities.pbo_util as pbo_tools import skdiscovery.data_structure.series.analysis.mogi as mogi from mpl_toolkits.basemap import Basemap import numpy as np import matplotlib.pyplot as plt def multiCaPlot(pipeline, mogiFlag=False, offset=.15, direction='H',pca_comp=0,scaleFactor=2.5,map_res='i'): ''' The multiCaPlot function generates a geographic eigenvector plot of several pipeline runs This function plots multiple pipeline runs over perturbed pipeline parameters. The various perturbations are plotted more transparently (alpha=.5), while the median eigen_vector and Mogi inversion are plotted in solid blue and red @param pipeline: The pipeline object with multiple runs @param mogiFlag: Flag to indicate plotting the Mogi source as well as the PCA @param offset: Offset for padding the corners of the generated map @param direction: Indicates the eigenvectors to plot. Only Horizontal component is currently supported ('H') @param pca_comp: Choose the PCA component to use (integer) @param scaleFactor: Size of the arrow scaling factor @param map_res: Map data resolution for Basemap ('c', 'i', 'h', 'f', or None) ''' # as this is a multi_ca_plot function, assumes GPCA plt.figure(); meta_data = pipeline.data_generator.meta_data station_list = pipeline.data_generator.station_list lat_range, lon_range = pbo_tools.getLatLonRange(meta_data, station_list) coord_list = pbo_tools.getStationCoords(meta_data, station_list) # Create a map projection of area bmap = Basemap(llcrnrlat=lat_range[0] - offset, urcrnrlat=lat_range[1] + offset, llcrnrlon=lon_range[0] - offset, urcrnrlon=lon_range[1] + offset, projection='gnom', lon_0=np.mean(lon_range), lat_0=np.mean(lat_range), resolution=map_res) # bmap.fillcontinents(color='white') # bmap.drawmapboundary(fill_color='white') bmap.drawmapboundary(fill_color='#41BBEC'); bmap.fillcontinents(color='white') # Draw just coastlines, no lakes for i,cp in enumerate(bmap.coastpolygons): if bmap.coastpolygontypes[i]<2: bmap.plot(cp[0],cp[1],'k-') parallels = np.arange(np.round(lat_range[0]-offset,decimals=1),np.round(lat_range[1]+offset,decimals=1),.1) meridians = np.arange(np.round(lon_range[0]-offset,decimals=1),np.round(lon_range[1]+offset,decimals=1),.1) bmap.drawmeridians(meridians, labels=[0,0,0,1]) bmap.drawparallels(parallels, labels=[1,0,0,0]) # Plot station coords for coord in coord_list: bmap.plot(coord[1], coord[0], 'ko', markersize=6, latlon=True,zorder=12) x,y = bmap(coord[1], coord[0]) plt.text(x+250,y-450,station_list[coord_list.index(coord)],zorder=12) # loop over each pipeline run elatmean = np.zeros(len(station_list)) elonmean = np.zeros_like(elatmean) # check if want to plot Mogi as well if mogiFlag: avg_mogi = np.array([0.,0.]) mlatmean = np.zeros_like(elatmean) mlonmean = np.zeros_like(elatmean) for nrun in range(len(pipeline.RA_results)): pca = pipeline.RA_results[nrun]['GPCA']['CA'] station_lat_list, station_lon_list, ev_lat_list, ev_lon_list, dir_sign = pbo_tools.dirEigenvectors(coord_list, pca.components_[pca_comp]) elatmean += ev_lat_list elonmean += ev_lon_list # plot each run in light blue bmap.quiver(station_lon_list, station_lat_list, ev_lon_list, ev_lat_list, latlon=True, scale = scaleFactor, alpha = .25, color = 'blue',zorder=11) if mogiFlag: mogi_res = pipeline.RA_results[nrun]['Mogi'] avg_mogi += np.array([mogi_res['lon'], mogi_res['lat']]) mogi_x_disp, mogi_y_disp = mogi.MogiVectors(mogi_res,station_lat_list,station_lon_list) mlatmean += mogi_y_disp mlonmean += mogi_x_disp bmap.plot(mogi_res['lon'], mogi_res['lat'], "g^", markersize = 10, latlon=True, alpha = .25,zorder=12) bmap.quiver(station_lon_list, station_lat_list, mogi_x_disp*dir_sign, mogi_y_disp*dir_sign, latlon=True, scale=scaleFactor,color='red', alpha = .25,zorder=11) #plot the mean ev in blue elatmean = elatmean/len(pipeline.RA_results) elonmean = elonmean/len(pipeline.RA_results) bmap.quiver(station_lon_list, station_lat_list, elonmean, elatmean, latlon=True, scale = scaleFactor, color = 'blue', alpha = 1,zorder=11) if mogiFlag: # plot mean mogi results avg_mogi = avg_mogi/len(pipeline.RA_results) mlatmean = mlatmean/len(pipeline.RA_results) mlonmean = mlonmean/len(pipeline.RA_results) bmap.plot(avg_mogi[0], avg_mogi[1], "g^", markersize = 10, latlon=True, alpha = 1,zorder=12) bmap.quiver(station_lon_list, station_lat_list, mlonmean*dir_sign, mlatmean*dir_sign, latlon=True, scale=scaleFactor,color='red', alpha = 1,zorder=11) ax_x = plt.gca().get_xlim() ax_y = plt.gca().get_ylim() x,y = bmap(ax_x[0]+.1*(ax_x[1]-ax_x[0]), ax_y[0]+.1*(ax_y[1]-ax_y[0]),inverse=True) bmap.quiver(x, y, 0, .2, latlon=True, scale = scaleFactor, headwidth=3,headlength=3,zorder=11) plt.text(ax_x[0]+.1*(ax_x[1]-ax_x[0])-650, ax_y[0]+.1*(ax_y[1]-ax_y[0])-1000,'20%',zorder=11)
scikit-discovery
/scikit-discovery-0.9.18.tar.gz/scikit-discovery-0.9.18/skdiscovery/visualization/multi_ca_plot.py
multi_ca_plot.py
import skdaccess.utilities.pbo_util as pbo_tools import skdiscovery.data_structure.series.analysis.mogi as mogi from mpl_toolkits.basemap import Basemap import numpy as np import matplotlib.pyplot as plt def multiCaPlot(pipeline, mogiFlag=False, offset=.15, direction='H',pca_comp=0,scaleFactor=2.5,map_res='i'): ''' The multiCaPlot function generates a geographic eigenvector plot of several pipeline runs This function plots multiple pipeline runs over perturbed pipeline parameters. The various perturbations are plotted more transparently (alpha=.5), while the median eigen_vector and Mogi inversion are plotted in solid blue and red @param pipeline: The pipeline object with multiple runs @param mogiFlag: Flag to indicate plotting the Mogi source as well as the PCA @param offset: Offset for padding the corners of the generated map @param direction: Indicates the eigenvectors to plot. Only Horizontal component is currently supported ('H') @param pca_comp: Choose the PCA component to use (integer) @param scaleFactor: Size of the arrow scaling factor @param map_res: Map data resolution for Basemap ('c', 'i', 'h', 'f', or None) ''' # as this is a multi_ca_plot function, assumes GPCA plt.figure(); meta_data = pipeline.data_generator.meta_data station_list = pipeline.data_generator.station_list lat_range, lon_range = pbo_tools.getLatLonRange(meta_data, station_list) coord_list = pbo_tools.getStationCoords(meta_data, station_list) # Create a map projection of area bmap = Basemap(llcrnrlat=lat_range[0] - offset, urcrnrlat=lat_range[1] + offset, llcrnrlon=lon_range[0] - offset, urcrnrlon=lon_range[1] + offset, projection='gnom', lon_0=np.mean(lon_range), lat_0=np.mean(lat_range), resolution=map_res) # bmap.fillcontinents(color='white') # bmap.drawmapboundary(fill_color='white') bmap.drawmapboundary(fill_color='#41BBEC'); bmap.fillcontinents(color='white') # Draw just coastlines, no lakes for i,cp in enumerate(bmap.coastpolygons): if bmap.coastpolygontypes[i]<2: bmap.plot(cp[0],cp[1],'k-') parallels = np.arange(np.round(lat_range[0]-offset,decimals=1),np.round(lat_range[1]+offset,decimals=1),.1) meridians = np.arange(np.round(lon_range[0]-offset,decimals=1),np.round(lon_range[1]+offset,decimals=1),.1) bmap.drawmeridians(meridians, labels=[0,0,0,1]) bmap.drawparallels(parallels, labels=[1,0,0,0]) # Plot station coords for coord in coord_list: bmap.plot(coord[1], coord[0], 'ko', markersize=6, latlon=True,zorder=12) x,y = bmap(coord[1], coord[0]) plt.text(x+250,y-450,station_list[coord_list.index(coord)],zorder=12) # loop over each pipeline run elatmean = np.zeros(len(station_list)) elonmean = np.zeros_like(elatmean) # check if want to plot Mogi as well if mogiFlag: avg_mogi = np.array([0.,0.]) mlatmean = np.zeros_like(elatmean) mlonmean = np.zeros_like(elatmean) for nrun in range(len(pipeline.RA_results)): pca = pipeline.RA_results[nrun]['GPCA']['CA'] station_lat_list, station_lon_list, ev_lat_list, ev_lon_list, dir_sign = pbo_tools.dirEigenvectors(coord_list, pca.components_[pca_comp]) elatmean += ev_lat_list elonmean += ev_lon_list # plot each run in light blue bmap.quiver(station_lon_list, station_lat_list, ev_lon_list, ev_lat_list, latlon=True, scale = scaleFactor, alpha = .25, color = 'blue',zorder=11) if mogiFlag: mogi_res = pipeline.RA_results[nrun]['Mogi'] avg_mogi += np.array([mogi_res['lon'], mogi_res['lat']]) mogi_x_disp, mogi_y_disp = mogi.MogiVectors(mogi_res,station_lat_list,station_lon_list) mlatmean += mogi_y_disp mlonmean += mogi_x_disp bmap.plot(mogi_res['lon'], mogi_res['lat'], "g^", markersize = 10, latlon=True, alpha = .25,zorder=12) bmap.quiver(station_lon_list, station_lat_list, mogi_x_disp*dir_sign, mogi_y_disp*dir_sign, latlon=True, scale=scaleFactor,color='red', alpha = .25,zorder=11) #plot the mean ev in blue elatmean = elatmean/len(pipeline.RA_results) elonmean = elonmean/len(pipeline.RA_results) bmap.quiver(station_lon_list, station_lat_list, elonmean, elatmean, latlon=True, scale = scaleFactor, color = 'blue', alpha = 1,zorder=11) if mogiFlag: # plot mean mogi results avg_mogi = avg_mogi/len(pipeline.RA_results) mlatmean = mlatmean/len(pipeline.RA_results) mlonmean = mlonmean/len(pipeline.RA_results) bmap.plot(avg_mogi[0], avg_mogi[1], "g^", markersize = 10, latlon=True, alpha = 1,zorder=12) bmap.quiver(station_lon_list, station_lat_list, mlonmean*dir_sign, mlatmean*dir_sign, latlon=True, scale=scaleFactor,color='red', alpha = 1,zorder=11) ax_x = plt.gca().get_xlim() ax_y = plt.gca().get_ylim() x,y = bmap(ax_x[0]+.1*(ax_x[1]-ax_x[0]), ax_y[0]+.1*(ax_y[1]-ax_y[0]),inverse=True) bmap.quiver(x, y, 0, .2, latlon=True, scale = scaleFactor, headwidth=3,headlength=3,zorder=11) plt.text(ax_x[0]+.1*(ax_x[1]-ax_x[0])-650, ax_y[0]+.1*(ax_y[1]-ax_y[0])-1000,'20%',zorder=11)
0.582372
0.563078
import numpy as np import pandas as pd import matplotlib from matplotlib.patches import Polygon from scipy.spatial import SphericalVoronoi import pyproj # utility functions for generating the spherical voronoi tesselation. def sphericalToXYZ(lat,lon,radius=1): ''' Convert spherical coordinates to x,y,z @param lat: Latitude, scalar or array @param lon: Longitude, scalar or array @param radius: Sphere's radius @return Numpy array of x,y,z coordinates ''' phi = np.deg2rad(90.0 - lat) theta = np.deg2rad(lon % 360) x = radius * np.cos(theta)*np.sin(phi) y = radius * np.sin(theta)*np.sin(phi) z = radius * np.cos(phi) if np.isscalar(x) == False: return np.vstack([x,y,z]).T else: return np.array([x,y,z]) def xyzToSpherical(x,y,z): ''' Convert x,y,z to spherical coordinates @param x: Cartesian coordinate x @param y: Cartesian coordinate y @param z: Cartesian coordinate z @return numpy array of latitude,longitude, and radius ''' radius = np.sqrt(x**2 + y**2 + z**2) theta = np.rad2deg(np.arctan2(y,x)) phi = np.rad2deg(np.arccos(z/radius)) # lon = (theta + 180) % 360 - 180 # lon = (theta + 360) % 360 lon = theta lat = 90 - phi return np.array([lat,lon,radius]).T def find_match(region_index, region_list): ''' Find neighboring regions @param region_index: Numeric index of region to find matches for (number between 0 and len(vertices)) @param region_list: list of lists of vertices that define regions @return Numeric indices of regions that border the region specified by region_index ''' regions = region_list[region_index] matches = [] num_matched_list=[] for i in range(len(region_list)): test_regions = region_list[i] num_matches = 0 found = False for region in regions: if region in test_regions: num_matches += 1 found = True if found is True: matches.append(i) num_matched_list.append(num_matches) return matches def getVoronoiCollection(data, lat_name, lon_name, bmap = None, v_name = None, full_sphere = False, max_v=.3, min_v=-0.3, cmap = matplotlib.cm.get_cmap('jet'), test_point = None, proj1=None, proj2=None, **kwargs): ''' Perform a Spherical Voronoi Tessellation on the input data. In the case where the data is restricted to one part of the globe, a polygon will not be returned for all objects, as matplotlib polygons won't be able to stretch over half the globe. @param data: Input pandas data frame @param lat_name: Name of latitude column @param lon_name: Name of longitude column @param bmap: Basemap instance used to convert from lat, lon coordinates to projection coordinates @param v_name: Name of value column. Use this to color each cell according to a value. @param full_sphere: Set to true if the data spans the entire globe. If false, a fictional point is created during tessellation and removed later to work around issues when polygons are suppose to span the over half the globe. @param max_v: Specify a maximum value to use when assigning values to the tessellation @param min_v: Specify a minimum value to use when assigning values to the tessellation @param cmap: Matplotlib color map to use @param test_point: Tuple containing the latitude and longitude of the ficitonal point to used to remove polygons that wrap around the earth. If none, a point is automatically chosen @param proj1: PyProj projection of input coordinates @param proj2: PyProj projection of sphere @param kwargs: Extra keyword arguments are passed to SphericalVoronoi class in scipy @return Matplotlib patch collection of tessellation, scipy.spatial.SphericalVoronoi object, integer index of objects in patch collection. ''' data = data.copy() if full_sphere == False: if test_point == None: test_lat = -1*np.mean(data[lat_name]) test_lon = np.mean(data[lon_name]) + 180 else: test_lat = test_point[0] test_lon = test_point[1] full_data = data full_data = pd.concat([full_data, pd.DataFrame({lat_name: test_lat, lon_name: test_lon}, index=[full_data.index[0]])]) full_data.set_index(np.arange(len(full_data)), inplace=True) else: full_data = data # print(full_data.tail()) if proj1 != None and proj2 != None: results = pyproj.transform(proj1, proj2, full_data[lon_name].as_matrix(), full_data[lat_name].as_matrix()) full_data[lon_name] = results[0] full_data[lat_name] = results[1] xyz = pd.DataFrame(sphericalToXYZ(full_data[lat_name], full_data[lon_name]),columns=['x','y','z'],index=full_data.index) if v_name != None: full_data = pd.concat([full_data.loc[:,[lat_name,lon_name, v_name]],xyz],axis=1) else: full_data = pd.concat([full_data.loc[:,[lat_name,lon_name, v_name]],xyz],axis=1) unique_index = np.unique(full_data.loc[:,lat_name] + 1j*full_data.loc[:,lon_name],return_index=True)[1] full_data = full_data.iloc[np.sort(unique_index)] voronoi = SphericalVoronoi(full_data.loc[:,['x','y','z']].as_matrix(), **kwargs) voronoi.sort_vertices_of_regions() latlon_verts = xyzToSpherical(voronoi.vertices[:,0],voronoi.vertices[:,1], voronoi.vertices[:,2]) if proj1 != None and proj2 != None: results = pyproj.transform(proj2, proj1, latlon_verts[:,1], latlon_verts[:,0]) latlon_verts[:, 1] = results[0] latlon_verts[:, 0] = results[1] matches = list(map(lambda x: find_match(x, voronoi.regions), range(len(voronoi.regions)))) patch_list = [] patch_index = [] for i, (region,match,(station,row)) in enumerate(zip(voronoi.regions,matches, full_data.iterrows())): if full_sphere or (len(matches)-1) not in match: # Keep an index of regions in patchcollection patch_index.append(i) if bmap != None: xy = np.array(bmap(latlon_verts[region,1],latlon_verts[region,0])).T else: xy = np.array([latlon_verts[region,1],latlon_verts[region,0]]).T if v_name != None: value = row[v_name] scaled_value = (value - min_v) / (max_v - min_v) if scaled_value > 1: scaled_value = 1.0 elif scaled_value < 0: scaled_value = 0.0 poly = Polygon(xy, fill=True,facecolor = cmap(scaled_value),edgecolor=cmap(scaled_value)) else: poly = Polygon(xy, fill=False) patch_list.append(poly) return matplotlib.collections.PatchCollection(patch_list,match_original=True), voronoi, patch_index
scikit-discovery
/scikit-discovery-0.9.18.tar.gz/scikit-discovery-0.9.18/skdiscovery/visualization/spherical_voronoi.py
spherical_voronoi.py
import numpy as np import pandas as pd import matplotlib from matplotlib.patches import Polygon from scipy.spatial import SphericalVoronoi import pyproj # utility functions for generating the spherical voronoi tesselation. def sphericalToXYZ(lat,lon,radius=1): ''' Convert spherical coordinates to x,y,z @param lat: Latitude, scalar or array @param lon: Longitude, scalar or array @param radius: Sphere's radius @return Numpy array of x,y,z coordinates ''' phi = np.deg2rad(90.0 - lat) theta = np.deg2rad(lon % 360) x = radius * np.cos(theta)*np.sin(phi) y = radius * np.sin(theta)*np.sin(phi) z = radius * np.cos(phi) if np.isscalar(x) == False: return np.vstack([x,y,z]).T else: return np.array([x,y,z]) def xyzToSpherical(x,y,z): ''' Convert x,y,z to spherical coordinates @param x: Cartesian coordinate x @param y: Cartesian coordinate y @param z: Cartesian coordinate z @return numpy array of latitude,longitude, and radius ''' radius = np.sqrt(x**2 + y**2 + z**2) theta = np.rad2deg(np.arctan2(y,x)) phi = np.rad2deg(np.arccos(z/radius)) # lon = (theta + 180) % 360 - 180 # lon = (theta + 360) % 360 lon = theta lat = 90 - phi return np.array([lat,lon,radius]).T def find_match(region_index, region_list): ''' Find neighboring regions @param region_index: Numeric index of region to find matches for (number between 0 and len(vertices)) @param region_list: list of lists of vertices that define regions @return Numeric indices of regions that border the region specified by region_index ''' regions = region_list[region_index] matches = [] num_matched_list=[] for i in range(len(region_list)): test_regions = region_list[i] num_matches = 0 found = False for region in regions: if region in test_regions: num_matches += 1 found = True if found is True: matches.append(i) num_matched_list.append(num_matches) return matches def getVoronoiCollection(data, lat_name, lon_name, bmap = None, v_name = None, full_sphere = False, max_v=.3, min_v=-0.3, cmap = matplotlib.cm.get_cmap('jet'), test_point = None, proj1=None, proj2=None, **kwargs): ''' Perform a Spherical Voronoi Tessellation on the input data. In the case where the data is restricted to one part of the globe, a polygon will not be returned for all objects, as matplotlib polygons won't be able to stretch over half the globe. @param data: Input pandas data frame @param lat_name: Name of latitude column @param lon_name: Name of longitude column @param bmap: Basemap instance used to convert from lat, lon coordinates to projection coordinates @param v_name: Name of value column. Use this to color each cell according to a value. @param full_sphere: Set to true if the data spans the entire globe. If false, a fictional point is created during tessellation and removed later to work around issues when polygons are suppose to span the over half the globe. @param max_v: Specify a maximum value to use when assigning values to the tessellation @param min_v: Specify a minimum value to use when assigning values to the tessellation @param cmap: Matplotlib color map to use @param test_point: Tuple containing the latitude and longitude of the ficitonal point to used to remove polygons that wrap around the earth. If none, a point is automatically chosen @param proj1: PyProj projection of input coordinates @param proj2: PyProj projection of sphere @param kwargs: Extra keyword arguments are passed to SphericalVoronoi class in scipy @return Matplotlib patch collection of tessellation, scipy.spatial.SphericalVoronoi object, integer index of objects in patch collection. ''' data = data.copy() if full_sphere == False: if test_point == None: test_lat = -1*np.mean(data[lat_name]) test_lon = np.mean(data[lon_name]) + 180 else: test_lat = test_point[0] test_lon = test_point[1] full_data = data full_data = pd.concat([full_data, pd.DataFrame({lat_name: test_lat, lon_name: test_lon}, index=[full_data.index[0]])]) full_data.set_index(np.arange(len(full_data)), inplace=True) else: full_data = data # print(full_data.tail()) if proj1 != None and proj2 != None: results = pyproj.transform(proj1, proj2, full_data[lon_name].as_matrix(), full_data[lat_name].as_matrix()) full_data[lon_name] = results[0] full_data[lat_name] = results[1] xyz = pd.DataFrame(sphericalToXYZ(full_data[lat_name], full_data[lon_name]),columns=['x','y','z'],index=full_data.index) if v_name != None: full_data = pd.concat([full_data.loc[:,[lat_name,lon_name, v_name]],xyz],axis=1) else: full_data = pd.concat([full_data.loc[:,[lat_name,lon_name, v_name]],xyz],axis=1) unique_index = np.unique(full_data.loc[:,lat_name] + 1j*full_data.loc[:,lon_name],return_index=True)[1] full_data = full_data.iloc[np.sort(unique_index)] voronoi = SphericalVoronoi(full_data.loc[:,['x','y','z']].as_matrix(), **kwargs) voronoi.sort_vertices_of_regions() latlon_verts = xyzToSpherical(voronoi.vertices[:,0],voronoi.vertices[:,1], voronoi.vertices[:,2]) if proj1 != None and proj2 != None: results = pyproj.transform(proj2, proj1, latlon_verts[:,1], latlon_verts[:,0]) latlon_verts[:, 1] = results[0] latlon_verts[:, 0] = results[1] matches = list(map(lambda x: find_match(x, voronoi.regions), range(len(voronoi.regions)))) patch_list = [] patch_index = [] for i, (region,match,(station,row)) in enumerate(zip(voronoi.regions,matches, full_data.iterrows())): if full_sphere or (len(matches)-1) not in match: # Keep an index of regions in patchcollection patch_index.append(i) if bmap != None: xy = np.array(bmap(latlon_verts[region,1],latlon_verts[region,0])).T else: xy = np.array([latlon_verts[region,1],latlon_verts[region,0]]).T if v_name != None: value = row[v_name] scaled_value = (value - min_v) / (max_v - min_v) if scaled_value > 1: scaled_value = 1.0 elif scaled_value < 0: scaled_value = 0.0 poly = Polygon(xy, fill=True,facecolor = cmap(scaled_value),edgecolor=cmap(scaled_value)) else: poly = Polygon(xy, fill=False) patch_list.append(poly) return matplotlib.collections.PatchCollection(patch_list,match_original=True), voronoi, patch_index
0.735831
0.734465
.. raw:: html <img alt="scikit-diveMove" src="docs/source/.static/skdiveMove_logo.png" width=10% align=left> <h1>scikit-diveMove</h1> .. image:: https://img.shields.io/pypi/v/scikit-diveMove :target: https://pypi.python.org/pypi/scikit-diveMove :alt: PyPI .. image:: https://github.com/spluque/scikit-diveMove/workflows/TestPyPI/badge.svg :target: https://github.com/spluque/scikit-diveMove/actions?query=workflow%3ATestPyPI :alt: TestPyPI .. image:: https://github.com/spluque/scikit-diveMove/workflows/Python%20build/badge.svg :target: https://github.com/spluque/scikit-diveMove/actions?query=workflow%3A%22Python+build%22 :alt: Python Build .. image:: https://codecov.io/gh/spluque/scikit-diveMove/branch/master/graph/badge.svg :target: https://codecov.io/gh/spluque/scikit-diveMove .. image:: https://img.shields.io/pypi/dm/scikit-diveMove :target: https://pypi.python.org/pypi/scikit-diveMove :alt: PyPI - Downloads `scikit-diveMove` is a Python interface to R package `diveMove`_ for scientific data analysis, with a focus on diving behaviour analysis. It has utilities to represent, visualize, filter, analyse, and summarize time-depth recorder (TDR) data. Miscellaneous functions for handling position and 3D kinematics data are also provided. `scikit-diveMove` communicates with a single `R` instance for access to low-level tools of package `diveMove`. .. _diveMove: https://github.com/spluque/diveMove The table below shows which features of `diveMove` are accessible from `scikit-diveMove`: +----------------------------------+--------------------------+--------------------------------+ | `diveMove` |`scikit-diveMove` |Notes | +---------------+------------------+ | | |Functionality |Functions/Methods | | | +===============+==================+==========================+================================+ |Movement |``austFilter`` | |Under consideration. | | |``rmsDistFilter`` | | | | |``grpSpeedFilter``| | | | |``distSpeed`` | | | | |``readLocs`` | | | +---------------+------------------+--------------------------+--------------------------------+ |Bout analysis |``boutfreqs`` |``BoutsNLS`` ``BoutsMLE`` |Fully implemented in Python. | | |``boutinit`` | | | | |``bouts2.nlsFUN`` | | | | |``bouts2.nls`` | | | | |``bouts3.nlsFUN`` | | | | |``bouts3.nls`` | | | | |``bouts2.mleFUN`` | | | | |``bouts2.ll`` | | | | |``bouts2.LL`` | | | | |``bouts.mle`` | | | | |``labelBouts`` | | | | |``plotBouts`` | | | | |``plotBouts2.cdf``| | | | |``bec2`` | | | | |``bec3`` | | | +---------------+------------------+--------------------------+--------------------------------+ |Dive analysis |``readTDR`` |``TDR.__init__`` |Fully implemented. Single | | |``createTDR`` |``TDRSource.__init__`` |``TDR`` class for data with or | | | | |without speed measurements. | +---------------+------------------+--------------------------+--------------------------------+ | |``calibrateDepth``|``TDR.calibrate`` |Fully implemented | | | |``TDR.zoc`` | | | | |``TDR.detect_wet`` | | | | |``TDR.detect_dives`` | | | | |``TDR.detect_dive_phases``| | +---------------+------------------+--------------------------+--------------------------------+ | |``calibrateSpeed``|``TDR.calibrate_speed`` |New implementation of the | | |``rqPlot`` | |algorithm entirely in Python. | | | | |The procedure generates the plot| | | | |concurrently. | +---------------+------------------+--------------------------+--------------------------------+ | |``diveStats`` |``TDR.dive_stats`` |Fully implemented | | |``stampDive`` |``TDR.time_budget`` | | | |``timeBudget`` |``TDR.stamp_dives`` | | +---------------+------------------+--------------------------+--------------------------------+ | |``plotTDR`` |``TDR.plot`` |Fully implemented. | | |``plotDiveModel`` |``TDR.plot_zoc_filters`` |Interactivity is the default, as| | |``plotZOC`` |``TDR.plot_phases`` |standard `matplotlib`. | | | |``TDR.plot_dive_model`` | | +---------------+------------------+--------------------------+--------------------------------+ | |``getTDR`` |``TDR.tdr`` |Fully implemented. | | |``getDepth`` |``TDR.get_depth`` |``getCCData`` deemed redundant, | | |``getSpeed`` |``TDR.get_speed`` |as the columns can be accessed | | |``getTime`` |``TDR.tdr.index`` |directly from the ``TDR.tdr`` | | |``getCCData`` |``TDR.src_file`` |attribute. | | |``getDtime`` |``TDR.dtime`` | | | |``getFileName`` | | | +---------------+------------------+--------------------------+--------------------------------+ | |``getDAct`` |``TDR.get_wet_activity`` |Fully implemented | | |``getDPhaseLab`` |``TDR.get_dives_details`` | | | |``getDiveDeriv`` |``TDR.get_dive_deriv`` | | | |``getDiveModel`` | | | | |``getGAct`` | | | +---------------+------------------+--------------------------+--------------------------------+ | |``extractDive`` | |Fully implemented | +---------------+------------------+--------------------------+--------------------------------+ `scikit-diveMove` also provides useful tools for processing signals from tri-axial Inertial Measurement Units (`IMU`_), such as thermal calibration, corrections for shifts in coordinate frames, as well as computation of orientation using a variety of current methods. Analyses are fully tractable by encouraging the use of `xarray`_ data structures that can be read from and written to NetCDF file format. Using these data structures, meta-data attributes can be easily appended at all layers as analyses progress. .. _xarray: https://xarray.pydata.org .. _IMU: https://en.wikipedia.org/wiki/Inertial_measurement_unit Installation ============ Type the following at a terminal command line: .. code-block:: sh pip install scikit-diveMove Or install from source tree by typing the following at the command line: .. code-block:: sh python setup.py install The documentation can also be installed as described in `Documentation`_. Once installed, `skdiveMove` can be easily imported as: :: import skdiveMove as skdive Dependencies ------------ `skdiveMove` depends primarily on ``R`` package `diveMove`, which must be installed and available to the user running Python. If needed, install `diveMove` at the ``R`` prompt: .. code-block:: R install.packages("diveMove") Required Python packages are listed in the `requirements <requirements.txt>`_ file. Documentation ============= Available at: https://spluque.github.io/scikit-diveMove Alternatively, installing the package as follows: .. code-block:: sh pip install -e .["docs"] allows the documentation to be built locally (choosing the desired target {"html", "pdf", etc.}): .. code-block:: sh make -C docs/ html The `html` tree is at `docs/build/html`.
scikit-diveMove
/scikit-diveMove-0.3.0.tar.gz/scikit-diveMove-0.3.0/README.rst
README.rst
.. raw:: html <img alt="scikit-diveMove" src="docs/source/.static/skdiveMove_logo.png" width=10% align=left> <h1>scikit-diveMove</h1> .. image:: https://img.shields.io/pypi/v/scikit-diveMove :target: https://pypi.python.org/pypi/scikit-diveMove :alt: PyPI .. image:: https://github.com/spluque/scikit-diveMove/workflows/TestPyPI/badge.svg :target: https://github.com/spluque/scikit-diveMove/actions?query=workflow%3ATestPyPI :alt: TestPyPI .. image:: https://github.com/spluque/scikit-diveMove/workflows/Python%20build/badge.svg :target: https://github.com/spluque/scikit-diveMove/actions?query=workflow%3A%22Python+build%22 :alt: Python Build .. image:: https://codecov.io/gh/spluque/scikit-diveMove/branch/master/graph/badge.svg :target: https://codecov.io/gh/spluque/scikit-diveMove .. image:: https://img.shields.io/pypi/dm/scikit-diveMove :target: https://pypi.python.org/pypi/scikit-diveMove :alt: PyPI - Downloads `scikit-diveMove` is a Python interface to R package `diveMove`_ for scientific data analysis, with a focus on diving behaviour analysis. It has utilities to represent, visualize, filter, analyse, and summarize time-depth recorder (TDR) data. Miscellaneous functions for handling position and 3D kinematics data are also provided. `scikit-diveMove` communicates with a single `R` instance for access to low-level tools of package `diveMove`. .. _diveMove: https://github.com/spluque/diveMove The table below shows which features of `diveMove` are accessible from `scikit-diveMove`: +----------------------------------+--------------------------+--------------------------------+ | `diveMove` |`scikit-diveMove` |Notes | +---------------+------------------+ | | |Functionality |Functions/Methods | | | +===============+==================+==========================+================================+ |Movement |``austFilter`` | |Under consideration. | | |``rmsDistFilter`` | | | | |``grpSpeedFilter``| | | | |``distSpeed`` | | | | |``readLocs`` | | | +---------------+------------------+--------------------------+--------------------------------+ |Bout analysis |``boutfreqs`` |``BoutsNLS`` ``BoutsMLE`` |Fully implemented in Python. | | |``boutinit`` | | | | |``bouts2.nlsFUN`` | | | | |``bouts2.nls`` | | | | |``bouts3.nlsFUN`` | | | | |``bouts3.nls`` | | | | |``bouts2.mleFUN`` | | | | |``bouts2.ll`` | | | | |``bouts2.LL`` | | | | |``bouts.mle`` | | | | |``labelBouts`` | | | | |``plotBouts`` | | | | |``plotBouts2.cdf``| | | | |``bec2`` | | | | |``bec3`` | | | +---------------+------------------+--------------------------+--------------------------------+ |Dive analysis |``readTDR`` |``TDR.__init__`` |Fully implemented. Single | | |``createTDR`` |``TDRSource.__init__`` |``TDR`` class for data with or | | | | |without speed measurements. | +---------------+------------------+--------------------------+--------------------------------+ | |``calibrateDepth``|``TDR.calibrate`` |Fully implemented | | | |``TDR.zoc`` | | | | |``TDR.detect_wet`` | | | | |``TDR.detect_dives`` | | | | |``TDR.detect_dive_phases``| | +---------------+------------------+--------------------------+--------------------------------+ | |``calibrateSpeed``|``TDR.calibrate_speed`` |New implementation of the | | |``rqPlot`` | |algorithm entirely in Python. | | | | |The procedure generates the plot| | | | |concurrently. | +---------------+------------------+--------------------------+--------------------------------+ | |``diveStats`` |``TDR.dive_stats`` |Fully implemented | | |``stampDive`` |``TDR.time_budget`` | | | |``timeBudget`` |``TDR.stamp_dives`` | | +---------------+------------------+--------------------------+--------------------------------+ | |``plotTDR`` |``TDR.plot`` |Fully implemented. | | |``plotDiveModel`` |``TDR.plot_zoc_filters`` |Interactivity is the default, as| | |``plotZOC`` |``TDR.plot_phases`` |standard `matplotlib`. | | | |``TDR.plot_dive_model`` | | +---------------+------------------+--------------------------+--------------------------------+ | |``getTDR`` |``TDR.tdr`` |Fully implemented. | | |``getDepth`` |``TDR.get_depth`` |``getCCData`` deemed redundant, | | |``getSpeed`` |``TDR.get_speed`` |as the columns can be accessed | | |``getTime`` |``TDR.tdr.index`` |directly from the ``TDR.tdr`` | | |``getCCData`` |``TDR.src_file`` |attribute. | | |``getDtime`` |``TDR.dtime`` | | | |``getFileName`` | | | +---------------+------------------+--------------------------+--------------------------------+ | |``getDAct`` |``TDR.get_wet_activity`` |Fully implemented | | |``getDPhaseLab`` |``TDR.get_dives_details`` | | | |``getDiveDeriv`` |``TDR.get_dive_deriv`` | | | |``getDiveModel`` | | | | |``getGAct`` | | | +---------------+------------------+--------------------------+--------------------------------+ | |``extractDive`` | |Fully implemented | +---------------+------------------+--------------------------+--------------------------------+ `scikit-diveMove` also provides useful tools for processing signals from tri-axial Inertial Measurement Units (`IMU`_), such as thermal calibration, corrections for shifts in coordinate frames, as well as computation of orientation using a variety of current methods. Analyses are fully tractable by encouraging the use of `xarray`_ data structures that can be read from and written to NetCDF file format. Using these data structures, meta-data attributes can be easily appended at all layers as analyses progress. .. _xarray: https://xarray.pydata.org .. _IMU: https://en.wikipedia.org/wiki/Inertial_measurement_unit Installation ============ Type the following at a terminal command line: .. code-block:: sh pip install scikit-diveMove Or install from source tree by typing the following at the command line: .. code-block:: sh python setup.py install The documentation can also be installed as described in `Documentation`_. Once installed, `skdiveMove` can be easily imported as: :: import skdiveMove as skdive Dependencies ------------ `skdiveMove` depends primarily on ``R`` package `diveMove`, which must be installed and available to the user running Python. If needed, install `diveMove` at the ``R`` prompt: .. code-block:: R install.packages("diveMove") Required Python packages are listed in the `requirements <requirements.txt>`_ file. Documentation ============= Available at: https://spluque.github.io/scikit-diveMove Alternatively, installing the package as follows: .. code-block:: sh pip install -e .["docs"] allows the documentation to be built locally (choosing the desired target {"html", "pdf", etc.}): .. code-block:: sh make -C docs/ html The `html` tree is at `docs/build/html`.
0.876172
0.744006
.. _demo_ellipsoid-label: ============================================== Ellipsoid modelling for calibration purposes ============================================== Magnetometers are highly sensitive to local deviations of the magnetic field, affecting the desired measurement of the Earth geomagnetic field. Triaxial accelerometers, however, can have slight offsets in and misalignments of their axes which need to be corrected to properly interpret their output. One commonly used method for performing these corrections is done by fitting an ellipsoid model to data collected while the sensor's axes are exposed to the forces of the fields they measure. .. jupyter-execute:: # Set up import pkg_resources as pkg_rsrc import os.path as osp import xarray as xr import numpy as np import matplotlib.pyplot as plt import skdiveMove.imutools as imutools from mpl_toolkits.mplot3d import Axes3D .. jupyter-execute:: :hide-code: # boiler plate stuff to help out _FIG1X1 = (11, 5) def gen_sphere(radius=1): """Generate coordinates on a sphere""" u = np.linspace(0, 2 * np.pi, 100) v = np.linspace(0, np.pi, 100) x = radius * np.outer(np.cos(u), np.sin(v)) y = radius * np.outer(np.sin(u), np.sin(v)) z = radius * np.outer(np.ones(np.size(u)), np.cos(v)) return (x, y, z) np.set_printoptions(precision=3, sign="+") %matplotlib inline To demonstrate this procedure with utilities from the `allan` submodule, measurements from a triaxial accelerometer and magnetometer were recorded at 100 Hz sampling frequency with an `IMU` that was rotated around the main axes to cover a large surface of the sphere. .. jupyter-execute:: :linenos: icdf = (pkg_rsrc .resource_filename("skdiveMove", osp.join("tests", "data", "gertrude", "magnt_accel_calib.nc"))) magnt_accel = xr.load_dataset(icdf) magnt = magnt_accel["magnetic_density"].to_numpy() accel = magnt_accel["acceleration"].to_numpy() The function `fit_ellipsoid` returns the offset, gain, and rotation matrix (if requested) necessary to correct the sensor's data. There are six types of constraint to impose on the result, including which radii should be equal, and whether the data should be rotated. .. jupyter-execute:: :linenos: # Here, a symmetrical constraint whereby any plane passing through the # origin is used, with all radii equal to each other magnt_off, magnt_gain, _ = imutools.fit_ellipsoid(magnt, f="sxyz") accel_off, accel_gain, _ = imutools.fit_ellipsoid(accel, f="sxyz") Inspect the offsets and gains in the uncorrected data: .. jupyter-execute:: :hide-code: print("Magnetometer offsets [uT]: x={:.2f}, y={:.2f}, z={:.2f};" .format(*magnt_off), "gains [uT]: x={:.2f}, y={:.2f}, z={:.2f}".format(*magnt_gain)) print("Accelerometer offsets [g]: x={:.3f}, y={:.3f}, z={:.3f};" .format(*accel_off), "gains [g]: x={:.3f}, y={:.3f}, z={:.3f}".format(*accel_gain)) Calibrate the sensors using these estimates: .. jupyter-execute:: :linenos: magnt_refr = 56.9 magnt_corr = imutools.apply_ellipsoid(magnt, offset=magnt_off, gain=magnt_gain, rotM=np.diag(np.ones(3)), ref_r=magnt_refr) accel_corr = imutools.apply_ellipsoid(accel, offset=accel_off, gain=accel_gain, rotM=np.diag(np.ones(3)), ref_r=1.0) An appreciation of the effect of the calibration can be observed by comparing the difference between maxima/minima and the reference value for the magnetic field at the geographic location and time of the measurements, or 1 $g$ in the case of the accelerometers. .. jupyter-execute:: :linenos: magnt_refr_diff = [np.abs(magnt.max(axis=0)) - magnt_refr, np.abs(magnt.min(axis=0)) - magnt_refr] magnt_corr_refr_diff = [np.abs(magnt_corr.max(axis=0)) - magnt_refr, np.abs(magnt_corr.min(axis=0)) - magnt_refr] accel_refr_diff = [np.abs(accel.max(axis=0)) - 1.0, np.abs(accel.min(axis=0)) - 1.0] accel_corr_refr_diff = [np.abs(accel_corr.max(axis=0)) - 1.0, np.abs(accel_corr.min(axis=0)) - 1.0] .. jupyter-execute:: :hide-code: print("Uncorrected magnetometer difference to reference [uT]:") print("maxima: x={:.2f}, y={:.2f}, z={:.2f};" .format(*magnt_refr_diff[0]), "minima: x={:.2f}, y={:.2f}, z={:.2f}" .format(*magnt_refr_diff[1])) print("Corrected magnetometer difference to reference [uT]:") print("maxima: x={:.2f}, y={:.2f}, z={:.2f};" .format(*magnt_corr_refr_diff[0]), "minima: x={:.2f}, y={:.2f}, z={:.2f}" .format(*magnt_corr_refr_diff[1])) print("Uncorrected accelerometer difference to reference [g]:") print("maxima: x={:.2f}, y={:.2f}, z={:.2f};" .format(*accel_refr_diff[0]), "minima: x={:.2f}, y={:.2f}, z={:.2f}" .format(*accel_refr_diff[1])) print("Corrected accelerometer difference to reference [g]:") print("maxima: x={:.2f}, y={:.2f}, z={:.2f};" .format(*accel_corr_refr_diff[0]), "minima: x={:.2f}, y={:.2f}, z={:.2f}" .format(*accel_corr_refr_diff[1])) Or compare visually on a 3D plot: .. jupyter-execute:: :hide-code: _FIG1X2 = [13, 7] fig = plt.figure(figsize=_FIG1X2) ax0 = fig.add_subplot(121, projection="3d") ax1 = fig.add_subplot(122, projection="3d") ax0.set_xlabel(r"x [$\mu T$]") ax0.set_ylabel(r"y [$\mu T$]") ax0.set_zlabel(r"z [$\mu T$]") ax1.set_xlabel(r"x [$g$]") ax1.set_ylabel(r"y [$g$]") ax1.set_zlabel(r"z [$g$]") ax0.plot_surface(*gen_sphere(magnt_refr), rstride=4, cstride=4, color="c", linewidth=0, alpha=0.3) ax1.plot_surface(*gen_sphere(), rstride=4, cstride=4, color="c", linewidth=0, alpha=0.3) ax0.plot(magnt[:, 0], magnt[:, 1], magnt[:, 2], marker=".", linestyle="none", markersize=0.5, label="uncorrected") ax0.plot(magnt_corr[:, 0], magnt_corr[:, 1], magnt_corr[:, 2], marker=".", linestyle="none", markersize=0.5, label="corrected") ax1.plot(accel[:, 0], accel[:, 1], accel[:, 2], marker=".", linestyle="none", markersize=0.5, label="uncorrected") ax1.plot(accel_corr[:, 0], accel_corr[:, 1], accel_corr[:, 2], marker=".", linestyle="none", markersize=0.5, label="corrected") l1, lbl1 = fig.axes[-1].get_legend_handles_labels() fig.legend(l1, lbl1, loc="lower center", borderaxespad=0, frameon=False, markerscale=12) ax0.view_init(22, azim=-142) ax1.view_init(22, azim=-142) plt.tight_layout() Feel free to download a copy of this demo (:jupyter-download:script:`demo_ellipsoid`).
scikit-diveMove
/scikit-diveMove-0.3.0.tar.gz/scikit-diveMove-0.3.0/docs/source/demo_ellipsoid.rst
demo_ellipsoid.rst
.. _demo_ellipsoid-label: ============================================== Ellipsoid modelling for calibration purposes ============================================== Magnetometers are highly sensitive to local deviations of the magnetic field, affecting the desired measurement of the Earth geomagnetic field. Triaxial accelerometers, however, can have slight offsets in and misalignments of their axes which need to be corrected to properly interpret their output. One commonly used method for performing these corrections is done by fitting an ellipsoid model to data collected while the sensor's axes are exposed to the forces of the fields they measure. .. jupyter-execute:: # Set up import pkg_resources as pkg_rsrc import os.path as osp import xarray as xr import numpy as np import matplotlib.pyplot as plt import skdiveMove.imutools as imutools from mpl_toolkits.mplot3d import Axes3D .. jupyter-execute:: :hide-code: # boiler plate stuff to help out _FIG1X1 = (11, 5) def gen_sphere(radius=1): """Generate coordinates on a sphere""" u = np.linspace(0, 2 * np.pi, 100) v = np.linspace(0, np.pi, 100) x = radius * np.outer(np.cos(u), np.sin(v)) y = radius * np.outer(np.sin(u), np.sin(v)) z = radius * np.outer(np.ones(np.size(u)), np.cos(v)) return (x, y, z) np.set_printoptions(precision=3, sign="+") %matplotlib inline To demonstrate this procedure with utilities from the `allan` submodule, measurements from a triaxial accelerometer and magnetometer were recorded at 100 Hz sampling frequency with an `IMU` that was rotated around the main axes to cover a large surface of the sphere. .. jupyter-execute:: :linenos: icdf = (pkg_rsrc .resource_filename("skdiveMove", osp.join("tests", "data", "gertrude", "magnt_accel_calib.nc"))) magnt_accel = xr.load_dataset(icdf) magnt = magnt_accel["magnetic_density"].to_numpy() accel = magnt_accel["acceleration"].to_numpy() The function `fit_ellipsoid` returns the offset, gain, and rotation matrix (if requested) necessary to correct the sensor's data. There are six types of constraint to impose on the result, including which radii should be equal, and whether the data should be rotated. .. jupyter-execute:: :linenos: # Here, a symmetrical constraint whereby any plane passing through the # origin is used, with all radii equal to each other magnt_off, magnt_gain, _ = imutools.fit_ellipsoid(magnt, f="sxyz") accel_off, accel_gain, _ = imutools.fit_ellipsoid(accel, f="sxyz") Inspect the offsets and gains in the uncorrected data: .. jupyter-execute:: :hide-code: print("Magnetometer offsets [uT]: x={:.2f}, y={:.2f}, z={:.2f};" .format(*magnt_off), "gains [uT]: x={:.2f}, y={:.2f}, z={:.2f}".format(*magnt_gain)) print("Accelerometer offsets [g]: x={:.3f}, y={:.3f}, z={:.3f};" .format(*accel_off), "gains [g]: x={:.3f}, y={:.3f}, z={:.3f}".format(*accel_gain)) Calibrate the sensors using these estimates: .. jupyter-execute:: :linenos: magnt_refr = 56.9 magnt_corr = imutools.apply_ellipsoid(magnt, offset=magnt_off, gain=magnt_gain, rotM=np.diag(np.ones(3)), ref_r=magnt_refr) accel_corr = imutools.apply_ellipsoid(accel, offset=accel_off, gain=accel_gain, rotM=np.diag(np.ones(3)), ref_r=1.0) An appreciation of the effect of the calibration can be observed by comparing the difference between maxima/minima and the reference value for the magnetic field at the geographic location and time of the measurements, or 1 $g$ in the case of the accelerometers. .. jupyter-execute:: :linenos: magnt_refr_diff = [np.abs(magnt.max(axis=0)) - magnt_refr, np.abs(magnt.min(axis=0)) - magnt_refr] magnt_corr_refr_diff = [np.abs(magnt_corr.max(axis=0)) - magnt_refr, np.abs(magnt_corr.min(axis=0)) - magnt_refr] accel_refr_diff = [np.abs(accel.max(axis=0)) - 1.0, np.abs(accel.min(axis=0)) - 1.0] accel_corr_refr_diff = [np.abs(accel_corr.max(axis=0)) - 1.0, np.abs(accel_corr.min(axis=0)) - 1.0] .. jupyter-execute:: :hide-code: print("Uncorrected magnetometer difference to reference [uT]:") print("maxima: x={:.2f}, y={:.2f}, z={:.2f};" .format(*magnt_refr_diff[0]), "minima: x={:.2f}, y={:.2f}, z={:.2f}" .format(*magnt_refr_diff[1])) print("Corrected magnetometer difference to reference [uT]:") print("maxima: x={:.2f}, y={:.2f}, z={:.2f};" .format(*magnt_corr_refr_diff[0]), "minima: x={:.2f}, y={:.2f}, z={:.2f}" .format(*magnt_corr_refr_diff[1])) print("Uncorrected accelerometer difference to reference [g]:") print("maxima: x={:.2f}, y={:.2f}, z={:.2f};" .format(*accel_refr_diff[0]), "minima: x={:.2f}, y={:.2f}, z={:.2f}" .format(*accel_refr_diff[1])) print("Corrected accelerometer difference to reference [g]:") print("maxima: x={:.2f}, y={:.2f}, z={:.2f};" .format(*accel_corr_refr_diff[0]), "minima: x={:.2f}, y={:.2f}, z={:.2f}" .format(*accel_corr_refr_diff[1])) Or compare visually on a 3D plot: .. jupyter-execute:: :hide-code: _FIG1X2 = [13, 7] fig = plt.figure(figsize=_FIG1X2) ax0 = fig.add_subplot(121, projection="3d") ax1 = fig.add_subplot(122, projection="3d") ax0.set_xlabel(r"x [$\mu T$]") ax0.set_ylabel(r"y [$\mu T$]") ax0.set_zlabel(r"z [$\mu T$]") ax1.set_xlabel(r"x [$g$]") ax1.set_ylabel(r"y [$g$]") ax1.set_zlabel(r"z [$g$]") ax0.plot_surface(*gen_sphere(magnt_refr), rstride=4, cstride=4, color="c", linewidth=0, alpha=0.3) ax1.plot_surface(*gen_sphere(), rstride=4, cstride=4, color="c", linewidth=0, alpha=0.3) ax0.plot(magnt[:, 0], magnt[:, 1], magnt[:, 2], marker=".", linestyle="none", markersize=0.5, label="uncorrected") ax0.plot(magnt_corr[:, 0], magnt_corr[:, 1], magnt_corr[:, 2], marker=".", linestyle="none", markersize=0.5, label="corrected") ax1.plot(accel[:, 0], accel[:, 1], accel[:, 2], marker=".", linestyle="none", markersize=0.5, label="uncorrected") ax1.plot(accel_corr[:, 0], accel_corr[:, 1], accel_corr[:, 2], marker=".", linestyle="none", markersize=0.5, label="corrected") l1, lbl1 = fig.axes[-1].get_legend_handles_labels() fig.legend(l1, lbl1, loc="lower center", borderaxespad=0, frameon=False, markerscale=12) ax0.view_init(22, azim=-142) ax1.view_init(22, azim=-142) plt.tight_layout() Feel free to download a copy of this demo (:jupyter-download:script:`demo_ellipsoid`).
0.842118
0.715797
================================= scikit-diveMove Documentation ================================= `scikit-diveMove` is a Python interface to R package `diveMove`_ for scientific data analysis, with a focus on diving behaviour analysis. It has utilities to represent, visualize, filter, analyse, and summarize time-depth recorder (TDR) data. Miscellaneous functions for handling location data are also provided. .. _diveMove: https://github.com/spluque/diveMove `scikit-diveMove` is hosted at https://github.com/spluque/scikit-diveMove `scikit-diveMove` also provides useful tools for processing signals from tri-axial Inertial Measurement Units (`IMU`_), such as thermal calibration, corrections for shifts in coordinate frames, as well as computation of orientation using a variety of current methods. Analyses are fully tractable by encouraging the use of `xarray`_ data structures that can be read from and written to NetCDF file format. Using these data structures, meta-data attributes can be easily appended at all layers as analyses progress. .. _xarray: https://xarray.pydata.org .. _IMU: https://en.wikipedia.org/wiki/Inertial_measurement_unit Installation ============ Type the following at a terminal command line: .. code-block:: sh pip install scikit-diveMove Or install from source tree by typing the following at the command line: .. code-block:: sh python setup.py install Once installed, `skdiveMove` can be easily imported as: :: import skdiveMove as skdive Dependencies ------------ `skdiveMove` depends primarily on ``R`` package `diveMove`, which must be installed and available to the user running Python. If needed, install `diveMove` at the ``R`` prompt: .. code-block:: R install.packages("diveMove") Required Python packages are listed in the `requirements`_ file. .. _requirements: https://github.com/spluque/scikit-diveMove/blob/master/requirements.txt Testing ======= The `skdiveMove` package can be tested with `unittest`: .. code-block:: sh python -m unittest -v skdiveMove/tests or `pytest`: .. code-block:: sh pytest -v skdiveMove/tests Development =========== Developers can clone the project from Github: .. code-block:: sh git clone https://github.com/spluque/scikit-diveMove.git . and then install with: .. code-block:: sh pip install -e .["dev"] Demos ===== .. toctree:: :maxdepth: 2 demo_tdr demo_bouts demo_simulbouts imutools_demos Modules ======= .. toctree:: :maxdepth: 2 tdr bouts metadata imutools Indices and tables ================== * :ref:`genindex` * :ref:`modindex` * :ref:`search`
scikit-diveMove
/scikit-diveMove-0.3.0.tar.gz/scikit-diveMove-0.3.0/docs/source/index.rst
index.rst
================================= scikit-diveMove Documentation ================================= `scikit-diveMove` is a Python interface to R package `diveMove`_ for scientific data analysis, with a focus on diving behaviour analysis. It has utilities to represent, visualize, filter, analyse, and summarize time-depth recorder (TDR) data. Miscellaneous functions for handling location data are also provided. .. _diveMove: https://github.com/spluque/diveMove `scikit-diveMove` is hosted at https://github.com/spluque/scikit-diveMove `scikit-diveMove` also provides useful tools for processing signals from tri-axial Inertial Measurement Units (`IMU`_), such as thermal calibration, corrections for shifts in coordinate frames, as well as computation of orientation using a variety of current methods. Analyses are fully tractable by encouraging the use of `xarray`_ data structures that can be read from and written to NetCDF file format. Using these data structures, meta-data attributes can be easily appended at all layers as analyses progress. .. _xarray: https://xarray.pydata.org .. _IMU: https://en.wikipedia.org/wiki/Inertial_measurement_unit Installation ============ Type the following at a terminal command line: .. code-block:: sh pip install scikit-diveMove Or install from source tree by typing the following at the command line: .. code-block:: sh python setup.py install Once installed, `skdiveMove` can be easily imported as: :: import skdiveMove as skdive Dependencies ------------ `skdiveMove` depends primarily on ``R`` package `diveMove`, which must be installed and available to the user running Python. If needed, install `diveMove` at the ``R`` prompt: .. code-block:: R install.packages("diveMove") Required Python packages are listed in the `requirements`_ file. .. _requirements: https://github.com/spluque/scikit-diveMove/blob/master/requirements.txt Testing ======= The `skdiveMove` package can be tested with `unittest`: .. code-block:: sh python -m unittest -v skdiveMove/tests or `pytest`: .. code-block:: sh pytest -v skdiveMove/tests Development =========== Developers can clone the project from Github: .. code-block:: sh git clone https://github.com/spluque/scikit-diveMove.git . and then install with: .. code-block:: sh pip install -e .["dev"] Demos ===== .. toctree:: :maxdepth: 2 demo_tdr demo_bouts demo_simulbouts imutools_demos Modules ======= .. toctree:: :maxdepth: 2 tdr bouts metadata imutools Indices and tables ================== * :ref:`genindex` * :ref:`modindex` * :ref:`search`
0.898291
0.765856
.. _demo_tdr-label: =========================== Diving behaviour analysis =========================== Here is a bird's-eye view of the functionality of `scikit-diveMove`, loosely following `diveMove`'s `vignette`_. .. _vignette: https://cran.r-project.org/web/packages/diveMove/vignettes/diveMove.pdf Set up the environment. Consider loading the `logging` module and setting up a logger to monitor progress to this section. .. jupyter-execute:: # Set up import pkg_resources as pkg_rsrc import matplotlib.pyplot as plt import skdiveMove as skdive # Declare figure sizes _FIG1X1 = (11, 5) _FIG2X1 = (10, 8) _FIG3X1 = (11, 11) .. jupyter-execute:: :hide-code: :hide-output: import numpy as np # only for setting print options here import pandas as pd # only for setting print options here import xarray as xr # only for setting print options here pd.set_option("display.precision", 3) np.set_printoptions(precision=3, sign="+") xr.set_options(display_style="html") %matplotlib inline Reading data files ================== Load `diveMove`'s example data, using ``TDR.__init__`` method, and print: .. jupyter-execute:: :linenos: ifile = (pkg_rsrc .resource_filename("skdiveMove", ("tests/data/" "ag_mk7_2002_022.nc"))) tdrX = skdive.TDR.read_netcdf(ifile, depth_name="depth", time_name="date_time", has_speed=True) # Or simply use function ``skdive.tests.diveMove2skd`` to do the # same with this particular data set. print(tdrX) Notice that `TDR` reads files in `NetCDF4`_ format, which is a very versatile file format, and encourages using properly documented data sets. `skdiveMove` relies on `xarray.Dataset` objects to represent such data sets. It is easy to generate a `xarray.Dataset` objects from Pandas DataFrames by using method :meth:`.to_xarray`. `skdiveMove` documents processing steps by appending to the `history` attribute, in an effort towards building metadata standards. .. _NetCDF4: https://www.unidata.ucar.edu/software/netcdf Access measured data: .. jupyter-execute:: :linenos: tdrX.get_depth("measured") Plot measured data: .. jupyter-execute:: :linenos: tdrX.plot(xlim=["2002-01-05 21:00:00", "2002-01-06 04:10:00"], depth_lim=[-1, 95], figsize=_FIG1X1); Plot concurrent data: .. jupyter-execute:: :linenos: ccvars = ["light", "speed"] tdrX.plot(xlim=["2002-01-05 21:00:00", "2002-01-06 04:10:00"], depth_lim=[-1, 95], concur_vars=ccvars, figsize=_FIG3X1); Calibrate measurements ====================== Calibration of TDR measurements involves the following steps, which rely on data from pressure sensors (barometers): Zero offset correction (ZOC) of depth measurements -------------------------------------------------- Using the "offset" method here for speed performance reasons: .. jupyter-execute:: :linenos: # Helper dict to set parameter values pars = {"offset_zoc": 3, "dry_thr": 70, "wet_thr": 3610, "dive_thr": 3, "dive_model": "unimodal", "knot_factor": 3, "descent_crit_q": 0, "ascent_crit_q": 0} tdrX.zoc("offset", offset=pars["offset_zoc"]) # Plot ZOC job tdrX.plot_zoc(xlim=["2002-01-05 21:00:00", "2002-01-06 04:10:00"], figsize=(13, 6)); Detection of wet vs dry phases ------------------------------ Periods of missing depth measurements longer than `dry_thr` are considered dry phases, whereas periods that are briefer than `wet_thr` are not considered to represent a transition to a wet phase. .. jupyter-execute:: :linenos: tdrX.detect_wet(dry_thr=pars["dry_thr"], wet_thr=pars["wet_thr"]) Other options, not explored here, include providing a boolean mask Series to indicate which periods to consider wet phases (argument `wet_cond`), and whether to linearly interpolate depth through wet phases with duration below `wet_thr` (argument `interp_wet`). Detection of dive events ------------------------ When depth measurements are greater than `dive_thr`, a dive event is deemed to have started, ending when measurements cross that threshold again. .. jupyter-execute:: :linenos: tdrX.detect_dives(dive_thr=pars["dive_thr"]) Detection of dive phases ------------------------ Two methods for dive phase detection are available ("unimodal" and "smooth_spline"), and this demo uses the default "unimodal" method: .. jupyter-execute:: :linenos: tdrX.detect_dive_phases(dive_model=pars["dive_model"], knot_factor=pars["knot_factor"], descent_crit_q=pars["descent_crit_q"], ascent_crit_q=pars["ascent_crit_q"]) print(tdrX) Alternatively, all these steps can be performed together via the `calibrate` function: .. jupyter-execute:: :linenos: help(skdive.calibrate) which is demonstrated in :ref:`demo_bouts-label`. Plot dive phases ---------------- Once TDR data are properly calibrated and phases detected, results can be visualized: .. jupyter-execute:: :linenos: tdrX.plot_phases(diveNo=list(range(250, 300)), surface=True, figsize=_FIG1X1); .. jupyter-execute:: :linenos: # Plot dive model for a dive tdrX.plot_dive_model(diveNo=20, figsize=(10, 10)); Calibrate speed measurements ---------------------------- In addition to the calibration procedure described above, other variables in the data set may also need to be calibrated. `skdiveMove` provides support for calibrating speed sensor data, by taking advantage of its relationship with the rate of change in depth in the vertical dimension. .. jupyter-execute:: fig, ax = plt.subplots(figsize=(7, 6)) # Consider only changes in depth larger than 2 m tdrX.calibrate_speed(z=2, ax=ax) print(tdrX.speed_calib_fit.summary()) Notice processing steps have been appended to the `history` attribute of the `DataArray`: .. jupyter-execute:: print(tdrX.get_depth("zoc")) .. jupyter-execute:: print(tdrX.get_speed("calibrated")) Access attributes of `TDR` instance =================================== Following calibration, use the different accessor methods: .. jupyter-execute:: # Time series of the wet/dry phases print(tdrX.wet_dry) .. jupyter-execute:: print(tdrX.get_phases_params("wet_dry")["dry_thr"]) .. jupyter-execute:: print(tdrX.get_phases_params("wet_dry")["wet_thr"]) .. jupyter-execute:: print(tdrX.get_dives_details("row_ids")) .. jupyter-execute:: print(tdrX.get_dives_details("spline_derivs")) .. jupyter-execute:: print(tdrX.get_dives_details("crit_vals")) Time budgets ============ .. jupyter-execute:: print(tdrX.time_budget(ignore_z=True, ignore_du=False)) .. jupyter-execute:: print(tdrX.time_budget(ignore_z=True, ignore_du=True)) Dive statistics =============== .. jupyter-execute:: print(tdrX.dive_stats()) Dive stamps =========== .. jupyter-execute:: print(tdrX.stamp_dives()) Feel free to download a copy of this demo (:jupyter-download:script:`demo_tdr`).
scikit-diveMove
/scikit-diveMove-0.3.0.tar.gz/scikit-diveMove-0.3.0/docs/source/demo_tdr.rst
demo_tdr.rst
.. _demo_tdr-label: =========================== Diving behaviour analysis =========================== Here is a bird's-eye view of the functionality of `scikit-diveMove`, loosely following `diveMove`'s `vignette`_. .. _vignette: https://cran.r-project.org/web/packages/diveMove/vignettes/diveMove.pdf Set up the environment. Consider loading the `logging` module and setting up a logger to monitor progress to this section. .. jupyter-execute:: # Set up import pkg_resources as pkg_rsrc import matplotlib.pyplot as plt import skdiveMove as skdive # Declare figure sizes _FIG1X1 = (11, 5) _FIG2X1 = (10, 8) _FIG3X1 = (11, 11) .. jupyter-execute:: :hide-code: :hide-output: import numpy as np # only for setting print options here import pandas as pd # only for setting print options here import xarray as xr # only for setting print options here pd.set_option("display.precision", 3) np.set_printoptions(precision=3, sign="+") xr.set_options(display_style="html") %matplotlib inline Reading data files ================== Load `diveMove`'s example data, using ``TDR.__init__`` method, and print: .. jupyter-execute:: :linenos: ifile = (pkg_rsrc .resource_filename("skdiveMove", ("tests/data/" "ag_mk7_2002_022.nc"))) tdrX = skdive.TDR.read_netcdf(ifile, depth_name="depth", time_name="date_time", has_speed=True) # Or simply use function ``skdive.tests.diveMove2skd`` to do the # same with this particular data set. print(tdrX) Notice that `TDR` reads files in `NetCDF4`_ format, which is a very versatile file format, and encourages using properly documented data sets. `skdiveMove` relies on `xarray.Dataset` objects to represent such data sets. It is easy to generate a `xarray.Dataset` objects from Pandas DataFrames by using method :meth:`.to_xarray`. `skdiveMove` documents processing steps by appending to the `history` attribute, in an effort towards building metadata standards. .. _NetCDF4: https://www.unidata.ucar.edu/software/netcdf Access measured data: .. jupyter-execute:: :linenos: tdrX.get_depth("measured") Plot measured data: .. jupyter-execute:: :linenos: tdrX.plot(xlim=["2002-01-05 21:00:00", "2002-01-06 04:10:00"], depth_lim=[-1, 95], figsize=_FIG1X1); Plot concurrent data: .. jupyter-execute:: :linenos: ccvars = ["light", "speed"] tdrX.plot(xlim=["2002-01-05 21:00:00", "2002-01-06 04:10:00"], depth_lim=[-1, 95], concur_vars=ccvars, figsize=_FIG3X1); Calibrate measurements ====================== Calibration of TDR measurements involves the following steps, which rely on data from pressure sensors (barometers): Zero offset correction (ZOC) of depth measurements -------------------------------------------------- Using the "offset" method here for speed performance reasons: .. jupyter-execute:: :linenos: # Helper dict to set parameter values pars = {"offset_zoc": 3, "dry_thr": 70, "wet_thr": 3610, "dive_thr": 3, "dive_model": "unimodal", "knot_factor": 3, "descent_crit_q": 0, "ascent_crit_q": 0} tdrX.zoc("offset", offset=pars["offset_zoc"]) # Plot ZOC job tdrX.plot_zoc(xlim=["2002-01-05 21:00:00", "2002-01-06 04:10:00"], figsize=(13, 6)); Detection of wet vs dry phases ------------------------------ Periods of missing depth measurements longer than `dry_thr` are considered dry phases, whereas periods that are briefer than `wet_thr` are not considered to represent a transition to a wet phase. .. jupyter-execute:: :linenos: tdrX.detect_wet(dry_thr=pars["dry_thr"], wet_thr=pars["wet_thr"]) Other options, not explored here, include providing a boolean mask Series to indicate which periods to consider wet phases (argument `wet_cond`), and whether to linearly interpolate depth through wet phases with duration below `wet_thr` (argument `interp_wet`). Detection of dive events ------------------------ When depth measurements are greater than `dive_thr`, a dive event is deemed to have started, ending when measurements cross that threshold again. .. jupyter-execute:: :linenos: tdrX.detect_dives(dive_thr=pars["dive_thr"]) Detection of dive phases ------------------------ Two methods for dive phase detection are available ("unimodal" and "smooth_spline"), and this demo uses the default "unimodal" method: .. jupyter-execute:: :linenos: tdrX.detect_dive_phases(dive_model=pars["dive_model"], knot_factor=pars["knot_factor"], descent_crit_q=pars["descent_crit_q"], ascent_crit_q=pars["ascent_crit_q"]) print(tdrX) Alternatively, all these steps can be performed together via the `calibrate` function: .. jupyter-execute:: :linenos: help(skdive.calibrate) which is demonstrated in :ref:`demo_bouts-label`. Plot dive phases ---------------- Once TDR data are properly calibrated and phases detected, results can be visualized: .. jupyter-execute:: :linenos: tdrX.plot_phases(diveNo=list(range(250, 300)), surface=True, figsize=_FIG1X1); .. jupyter-execute:: :linenos: # Plot dive model for a dive tdrX.plot_dive_model(diveNo=20, figsize=(10, 10)); Calibrate speed measurements ---------------------------- In addition to the calibration procedure described above, other variables in the data set may also need to be calibrated. `skdiveMove` provides support for calibrating speed sensor data, by taking advantage of its relationship with the rate of change in depth in the vertical dimension. .. jupyter-execute:: fig, ax = plt.subplots(figsize=(7, 6)) # Consider only changes in depth larger than 2 m tdrX.calibrate_speed(z=2, ax=ax) print(tdrX.speed_calib_fit.summary()) Notice processing steps have been appended to the `history` attribute of the `DataArray`: .. jupyter-execute:: print(tdrX.get_depth("zoc")) .. jupyter-execute:: print(tdrX.get_speed("calibrated")) Access attributes of `TDR` instance =================================== Following calibration, use the different accessor methods: .. jupyter-execute:: # Time series of the wet/dry phases print(tdrX.wet_dry) .. jupyter-execute:: print(tdrX.get_phases_params("wet_dry")["dry_thr"]) .. jupyter-execute:: print(tdrX.get_phases_params("wet_dry")["wet_thr"]) .. jupyter-execute:: print(tdrX.get_dives_details("row_ids")) .. jupyter-execute:: print(tdrX.get_dives_details("spline_derivs")) .. jupyter-execute:: print(tdrX.get_dives_details("crit_vals")) Time budgets ============ .. jupyter-execute:: print(tdrX.time_budget(ignore_z=True, ignore_du=False)) .. jupyter-execute:: print(tdrX.time_budget(ignore_z=True, ignore_du=True)) Dive statistics =============== .. jupyter-execute:: print(tdrX.dive_stats()) Dive stamps =========== .. jupyter-execute:: print(tdrX.stamp_dives()) Feel free to download a copy of this demo (:jupyter-download:script:`demo_tdr`).
0.919572
0.516778
import logging import matplotlib.pyplot as plt import numpy as np import pandas as pd import scipy.stats as stats import statsmodels.formula.api as smf logger = logging.getLogger(__name__) # Add the null handler if importing as library; whatever using this library # should set up logging.basicConfig() as needed logger.addHandler(logging.NullHandler()) def calibrate_speed(x, tau, contour_level, z=0, bad=[0, 0], plot=True, ax=None): """Calibration based on kernel density estimation Parameters ---------- x : pandas.DataFrame DataFrame with depth rate and speed tau : float contour_level : float z : float, optional bad : array_like, optional plot : bool, optional Whether to plot calibration results. ax : matplotlib.Axes, optional An Axes instance to use as target. Default is to create one. Returns ------- out : 2-tuple The quantile regression fit object, and `matplotlib.pyplot` `Axes` instance (if plot=True, otherwise None). Notes ----- See `skdiveMove.TDR.calibrate_speed` for details. """ # `gaussian_kde` expects variables in rows n_eval = 51 # Numpy for some operations xnpy = x.to_numpy() kde = stats.gaussian_kde(xnpy.T) # Build the grid for evaluation, mimicking bkde2D mins = x.min() maxs = x.max() x_flat = np.linspace(mins[0], maxs[0], n_eval) y_flat = np.linspace(mins[1], maxs[1], n_eval) xx, yy = np.meshgrid(x_flat, y_flat) grid_coords = np.append(xx.reshape(-1, 1), yy.reshape(-1, 1), axis=1) # Evaluate kde on the grid z = kde(grid_coords.T) z = np.flipud(z.reshape(n_eval, n_eval)) # Fit quantile regression # ----------------------- # Bin depth rate drbinned = pd.cut(x.iloc[:, 0], n_eval) drbin_mids = drbinned.apply(lambda x: x.mid) # mid points # Use bin mid points as x binned = np.column_stack((drbin_mids, xnpy[:, 1])) qdata = pd.DataFrame(binned, columns=list("xy")) qmod = smf.quantreg("y ~ x", qdata) qfit = qmod.fit(q=tau) coefs = qfit.params logger.info("a={}, b={}".format(*coefs)) if plot: fig = plt.gcf() if ax is None: ax = plt.gca() ax.set_xlabel("Rate of depth change") ax.set_ylabel("Speed") zimg = ax.imshow(z, aspect="auto", extent=[mins[0], maxs[0], mins[1], maxs[1]], cmap="gist_earth_r") fig.colorbar(zimg, fraction=0.1, aspect=30, pad=0.02, label="Kernel density probability") cntr = ax.contour(z, extent=[mins[0], maxs[0], mins[1], maxs[1]], origin="image", levels=[contour_level]) ax.clabel(cntr, fmt="%1.2f") # Plot the binned data, adding some noise for clarity xjit_binned = np.random.normal(binned[:, 0], xnpy[:, 0].ptp() / (2 * n_eval)) ax.scatter(xjit_binned, binned[:, 1], s=6, alpha=0.3) # Plot line xnew = np.linspace(mins[0], maxs[0]) yhat = coefs[0] + coefs[1] * xnew ax.plot(xnew, yhat, "--k", label=(r"$y = {:.3f} {:+.3f} x$" .format(coefs[0], coefs[1]))) ax.legend(loc="lower right") # Adjust limits to compensate for the noise in x ax.set_xlim([mins[0], maxs[0]]) return (qfit, ax) if __name__ == '__main__': from skdiveMove.tests import diveMove2skd tdrX = diveMove2skd() print(tdrX)
scikit-diveMove
/scikit-diveMove-0.3.0.tar.gz/scikit-diveMove-0.3.0/skdiveMove/calibspeed.py
calibspeed.py
import logging import matplotlib.pyplot as plt import numpy as np import pandas as pd import scipy.stats as stats import statsmodels.formula.api as smf logger = logging.getLogger(__name__) # Add the null handler if importing as library; whatever using this library # should set up logging.basicConfig() as needed logger.addHandler(logging.NullHandler()) def calibrate_speed(x, tau, contour_level, z=0, bad=[0, 0], plot=True, ax=None): """Calibration based on kernel density estimation Parameters ---------- x : pandas.DataFrame DataFrame with depth rate and speed tau : float contour_level : float z : float, optional bad : array_like, optional plot : bool, optional Whether to plot calibration results. ax : matplotlib.Axes, optional An Axes instance to use as target. Default is to create one. Returns ------- out : 2-tuple The quantile regression fit object, and `matplotlib.pyplot` `Axes` instance (if plot=True, otherwise None). Notes ----- See `skdiveMove.TDR.calibrate_speed` for details. """ # `gaussian_kde` expects variables in rows n_eval = 51 # Numpy for some operations xnpy = x.to_numpy() kde = stats.gaussian_kde(xnpy.T) # Build the grid for evaluation, mimicking bkde2D mins = x.min() maxs = x.max() x_flat = np.linspace(mins[0], maxs[0], n_eval) y_flat = np.linspace(mins[1], maxs[1], n_eval) xx, yy = np.meshgrid(x_flat, y_flat) grid_coords = np.append(xx.reshape(-1, 1), yy.reshape(-1, 1), axis=1) # Evaluate kde on the grid z = kde(grid_coords.T) z = np.flipud(z.reshape(n_eval, n_eval)) # Fit quantile regression # ----------------------- # Bin depth rate drbinned = pd.cut(x.iloc[:, 0], n_eval) drbin_mids = drbinned.apply(lambda x: x.mid) # mid points # Use bin mid points as x binned = np.column_stack((drbin_mids, xnpy[:, 1])) qdata = pd.DataFrame(binned, columns=list("xy")) qmod = smf.quantreg("y ~ x", qdata) qfit = qmod.fit(q=tau) coefs = qfit.params logger.info("a={}, b={}".format(*coefs)) if plot: fig = plt.gcf() if ax is None: ax = plt.gca() ax.set_xlabel("Rate of depth change") ax.set_ylabel("Speed") zimg = ax.imshow(z, aspect="auto", extent=[mins[0], maxs[0], mins[1], maxs[1]], cmap="gist_earth_r") fig.colorbar(zimg, fraction=0.1, aspect=30, pad=0.02, label="Kernel density probability") cntr = ax.contour(z, extent=[mins[0], maxs[0], mins[1], maxs[1]], origin="image", levels=[contour_level]) ax.clabel(cntr, fmt="%1.2f") # Plot the binned data, adding some noise for clarity xjit_binned = np.random.normal(binned[:, 0], xnpy[:, 0].ptp() / (2 * n_eval)) ax.scatter(xjit_binned, binned[:, 1], s=6, alpha=0.3) # Plot line xnew = np.linspace(mins[0], maxs[0]) yhat = coefs[0] + coefs[1] * xnew ax.plot(xnew, yhat, "--k", label=(r"$y = {:.3f} {:+.3f} x$" .format(coefs[0], coefs[1]))) ax.legend(loc="lower right") # Adjust limits to compensate for the noise in x ax.set_xlim([mins[0], maxs[0]]) return (qfit, ax) if __name__ == '__main__': from skdiveMove.tests import diveMove2skd tdrX = diveMove2skd() print(tdrX)
0.876898
0.591222
import logging import numpy as np import pandas as pd from skdiveMove.zoc import ZOC from skdiveMove.core import diveMove, robjs, cv, pandas2ri from skdiveMove.helpers import (get_var_sampling_interval, _cut_dive, rle_key, _append_xr_attr) logger = logging.getLogger(__name__) # Add the null handler if importing as library; whatever using this library # should set up logging.basicConfig() as needed logger.addHandler(logging.NullHandler()) class TDRPhases(ZOC): """Core TDR phase identification routines See help(TDRSource) for inherited attributes. Attributes ---------- wet_dry dives : dict Dictionary of dive activity data {'row_ids': pandas.DataFrame, 'model': str, 'splines': dict, 'spline_derivs': pandas.DataFrame, 'crit_vals': pandas.DataFrame}. params : dict Dictionary with parameters used for detection of wet/dry and dive phases. {'wet_dry': {'dry_thr': float, 'wet_thr': float}, 'dives': {'dive_thr': float, 'dive_model': str, 'smooth_par': float, 'knot_factor': int, 'descent_crit_q': float, 'ascent_crit_q': float}} """ def __init__(self, *args, **kwargs): """Initialize TDRPhases instance Parameters ---------- *args : positional arguments Passed to :meth:`ZOC.__init__` **kwargs : keyword arguments Passed to :meth:`ZOC.__init__` """ ZOC.__init__(self, *args, **kwargs) self._wet_dry = None self.dives = dict(row_ids=None, model=None, splines=None, spline_derivs=None, crit_vals=None) self.params = dict(wet_dry={}, dives={}) def __str__(self): base = ZOC.__str__(self) wetdry_params = self.get_phases_params("wet_dry") dives_params = self.get_phases_params("dives") return (base + ("\n{0:<20} {1}\n{2:<20} {3}" .format("Wet/Dry parameters:", wetdry_params, "Dives parameters:", dives_params))) def detect_wet(self, dry_thr=70, wet_cond=None, wet_thr=3610, interp_wet=False): """Detect wet/dry activity phases Parameters ---------- dry_thr : float, optional wet_cond : bool mask, optional A Pandas.Series bool mask indexed as `depth`. Default is generated from testing for non-missing `depth`. wet_thr : float, optional interp_wet : bool, optional Notes ----- See details for arguments in diveMove's ``calibrateDepth``. Unlike `diveMove`, the beginning/ending times for each phase are not stored with the class instance, as this information can be retrieved via the :meth:`~TDR.time_budget` method. Examples -------- ZOC using the "offset" method for convenience >>> from skdiveMove.tests import diveMove2skd >>> tdrX = diveMove2skd("TDRPhases") >>> tdrX.zoc("offset", offset=3) Detect wet/dry phases >>> tdrX.detect_wet() Access the "phases" and "dry_thr" attributes >>> tdrX.wet_dry # doctest: +ELLIPSIS phase_id phase_label date_time 2002-01-05 ... 1 L ... """ # Retrieve copy of depth from our own property depth = self.depth_zoc depth_py = depth.to_series() time_py = depth_py.index dtime = get_var_sampling_interval(depth).total_seconds() if wet_cond is None: wet_cond = ~depth_py.isna() phases_l = (diveMove ._detPhase(robjs.vectors.POSIXct(time_py), robjs.vectors.FloatVector(depth_py), dry_thr=dry_thr, wet_thr=wet_thr, wet_cond=(robjs.vectors .BoolVector(~depth_py.isna())), interval=dtime)) with cv.localconverter(robjs.default_converter + pandas2ri.converter): phases = pd.DataFrame({'phase_id': phases_l.rx2("phase.id"), 'phase_label': phases_l.rx2("activity")}, index=time_py) phases.loc[:, "phase_id"] = phases.loc[:, "phase_id"].astype(int) self._wet_dry = phases wet_dry_params = dict(dry_thr=dry_thr, wet_thr=wet_thr) self.params["wet_dry"].update(wet_dry_params) if interp_wet: zdepth = depth.to_series() iswet = phases["phase_label"] == "W" iswetna = iswet & zdepth.isna() if any(iswetna): depth_intp = zdepth[iswet].interpolate(method="cubic") zdepth[iswetna] = np.maximum(np.zeros_like(depth_intp), depth_intp) zdepth = zdepth.to_xarray() zdepth.attrs = depth.attrs _append_xr_attr(zdepth, "history", "interp_wet") self._depth_zoc = zdepth self._zoc_params.update(dict(interp_wet=interp_wet)) logger.info("Finished detecting wet/dry periods") def detect_dives(self, dive_thr): """Identify dive events Set the ``dives`` attribute's "row_ids" dictionary element, and update the ``wet_act`` attribute's "phases" dictionary element. Parameters ---------- dive_thr : float Notes ----- See details for arguments in diveMove's ``calibrateDepth``. Examples -------- ZOC using the "offset" method for convenience >>> from skdiveMove.tests import diveMove2skd >>> tdrX = diveMove2skd("TDRPhases") >>> tdrX.zoc("offset", offset=3) Detect wet/dry phases and dives with 3 m threshold >>> tdrX.detect_wet() >>> tdrX.detect_dives(3) """ # Retrieve copy of depth from our own property depth = self.depth_zoc depth_py = depth.to_series() act_phases = self.wet_dry["phase_label"] with cv.localconverter(robjs.default_converter + pandas2ri.converter): phases_df = diveMove._detDive(pd.Series(depth_py), pd.Series(act_phases), dive_thr=dive_thr) # Replace dots with underscore phases_df.columns = (phases_df.columns.str .replace(".", "_", regex=False)) phases_df.set_index(depth_py.index, inplace=True) dive_activity = phases_df.pop("dive_activity") # Dive and post-dive ID should be integer phases_df = phases_df.astype(int) self.dives["row_ids"] = phases_df self._wet_dry["phase_label"] = dive_activity self.params["dives"].update({'dive_thr': dive_thr}) logger.info("Finished detecting dives") def detect_dive_phases(self, dive_model, smooth_par=0.1, knot_factor=3, descent_crit_q=0, ascent_crit_q=0): """Detect dive phases Complete filling the ``dives`` attribute. Parameters ---------- dive_model : {"unimodal", "smooth.spline"} smooth_par : float, optional knot_factor : int, optional descent_crit_q : float, optional ascent_crit_q : float, optional Notes ----- See details for arguments in diveMove's ``calibrateDepth``. Examples -------- ZOC using the "offset" method for convenience >>> from skdiveMove.tests import diveMove2skd >>> tdrX = diveMove2skd("TDRPhases") >>> tdrX.zoc("offset", offset=3) Detect wet/dry phases and dives with 3 m threshold >>> tdrX.detect_wet() >>> tdrX.detect_dives(3) Detect dive phases using the "unimodal" method and selected parameters >>> tdrX.detect_dive_phases("unimodal", descent_crit_q=0.01, ... ascent_crit_q=0, knot_factor=20) """ # Retrieve copy of depth from our own property depth = self.depth_zoc depth_py = depth.to_series() phases_df = self.get_dives_details("row_ids") dive_ids = self.get_dives_details("row_ids", columns="dive_id") ok = (dive_ids > 0) & ~depth_py.isna() xx = pd.Categorical(np.repeat(["X"], phases_df.shape[0]), categories=["D", "DB", "B", "BA", "DA", "A", "X"]) dive_phases = pd.Series(xx, index=phases_df.index) if any(ok): ddepths = depth_py[ok] # diving depths dtimes = ddepths.index dids = dive_ids[ok] idx = np.squeeze(np.argwhere(ok.to_numpy())) time_num = (dtimes - dtimes[0]).total_seconds().to_numpy() divedf = pd.DataFrame({'dive_id': dids.to_numpy(), 'idx': idx, 'depth': ddepths.to_numpy(), 'time_num': time_num}, index=ddepths.index) grouped = divedf.groupby("dive_id") cval_list = [] spl_der_list = [] spl_list = [] for name, grp in grouped: res = _cut_dive(grp, dive_model=dive_model, smooth_par=smooth_par, knot_factor=knot_factor, descent_crit_q=descent_crit_q, ascent_crit_q=ascent_crit_q) dive_phases.loc[grp.index] = (res.pop("label_matrix")[:, 1]) # Splines spl = res.pop("dive_spline") # Convert directly into a dict, with each element turned # into a list of R objects. Access each via # `_get_dive_spline_slot` spl_dict = dict(zip(spl.names, list(spl))) spl_list.append(spl_dict) # Spline derivatives spl_der = res.pop("spline_deriv") spl_der_idx = pd.TimedeltaIndex(spl_der[:, 0], unit="s") spl_der = pd.DataFrame({'y': spl_der[:, 1]}, index=spl_der_idx) spl_der_list.append(spl_der) # Critical values (all that's left in res) cvals = pd.DataFrame(res, index=[name]) cvals.index.rename("dive_id", inplace=True) # Adjust critical indices for Python convention and ensure # integers cvals.iloc[:, :2] = cvals.iloc[:, :2].astype(int) - 1 cval_list.append(cvals) self.dives["model"] = dive_model # Splines self.dives["splines"] = dict(zip(grouped.groups.keys(), spl_list)) self.dives["spline_derivs"] = pd.concat(spl_der_list, keys=(grouped .groups.keys())) self.dives["crit_vals"] = pd.concat(cval_list) else: logger.warning("No dives found") # Update the `dives` attribute self.dives["row_ids"]["dive_phase"] = dive_phases (self.params["dives"] .update(dict(dive_model=dive_model, smooth_par=smooth_par, knot_factor=knot_factor, descent_crit_q=descent_crit_q, ascent_crit_q=ascent_crit_q))) logger.info("Finished detecting dive phases") def get_dives_details(self, key, columns=None): """Accessor for the `dives` attribute Parameters ---------- key : {"row_ids", "model", "splines", "spline_derivs", crit_vals} Name of the key to retrieve. columns : array_like, optional Names of the columns of the dataframe in `key`, when applicable. """ try: okey = self.dives[key] except KeyError: msg = ("\'{}\' is not found.\nAvailable keys: {}" .format(key, self.dives.keys())) logger.error(msg) raise KeyError(msg) else: if okey is None: raise KeyError("\'{}\' not available.".format(key)) if columns: try: odata = okey[columns] except KeyError: msg = ("At least one of the requested columns does not " "exist.\nAvailable columns: {}").format(okey.columns) logger.error(msg) raise KeyError(msg) else: odata = okey return odata def _get_wet_activity(self): return self._wet_dry wet_dry = property(_get_wet_activity) """Wet/dry activity labels Returns ------- pandas.DataFrame DataFrame with columns: `phase_id` and `phase_label` for each measurement. """ def get_phases_params(self, key): """Return parameters used for identifying wet/dry or diving phases. Parameters ---------- key: {'wet_dry', 'dives'} Returns ------- out : dict """ try: params = self.params[key] except KeyError: msg = "key must be one of: {}".format(self.params.keys()) logger.error(msg) raise KeyError(msg) return params def _get_dive_spline_slot(self, diveNo, name): """Accessor for the R objects in `dives`["splines"] Private method to retrieve elements easily. Elements can be accessed individually as is, but some elements are handled specially. Parameters ---------- diveNo : int or float Which dive number to retrieve spline details for. name : str Element to retrieve. {"data", "xy", "knots", "coefficients", "order", "lambda.opt", "sigmasq", "degree", "g", "a", "b", "variter"} """ # Safe to assume these are all scalars, based on the current # default settings in diveMove's `.cutDive` scalars = ["order", "lambda.opt", "sigmasq", "degree", "g", "a", "b", "variter"] idata = self.get_dives_details("splines")[diveNo] if name == "data": x = pd.TimedeltaIndex(np.array(idata[name][0]), unit="s") odata = pd.Series(np.array(idata[name][1]), index=x) elif name == "xy": x = pd.TimedeltaIndex(np.array(idata["x"]), unit="s") odata = pd.Series(np.array(idata["y"]), index=x) elif name in scalars: odata = np.float(idata[name][0]) else: odata = np.array(idata[name]) return odata def get_dive_deriv(self, diveNo, phase=None): """Retrieve depth spline derivative for a given dive Parameters ---------- diveNo : int Dive number to retrieve derivative for. phase : {"descent", "bottom", "ascent"} If provided, the dive phase to retrieve data for. Returns ------- out : pandas.DataFrame """ der = self.get_dives_details("spline_derivs").loc[diveNo] crit_vals = self.get_dives_details("crit_vals").loc[diveNo] spl_data = self.get_dives_details("splines")[diveNo]["data"] spl_times = np.array(spl_data[0]) # x row is time steps in (s) if phase == "descent": descent_crit = int(crit_vals["descent_crit"]) deltat_crit = pd.Timedelta(spl_times[descent_crit], unit="s") oder = der.loc[:deltat_crit] elif phase == "bottom": descent_crit = int(crit_vals["descent_crit"]) deltat1 = pd.Timedelta(spl_times[descent_crit], unit="s") ascent_crit = int(crit_vals["ascent_crit"]) deltat2 = pd.Timedelta(spl_times[ascent_crit], unit="s") oder = der[(der.index >= deltat1) & (der.index <= deltat2)] elif phase == "ascent": ascent_crit = int(crit_vals["ascent_crit"]) deltat_crit = pd.Timedelta(spl_times[ascent_crit], unit="s") oder = der.loc[deltat_crit:] elif phase is None: oder = der else: msg = "`phase` must be 'descent', 'bottom' or 'ascent'" logger.error(msg) raise KeyError(msg) return oder def _get_dive_deriv_stats(self, diveNo): """Calculate stats for the depth derivative of a given dive """ desc = self.get_dive_deriv(diveNo, "descent") bott = self.get_dive_deriv(diveNo, "bottom") asc = self.get_dive_deriv(diveNo, "ascent") # Rename DataFrame to match diveNo desc_sts = (pd.DataFrame(desc.describe().iloc[1:]).transpose() .add_prefix("descD_").rename({"y": diveNo})) bott_sts = (pd.DataFrame(bott.describe().iloc[1:]).transpose() .add_prefix("bottD_").rename({"y": diveNo})) asc_sts = (pd.DataFrame(asc.describe().iloc[1:]).transpose() .add_prefix("ascD_").rename({"y": diveNo})) sts = pd.merge(desc_sts, bott_sts, left_index=True, right_index=True) sts = pd.merge(sts, asc_sts, left_index=True, right_index=True) return sts def time_budget(self, ignore_z=True, ignore_du=True): """Summary of wet/dry activities at the broadest time scale Parameters ---------- ignore_z : bool, optional Whether to ignore trivial aquatic periods. ignore_du : bool, optional Whether to ignore diving and underwater periods. Returns ------- out : pandas.DataFrame DataFrame indexed by phase id, with categorical activity label for each phase, and beginning and ending times. Examples -------- >>> from skdiveMove.tests import diveMove2skd >>> tdrX = diveMove2skd("TDRPhases") >>> tdrX.zoc("offset", offset=3) >>> tdrX.detect_wet() >>> tdrX.detect_dives(3) >>> tdrX.detect_dive_phases("unimodal", descent_crit_q=0.01, ... ascent_crit_q=0, knot_factor=20) >>> tdrX.time_budget(ignore_z=True, ... ignore_du=True) # doctest: +ELLIPSIS beg phase_label end phase_id 1 2002-01-05 ... L 2002-01-05 ... ... """ phase_lab = self.wet_dry["phase_label"] idx_name = phase_lab.index.name labels = phase_lab.reset_index() if ignore_z: labels = labels.mask(labels == "Z", "L") if ignore_du: labels = labels.mask((labels == "U") | (labels == "D"), "W") grp_key = rle_key(labels["phase_label"]).rename("phase_id") labels_grp = labels.groupby(grp_key) begs = labels_grp.first().rename(columns={idx_name: "beg"}) ends = labels_grp.last()[idx_name].rename("end") return pd.concat((begs, ends), axis=1) def stamp_dives(self, ignore_z=True): """Identify the wet activity phase corresponding to each dive Parameters ---------- ignore_z : bool, optional Whether to ignore trivial aquatic periods. Returns ------- out : pandas.DataFrame DataFrame indexed by dive ID, and three columns identifying which phase thy are in, and the beginning and ending time stamps. Examples -------- >>> from skdiveMove.tests import diveMove2skd >>> tdrX = diveMove2skd("TDRPhases") >>> tdrX.zoc("offset", offset=3) >>> tdrX.detect_wet() >>> tdrX.detect_dives(3) >>> tdrX.detect_dive_phases("unimodal", descent_crit_q=0.01, ... ascent_crit_q=0, knot_factor=20) >>> tdrX.stamp_dives(ignore_z=True) # doctest: +ELLIPSIS phase_id beg end dive_id 1 2 2002-01-05 ... 2002-01-06 ... """ phase_lab = self.wet_dry["phase_label"] idx_name = phase_lab.index.name # "U" and "D" considered as "W" here phase_lab = phase_lab.mask(phase_lab.isin(["U", "D"]), "W") if ignore_z: phase_lab = phase_lab.mask(phase_lab == "Z", "L") dive_ids = self.get_dives_details("row_ids", columns="dive_id") grp_key = rle_key(phase_lab).rename("phase_id") isdive = dive_ids > 0 merged = (pd.concat((grp_key, dive_ids, phase_lab), axis=1) .loc[isdive, :].reset_index()) # Rest index to use in first() and last() merged_grp = merged.groupby("phase_id") dives_ll = [] for name, group in merged_grp: dives_uniq = pd.Series(group["dive_id"].unique(), name="dive_id") beg = [group[idx_name].iloc[0]] * dives_uniq.size end = [group[idx_name].iloc[-1]] * dives_uniq.size dive_df = pd.DataFrame({'phase_id': [name] * dives_uniq.size, 'beg': beg, 'end': end}, index=dives_uniq) dives_ll.append(dive_df) dives_all = pd.concat(dives_ll) return dives_all
scikit-diveMove
/scikit-diveMove-0.3.0.tar.gz/scikit-diveMove-0.3.0/skdiveMove/tdrphases.py
tdrphases.py
import logging import numpy as np import pandas as pd from skdiveMove.zoc import ZOC from skdiveMove.core import diveMove, robjs, cv, pandas2ri from skdiveMove.helpers import (get_var_sampling_interval, _cut_dive, rle_key, _append_xr_attr) logger = logging.getLogger(__name__) # Add the null handler if importing as library; whatever using this library # should set up logging.basicConfig() as needed logger.addHandler(logging.NullHandler()) class TDRPhases(ZOC): """Core TDR phase identification routines See help(TDRSource) for inherited attributes. Attributes ---------- wet_dry dives : dict Dictionary of dive activity data {'row_ids': pandas.DataFrame, 'model': str, 'splines': dict, 'spline_derivs': pandas.DataFrame, 'crit_vals': pandas.DataFrame}. params : dict Dictionary with parameters used for detection of wet/dry and dive phases. {'wet_dry': {'dry_thr': float, 'wet_thr': float}, 'dives': {'dive_thr': float, 'dive_model': str, 'smooth_par': float, 'knot_factor': int, 'descent_crit_q': float, 'ascent_crit_q': float}} """ def __init__(self, *args, **kwargs): """Initialize TDRPhases instance Parameters ---------- *args : positional arguments Passed to :meth:`ZOC.__init__` **kwargs : keyword arguments Passed to :meth:`ZOC.__init__` """ ZOC.__init__(self, *args, **kwargs) self._wet_dry = None self.dives = dict(row_ids=None, model=None, splines=None, spline_derivs=None, crit_vals=None) self.params = dict(wet_dry={}, dives={}) def __str__(self): base = ZOC.__str__(self) wetdry_params = self.get_phases_params("wet_dry") dives_params = self.get_phases_params("dives") return (base + ("\n{0:<20} {1}\n{2:<20} {3}" .format("Wet/Dry parameters:", wetdry_params, "Dives parameters:", dives_params))) def detect_wet(self, dry_thr=70, wet_cond=None, wet_thr=3610, interp_wet=False): """Detect wet/dry activity phases Parameters ---------- dry_thr : float, optional wet_cond : bool mask, optional A Pandas.Series bool mask indexed as `depth`. Default is generated from testing for non-missing `depth`. wet_thr : float, optional interp_wet : bool, optional Notes ----- See details for arguments in diveMove's ``calibrateDepth``. Unlike `diveMove`, the beginning/ending times for each phase are not stored with the class instance, as this information can be retrieved via the :meth:`~TDR.time_budget` method. Examples -------- ZOC using the "offset" method for convenience >>> from skdiveMove.tests import diveMove2skd >>> tdrX = diveMove2skd("TDRPhases") >>> tdrX.zoc("offset", offset=3) Detect wet/dry phases >>> tdrX.detect_wet() Access the "phases" and "dry_thr" attributes >>> tdrX.wet_dry # doctest: +ELLIPSIS phase_id phase_label date_time 2002-01-05 ... 1 L ... """ # Retrieve copy of depth from our own property depth = self.depth_zoc depth_py = depth.to_series() time_py = depth_py.index dtime = get_var_sampling_interval(depth).total_seconds() if wet_cond is None: wet_cond = ~depth_py.isna() phases_l = (diveMove ._detPhase(robjs.vectors.POSIXct(time_py), robjs.vectors.FloatVector(depth_py), dry_thr=dry_thr, wet_thr=wet_thr, wet_cond=(robjs.vectors .BoolVector(~depth_py.isna())), interval=dtime)) with cv.localconverter(robjs.default_converter + pandas2ri.converter): phases = pd.DataFrame({'phase_id': phases_l.rx2("phase.id"), 'phase_label': phases_l.rx2("activity")}, index=time_py) phases.loc[:, "phase_id"] = phases.loc[:, "phase_id"].astype(int) self._wet_dry = phases wet_dry_params = dict(dry_thr=dry_thr, wet_thr=wet_thr) self.params["wet_dry"].update(wet_dry_params) if interp_wet: zdepth = depth.to_series() iswet = phases["phase_label"] == "W" iswetna = iswet & zdepth.isna() if any(iswetna): depth_intp = zdepth[iswet].interpolate(method="cubic") zdepth[iswetna] = np.maximum(np.zeros_like(depth_intp), depth_intp) zdepth = zdepth.to_xarray() zdepth.attrs = depth.attrs _append_xr_attr(zdepth, "history", "interp_wet") self._depth_zoc = zdepth self._zoc_params.update(dict(interp_wet=interp_wet)) logger.info("Finished detecting wet/dry periods") def detect_dives(self, dive_thr): """Identify dive events Set the ``dives`` attribute's "row_ids" dictionary element, and update the ``wet_act`` attribute's "phases" dictionary element. Parameters ---------- dive_thr : float Notes ----- See details for arguments in diveMove's ``calibrateDepth``. Examples -------- ZOC using the "offset" method for convenience >>> from skdiveMove.tests import diveMove2skd >>> tdrX = diveMove2skd("TDRPhases") >>> tdrX.zoc("offset", offset=3) Detect wet/dry phases and dives with 3 m threshold >>> tdrX.detect_wet() >>> tdrX.detect_dives(3) """ # Retrieve copy of depth from our own property depth = self.depth_zoc depth_py = depth.to_series() act_phases = self.wet_dry["phase_label"] with cv.localconverter(robjs.default_converter + pandas2ri.converter): phases_df = diveMove._detDive(pd.Series(depth_py), pd.Series(act_phases), dive_thr=dive_thr) # Replace dots with underscore phases_df.columns = (phases_df.columns.str .replace(".", "_", regex=False)) phases_df.set_index(depth_py.index, inplace=True) dive_activity = phases_df.pop("dive_activity") # Dive and post-dive ID should be integer phases_df = phases_df.astype(int) self.dives["row_ids"] = phases_df self._wet_dry["phase_label"] = dive_activity self.params["dives"].update({'dive_thr': dive_thr}) logger.info("Finished detecting dives") def detect_dive_phases(self, dive_model, smooth_par=0.1, knot_factor=3, descent_crit_q=0, ascent_crit_q=0): """Detect dive phases Complete filling the ``dives`` attribute. Parameters ---------- dive_model : {"unimodal", "smooth.spline"} smooth_par : float, optional knot_factor : int, optional descent_crit_q : float, optional ascent_crit_q : float, optional Notes ----- See details for arguments in diveMove's ``calibrateDepth``. Examples -------- ZOC using the "offset" method for convenience >>> from skdiveMove.tests import diveMove2skd >>> tdrX = diveMove2skd("TDRPhases") >>> tdrX.zoc("offset", offset=3) Detect wet/dry phases and dives with 3 m threshold >>> tdrX.detect_wet() >>> tdrX.detect_dives(3) Detect dive phases using the "unimodal" method and selected parameters >>> tdrX.detect_dive_phases("unimodal", descent_crit_q=0.01, ... ascent_crit_q=0, knot_factor=20) """ # Retrieve copy of depth from our own property depth = self.depth_zoc depth_py = depth.to_series() phases_df = self.get_dives_details("row_ids") dive_ids = self.get_dives_details("row_ids", columns="dive_id") ok = (dive_ids > 0) & ~depth_py.isna() xx = pd.Categorical(np.repeat(["X"], phases_df.shape[0]), categories=["D", "DB", "B", "BA", "DA", "A", "X"]) dive_phases = pd.Series(xx, index=phases_df.index) if any(ok): ddepths = depth_py[ok] # diving depths dtimes = ddepths.index dids = dive_ids[ok] idx = np.squeeze(np.argwhere(ok.to_numpy())) time_num = (dtimes - dtimes[0]).total_seconds().to_numpy() divedf = pd.DataFrame({'dive_id': dids.to_numpy(), 'idx': idx, 'depth': ddepths.to_numpy(), 'time_num': time_num}, index=ddepths.index) grouped = divedf.groupby("dive_id") cval_list = [] spl_der_list = [] spl_list = [] for name, grp in grouped: res = _cut_dive(grp, dive_model=dive_model, smooth_par=smooth_par, knot_factor=knot_factor, descent_crit_q=descent_crit_q, ascent_crit_q=ascent_crit_q) dive_phases.loc[grp.index] = (res.pop("label_matrix")[:, 1]) # Splines spl = res.pop("dive_spline") # Convert directly into a dict, with each element turned # into a list of R objects. Access each via # `_get_dive_spline_slot` spl_dict = dict(zip(spl.names, list(spl))) spl_list.append(spl_dict) # Spline derivatives spl_der = res.pop("spline_deriv") spl_der_idx = pd.TimedeltaIndex(spl_der[:, 0], unit="s") spl_der = pd.DataFrame({'y': spl_der[:, 1]}, index=spl_der_idx) spl_der_list.append(spl_der) # Critical values (all that's left in res) cvals = pd.DataFrame(res, index=[name]) cvals.index.rename("dive_id", inplace=True) # Adjust critical indices for Python convention and ensure # integers cvals.iloc[:, :2] = cvals.iloc[:, :2].astype(int) - 1 cval_list.append(cvals) self.dives["model"] = dive_model # Splines self.dives["splines"] = dict(zip(grouped.groups.keys(), spl_list)) self.dives["spline_derivs"] = pd.concat(spl_der_list, keys=(grouped .groups.keys())) self.dives["crit_vals"] = pd.concat(cval_list) else: logger.warning("No dives found") # Update the `dives` attribute self.dives["row_ids"]["dive_phase"] = dive_phases (self.params["dives"] .update(dict(dive_model=dive_model, smooth_par=smooth_par, knot_factor=knot_factor, descent_crit_q=descent_crit_q, ascent_crit_q=ascent_crit_q))) logger.info("Finished detecting dive phases") def get_dives_details(self, key, columns=None): """Accessor for the `dives` attribute Parameters ---------- key : {"row_ids", "model", "splines", "spline_derivs", crit_vals} Name of the key to retrieve. columns : array_like, optional Names of the columns of the dataframe in `key`, when applicable. """ try: okey = self.dives[key] except KeyError: msg = ("\'{}\' is not found.\nAvailable keys: {}" .format(key, self.dives.keys())) logger.error(msg) raise KeyError(msg) else: if okey is None: raise KeyError("\'{}\' not available.".format(key)) if columns: try: odata = okey[columns] except KeyError: msg = ("At least one of the requested columns does not " "exist.\nAvailable columns: {}").format(okey.columns) logger.error(msg) raise KeyError(msg) else: odata = okey return odata def _get_wet_activity(self): return self._wet_dry wet_dry = property(_get_wet_activity) """Wet/dry activity labels Returns ------- pandas.DataFrame DataFrame with columns: `phase_id` and `phase_label` for each measurement. """ def get_phases_params(self, key): """Return parameters used for identifying wet/dry or diving phases. Parameters ---------- key: {'wet_dry', 'dives'} Returns ------- out : dict """ try: params = self.params[key] except KeyError: msg = "key must be one of: {}".format(self.params.keys()) logger.error(msg) raise KeyError(msg) return params def _get_dive_spline_slot(self, diveNo, name): """Accessor for the R objects in `dives`["splines"] Private method to retrieve elements easily. Elements can be accessed individually as is, but some elements are handled specially. Parameters ---------- diveNo : int or float Which dive number to retrieve spline details for. name : str Element to retrieve. {"data", "xy", "knots", "coefficients", "order", "lambda.opt", "sigmasq", "degree", "g", "a", "b", "variter"} """ # Safe to assume these are all scalars, based on the current # default settings in diveMove's `.cutDive` scalars = ["order", "lambda.opt", "sigmasq", "degree", "g", "a", "b", "variter"] idata = self.get_dives_details("splines")[diveNo] if name == "data": x = pd.TimedeltaIndex(np.array(idata[name][0]), unit="s") odata = pd.Series(np.array(idata[name][1]), index=x) elif name == "xy": x = pd.TimedeltaIndex(np.array(idata["x"]), unit="s") odata = pd.Series(np.array(idata["y"]), index=x) elif name in scalars: odata = np.float(idata[name][0]) else: odata = np.array(idata[name]) return odata def get_dive_deriv(self, diveNo, phase=None): """Retrieve depth spline derivative for a given dive Parameters ---------- diveNo : int Dive number to retrieve derivative for. phase : {"descent", "bottom", "ascent"} If provided, the dive phase to retrieve data for. Returns ------- out : pandas.DataFrame """ der = self.get_dives_details("spline_derivs").loc[diveNo] crit_vals = self.get_dives_details("crit_vals").loc[diveNo] spl_data = self.get_dives_details("splines")[diveNo]["data"] spl_times = np.array(spl_data[0]) # x row is time steps in (s) if phase == "descent": descent_crit = int(crit_vals["descent_crit"]) deltat_crit = pd.Timedelta(spl_times[descent_crit], unit="s") oder = der.loc[:deltat_crit] elif phase == "bottom": descent_crit = int(crit_vals["descent_crit"]) deltat1 = pd.Timedelta(spl_times[descent_crit], unit="s") ascent_crit = int(crit_vals["ascent_crit"]) deltat2 = pd.Timedelta(spl_times[ascent_crit], unit="s") oder = der[(der.index >= deltat1) & (der.index <= deltat2)] elif phase == "ascent": ascent_crit = int(crit_vals["ascent_crit"]) deltat_crit = pd.Timedelta(spl_times[ascent_crit], unit="s") oder = der.loc[deltat_crit:] elif phase is None: oder = der else: msg = "`phase` must be 'descent', 'bottom' or 'ascent'" logger.error(msg) raise KeyError(msg) return oder def _get_dive_deriv_stats(self, diveNo): """Calculate stats for the depth derivative of a given dive """ desc = self.get_dive_deriv(diveNo, "descent") bott = self.get_dive_deriv(diveNo, "bottom") asc = self.get_dive_deriv(diveNo, "ascent") # Rename DataFrame to match diveNo desc_sts = (pd.DataFrame(desc.describe().iloc[1:]).transpose() .add_prefix("descD_").rename({"y": diveNo})) bott_sts = (pd.DataFrame(bott.describe().iloc[1:]).transpose() .add_prefix("bottD_").rename({"y": diveNo})) asc_sts = (pd.DataFrame(asc.describe().iloc[1:]).transpose() .add_prefix("ascD_").rename({"y": diveNo})) sts = pd.merge(desc_sts, bott_sts, left_index=True, right_index=True) sts = pd.merge(sts, asc_sts, left_index=True, right_index=True) return sts def time_budget(self, ignore_z=True, ignore_du=True): """Summary of wet/dry activities at the broadest time scale Parameters ---------- ignore_z : bool, optional Whether to ignore trivial aquatic periods. ignore_du : bool, optional Whether to ignore diving and underwater periods. Returns ------- out : pandas.DataFrame DataFrame indexed by phase id, with categorical activity label for each phase, and beginning and ending times. Examples -------- >>> from skdiveMove.tests import diveMove2skd >>> tdrX = diveMove2skd("TDRPhases") >>> tdrX.zoc("offset", offset=3) >>> tdrX.detect_wet() >>> tdrX.detect_dives(3) >>> tdrX.detect_dive_phases("unimodal", descent_crit_q=0.01, ... ascent_crit_q=0, knot_factor=20) >>> tdrX.time_budget(ignore_z=True, ... ignore_du=True) # doctest: +ELLIPSIS beg phase_label end phase_id 1 2002-01-05 ... L 2002-01-05 ... ... """ phase_lab = self.wet_dry["phase_label"] idx_name = phase_lab.index.name labels = phase_lab.reset_index() if ignore_z: labels = labels.mask(labels == "Z", "L") if ignore_du: labels = labels.mask((labels == "U") | (labels == "D"), "W") grp_key = rle_key(labels["phase_label"]).rename("phase_id") labels_grp = labels.groupby(grp_key) begs = labels_grp.first().rename(columns={idx_name: "beg"}) ends = labels_grp.last()[idx_name].rename("end") return pd.concat((begs, ends), axis=1) def stamp_dives(self, ignore_z=True): """Identify the wet activity phase corresponding to each dive Parameters ---------- ignore_z : bool, optional Whether to ignore trivial aquatic periods. Returns ------- out : pandas.DataFrame DataFrame indexed by dive ID, and three columns identifying which phase thy are in, and the beginning and ending time stamps. Examples -------- >>> from skdiveMove.tests import diveMove2skd >>> tdrX = diveMove2skd("TDRPhases") >>> tdrX.zoc("offset", offset=3) >>> tdrX.detect_wet() >>> tdrX.detect_dives(3) >>> tdrX.detect_dive_phases("unimodal", descent_crit_q=0.01, ... ascent_crit_q=0, knot_factor=20) >>> tdrX.stamp_dives(ignore_z=True) # doctest: +ELLIPSIS phase_id beg end dive_id 1 2 2002-01-05 ... 2002-01-06 ... """ phase_lab = self.wet_dry["phase_label"] idx_name = phase_lab.index.name # "U" and "D" considered as "W" here phase_lab = phase_lab.mask(phase_lab.isin(["U", "D"]), "W") if ignore_z: phase_lab = phase_lab.mask(phase_lab == "Z", "L") dive_ids = self.get_dives_details("row_ids", columns="dive_id") grp_key = rle_key(phase_lab).rename("phase_id") isdive = dive_ids > 0 merged = (pd.concat((grp_key, dive_ids, phase_lab), axis=1) .loc[isdive, :].reset_index()) # Rest index to use in first() and last() merged_grp = merged.groupby("phase_id") dives_ll = [] for name, group in merged_grp: dives_uniq = pd.Series(group["dive_id"].unique(), name="dive_id") beg = [group[idx_name].iloc[0]] * dives_uniq.size end = [group[idx_name].iloc[-1]] * dives_uniq.size dive_df = pd.DataFrame({'phase_id': [name] * dives_uniq.size, 'beg': beg, 'end': end}, index=dives_uniq) dives_ll.append(dive_df) dives_all = pd.concat(dives_ll) return dives_all
0.862988
0.258595
import logging import pandas as pd from skdiveMove.tdrsource import TDRSource from skdiveMove.core import robjs, cv, pandas2ri, diveMove from skdiveMove.helpers import _append_xr_attr logger = logging.getLogger(__name__) # Add the null handler if importing as library; whatever using this library # should set up logging.basicConfig() as needed logger.addHandler(logging.NullHandler()) class ZOC(TDRSource): """Perform zero offset correction See help(ZOC) for inherited attributes. Attributes ---------- zoc_params depth_zoc zoc_method : str Name of the ZOC method used. zoc_filters : pandas.DataFrame DataFrame with output filters for method="filter" """ def __init__(self, *args, **kwargs): """Initialize ZOC instance Parameters ---------- *args : positional arguments Passed to :meth:`TDRSource.__init__` **kwargs : keyword arguments Passed to :meth:`TDRSource.__init__` """ TDRSource.__init__(self, *args, **kwargs) self.zoc_method = None self._zoc_params = None self._depth_zoc = None self.zoc_filters = None def __str__(self): base = TDRSource.__str__(self) meth, params = self.zoc_params return (base + ("\n{0:<20} {1}\n{2:<20} {3}" .format("ZOC method:", meth, "ZOC parameters:", params))) def _offset_depth(self, offset=0): """Perform ZOC with "offset" method Parameters ---------- offset : float, optional Value to subtract from measured depth. Notes ----- More details in diveMove's ``calibrateDepth`` function. """ # Retrieve copy of depth from our own property depth = self.depth self.zoc_method = "offset" self._zoc_params = dict(offset=offset) depth_zoc = depth - offset depth_zoc[depth_zoc < 0] = 0 _append_xr_attr(depth_zoc, "history", "ZOC") self._depth_zoc = depth_zoc def _filter_depth(self, k, probs, depth_bounds=None, na_rm=True): """Perform ZOC with "filter" method Parameters ---------- k : array_like probs : array_like **kwargs : optional keyword arguments For this method: ('depth_bounds' (defaults to range), 'na_rm' (defaults to True)). Notes ----- More details in diveMove's ``calibrateDepth`` function. """ self.zoc_method = "filter" # Retrieve copy of depth from our own property depth = self.depth depth_ser = depth.to_series() self._zoc_params = dict(k=k, probs=probs, depth_bounds=depth_bounds, na_rm=na_rm) depthmtx = self._depth_filter_r(depth_ser, **self._zoc_params) depth_zoc = depthmtx.pop("depth_adj") depth_zoc[depth_zoc < 0] = 0 depth_zoc = depth_zoc.rename("depth").to_xarray() depth_zoc.attrs = depth.attrs _append_xr_attr(depth_zoc, "history", "ZOC") self._depth_zoc = depth_zoc self.zoc_filters = depthmtx def zoc(self, method="filter", **kwargs): """Apply zero offset correction to depth measurements Parameters ---------- method : {"filter", "offset"} Name of method to use for zero offset correction. **kwargs : optional keyword arguments Passed to the chosen method (:meth:`offset_depth`, :meth:`filter_depth`) Notes ----- More details in diveMove's ``calibrateDepth`` function. Examples -------- ZOC using the "offset" method >>> from skdiveMove.tests import diveMove2skd >>> tdrX = diveMove2skd() >>> tdrX.zoc("offset", offset=3) Using the "filter" method >>> # Window lengths and probabilities >>> DB = [-2, 5] >>> K = [3, 5760] >>> P = [0.5, 0.02] >>> tdrX.zoc(k=K, probs=P, depth_bounds=DB) Plot the filters that were applied >>> tdrX.plot_zoc(ylim=[-1, 10]) # doctest: +ELLIPSIS (<Figure ... with 3 Axes>, array([<AxesSubplot:...>, <AxesSubplot:...>, <AxesSubplot:...>], dtype=object)) """ if method == "offset": offset = kwargs.pop("offset", 0) self._offset_depth(offset) elif method == "filter": k = kwargs.pop("k") # must exist P = kwargs.pop("probs") # must exist # Default depth bounds equal measured depth range DB = kwargs.pop("depth_bounds", [self.depth.min(), self.depth.max()]) # default as in `_depth_filter` na_rm = kwargs.pop("na_rm", True) self._filter_depth(k=k, probs=P, depth_bounds=DB, na_rm=na_rm) else: logger.warning("Method {} is not implemented" .format(method)) logger.info("Finished ZOC") def _depth_filter_r(self, depth, k, probs, depth_bounds, na_rm=True): """Filter method for zero offset correction via `diveMove` Parameters ---------- depth : pandas.Series k : array_like probs : array_like depth_bounds : array_like na_rm : bool, optional Returns ------- out : pandas.DataFrame Time-indexed DataFrame with a column for each filter applied, and a column `depth_adj` for corrected depth. """ with cv.localconverter(robjs.default_converter + pandas2ri.converter): depthmtx = diveMove._depthFilter(depth, pd.Series(k), pd.Series(probs), pd.Series(depth_bounds), na_rm) colnames = ["k{0}_p{1}".format(k, p) for k, p in zip(k, probs)] colnames.append("depth_adj") return pd.DataFrame(depthmtx, index=depth.index, columns=colnames) def _get_depth(self): return self._depth_zoc depth_zoc = property(_get_depth) """Depth array accessor Returns ------- xarray.DataArray """ def _get_params(self): return (self.zoc_method, self._zoc_params) zoc_params = property(_get_params) """Parameters used with method for zero-offset correction Returns ------- method : str Method used for ZOC. params : dict Dictionary with parameters and values used for ZOC. """
scikit-diveMove
/scikit-diveMove-0.3.0.tar.gz/scikit-diveMove-0.3.0/skdiveMove/zoc.py
zoc.py
import logging import pandas as pd from skdiveMove.tdrsource import TDRSource from skdiveMove.core import robjs, cv, pandas2ri, diveMove from skdiveMove.helpers import _append_xr_attr logger = logging.getLogger(__name__) # Add the null handler if importing as library; whatever using this library # should set up logging.basicConfig() as needed logger.addHandler(logging.NullHandler()) class ZOC(TDRSource): """Perform zero offset correction See help(ZOC) for inherited attributes. Attributes ---------- zoc_params depth_zoc zoc_method : str Name of the ZOC method used. zoc_filters : pandas.DataFrame DataFrame with output filters for method="filter" """ def __init__(self, *args, **kwargs): """Initialize ZOC instance Parameters ---------- *args : positional arguments Passed to :meth:`TDRSource.__init__` **kwargs : keyword arguments Passed to :meth:`TDRSource.__init__` """ TDRSource.__init__(self, *args, **kwargs) self.zoc_method = None self._zoc_params = None self._depth_zoc = None self.zoc_filters = None def __str__(self): base = TDRSource.__str__(self) meth, params = self.zoc_params return (base + ("\n{0:<20} {1}\n{2:<20} {3}" .format("ZOC method:", meth, "ZOC parameters:", params))) def _offset_depth(self, offset=0): """Perform ZOC with "offset" method Parameters ---------- offset : float, optional Value to subtract from measured depth. Notes ----- More details in diveMove's ``calibrateDepth`` function. """ # Retrieve copy of depth from our own property depth = self.depth self.zoc_method = "offset" self._zoc_params = dict(offset=offset) depth_zoc = depth - offset depth_zoc[depth_zoc < 0] = 0 _append_xr_attr(depth_zoc, "history", "ZOC") self._depth_zoc = depth_zoc def _filter_depth(self, k, probs, depth_bounds=None, na_rm=True): """Perform ZOC with "filter" method Parameters ---------- k : array_like probs : array_like **kwargs : optional keyword arguments For this method: ('depth_bounds' (defaults to range), 'na_rm' (defaults to True)). Notes ----- More details in diveMove's ``calibrateDepth`` function. """ self.zoc_method = "filter" # Retrieve copy of depth from our own property depth = self.depth depth_ser = depth.to_series() self._zoc_params = dict(k=k, probs=probs, depth_bounds=depth_bounds, na_rm=na_rm) depthmtx = self._depth_filter_r(depth_ser, **self._zoc_params) depth_zoc = depthmtx.pop("depth_adj") depth_zoc[depth_zoc < 0] = 0 depth_zoc = depth_zoc.rename("depth").to_xarray() depth_zoc.attrs = depth.attrs _append_xr_attr(depth_zoc, "history", "ZOC") self._depth_zoc = depth_zoc self.zoc_filters = depthmtx def zoc(self, method="filter", **kwargs): """Apply zero offset correction to depth measurements Parameters ---------- method : {"filter", "offset"} Name of method to use for zero offset correction. **kwargs : optional keyword arguments Passed to the chosen method (:meth:`offset_depth`, :meth:`filter_depth`) Notes ----- More details in diveMove's ``calibrateDepth`` function. Examples -------- ZOC using the "offset" method >>> from skdiveMove.tests import diveMove2skd >>> tdrX = diveMove2skd() >>> tdrX.zoc("offset", offset=3) Using the "filter" method >>> # Window lengths and probabilities >>> DB = [-2, 5] >>> K = [3, 5760] >>> P = [0.5, 0.02] >>> tdrX.zoc(k=K, probs=P, depth_bounds=DB) Plot the filters that were applied >>> tdrX.plot_zoc(ylim=[-1, 10]) # doctest: +ELLIPSIS (<Figure ... with 3 Axes>, array([<AxesSubplot:...>, <AxesSubplot:...>, <AxesSubplot:...>], dtype=object)) """ if method == "offset": offset = kwargs.pop("offset", 0) self._offset_depth(offset) elif method == "filter": k = kwargs.pop("k") # must exist P = kwargs.pop("probs") # must exist # Default depth bounds equal measured depth range DB = kwargs.pop("depth_bounds", [self.depth.min(), self.depth.max()]) # default as in `_depth_filter` na_rm = kwargs.pop("na_rm", True) self._filter_depth(k=k, probs=P, depth_bounds=DB, na_rm=na_rm) else: logger.warning("Method {} is not implemented" .format(method)) logger.info("Finished ZOC") def _depth_filter_r(self, depth, k, probs, depth_bounds, na_rm=True): """Filter method for zero offset correction via `diveMove` Parameters ---------- depth : pandas.Series k : array_like probs : array_like depth_bounds : array_like na_rm : bool, optional Returns ------- out : pandas.DataFrame Time-indexed DataFrame with a column for each filter applied, and a column `depth_adj` for corrected depth. """ with cv.localconverter(robjs.default_converter + pandas2ri.converter): depthmtx = diveMove._depthFilter(depth, pd.Series(k), pd.Series(probs), pd.Series(depth_bounds), na_rm) colnames = ["k{0}_p{1}".format(k, p) for k, p in zip(k, probs)] colnames.append("depth_adj") return pd.DataFrame(depthmtx, index=depth.index, columns=colnames) def _get_depth(self): return self._depth_zoc depth_zoc = property(_get_depth) """Depth array accessor Returns ------- xarray.DataArray """ def _get_params(self): return (self.zoc_method, self._zoc_params) zoc_params = property(_get_params) """Parameters used with method for zero-offset correction Returns ------- method : str Method used for ZOC. params : dict Dictionary with parameters and values used for ZOC. """
0.844088
0.329109
import pandas as pd import matplotlib.pyplot as plt from pandas.plotting import register_matplotlib_converters register_matplotlib_converters() def _night(times, sunrise_time, sunset_time): """Construct Series with sunset and sunrise times for given dates Parameters ---------- times : pandas.Series (N,) array with depth measurements. sunrise_time : str sunset_time : str Returns ------- tuple Two pandas.Series (sunsets, sunrises) """ tmin = times.min().strftime("%Y-%m-%d ") tmax = times.max().strftime("%Y-%m-%d ") sunsets = pd.date_range(start=tmin + sunset_time, end=tmax + sunset_time, freq="1D") tmin1 = (times.min() + pd.Timedelta(1, unit="d")).strftime("%Y-%m-%d ") tmax1 = (times.max() + pd.Timedelta(1, unit="d")).strftime("%Y-%m-%d ") sunrises = pd.date_range(start=tmin1 + sunrise_time, end=tmax1 + sunrise_time, freq="1D") return (sunsets, sunrises) def _plot_dry_time(times_dataframe, ax): """Fill a vertical span between beginning/ending times in DataFrame Parameters ---------- times_dataframe : pandas.DataFrame ax: Axes object """ for idx, row in times_dataframe.iterrows(): ax.axvspan(row[0], row[1], ymin=0.99, facecolor="tan", edgecolor=None, alpha=0.6) def plot_tdr(depth, concur_vars=None, xlim=None, depth_lim=None, xlab="time [dd-mmm hh:mm]", ylab_depth="depth [m]", concur_var_titles=None, xlab_format="%d-%b %H:%M", sunrise_time="06:00:00", sunset_time="18:00:00", night_col="gray", dry_time=None, phase_cat=None, key=True, **kwargs): """Plot time, depth, and other concurrent data Parameters ---------- depth : pandas.Series (N,) array with depth measurements. concur_vars : pandas.Series or pandas.Dataframe (N,) Series or dataframe with additional data to plot in subplot. xlim : 2-tuple/list, optional Minimum and maximum limits for ``x`` axis. Ignored when ``concur_vars=None``. ylim : 2-tuple/list, optional Minimum and maximum limits for ``y`` axis for data other than depth. depth_lim : 2-tuple/list, optional Minimum and maximum limits for depth to plot. xlab : str, optional Label for ``x`` axis. ylab_depth : str, optional Label for ``y`` axis for depth. concur_var_titles : str or list, optional String or list of strings with y-axis labels for `concur_vars`. xlab_format : str, optional Format string for formatting the x axis. sunrise_time : str, optional Time of sunrise, in 24 hr format. This is used for shading night time. sunset_time : str, optional Time of sunset, in 24 hr format. This is used for shading night time. night_col : str, optional Color for shading night time. dry_time : pandas.DataFrame, optional Two-column DataFrame with beginning and ending times corresponding to periods considered to be dry. phase_cat : pandas.Series, optional Categorical series dividing rows into sections. **kwargs : optional keyword arguments Returns ------- tuple Pyplot Figure and Axes instances. """ sunsets, sunrises = _night(depth.index, sunset_time=sunset_time, sunrise_time=sunrise_time) def _plot_phase_cat(ser, ax, legend=True): """Scatter plot and legend of series coloured by categories""" cats = phase_cat.cat.categories cat_codes = phase_cat.cat.codes isna_ser = ser.isna() ser_nona = ser.dropna() scatter = ax.scatter(ser_nona.index, ser_nona, s=12, marker="o", c=cat_codes[~isna_ser]) if legend: handles, _ = scatter.legend_elements() ax.legend(handles, cats, loc="lower right", ncol=len(cat_codes)) if concur_vars is None: fig, axs = plt.subplots(1, 1) axs.set_ylabel(ylab_depth) depth.plot(ax=axs, color="k", **kwargs) axs.set_xlabel("") axs.axhline(0, linestyle="--", linewidth=0.75, color="k") for beg, end in zip(sunsets, sunrises): axs.axvspan(beg, end, facecolor=night_col, edgecolor=None, alpha=0.3) if (phase_cat is not None): _plot_phase_cat(depth, axs) if (dry_time is not None): _plot_dry_time(dry_time, axs) if (xlim is not None): axs.set_xlim(xlim) if (depth_lim is not None): axs.set_ylim(depth_lim) axs.invert_yaxis() else: full_df = pd.concat((depth, concur_vars), axis=1) nplots = full_df.shape[1] depth_ser = full_df.iloc[:, 0] concur_df = full_df.iloc[:, 1:] fig, axs = plt.subplots(nplots, 1, sharex=True) axs[0].set_ylabel(ylab_depth) depth_ser.plot(ax=axs[0], color="k", **kwargs) axs[0].set_xlabel("") axs[0].axhline(0, linestyle="--", linewidth=0.75, color="k") concur_df.plot(ax=axs[1:], subplots=True, legend=False, **kwargs) for i, col in enumerate(concur_df.columns): if (concur_var_titles is not None): axs[i + 1].set_ylabel(concur_var_titles[i]) else: axs[i + 1].set_ylabel(col) axs[i + 1].axhline(0, linestyle="--", linewidth=0.75, color="k") if (xlim is not None): axs[i + 1].set_xlim(xlim) for i, ax in enumerate(axs): for beg, end in zip(sunsets, sunrises): ax.axvspan(beg, end, facecolor=night_col, edgecolor=None, alpha=0.3) if (dry_time is not None): _plot_dry_time(dry_time, ax) if (phase_cat is not None): _plot_phase_cat(depth_ser, axs[0]) for i, col in enumerate(concur_df.columns): _plot_phase_cat(concur_df.loc[:, col], axs[i + 1], False) if (depth_lim is not None): axs[0].set_ylim(depth_lim) axs[0].invert_yaxis() fig.tight_layout() return (fig, axs) def _plot_zoc_filters(depth, zoc_filters, xlim=None, ylim=None, ylab="Depth [m]", **kwargs): """Plot zero offset correction filters Parameters ---------- depth : pandas.Series Measured depth time series, indexed by datetime. zoc_filters : pandas.DataFrame DataFrame with ZOC filters in columns. Must have the same number of records as `depth`. xlim : 2-tuple/list ylim : 2-tuple/list ylab : str Label for `y` axis. **kwargs : optional keyword arguments Passed to `matplotlib.pyplot.subplots`. It can be any keyword, except for `sharex` or `sharey`. Returns ------- tuple Pyplot Figure and Axes instances. """ nfilters = zoc_filters.shape[1] npanels = 3 lastflts = [1] # col idx of second filters if nfilters > 2: # append col idx of last filter lastflts.append(nfilters - 1) fig, axs = plt.subplots(npanels, 1, sharex=True, sharey=True, **kwargs) if xlim: axs[0].set_xlim(xlim) else: depth_nona = depth.dropna() axs[0].set_xlim((depth_nona.index.min(), depth_nona.index.max())) if ylim: axs[0].set_ylim(ylim) else: axs[0].set_ylim((depth.min(), depth.max())) for ax in axs: ax.set_ylabel(ylab) ax.invert_yaxis() ax.axhline(0, linestyle="--", linewidth=0.75, color="k") depth.plot(ax=axs[0], color="lightgray", label="input") axs[0].legend(loc="lower left") # Need to plot legend for input depth here filter_names = zoc_filters.columns (zoc_filters.iloc[:, 0] .plot(ax=axs[1], label=filter_names[0])) # first filter for i in lastflts: zoc_filters.iloc[:, i].plot(ax=axs[1], label=filter_names[i]) axs[1].legend(loc="lower left") # ZOC depth depth_zoc = depth - zoc_filters.iloc[:, -1] depth_zoc_label = ("input - {}" .format(zoc_filters.columns[-1])) (depth_zoc .plot(ax=axs[2], color="k", rot=0, label=depth_zoc_label)) axs[2].legend(loc="lower left") axs[2].set_xlabel("") fig.tight_layout() return (fig, axs) def plot_dive_model(x, depth_s, depth_deriv, d_crit, a_crit, d_crit_rate, a_crit_rate, leg_title=None, **kwargs): """Plot dive model Parameters ---------- x : pandas.Series Time-indexed depth measurements. depth_s : pandas.Series Time-indexed smoothed depth. depth_deriv : pandas.Series Time-indexed derivative of depth smoothing spline. d_crit : int Integer denoting the index where the descent ends in the observed time series. a_crit : int Integer denoting the index where the ascent begins in the observed time series. d_crit_rate : float Vertical rate of descent corresponding to the quantile used. a_crit_rate : Vertical rate of ascent corresponding to the quantile used. leg_title : str, optional Title for the plot legend (e.g. dive number being plotted). **kwargs : optional keyword arguments Passed to `matplotlib.pyplot.subplots`. It can be any keyword, except `sharex`. Returns ------- tuple Pyplot Figure and Axes instances. Notes ----- The function is homologous to diveMove's `plotDiveModel`. """ d_crit_time = x.index[d_crit] a_crit_time = x.index[a_crit] fig, axs = plt.subplots(2, 1, sharex=True, **kwargs) ax1, ax2 = axs ax1.invert_yaxis() ax1.set_ylabel("Depth") ax2.set_ylabel("First derivative") ax1.plot(x, marker="o", linewidth=0.7, color="k", label="input") ax1.plot(depth_s, "--", label="smooth") ax1.plot(x.iloc[:d_crit + 1], color="C1", label="descent") ax1.plot(x.iloc[a_crit:], color="C2", label="ascent") ax1.legend(loc="upper center", title=leg_title, ncol=2) ax2.plot(depth_deriv, linewidth=0.5, color="k") # derivative dstyle = dict(marker=".", linestyle="None") ax2.plot(depth_deriv[depth_deriv > d_crit_rate].loc[:d_crit_time], color="C1", **dstyle) # descent ax2.plot(depth_deriv[depth_deriv < a_crit_rate].loc[a_crit_time:], color="C2", **dstyle) # ascent qstyle = dict(linestyle="--", linewidth=0.5, color="k") ax2.axhline(d_crit_rate, **qstyle) ax2.axhline(a_crit_rate, **qstyle) ax2.axvline(d_crit_time, **qstyle) ax2.axvline(a_crit_time, **qstyle) # Text annotation qiter = zip(x.index[[0, 0]], [d_crit_rate, a_crit_rate], [r"descent $\hat{q}$", r"ascent $\hat{q}$"], ["bottom", "top"]) for xpos, qval, txt, valign in qiter: ax2.text(xpos, qval, txt, va=valign) titer = zip([d_crit_time, a_crit_time], [0, 0], ["descent", "ascent"], ["right", "left"]) for ttime, ypos, txt, halign in titer: ax2.text(ttime, ypos, txt, ha=halign) return (fig, (ax1, ax2)) if __name__ == '__main__': from .tdr import get_diveMove_sample_data tdrX = get_diveMove_sample_data() print(tdrX)
scikit-diveMove
/scikit-diveMove-0.3.0.tar.gz/scikit-diveMove-0.3.0/skdiveMove/plotting.py
plotting.py
import pandas as pd import matplotlib.pyplot as plt from pandas.plotting import register_matplotlib_converters register_matplotlib_converters() def _night(times, sunrise_time, sunset_time): """Construct Series with sunset and sunrise times for given dates Parameters ---------- times : pandas.Series (N,) array with depth measurements. sunrise_time : str sunset_time : str Returns ------- tuple Two pandas.Series (sunsets, sunrises) """ tmin = times.min().strftime("%Y-%m-%d ") tmax = times.max().strftime("%Y-%m-%d ") sunsets = pd.date_range(start=tmin + sunset_time, end=tmax + sunset_time, freq="1D") tmin1 = (times.min() + pd.Timedelta(1, unit="d")).strftime("%Y-%m-%d ") tmax1 = (times.max() + pd.Timedelta(1, unit="d")).strftime("%Y-%m-%d ") sunrises = pd.date_range(start=tmin1 + sunrise_time, end=tmax1 + sunrise_time, freq="1D") return (sunsets, sunrises) def _plot_dry_time(times_dataframe, ax): """Fill a vertical span between beginning/ending times in DataFrame Parameters ---------- times_dataframe : pandas.DataFrame ax: Axes object """ for idx, row in times_dataframe.iterrows(): ax.axvspan(row[0], row[1], ymin=0.99, facecolor="tan", edgecolor=None, alpha=0.6) def plot_tdr(depth, concur_vars=None, xlim=None, depth_lim=None, xlab="time [dd-mmm hh:mm]", ylab_depth="depth [m]", concur_var_titles=None, xlab_format="%d-%b %H:%M", sunrise_time="06:00:00", sunset_time="18:00:00", night_col="gray", dry_time=None, phase_cat=None, key=True, **kwargs): """Plot time, depth, and other concurrent data Parameters ---------- depth : pandas.Series (N,) array with depth measurements. concur_vars : pandas.Series or pandas.Dataframe (N,) Series or dataframe with additional data to plot in subplot. xlim : 2-tuple/list, optional Minimum and maximum limits for ``x`` axis. Ignored when ``concur_vars=None``. ylim : 2-tuple/list, optional Minimum and maximum limits for ``y`` axis for data other than depth. depth_lim : 2-tuple/list, optional Minimum and maximum limits for depth to plot. xlab : str, optional Label for ``x`` axis. ylab_depth : str, optional Label for ``y`` axis for depth. concur_var_titles : str or list, optional String or list of strings with y-axis labels for `concur_vars`. xlab_format : str, optional Format string for formatting the x axis. sunrise_time : str, optional Time of sunrise, in 24 hr format. This is used for shading night time. sunset_time : str, optional Time of sunset, in 24 hr format. This is used for shading night time. night_col : str, optional Color for shading night time. dry_time : pandas.DataFrame, optional Two-column DataFrame with beginning and ending times corresponding to periods considered to be dry. phase_cat : pandas.Series, optional Categorical series dividing rows into sections. **kwargs : optional keyword arguments Returns ------- tuple Pyplot Figure and Axes instances. """ sunsets, sunrises = _night(depth.index, sunset_time=sunset_time, sunrise_time=sunrise_time) def _plot_phase_cat(ser, ax, legend=True): """Scatter plot and legend of series coloured by categories""" cats = phase_cat.cat.categories cat_codes = phase_cat.cat.codes isna_ser = ser.isna() ser_nona = ser.dropna() scatter = ax.scatter(ser_nona.index, ser_nona, s=12, marker="o", c=cat_codes[~isna_ser]) if legend: handles, _ = scatter.legend_elements() ax.legend(handles, cats, loc="lower right", ncol=len(cat_codes)) if concur_vars is None: fig, axs = plt.subplots(1, 1) axs.set_ylabel(ylab_depth) depth.plot(ax=axs, color="k", **kwargs) axs.set_xlabel("") axs.axhline(0, linestyle="--", linewidth=0.75, color="k") for beg, end in zip(sunsets, sunrises): axs.axvspan(beg, end, facecolor=night_col, edgecolor=None, alpha=0.3) if (phase_cat is not None): _plot_phase_cat(depth, axs) if (dry_time is not None): _plot_dry_time(dry_time, axs) if (xlim is not None): axs.set_xlim(xlim) if (depth_lim is not None): axs.set_ylim(depth_lim) axs.invert_yaxis() else: full_df = pd.concat((depth, concur_vars), axis=1) nplots = full_df.shape[1] depth_ser = full_df.iloc[:, 0] concur_df = full_df.iloc[:, 1:] fig, axs = plt.subplots(nplots, 1, sharex=True) axs[0].set_ylabel(ylab_depth) depth_ser.plot(ax=axs[0], color="k", **kwargs) axs[0].set_xlabel("") axs[0].axhline(0, linestyle="--", linewidth=0.75, color="k") concur_df.plot(ax=axs[1:], subplots=True, legend=False, **kwargs) for i, col in enumerate(concur_df.columns): if (concur_var_titles is not None): axs[i + 1].set_ylabel(concur_var_titles[i]) else: axs[i + 1].set_ylabel(col) axs[i + 1].axhline(0, linestyle="--", linewidth=0.75, color="k") if (xlim is not None): axs[i + 1].set_xlim(xlim) for i, ax in enumerate(axs): for beg, end in zip(sunsets, sunrises): ax.axvspan(beg, end, facecolor=night_col, edgecolor=None, alpha=0.3) if (dry_time is not None): _plot_dry_time(dry_time, ax) if (phase_cat is not None): _plot_phase_cat(depth_ser, axs[0]) for i, col in enumerate(concur_df.columns): _plot_phase_cat(concur_df.loc[:, col], axs[i + 1], False) if (depth_lim is not None): axs[0].set_ylim(depth_lim) axs[0].invert_yaxis() fig.tight_layout() return (fig, axs) def _plot_zoc_filters(depth, zoc_filters, xlim=None, ylim=None, ylab="Depth [m]", **kwargs): """Plot zero offset correction filters Parameters ---------- depth : pandas.Series Measured depth time series, indexed by datetime. zoc_filters : pandas.DataFrame DataFrame with ZOC filters in columns. Must have the same number of records as `depth`. xlim : 2-tuple/list ylim : 2-tuple/list ylab : str Label for `y` axis. **kwargs : optional keyword arguments Passed to `matplotlib.pyplot.subplots`. It can be any keyword, except for `sharex` or `sharey`. Returns ------- tuple Pyplot Figure and Axes instances. """ nfilters = zoc_filters.shape[1] npanels = 3 lastflts = [1] # col idx of second filters if nfilters > 2: # append col idx of last filter lastflts.append(nfilters - 1) fig, axs = plt.subplots(npanels, 1, sharex=True, sharey=True, **kwargs) if xlim: axs[0].set_xlim(xlim) else: depth_nona = depth.dropna() axs[0].set_xlim((depth_nona.index.min(), depth_nona.index.max())) if ylim: axs[0].set_ylim(ylim) else: axs[0].set_ylim((depth.min(), depth.max())) for ax in axs: ax.set_ylabel(ylab) ax.invert_yaxis() ax.axhline(0, linestyle="--", linewidth=0.75, color="k") depth.plot(ax=axs[0], color="lightgray", label="input") axs[0].legend(loc="lower left") # Need to plot legend for input depth here filter_names = zoc_filters.columns (zoc_filters.iloc[:, 0] .plot(ax=axs[1], label=filter_names[0])) # first filter for i in lastflts: zoc_filters.iloc[:, i].plot(ax=axs[1], label=filter_names[i]) axs[1].legend(loc="lower left") # ZOC depth depth_zoc = depth - zoc_filters.iloc[:, -1] depth_zoc_label = ("input - {}" .format(zoc_filters.columns[-1])) (depth_zoc .plot(ax=axs[2], color="k", rot=0, label=depth_zoc_label)) axs[2].legend(loc="lower left") axs[2].set_xlabel("") fig.tight_layout() return (fig, axs) def plot_dive_model(x, depth_s, depth_deriv, d_crit, a_crit, d_crit_rate, a_crit_rate, leg_title=None, **kwargs): """Plot dive model Parameters ---------- x : pandas.Series Time-indexed depth measurements. depth_s : pandas.Series Time-indexed smoothed depth. depth_deriv : pandas.Series Time-indexed derivative of depth smoothing spline. d_crit : int Integer denoting the index where the descent ends in the observed time series. a_crit : int Integer denoting the index where the ascent begins in the observed time series. d_crit_rate : float Vertical rate of descent corresponding to the quantile used. a_crit_rate : Vertical rate of ascent corresponding to the quantile used. leg_title : str, optional Title for the plot legend (e.g. dive number being plotted). **kwargs : optional keyword arguments Passed to `matplotlib.pyplot.subplots`. It can be any keyword, except `sharex`. Returns ------- tuple Pyplot Figure and Axes instances. Notes ----- The function is homologous to diveMove's `plotDiveModel`. """ d_crit_time = x.index[d_crit] a_crit_time = x.index[a_crit] fig, axs = plt.subplots(2, 1, sharex=True, **kwargs) ax1, ax2 = axs ax1.invert_yaxis() ax1.set_ylabel("Depth") ax2.set_ylabel("First derivative") ax1.plot(x, marker="o", linewidth=0.7, color="k", label="input") ax1.plot(depth_s, "--", label="smooth") ax1.plot(x.iloc[:d_crit + 1], color="C1", label="descent") ax1.plot(x.iloc[a_crit:], color="C2", label="ascent") ax1.legend(loc="upper center", title=leg_title, ncol=2) ax2.plot(depth_deriv, linewidth=0.5, color="k") # derivative dstyle = dict(marker=".", linestyle="None") ax2.plot(depth_deriv[depth_deriv > d_crit_rate].loc[:d_crit_time], color="C1", **dstyle) # descent ax2.plot(depth_deriv[depth_deriv < a_crit_rate].loc[a_crit_time:], color="C2", **dstyle) # ascent qstyle = dict(linestyle="--", linewidth=0.5, color="k") ax2.axhline(d_crit_rate, **qstyle) ax2.axhline(a_crit_rate, **qstyle) ax2.axvline(d_crit_time, **qstyle) ax2.axvline(a_crit_time, **qstyle) # Text annotation qiter = zip(x.index[[0, 0]], [d_crit_rate, a_crit_rate], [r"descent $\hat{q}$", r"ascent $\hat{q}$"], ["bottom", "top"]) for xpos, qval, txt, valign in qiter: ax2.text(xpos, qval, txt, va=valign) titer = zip([d_crit_time, a_crit_time], [0, 0], ["descent", "ascent"], ["right", "left"]) for ttime, ypos, txt, halign in titer: ax2.text(ttime, ypos, txt, ha=halign) return (fig, (ax1, ax2)) if __name__ == '__main__': from .tdr import get_diveMove_sample_data tdrX = get_diveMove_sample_data() print(tdrX)
0.867092
0.571468
import pandas as pd from skdiveMove.helpers import (get_var_sampling_interval, _append_xr_attr, _load_dataset) _SPEED_NAMES = ["velocity", "speed"] class TDRSource: """Define TDR data source Use xarray.Dataset to ensure pseudo-standard metadata Attributes ---------- tdr_file : str String indicating the file where the data comes from. tdr : xarray.Dataset Dataset with input data. depth_name : str Name of data variable with depth measurements. time_name : str Name of the time dimension in the dataset. has_speed : bool Whether input data include speed measurements. speed_name : str Name of data variable with the speed measurements. Examples -------- >>> from skdiveMove.tests import diveMove2skd >>> tdrX = diveMove2skd() >>> print(tdrX) # doctest: +ELLIPSIS Time-Depth Recorder -- Class TDR object ... """ def __init__(self, dataset, depth_name="depth", time_name="timestamp", subsample=None, has_speed=False, tdr_filename=None): """Set up attributes for TDRSource objects Parameters ---------- dataset : xarray.Dataset Dataset containing depth, and optionally other DataArrays. depth_name : str, optional Name of data variable with depth measurements. time_name : str, optional Name of the time dimension in the dataset. subsample : str, optional Subsample dataset at given frequency specification. See pandas offset aliases. has_speed : bool, optional Weather data includes speed measurements. Column name must be one of ["velocity", "speed"]. tdr_filename : str Name of the file from which `dataset` originated. """ self.time_name = time_name if subsample is not None: self.tdr = (dataset.resample({time_name: subsample}) .interpolate("linear")) for vname, da in self.tdr.data_vars.items(): da.attrs["sampling_rate"] = (1.0 / pd.to_timedelta(subsample) .seconds) da.attrs["sampling_rate_units"] = "Hz" _append_xr_attr(da, "history", "Resampled to {}\n".format(subsample)) else: self.tdr = dataset self.depth_name = depth_name speed_var = [x for x in list(self.tdr.data_vars.keys()) if x in _SPEED_NAMES] if speed_var and has_speed: self.has_speed = True self.speed_name = speed_var[0] else: self.has_speed = False self.speed_name = None self.tdr_file = tdr_filename @classmethod def read_netcdf(cls, tdr_file, depth_name="depth", time_name="timestamp", subsample=None, has_speed=False, **kwargs): """Instantiate object by loading Dataset from NetCDF file Parameters ---------- tdr_file : str As first argument for :func:`xarray.load_dataset`. depth_name : str, optional Name of data variable with depth measurements. Default: "depth". time_name : str, optional Name of the time dimension in the dataset. subsample : str, optional Subsample dataset at given frequency specification. See pandas offset aliases. has_speed : bool, optional Weather data includes speed measurements. Column name must be one of ["velocity", "speed"]. Default: False. **kwargs : optional keyword arguments Arguments passed to :func:`xarray.load_dataset`. Returns ------- obj : TDRSource, ZOC, TDRPhases, or TDR Class matches the caller. """ dataset = _load_dataset(tdr_file, **kwargs) return cls(dataset, depth_name=depth_name, time_name=time_name, subsample=subsample, has_speed=has_speed, tdr_filename=tdr_file) def __str__(self): x = self.tdr depth_xr = x[self.depth_name] depth_ser = depth_xr.to_series() objcls = ("Time-Depth Recorder -- Class {} object\n" .format(self.__class__.__name__)) src = "{0:<20} {1}\n".format("Source File", self.tdr_file) itv = ("{0:<20} {1}\n" .format("Sampling interval", get_var_sampling_interval(depth_xr))) nsamples = "{0:<20} {1}\n".format("Number of Samples", depth_xr.shape[0]) beg = "{0:<20} {1}\n".format("Sampling Begins", depth_ser.index[0]) end = "{0:<20} {1}\n".format("Sampling Ends", depth_ser.index[-1]) dur = "{0:<20} {1}\n".format("Total duration", depth_ser.index[-1] - depth_ser.index[0]) drange = "{0:<20} [{1},{2}]\n".format("Measured depth range", depth_ser.min(), depth_ser.max()) others = "{0:<20} {1}\n".format("Other variables", [x for x in list(x.keys()) if x != self.depth_name]) attr_list = "Attributes:\n" for key, val in sorted(x.attrs.items()): attr_list += "{0:>35}: {1}\n".format(key, val) attr_list = attr_list.rstrip("\n") return (objcls + src + itv + nsamples + beg + end + dur + drange + others + attr_list) def _get_depth(self): return self.tdr[self.depth_name] depth = property(_get_depth) """Return depth array Returns ------- xarray.DataArray """ def _get_speed(self): return self.tdr[self.speed_name] speed = property(_get_speed) """Return speed array Returns ------- xarray.DataArray """
scikit-diveMove
/scikit-diveMove-0.3.0.tar.gz/scikit-diveMove-0.3.0/skdiveMove/tdrsource.py
tdrsource.py
import pandas as pd from skdiveMove.helpers import (get_var_sampling_interval, _append_xr_attr, _load_dataset) _SPEED_NAMES = ["velocity", "speed"] class TDRSource: """Define TDR data source Use xarray.Dataset to ensure pseudo-standard metadata Attributes ---------- tdr_file : str String indicating the file where the data comes from. tdr : xarray.Dataset Dataset with input data. depth_name : str Name of data variable with depth measurements. time_name : str Name of the time dimension in the dataset. has_speed : bool Whether input data include speed measurements. speed_name : str Name of data variable with the speed measurements. Examples -------- >>> from skdiveMove.tests import diveMove2skd >>> tdrX = diveMove2skd() >>> print(tdrX) # doctest: +ELLIPSIS Time-Depth Recorder -- Class TDR object ... """ def __init__(self, dataset, depth_name="depth", time_name="timestamp", subsample=None, has_speed=False, tdr_filename=None): """Set up attributes for TDRSource objects Parameters ---------- dataset : xarray.Dataset Dataset containing depth, and optionally other DataArrays. depth_name : str, optional Name of data variable with depth measurements. time_name : str, optional Name of the time dimension in the dataset. subsample : str, optional Subsample dataset at given frequency specification. See pandas offset aliases. has_speed : bool, optional Weather data includes speed measurements. Column name must be one of ["velocity", "speed"]. tdr_filename : str Name of the file from which `dataset` originated. """ self.time_name = time_name if subsample is not None: self.tdr = (dataset.resample({time_name: subsample}) .interpolate("linear")) for vname, da in self.tdr.data_vars.items(): da.attrs["sampling_rate"] = (1.0 / pd.to_timedelta(subsample) .seconds) da.attrs["sampling_rate_units"] = "Hz" _append_xr_attr(da, "history", "Resampled to {}\n".format(subsample)) else: self.tdr = dataset self.depth_name = depth_name speed_var = [x for x in list(self.tdr.data_vars.keys()) if x in _SPEED_NAMES] if speed_var and has_speed: self.has_speed = True self.speed_name = speed_var[0] else: self.has_speed = False self.speed_name = None self.tdr_file = tdr_filename @classmethod def read_netcdf(cls, tdr_file, depth_name="depth", time_name="timestamp", subsample=None, has_speed=False, **kwargs): """Instantiate object by loading Dataset from NetCDF file Parameters ---------- tdr_file : str As first argument for :func:`xarray.load_dataset`. depth_name : str, optional Name of data variable with depth measurements. Default: "depth". time_name : str, optional Name of the time dimension in the dataset. subsample : str, optional Subsample dataset at given frequency specification. See pandas offset aliases. has_speed : bool, optional Weather data includes speed measurements. Column name must be one of ["velocity", "speed"]. Default: False. **kwargs : optional keyword arguments Arguments passed to :func:`xarray.load_dataset`. Returns ------- obj : TDRSource, ZOC, TDRPhases, or TDR Class matches the caller. """ dataset = _load_dataset(tdr_file, **kwargs) return cls(dataset, depth_name=depth_name, time_name=time_name, subsample=subsample, has_speed=has_speed, tdr_filename=tdr_file) def __str__(self): x = self.tdr depth_xr = x[self.depth_name] depth_ser = depth_xr.to_series() objcls = ("Time-Depth Recorder -- Class {} object\n" .format(self.__class__.__name__)) src = "{0:<20} {1}\n".format("Source File", self.tdr_file) itv = ("{0:<20} {1}\n" .format("Sampling interval", get_var_sampling_interval(depth_xr))) nsamples = "{0:<20} {1}\n".format("Number of Samples", depth_xr.shape[0]) beg = "{0:<20} {1}\n".format("Sampling Begins", depth_ser.index[0]) end = "{0:<20} {1}\n".format("Sampling Ends", depth_ser.index[-1]) dur = "{0:<20} {1}\n".format("Total duration", depth_ser.index[-1] - depth_ser.index[0]) drange = "{0:<20} [{1},{2}]\n".format("Measured depth range", depth_ser.min(), depth_ser.max()) others = "{0:<20} {1}\n".format("Other variables", [x for x in list(x.keys()) if x != self.depth_name]) attr_list = "Attributes:\n" for key, val in sorted(x.attrs.items()): attr_list += "{0:>35}: {1}\n".format(key, val) attr_list = attr_list.rstrip("\n") return (objcls + src + itv + nsamples + beg + end + dur + drange + others + attr_list) def _get_depth(self): return self.tdr[self.depth_name] depth = property(_get_depth) """Return depth array Returns ------- xarray.DataArray """ def _get_speed(self): return self.tdr[self.speed_name] speed = property(_get_speed) """Return speed array Returns ------- xarray.DataArray """
0.884083
0.545467
import json __all__ = ["dump_config_template", "assign_xr_attrs"] _SENSOR_DATA_CONFIG = { 'sampling': "regular", 'sampling_rate': "1", 'sampling_rate_units': "Hz", 'history': "", 'name': "", 'full_name': "", 'description': "", 'units': "", 'units_name': "", 'units_label': "", 'column_name': "", 'frame': "", 'axes': "", 'files': "" } _DATASET_CONFIG = { 'dep_id': "", 'dep_device_tzone': "", 'dep_device_regional_settings': "YYYY-mm-dd HH:MM:SS", 'dep_device_time_beg': "", 'deploy': { 'locality': "", 'lon': "", 'lat': "", 'device_time_on': "", 'method': "" }, 'project': { 'name': "", 'date_beg': "", 'date_end': "" }, 'provider': { 'name': "", 'affiliation': "", 'email': "", 'license': "", 'cite': "", 'doi': "" }, 'data': { 'source': "", 'format': "", 'creation_date': "", 'nfiles': "" }, 'device': { 'serial': "", 'make': "", 'type': "", 'model': "", 'url': "" }, 'sensors': { 'firmware': "", 'software': "", 'list': "" }, 'animal': { 'id': "", 'species_common': "", 'species_science': "", 'dbase_url': "" } } def dump_config_template(fname, config_type): """Dump configuration file Dump a json configuration template file to build metadata for a Dataset or DataArray. Parameters ---------- fname : str A valid string path for output file. config_type : {"dataset", "sensor"} The type of config to dump. Examples -------- >>> import skdiveMove.metadata as metadata >>> metadata.dump_config_template("mydataset.json", ... "dataset") # doctest: +SKIP >>> metadata.dump_config_template("mysensor.json", ... "sensor") # doctest: +SKIP edit the files to your specifications. """ with open(fname, "w") as ofile: if config_type == "dataset": json.dump(_DATASET_CONFIG, ofile, indent=2) elif config_type == "sensor": json.dump(_SENSOR_DATA_CONFIG, ofile, indent=2) def assign_xr_attrs(obj, config_file): """Assign attributes to xarray.Dataset or xarray.DataArray The `config_file` should have only one-level of nesting. Parameters ---------- obj : {xarray.Dataset, xarray.DataArray} Object to assign attributes to. config_file : str A valid string path for input json file with metadata attributes. Returns ------- out : {xarray.Dataset, xarray.DataArray} Examples -------- >>> import pandas as pd >>> import numpy as np >>> import xarray as xr >>> import skdiveMove.metadata as metadata Synthetic dataset with depth and speed >>> nsamples = 60 * 60 * 24 >>> times = pd.date_range("2000-01-01", freq="1s", periods=nsamples, ... name="time") >>> cycles = np.sin(2 * np.pi * np.arange(nsamples) / (60 * 20)) >>> ds = xr.Dataset({"depth": (("time"), 1 + cycles), ... "speed": (("time"), 3 + cycles)}, ... {"time": times}) Dump dataset and sensor templates >>> metadata.dump_config_template("mydataset.json", ... "dataset") # doctest: +SKIP >>> metadata.dump_config_template("P_sensor.json", ... "sensor") # doctest: +SKIP >>> metadata.dump_config_template("S_sensor.json", ... "sensor") # doctest: +SKIP Edit the templates as appropriate, load and assign to objects >>> assign_xr_attrs(ds, "mydataset.json") # doctest: +SKIP >>> assign_xr_attrs(ds.depth, "P_sensor.json") # doctest: +SKIP >>> assign_xr_attrs(ds.speed, "S_sensor.json") # doctest: +SKIP """ with open(config_file) as ifile: config = json.load(ifile) # Parse the dict for key, val in config.items(): top_kname = "{}".format(key) if not val: continue if type(val) is dict: for key_n, val_n in val.items(): if not val_n: continue lower_kname = "{0}_{1}".format(top_kname, key_n) obj.attrs[lower_kname] = val_n else: obj.attrs[top_kname] = val
scikit-diveMove
/scikit-diveMove-0.3.0.tar.gz/scikit-diveMove-0.3.0/skdiveMove/metadata.py
metadata.py
import json __all__ = ["dump_config_template", "assign_xr_attrs"] _SENSOR_DATA_CONFIG = { 'sampling': "regular", 'sampling_rate': "1", 'sampling_rate_units': "Hz", 'history': "", 'name': "", 'full_name': "", 'description': "", 'units': "", 'units_name': "", 'units_label': "", 'column_name': "", 'frame': "", 'axes': "", 'files': "" } _DATASET_CONFIG = { 'dep_id': "", 'dep_device_tzone': "", 'dep_device_regional_settings': "YYYY-mm-dd HH:MM:SS", 'dep_device_time_beg': "", 'deploy': { 'locality': "", 'lon': "", 'lat': "", 'device_time_on': "", 'method': "" }, 'project': { 'name': "", 'date_beg': "", 'date_end': "" }, 'provider': { 'name': "", 'affiliation': "", 'email': "", 'license': "", 'cite': "", 'doi': "" }, 'data': { 'source': "", 'format': "", 'creation_date': "", 'nfiles': "" }, 'device': { 'serial': "", 'make': "", 'type': "", 'model': "", 'url': "" }, 'sensors': { 'firmware': "", 'software': "", 'list': "" }, 'animal': { 'id': "", 'species_common': "", 'species_science': "", 'dbase_url': "" } } def dump_config_template(fname, config_type): """Dump configuration file Dump a json configuration template file to build metadata for a Dataset or DataArray. Parameters ---------- fname : str A valid string path for output file. config_type : {"dataset", "sensor"} The type of config to dump. Examples -------- >>> import skdiveMove.metadata as metadata >>> metadata.dump_config_template("mydataset.json", ... "dataset") # doctest: +SKIP >>> metadata.dump_config_template("mysensor.json", ... "sensor") # doctest: +SKIP edit the files to your specifications. """ with open(fname, "w") as ofile: if config_type == "dataset": json.dump(_DATASET_CONFIG, ofile, indent=2) elif config_type == "sensor": json.dump(_SENSOR_DATA_CONFIG, ofile, indent=2) def assign_xr_attrs(obj, config_file): """Assign attributes to xarray.Dataset or xarray.DataArray The `config_file` should have only one-level of nesting. Parameters ---------- obj : {xarray.Dataset, xarray.DataArray} Object to assign attributes to. config_file : str A valid string path for input json file with metadata attributes. Returns ------- out : {xarray.Dataset, xarray.DataArray} Examples -------- >>> import pandas as pd >>> import numpy as np >>> import xarray as xr >>> import skdiveMove.metadata as metadata Synthetic dataset with depth and speed >>> nsamples = 60 * 60 * 24 >>> times = pd.date_range("2000-01-01", freq="1s", periods=nsamples, ... name="time") >>> cycles = np.sin(2 * np.pi * np.arange(nsamples) / (60 * 20)) >>> ds = xr.Dataset({"depth": (("time"), 1 + cycles), ... "speed": (("time"), 3 + cycles)}, ... {"time": times}) Dump dataset and sensor templates >>> metadata.dump_config_template("mydataset.json", ... "dataset") # doctest: +SKIP >>> metadata.dump_config_template("P_sensor.json", ... "sensor") # doctest: +SKIP >>> metadata.dump_config_template("S_sensor.json", ... "sensor") # doctest: +SKIP Edit the templates as appropriate, load and assign to objects >>> assign_xr_attrs(ds, "mydataset.json") # doctest: +SKIP >>> assign_xr_attrs(ds.depth, "P_sensor.json") # doctest: +SKIP >>> assign_xr_attrs(ds.speed, "S_sensor.json") # doctest: +SKIP """ with open(config_file) as ifile: config = json.load(ifile) # Parse the dict for key, val in config.items(): top_kname = "{}".format(key) if not val: continue if type(val) is dict: for key_n, val_n in val.items(): if not val_n: continue lower_kname = "{0}_{1}".format(top_kname, key_n) obj.attrs[lower_kname] = val_n else: obj.attrs[top_kname] = val
0.586049
0.224331
import numpy as np import pandas as pd import xarray as xr from skdiveMove.core import robjs, cv, pandas2ri, diveMove __all__ = ["_load_dataset", "_get_dive_indices", "_append_xr_attr", "get_var_sampling_interval", "_cut_dive", "_one_dive_stats", "_speed_stats", "rle_key"] def _load_dataset(filename_or_obj, **kwargs): """Private function to load Dataset object from file name or object Parameters ---------- filename_or_obj : str, Path or xarray.backends.*DataStore String indicating the file where the data comes from. **kwargs : Arguments passed to `xarray.load_dataset`. Returns ------- dataset : Dataset The output Dataset. """ return xr.load_dataset(filename_or_obj, **kwargs) def _get_dive_indices(indices, diveNo): """Mapping to diveMove's `.diveIndices`""" with cv.localconverter(robjs.default_converter + pandas2ri.converter): # Subtract 1 for zero-based python idx_ok = diveMove._diveIndices(indices, diveNo) - 1 return idx_ok def _append_xr_attr(x, attr, val): """Append to attribute to xarray.DataArray or xarray.Dataset If attribute does not exist, create it. Attribute is assumed to be a string. Parameters ---------- x : xarray.DataArray or xarray.Dataset attr : str Attribute name to update or add val : str Attribute value """ if attr in x.attrs: x.attrs[attr] += "{}".format(val) else: x.attrs[attr] = "{}".format(val) def get_var_sampling_interval(x): """Retrieve sampling interval from DataArray attributes Parameters ---------- x : xarray.DataArray Returns ------- pandas.Timedelta """ attrs = x.attrs sampling_rate = attrs["sampling_rate"] sampling_rate_units = attrs["sampling_rate_units"] if sampling_rate_units.lower() == "hz": sampling_rate = 1 / sampling_rate sampling_rate_units = "s" intvl = pd.Timedelta("{}{}" .format(sampling_rate, sampling_rate_units)) return intvl def _cut_dive(x, dive_model, smooth_par, knot_factor, descent_crit_q, ascent_crit_q): """Private function to retrieve results from `diveModel` object in R Parameters ---------- x : pandas.DataFrame Subset with a single dive's data, with first column expected to be dive ID. dive_model : str smooth_par : float knot_factor : int descent_crit_q : float ascent_crit_q : float Notes ----- See details for arguments in diveMove's ``calibrateDepth``. This function maps to ``diveMove:::.cutDive``, and only sets some of the parameters from the `R` function. Returns ------- out : dict Dictionary with the following keys and corresponding component: {'label_matrix', 'dive_spline', 'spline_deriv', 'descent_crit', 'ascent_crit', 'descent_crit_rate', 'ascent_crit_rate'} """ xx = x.iloc[:, 1:] with cv.localconverter(robjs.default_converter + pandas2ri.converter): dmodel = diveMove._cutDive(cv.py2rpy(xx), dive_model=dive_model, smooth_par=smooth_par, knot_factor=knot_factor, descent_crit_q=descent_crit_q, ascent_crit_q=ascent_crit_q) dmodel_slots = ["label.matrix", "dive.spline", "spline.deriv", "descent.crit", "ascent.crit", "descent.crit.rate", "ascent.crit.rate"] lmtx = (np.array(robjs.r.slot(dmodel, dmodel_slots[0])) .reshape((xx.shape[0], 2), order="F")) spl = robjs.r.slot(dmodel, dmodel_slots[1]) spl_der = robjs.r.slot(dmodel, dmodel_slots[2]) spl_der = np.column_stack((spl_der[0], spl_der[1])) desc_crit = robjs.r.slot(dmodel, dmodel_slots[3])[0] asc_crit = robjs.r.slot(dmodel, dmodel_slots[4])[0] desc_crit_r = robjs.r.slot(dmodel, dmodel_slots[5])[0] asc_crit_r = robjs.r.slot(dmodel, dmodel_slots[6])[0] # Replace dots with underscore for the output dmodel_slots = [x.replace(".", "_") for x in dmodel_slots] res = dict(zip(dmodel_slots, [lmtx, spl, spl_der, desc_crit, asc_crit, desc_crit_r, asc_crit_r])) return res def _one_dive_stats(x, interval, has_speed=False): """Calculate dive statistics for a single dive's DataFrame Parameters ---------- x : pandas.DataFrame First column expected to be dive ID, the rest as in `diveMove`. interval : float has_speed : bool Returns ------- out : pandas.DataFrame """ xx = x.iloc[:, 1:] onames_speed = ["begdesc", "enddesc", "begasc", "desctim", "botttim", "asctim", "divetim", "descdist", "bottdist", "ascdist", "bottdep_mean", "bottdep_median", "bottdep_sd", "maxdep", "desc_tdist", "desc_mean_speed", "desc_angle", "bott_tdist", "bott_mean_speed", "asc_tdist", "asc_mean_speed", "asc_angle"] onames_nospeed = onames_speed[:14] with cv.localconverter(robjs.default_converter + pandas2ri.converter): res = diveMove.oneDiveStats(xx, interval, has_speed) if has_speed: onames = onames_speed else: onames = onames_nospeed res_df = pd.DataFrame(res, columns=onames) for tcol in range(3): # This is per POSIXct convention in R res_df.iloc[:, tcol] = pd.to_datetime(res_df.iloc[:, tcol], unit="s") return res_df def _speed_stats(x, vdist=None): """Calculate total travel distance, mean speed, and angle from speed Dive stats for a single segment of a dive. Parameters ---------- x : pandas.Series Series with speed measurements. vdist : float, optional Vertical distance corresponding to `x`. Returns ------- out : """ kwargs = dict(x=x) if vdist is not None: kwargs.update(vdist=vdist) with cv.localconverter(robjs.default_converter + pandas2ri.converter): res = diveMove._speedStats(**kwargs) return res def rle_key(x): """Emulate a run length encoder Assigns a numerical sequence identifying run lengths in input Series. Parameters ---------- x : pandas.Series Series with data to encode. Returns ------- out : pandas.Series Examples -------- >>> N = 18 >>> color = np.repeat(list("ABCABC"), 3) >>> ss = pd.Series(color, ... index=pd.date_range("2020-01-01", periods=N, ... freq="10s", tz="UTC"), ... dtype="category") >>> rle_key(ss) 2020-01-01 00:00:00+00:00 1 2020-01-01 00:00:10+00:00 1 2020-01-01 00:00:20+00:00 1 2020-01-01 00:00:30+00:00 2 2020-01-01 00:00:40+00:00 2 2020-01-01 00:00:50+00:00 2 2020-01-01 00:01:00+00:00 3 2020-01-01 00:01:10+00:00 3 2020-01-01 00:01:20+00:00 3 2020-01-01 00:01:30+00:00 4 2020-01-01 00:01:40+00:00 4 2020-01-01 00:01:50+00:00 4 2020-01-01 00:02:00+00:00 5 2020-01-01 00:02:10+00:00 5 2020-01-01 00:02:20+00:00 5 2020-01-01 00:02:30+00:00 6 2020-01-01 00:02:40+00:00 6 2020-01-01 00:02:50+00:00 6 Freq: 10S, dtype: int64 """ xout = x.ne(x.shift()).cumsum() return xout if __name__ == '__main__': N = 18 color = np.repeat(list("ABCABC"), 3) ss = pd.Series(color, index=pd.date_range("2020-01-01", periods=N, freq="10s", tz="UTC"), dtype="category") xx = pd.Series(np.random.standard_normal(10)) rle_key(xx > 0)
scikit-diveMove
/scikit-diveMove-0.3.0.tar.gz/scikit-diveMove-0.3.0/skdiveMove/helpers.py
helpers.py
import numpy as np import pandas as pd import xarray as xr from skdiveMove.core import robjs, cv, pandas2ri, diveMove __all__ = ["_load_dataset", "_get_dive_indices", "_append_xr_attr", "get_var_sampling_interval", "_cut_dive", "_one_dive_stats", "_speed_stats", "rle_key"] def _load_dataset(filename_or_obj, **kwargs): """Private function to load Dataset object from file name or object Parameters ---------- filename_or_obj : str, Path or xarray.backends.*DataStore String indicating the file where the data comes from. **kwargs : Arguments passed to `xarray.load_dataset`. Returns ------- dataset : Dataset The output Dataset. """ return xr.load_dataset(filename_or_obj, **kwargs) def _get_dive_indices(indices, diveNo): """Mapping to diveMove's `.diveIndices`""" with cv.localconverter(robjs.default_converter + pandas2ri.converter): # Subtract 1 for zero-based python idx_ok = diveMove._diveIndices(indices, diveNo) - 1 return idx_ok def _append_xr_attr(x, attr, val): """Append to attribute to xarray.DataArray or xarray.Dataset If attribute does not exist, create it. Attribute is assumed to be a string. Parameters ---------- x : xarray.DataArray or xarray.Dataset attr : str Attribute name to update or add val : str Attribute value """ if attr in x.attrs: x.attrs[attr] += "{}".format(val) else: x.attrs[attr] = "{}".format(val) def get_var_sampling_interval(x): """Retrieve sampling interval from DataArray attributes Parameters ---------- x : xarray.DataArray Returns ------- pandas.Timedelta """ attrs = x.attrs sampling_rate = attrs["sampling_rate"] sampling_rate_units = attrs["sampling_rate_units"] if sampling_rate_units.lower() == "hz": sampling_rate = 1 / sampling_rate sampling_rate_units = "s" intvl = pd.Timedelta("{}{}" .format(sampling_rate, sampling_rate_units)) return intvl def _cut_dive(x, dive_model, smooth_par, knot_factor, descent_crit_q, ascent_crit_q): """Private function to retrieve results from `diveModel` object in R Parameters ---------- x : pandas.DataFrame Subset with a single dive's data, with first column expected to be dive ID. dive_model : str smooth_par : float knot_factor : int descent_crit_q : float ascent_crit_q : float Notes ----- See details for arguments in diveMove's ``calibrateDepth``. This function maps to ``diveMove:::.cutDive``, and only sets some of the parameters from the `R` function. Returns ------- out : dict Dictionary with the following keys and corresponding component: {'label_matrix', 'dive_spline', 'spline_deriv', 'descent_crit', 'ascent_crit', 'descent_crit_rate', 'ascent_crit_rate'} """ xx = x.iloc[:, 1:] with cv.localconverter(robjs.default_converter + pandas2ri.converter): dmodel = diveMove._cutDive(cv.py2rpy(xx), dive_model=dive_model, smooth_par=smooth_par, knot_factor=knot_factor, descent_crit_q=descent_crit_q, ascent_crit_q=ascent_crit_q) dmodel_slots = ["label.matrix", "dive.spline", "spline.deriv", "descent.crit", "ascent.crit", "descent.crit.rate", "ascent.crit.rate"] lmtx = (np.array(robjs.r.slot(dmodel, dmodel_slots[0])) .reshape((xx.shape[0], 2), order="F")) spl = robjs.r.slot(dmodel, dmodel_slots[1]) spl_der = robjs.r.slot(dmodel, dmodel_slots[2]) spl_der = np.column_stack((spl_der[0], spl_der[1])) desc_crit = robjs.r.slot(dmodel, dmodel_slots[3])[0] asc_crit = robjs.r.slot(dmodel, dmodel_slots[4])[0] desc_crit_r = robjs.r.slot(dmodel, dmodel_slots[5])[0] asc_crit_r = robjs.r.slot(dmodel, dmodel_slots[6])[0] # Replace dots with underscore for the output dmodel_slots = [x.replace(".", "_") for x in dmodel_slots] res = dict(zip(dmodel_slots, [lmtx, spl, spl_der, desc_crit, asc_crit, desc_crit_r, asc_crit_r])) return res def _one_dive_stats(x, interval, has_speed=False): """Calculate dive statistics for a single dive's DataFrame Parameters ---------- x : pandas.DataFrame First column expected to be dive ID, the rest as in `diveMove`. interval : float has_speed : bool Returns ------- out : pandas.DataFrame """ xx = x.iloc[:, 1:] onames_speed = ["begdesc", "enddesc", "begasc", "desctim", "botttim", "asctim", "divetim", "descdist", "bottdist", "ascdist", "bottdep_mean", "bottdep_median", "bottdep_sd", "maxdep", "desc_tdist", "desc_mean_speed", "desc_angle", "bott_tdist", "bott_mean_speed", "asc_tdist", "asc_mean_speed", "asc_angle"] onames_nospeed = onames_speed[:14] with cv.localconverter(robjs.default_converter + pandas2ri.converter): res = diveMove.oneDiveStats(xx, interval, has_speed) if has_speed: onames = onames_speed else: onames = onames_nospeed res_df = pd.DataFrame(res, columns=onames) for tcol in range(3): # This is per POSIXct convention in R res_df.iloc[:, tcol] = pd.to_datetime(res_df.iloc[:, tcol], unit="s") return res_df def _speed_stats(x, vdist=None): """Calculate total travel distance, mean speed, and angle from speed Dive stats for a single segment of a dive. Parameters ---------- x : pandas.Series Series with speed measurements. vdist : float, optional Vertical distance corresponding to `x`. Returns ------- out : """ kwargs = dict(x=x) if vdist is not None: kwargs.update(vdist=vdist) with cv.localconverter(robjs.default_converter + pandas2ri.converter): res = diveMove._speedStats(**kwargs) return res def rle_key(x): """Emulate a run length encoder Assigns a numerical sequence identifying run lengths in input Series. Parameters ---------- x : pandas.Series Series with data to encode. Returns ------- out : pandas.Series Examples -------- >>> N = 18 >>> color = np.repeat(list("ABCABC"), 3) >>> ss = pd.Series(color, ... index=pd.date_range("2020-01-01", periods=N, ... freq="10s", tz="UTC"), ... dtype="category") >>> rle_key(ss) 2020-01-01 00:00:00+00:00 1 2020-01-01 00:00:10+00:00 1 2020-01-01 00:00:20+00:00 1 2020-01-01 00:00:30+00:00 2 2020-01-01 00:00:40+00:00 2 2020-01-01 00:00:50+00:00 2 2020-01-01 00:01:00+00:00 3 2020-01-01 00:01:10+00:00 3 2020-01-01 00:01:20+00:00 3 2020-01-01 00:01:30+00:00 4 2020-01-01 00:01:40+00:00 4 2020-01-01 00:01:50+00:00 4 2020-01-01 00:02:00+00:00 5 2020-01-01 00:02:10+00:00 5 2020-01-01 00:02:20+00:00 5 2020-01-01 00:02:30+00:00 6 2020-01-01 00:02:40+00:00 6 2020-01-01 00:02:50+00:00 6 Freq: 10S, dtype: int64 """ xout = x.ne(x.shift()).cumsum() return xout if __name__ == '__main__': N = 18 color = np.repeat(list("ABCABC"), 3) ss = pd.Series(color, index=pd.date_range("2020-01-01", periods=N, freq="10s", tz="UTC"), dtype="category") xx = pd.Series(np.random.standard_normal(10)) rle_key(xx > 0)
0.874118
0.423547
import logging import numpy as np import pandas as pd from skdiveMove.tdrphases import TDRPhases import skdiveMove.plotting as plotting import skdiveMove.calibspeed as speedcal from skdiveMove.helpers import (get_var_sampling_interval, _get_dive_indices, _append_xr_attr, _one_dive_stats, _speed_stats) import skdiveMove.calibconfig as calibconfig import xarray as xr logger = logging.getLogger(__name__) # Add the null handler if importing as library; whatever using this library # should set up logging.basicConfig() as needed logger.addHandler(logging.NullHandler()) # Keep attributes in xarray operations xr.set_options(keep_attrs=True) class TDR(TDRPhases): """Base class encapsulating TDR objects and processing TDR subclasses `TDRPhases` to provide comprehensive TDR processing capabilities. See help(TDR) for inherited attributes. Attributes ---------- speed_calib_fit : quantreg model fit Model object fit by quantile regression for speed calibration. Examples -------- Construct an instance from diveMove example dataset >>> from skdiveMove.tests import diveMove2skd >>> tdrX = diveMove2skd() Plot the `TDR` object >>> tdrX.plot() # doctest: +ELLIPSIS (<Figure ... 1 Axes>, <AxesSubplot:...>) """ def __init__(self, *args, **kwargs): """Set up attributes for TDR objects Parameters ---------- *args : positional arguments Passed to :meth:`TDRPhases.__init__` **kwargs : keyword arguments Passed to :meth:`TDRPhases.__init__` """ TDRPhases.__init__(self, *args, **kwargs) # Speed calibration fit self.speed_calib_fit = None def __str__(self): base = TDRPhases.__str__(self) speed_fmt_pref = "Speed calibration coefficients:" if self.speed_calib_fit is not None: speed_ccoef_a, speed_ccoef_b = self.speed_calib_fit.params speed_coefs_fmt = ("\n{0:<20} (a={1:.4f}, b={2:.4f})" .format(speed_fmt_pref, speed_ccoef_a, speed_ccoef_b)) else: speed_ccoef_a, speed_ccoef_b = (None, None) speed_coefs_fmt = ("\n{0:<20} (a=None, b=None)" .format(speed_fmt_pref)) return base + speed_coefs_fmt def calibrate_speed(self, tau=0.1, contour_level=0.1, z=0, bad=[0, 0], **kwargs): """Calibrate speed measurements Set the `speed_calib_fit` attribute Parameters ---------- tau : float, optional Quantile on which to regress speed on rate of depth change. contour_level : float, optional The mesh obtained from the bivariate kernel density estimation corresponding to this contour will be used for the quantile regression to define the calibration line. z : float, optional Only changes in depth larger than this value will be used for calibration. bad : array_like, optional Two-element `array_like` indicating that only rates of depth change and speed greater than the given value should be used for calibration, respectively. **kwargs : optional keyword arguments Passed to :func:`~speedcal.calibrate_speed` Examples -------- >>> from skdiveMove.tests import diveMove2skd >>> tdrX = diveMove2skd() >>> tdrX.zoc("offset", offset=3) >>> tdrX.calibrate_speed(z=2) """ depth = self.get_depth("zoc").to_series() ddiffs = depth.reset_index().diff().set_index(depth.index) ddepth = ddiffs["depth"].abs() rddepth = ddepth / ddiffs[depth.index.name].dt.total_seconds() curspeed = self.get_speed("measured").to_series() ok = (ddepth > z) & (rddepth > bad[0]) & (curspeed > bad[1]) rddepth = rddepth[ok] curspeed = curspeed[ok] kde_data = pd.concat((rddepth.rename("depth_rate"), curspeed), axis=1) qfit, ax = speedcal.calibrate_speed(kde_data, tau=tau, contour_level=contour_level, z=z, bad=bad, **kwargs) self.speed_calib_fit = qfit logger.info("Finished calibrating speed") def dive_stats(self, depth_deriv=True): """Calculate dive statistics in `TDR` records Parameters ---------- depth_deriv : bool, optional Whether to compute depth derivative statistics. Returns ------- pandas.DataFrame Notes ----- This method homologous to diveMove's `diveStats` function. Examples -------- ZOC using the "filter" method >>> from skdiveMove.tests import diveMove2skd >>> tdrX = diveMove2skd() >>> # Window lengths and probabilities >>> DB = [-2, 5] >>> K = [3, 5760] >>> P = [0.5, 0.02] >>> tdrX.zoc("offset", offset=3) >>> tdrX.detect_wet() >>> tdrX.detect_dives(3) >>> tdrX.detect_dive_phases("unimodal", descent_crit_q=0.01, ... ascent_crit_q=0, knot_factor=20) >>> tdrX.dive_stats() # doctest: +ELLIPSIS begdesc ... postdive_mean_speed 1 2002-01-05 ... 1.398859 2 ... """ phases_df = self.get_dives_details("row_ids") idx_name = phases_df.index.name # calib_speed=False if no fit object if self.has_speed: tdr = (self.get_tdr(calib_depth=True, calib_speed=bool(self.speed_calib_fit)) [[self.depth_name, self.speed_name]]) else: tdr = (self.get_tdr(calib_depth=True, calib_speed=bool(self.speed_calib_fit)) [[self.depth_name]]) intvl = (get_var_sampling_interval(tdr[self.depth_name]) .total_seconds()) tdr = tdr.to_dataframe() dive_ids = phases_df.loc[:, "dive_id"] postdive_ids = phases_df.loc[:, "postdive_id"] ok = (dive_ids > 0) & dive_ids.isin(postdive_ids) okpd = (postdive_ids > 0) & postdive_ids.isin(dive_ids) postdive_ids = postdive_ids[okpd] postdive_dur = (postdive_ids.reset_index() .groupby("postdive_id") .apply(lambda x: x.iloc[-1] - x.iloc[0])) # Enforce UTC, as otherwise rpy2 uses our locale in the output of # OneDiveStats tdrf = (pd.concat((phases_df[["dive_id", "dive_phase"]][ok], tdr.loc[ok.index[ok]]), axis=1) .tz_localize("UTC").reset_index()) # Ugly hack to re-order columns for `diveMove` convention names0 = ["dive_id", "dive_phase", idx_name, self.depth_name] colnames = tdrf.columns.to_list() if self.has_speed: names0.append(self.speed_name) colnames = names0 + list(set(colnames) - set(names0)) tdrf = tdrf.reindex(columns=colnames) tdrf_grp = tdrf.groupby("dive_id") ones_list = [] for name, grp in tdrf_grp: res = _one_dive_stats(grp.loc[:, names0], interval=intvl, has_speed=self.has_speed) # Rename to match dive number res = res.rename({0: name}) if depth_deriv: deriv_stats = self._get_dive_deriv_stats(name) res = pd.concat((res, deriv_stats), axis=1) ones_list.append(res) ones_df = pd.concat(ones_list, ignore_index=True) ones_df.set_index(dive_ids[ok].unique(), inplace=True) ones_df.index.rename("dive_id", inplace=True) ones_df["postdive_dur"] = postdive_dur[idx_name] # For postdive total distance and mean speed (if available) if self.has_speed: speed_postd = (tdr[self.speed_name][okpd] .groupby(postdive_ids)) pd_speed_ll = [] for name, grp in speed_postd: res = _speed_stats(grp.reset_index()) onames = ["postdive_tdist", "postdive_mean_speed"] res_df = pd.DataFrame(res[:, :-1], columns=onames, index=[name]) pd_speed_ll.append(res_df) pd_speed_stats = pd.concat(pd_speed_ll) ones_df = pd.concat((ones_df, pd_speed_stats), axis=1) return ones_df def plot(self, concur_vars=None, concur_var_titles=None, **kwargs): """Plot TDR object Parameters ---------- concur_vars : str or list, optional String or list of strings with names of columns in input to select additional data to plot. concur_var_titles : str or list, optional String or list of strings with y-axis labels for `concur_vars`. **kwargs : optional keyword arguments Arguments passed to plotting function. Returns ------- tuple :class:`~matplotlib.figure.Figure`, :class:`~matplotlib.axes.Axes` instances. Examples -------- >>> from skdiveMove.tests import diveMove2skd >>> tdrX = diveMove2skd() >>> tdrX.plot(xlim=["2002-01-05 21:00:00", "2002-01-06 04:10:00"], ... depth_lim=[95, -1]) # doctest: +ELLIPSIS (<Figure ... with 1 Axes>, <AxesSubplot:...'>) """ try: depth = self.get_depth("zoc") except LookupError: depth = self.get_depth("measured") if "ylab_depth" not in kwargs: ylab_depth = ("{0} [{1}]" .format(depth.attrs["full_name"], depth.attrs["units"])) kwargs.update(ylab_depth=ylab_depth) depth = depth.to_series() if concur_vars is None: fig, ax = plotting.plot_tdr(depth, **kwargs) elif concur_var_titles is None: ccvars = self.tdr[concur_vars].to_dataframe() fig, ax = plotting.plot_tdr(depth, concur_vars=ccvars, **kwargs) else: ccvars = self.tdr[concur_vars].to_dataframe() ccvars_title = concur_var_titles # just to shorten fig, ax = plotting.plot_tdr(depth, concur_vars=ccvars, concur_var_titles=ccvars_title, **kwargs) return (fig, ax) def plot_zoc(self, xlim=None, ylim=None, **kwargs): """Plot zero offset correction filters Parameters ---------- xlim, ylim : 2-tuple/list, optional Minimum and maximum limits for ``x``- and ``y``-axis, respectively. **kwargs : optional keyword arguments Passed to :func:`~matplotlib.pyplot.subplots`. Returns ------- tuple :class:`~matplotlib.figure.Figure`, :class:`~matplotlib.axes.Axes` instances. Examples -------- >>> from skdiveMove.tests import diveMove2skd >>> tdrX = diveMove2skd() >>> # Window lengths and probabilities >>> DB = [-2, 5] >>> K = [3, 5760] >>> P = [0.5, 0.02] >>> tdrX.zoc("filter", k=K, probs=P, depth_bounds=DB) >>> tdrX.detect_wet() >>> tdrX.detect_dives(3) >>> tdrX.detect_dive_phases("unimodal", descent_crit_q=0.01, ... ascent_crit_q=0, knot_factor=20) >>> tdrX.plot_zoc() # doctest: +ELLIPSIS (<Figure ... with 3 Axes>, array([<AxesSubplot:...'>, <AxesSubplot:...'>, <AxesSubplot:...>], dtype=object)) """ zoc_method = self.zoc_method depth_msrd = self.get_depth("measured") ylab = ("{0} [{1}]" .format(depth_msrd.attrs["full_name"], depth_msrd.attrs["units"])) if zoc_method == "filter": zoc_filters = self.zoc_filters depth = depth_msrd.to_series() if "ylab" not in kwargs: kwargs.update(ylab=ylab) fig, ax = (plotting ._plot_zoc_filters(depth, zoc_filters, xlim, ylim, **kwargs)) elif zoc_method == "offset": depth_msrd = depth_msrd.to_series() depth_zoc = self.get_depth("zoc").to_series() fig, ax = plotting.plt.subplots(1, 1, **kwargs) ax = depth_msrd.plot(ax=ax, rot=0, label="measured") depth_zoc.plot(ax=ax, label="zoc") ax.axhline(0, linestyle="--", linewidth=0.75, color="k") ax.set_xlabel("") ax.set_ylabel(ylab) ax.legend(loc="lower right") ax.set_xlim(xlim) ax.set_ylim(ylim) ax.invert_yaxis() return (fig, ax) def plot_phases(self, diveNo=None, concur_vars=None, concur_var_titles=None, surface=False, **kwargs): """Plot major phases found on the object Parameters ---------- diveNo : array_like, optional List of dive numbers (1-based) to plot. concur_vars : str or list, optional String or list of strings with names of columns in input to select additional data to plot. concur_var_titles : str or list, optional String or list of strings with y-axis labels for `concur_vars`. surface : bool, optional Whether to plot surface readings. **kwargs : optional keyword arguments Arguments passed to plotting function. Returns ------- tuple :class:`~matplotlib.figure.Figure`, :class:`~matplotlib.axes.Axes` instances. Examples -------- >>> from skdiveMove.tests import diveMove2skd >>> tdrX = diveMove2skd() >>> tdrX.zoc("offset", offset=3) >>> tdrX.detect_wet() >>> tdrX.detect_dives(3) >>> tdrX.detect_dive_phases("unimodal", descent_crit_q=0.01, ... ascent_crit_q=0, knot_factor=20) >>> tdrX.plot_phases(list(range(250, 300)), ... surface=True) # doctest: +ELLIPSIS (<Figure ... with 1 Axes>, <AxesSubplot:...>) """ row_ids = self.get_dives_details("row_ids") dive_ids = row_ids["dive_id"] dive_ids_uniq = dive_ids.unique() postdive_ids = row_ids["postdive_id"] if diveNo is None: diveNo = np.arange(1, row_ids["dive_id"].max() + 1).tolist() else: diveNo = [x for x in sorted(diveNo) if x in dive_ids_uniq] depth_all = self.get_depth("zoc").to_dataframe() # DataFrame if concur_vars is None: dives_all = depth_all else: concur_df = self.tdr.to_dataframe().loc[:, concur_vars] dives_all = pd.concat((depth_all, concur_df), axis=1) isin_dive_ids = dive_ids.isin(diveNo) isin_postdive_ids = postdive_ids.isin(diveNo) if surface: isin = isin_dive_ids | isin_postdive_ids dives_in = dives_all[isin] sfce0_idx = (postdive_ids[postdive_ids == diveNo[0] - 1] .last_valid_index()) dives_df = pd.concat((dives_all.loc[[sfce0_idx]], dives_in), axis=0) details_df = pd.concat((row_ids.loc[[sfce0_idx]], row_ids[isin]), axis=0) else: idx_ok = _get_dive_indices(dive_ids, diveNo) dives_df = dives_all.iloc[idx_ok, :] details_df = row_ids.iloc[idx_ok, :] wet_dry = self.time_budget(ignore_z=True, ignore_du=True) drys = wet_dry[wet_dry["phase_label"] == "L"][["beg", "end"]] if (drys.shape[0] > 0): dry_time = drys else: dry_time = None if concur_vars is None: fig, ax = (plotting .plot_tdr(dives_df.iloc[:, 0], phase_cat=details_df["dive_phase"], dry_time=dry_time, **kwargs)) else: fig, ax = (plotting .plot_tdr(dives_df.iloc[:, 0], concur_vars=dives_df.iloc[:, 1:], concur_var_titles=concur_var_titles, phase_cat=details_df["dive_phase"], dry_time=dry_time, **kwargs)) return (fig, ax) def plot_dive_model(self, diveNo=None, **kwargs): """Plot dive model for selected dive Parameters ---------- diveNo : array_like, optional List of dive numbers (1-based) to plot. **kwargs : optional keyword arguments Arguments passed to plotting function. Returns ------- tuple :class:`~matplotlib.figure.Figure`, :class:`~matplotlib.axes.Axes` instances. Examples -------- >>> from skdiveMove.tests import diveMove2skd >>> tdrX = diveMove2skd() >>> tdrX.zoc("offset", offset=3) >>> tdrX.detect_wet() >>> tdrX.detect_dives(3) >>> tdrX.detect_dive_phases("unimodal", descent_crit_q=0.01, ... ascent_crit_q=0, knot_factor=20) >>> tdrX.plot_dive_model(diveNo=20, ... figsize=(10, 10)) # doctest: +ELLIPSIS (<Figure ... with 2 Axes>, (<AxesSubplot:...>, <AxesSubplot:...>)) """ dive_ids = self.get_dives_details("row_ids", "dive_id") crit_vals = self.get_dives_details("crit_vals").loc[diveNo] idxs = _get_dive_indices(dive_ids, diveNo) depth = self.get_depth("zoc").to_dataframe().iloc[idxs] depth_s = self._get_dive_spline_slot(diveNo, "xy") depth_deriv = (self.get_dives_details("spline_derivs").loc[diveNo]) # Index with time stamp if depth.shape[0] < 4: depth_s_idx = pd.date_range(depth.index[0], depth.index[-1], periods=depth_s.shape[0], tz=depth.index.tz) depth_s = pd.Series(depth_s.to_numpy(), index=depth_s_idx) dderiv_idx = pd.date_range(depth.index[0], depth.index[-1], periods=depth_deriv.shape[0], tz=depth.index.tz) # Extract only the series and index with time stamp depth_deriv = pd.Series(depth_deriv["y"].to_numpy(), index=dderiv_idx) else: depth_s = pd.Series(depth_s.to_numpy(), index=depth.index[0] + depth_s.index) # Extract only the series and index with time stamp depth_deriv = pd.Series(depth_deriv["y"].to_numpy(), index=depth.index[0] + depth_deriv.index) # Force integer again as `loc` coerced to float above d_crit = crit_vals["descent_crit"].astype(int) a_crit = crit_vals["ascent_crit"].astype(int) d_crit_rate = crit_vals["descent_crit_rate"] a_crit_rate = crit_vals["ascent_crit_rate"] title = "Dive: {:d}".format(diveNo) fig, axs = plotting.plot_dive_model(depth, depth_s=depth_s, depth_deriv=depth_deriv, d_crit=d_crit, a_crit=a_crit, d_crit_rate=d_crit_rate, a_crit_rate=a_crit_rate, leg_title=title, **kwargs) return (fig, axs) def get_depth(self, kind="measured"): """Retrieve depth records Parameters ---------- kind : {"measured", "zoc"} Which depth to retrieve. Returns ------- xarray.DataArray """ kinds = ["measured", "zoc"] if kind == kinds[0]: odepth = self.depth elif kind == kinds[1]: odepth = self.depth_zoc if odepth is None: msg = "ZOC depth not available." logger.error(msg) raise LookupError(msg) else: msg = "kind must be one of: {}".format(kinds) logger.error(msg) raise LookupError(msg) return odepth def get_speed(self, kind="measured"): """Retrieve speed records Parameters ---------- kind : {"measured", "calibrated"} Which speed to retrieve. Returns ------- xarray.DataArray """ kinds = ["measured", "calibrated"] ispeed = self.speed if kind == kinds[0]: ospeed = ispeed elif kind == kinds[1]: qfit = self.speed_calib_fit if qfit is None: msg = "Calibrated speed not available." logger.error(msg) raise LookupError(msg) else: coefs = qfit.params coef_a = coefs[0] coef_b = coefs[1] ospeed = (ispeed - coef_a) / coef_b _append_xr_attr(ospeed, "history", "speed_calib_fit") else: msg = "kind must be one of: {}".format(kinds) logger.error(msg) raise LookupError(msg) return ospeed def get_tdr(self, calib_depth=True, calib_speed=True): """Return a copy of tdr Dataset Parameters ---------- calib_depth : bool, optional Whether to return calibrated depth measurements. calib_speed : bool, optional Whether to return calibrated speed measurements. Returns ------- xarray.Dataset """ tdr = self.tdr.copy() if calib_depth: depth_name = self.depth_name depth_cal = self.get_depth("zoc") tdr[depth_name] = depth_cal if self.has_speed and calib_speed: speed_name = self.speed_name speed_cal = self.get_speed("calibrated") tdr[speed_name] = speed_cal return tdr def extract_dives(self, diveNo, **kwargs): """Extract TDR data corresponding to a particular set of dives Parameters ---------- diveNo : array_like, optional List of dive numbers (1-based) to plot. **kwargs : optional keyword arguments Passed to :meth:`get_tdr` Returns ------- xarray.Dataset Examples -------- >>> from skdiveMove.tests import diveMove2skd >>> tdrX = diveMove2skd(has_speed=False) >>> tdrX.zoc("offset", offset=3) >>> tdrX.detect_wet() >>> tdrX.detect_dives(3) >>> tdrX.detect_dive_phases("unimodal", descent_crit_q=0.01, ... ascent_crit_q=0, knot_factor=20) >>> tdrX.extract_dives(diveNo=20) # doctest: +ELLIPSIS <xarray.Dataset> Dimensions: ... """ dive_ids = self.get_dives_details("row_ids", "dive_id") idx_name = dive_ids.index.name idxs = _get_dive_indices(dive_ids, diveNo) tdr = self.get_tdr(**kwargs) tdr_i = tdr[{idx_name: idxs.astype(int)}] return tdr_i def calibrate(tdr_file, config_file=None): """Perform all major TDR calibration operations Detect periods of major activities in a `TDR` object, calibrate depth readings, and speed if appropriate, in preparation for subsequent summaries of diving behaviour. This function is a convenience wrapper around :meth:`~TDR.detect_wet`, :meth:`~TDR.detect_dives`, :meth:`~TDR.detect_dive_phases`, :meth:`~TDR.zoc`, and :meth:`~TDR.calibrate_speed`. It performs wet/dry phase detection, zero-offset correction of depth, detection of dives, as well as proper labelling of the latter, and calibrates speed data if appropriate. Due to the complexity of this procedure, and the number of settings required for it, a calibration configuration file (JSON) is used to guide the operations. Parameters ---------- tdr_file : str, Path or xarray.backends.*DataStore As first argument for :func:`xarray.load_dataset`. config_file : str A valid string path for TDR calibration configuration file. Returns ------- out : TDR See Also -------- dump_config_template : configuration template """ if config_file is None: config = calibconfig._DEFAULT_CONFIG else: config = calibconfig.read_config(config_file) logger = logging.getLogger(__name__) logger.setLevel(config["log_level"]) load_dataset_kwargs = config["read"].pop("load_dataset_kwargs") logger.info("Reading config: {}, {}" .format(config["read"], load_dataset_kwargs)) tdr = TDR.read_netcdf(tdr_file, **config["read"], **load_dataset_kwargs) do_zoc = config["zoc"].pop("required") if do_zoc: logger.info("ZOC config: {}".format(config["zoc"])) tdr.zoc(config["zoc"]["method"], **config["zoc"]["parameters"]) logger.info("Wet/Dry config: {}".format(config["wet_dry"])) tdr.detect_wet(**config["wet_dry"]) logger.info("Dives config: {}".format(config["dives"])) tdr.detect_dives(config["dives"].pop("dive_thr")) tdr.detect_dive_phases(**config["dives"]) do_speed_calib = bool(config["speed_calib"].pop("required")) if tdr.has_speed and do_speed_calib: logger.info("Speed calibration config: {}" .format(config["speed_calib"])) tdr.calibrate_speed(**config["speed_calib"], plot=False) return tdr if __name__ == '__main__': # Set up info level logging logging.basicConfig(level=logging.INFO) ifile = r"tests/data/ag_mk7_2002_022.nc" tdrX = TDR.read_netcdf(ifile, has_speed=True) # tdrX = TDRSource(ifile, has_speed=True) # print(tdrX)
scikit-diveMove
/scikit-diveMove-0.3.0.tar.gz/scikit-diveMove-0.3.0/skdiveMove/tdr.py
tdr.py
import logging import numpy as np import pandas as pd from skdiveMove.tdrphases import TDRPhases import skdiveMove.plotting as plotting import skdiveMove.calibspeed as speedcal from skdiveMove.helpers import (get_var_sampling_interval, _get_dive_indices, _append_xr_attr, _one_dive_stats, _speed_stats) import skdiveMove.calibconfig as calibconfig import xarray as xr logger = logging.getLogger(__name__) # Add the null handler if importing as library; whatever using this library # should set up logging.basicConfig() as needed logger.addHandler(logging.NullHandler()) # Keep attributes in xarray operations xr.set_options(keep_attrs=True) class TDR(TDRPhases): """Base class encapsulating TDR objects and processing TDR subclasses `TDRPhases` to provide comprehensive TDR processing capabilities. See help(TDR) for inherited attributes. Attributes ---------- speed_calib_fit : quantreg model fit Model object fit by quantile regression for speed calibration. Examples -------- Construct an instance from diveMove example dataset >>> from skdiveMove.tests import diveMove2skd >>> tdrX = diveMove2skd() Plot the `TDR` object >>> tdrX.plot() # doctest: +ELLIPSIS (<Figure ... 1 Axes>, <AxesSubplot:...>) """ def __init__(self, *args, **kwargs): """Set up attributes for TDR objects Parameters ---------- *args : positional arguments Passed to :meth:`TDRPhases.__init__` **kwargs : keyword arguments Passed to :meth:`TDRPhases.__init__` """ TDRPhases.__init__(self, *args, **kwargs) # Speed calibration fit self.speed_calib_fit = None def __str__(self): base = TDRPhases.__str__(self) speed_fmt_pref = "Speed calibration coefficients:" if self.speed_calib_fit is not None: speed_ccoef_a, speed_ccoef_b = self.speed_calib_fit.params speed_coefs_fmt = ("\n{0:<20} (a={1:.4f}, b={2:.4f})" .format(speed_fmt_pref, speed_ccoef_a, speed_ccoef_b)) else: speed_ccoef_a, speed_ccoef_b = (None, None) speed_coefs_fmt = ("\n{0:<20} (a=None, b=None)" .format(speed_fmt_pref)) return base + speed_coefs_fmt def calibrate_speed(self, tau=0.1, contour_level=0.1, z=0, bad=[0, 0], **kwargs): """Calibrate speed measurements Set the `speed_calib_fit` attribute Parameters ---------- tau : float, optional Quantile on which to regress speed on rate of depth change. contour_level : float, optional The mesh obtained from the bivariate kernel density estimation corresponding to this contour will be used for the quantile regression to define the calibration line. z : float, optional Only changes in depth larger than this value will be used for calibration. bad : array_like, optional Two-element `array_like` indicating that only rates of depth change and speed greater than the given value should be used for calibration, respectively. **kwargs : optional keyword arguments Passed to :func:`~speedcal.calibrate_speed` Examples -------- >>> from skdiveMove.tests import diveMove2skd >>> tdrX = diveMove2skd() >>> tdrX.zoc("offset", offset=3) >>> tdrX.calibrate_speed(z=2) """ depth = self.get_depth("zoc").to_series() ddiffs = depth.reset_index().diff().set_index(depth.index) ddepth = ddiffs["depth"].abs() rddepth = ddepth / ddiffs[depth.index.name].dt.total_seconds() curspeed = self.get_speed("measured").to_series() ok = (ddepth > z) & (rddepth > bad[0]) & (curspeed > bad[1]) rddepth = rddepth[ok] curspeed = curspeed[ok] kde_data = pd.concat((rddepth.rename("depth_rate"), curspeed), axis=1) qfit, ax = speedcal.calibrate_speed(kde_data, tau=tau, contour_level=contour_level, z=z, bad=bad, **kwargs) self.speed_calib_fit = qfit logger.info("Finished calibrating speed") def dive_stats(self, depth_deriv=True): """Calculate dive statistics in `TDR` records Parameters ---------- depth_deriv : bool, optional Whether to compute depth derivative statistics. Returns ------- pandas.DataFrame Notes ----- This method homologous to diveMove's `diveStats` function. Examples -------- ZOC using the "filter" method >>> from skdiveMove.tests import diveMove2skd >>> tdrX = diveMove2skd() >>> # Window lengths and probabilities >>> DB = [-2, 5] >>> K = [3, 5760] >>> P = [0.5, 0.02] >>> tdrX.zoc("offset", offset=3) >>> tdrX.detect_wet() >>> tdrX.detect_dives(3) >>> tdrX.detect_dive_phases("unimodal", descent_crit_q=0.01, ... ascent_crit_q=0, knot_factor=20) >>> tdrX.dive_stats() # doctest: +ELLIPSIS begdesc ... postdive_mean_speed 1 2002-01-05 ... 1.398859 2 ... """ phases_df = self.get_dives_details("row_ids") idx_name = phases_df.index.name # calib_speed=False if no fit object if self.has_speed: tdr = (self.get_tdr(calib_depth=True, calib_speed=bool(self.speed_calib_fit)) [[self.depth_name, self.speed_name]]) else: tdr = (self.get_tdr(calib_depth=True, calib_speed=bool(self.speed_calib_fit)) [[self.depth_name]]) intvl = (get_var_sampling_interval(tdr[self.depth_name]) .total_seconds()) tdr = tdr.to_dataframe() dive_ids = phases_df.loc[:, "dive_id"] postdive_ids = phases_df.loc[:, "postdive_id"] ok = (dive_ids > 0) & dive_ids.isin(postdive_ids) okpd = (postdive_ids > 0) & postdive_ids.isin(dive_ids) postdive_ids = postdive_ids[okpd] postdive_dur = (postdive_ids.reset_index() .groupby("postdive_id") .apply(lambda x: x.iloc[-1] - x.iloc[0])) # Enforce UTC, as otherwise rpy2 uses our locale in the output of # OneDiveStats tdrf = (pd.concat((phases_df[["dive_id", "dive_phase"]][ok], tdr.loc[ok.index[ok]]), axis=1) .tz_localize("UTC").reset_index()) # Ugly hack to re-order columns for `diveMove` convention names0 = ["dive_id", "dive_phase", idx_name, self.depth_name] colnames = tdrf.columns.to_list() if self.has_speed: names0.append(self.speed_name) colnames = names0 + list(set(colnames) - set(names0)) tdrf = tdrf.reindex(columns=colnames) tdrf_grp = tdrf.groupby("dive_id") ones_list = [] for name, grp in tdrf_grp: res = _one_dive_stats(grp.loc[:, names0], interval=intvl, has_speed=self.has_speed) # Rename to match dive number res = res.rename({0: name}) if depth_deriv: deriv_stats = self._get_dive_deriv_stats(name) res = pd.concat((res, deriv_stats), axis=1) ones_list.append(res) ones_df = pd.concat(ones_list, ignore_index=True) ones_df.set_index(dive_ids[ok].unique(), inplace=True) ones_df.index.rename("dive_id", inplace=True) ones_df["postdive_dur"] = postdive_dur[idx_name] # For postdive total distance and mean speed (if available) if self.has_speed: speed_postd = (tdr[self.speed_name][okpd] .groupby(postdive_ids)) pd_speed_ll = [] for name, grp in speed_postd: res = _speed_stats(grp.reset_index()) onames = ["postdive_tdist", "postdive_mean_speed"] res_df = pd.DataFrame(res[:, :-1], columns=onames, index=[name]) pd_speed_ll.append(res_df) pd_speed_stats = pd.concat(pd_speed_ll) ones_df = pd.concat((ones_df, pd_speed_stats), axis=1) return ones_df def plot(self, concur_vars=None, concur_var_titles=None, **kwargs): """Plot TDR object Parameters ---------- concur_vars : str or list, optional String or list of strings with names of columns in input to select additional data to plot. concur_var_titles : str or list, optional String or list of strings with y-axis labels for `concur_vars`. **kwargs : optional keyword arguments Arguments passed to plotting function. Returns ------- tuple :class:`~matplotlib.figure.Figure`, :class:`~matplotlib.axes.Axes` instances. Examples -------- >>> from skdiveMove.tests import diveMove2skd >>> tdrX = diveMove2skd() >>> tdrX.plot(xlim=["2002-01-05 21:00:00", "2002-01-06 04:10:00"], ... depth_lim=[95, -1]) # doctest: +ELLIPSIS (<Figure ... with 1 Axes>, <AxesSubplot:...'>) """ try: depth = self.get_depth("zoc") except LookupError: depth = self.get_depth("measured") if "ylab_depth" not in kwargs: ylab_depth = ("{0} [{1}]" .format(depth.attrs["full_name"], depth.attrs["units"])) kwargs.update(ylab_depth=ylab_depth) depth = depth.to_series() if concur_vars is None: fig, ax = plotting.plot_tdr(depth, **kwargs) elif concur_var_titles is None: ccvars = self.tdr[concur_vars].to_dataframe() fig, ax = plotting.plot_tdr(depth, concur_vars=ccvars, **kwargs) else: ccvars = self.tdr[concur_vars].to_dataframe() ccvars_title = concur_var_titles # just to shorten fig, ax = plotting.plot_tdr(depth, concur_vars=ccvars, concur_var_titles=ccvars_title, **kwargs) return (fig, ax) def plot_zoc(self, xlim=None, ylim=None, **kwargs): """Plot zero offset correction filters Parameters ---------- xlim, ylim : 2-tuple/list, optional Minimum and maximum limits for ``x``- and ``y``-axis, respectively. **kwargs : optional keyword arguments Passed to :func:`~matplotlib.pyplot.subplots`. Returns ------- tuple :class:`~matplotlib.figure.Figure`, :class:`~matplotlib.axes.Axes` instances. Examples -------- >>> from skdiveMove.tests import diveMove2skd >>> tdrX = diveMove2skd() >>> # Window lengths and probabilities >>> DB = [-2, 5] >>> K = [3, 5760] >>> P = [0.5, 0.02] >>> tdrX.zoc("filter", k=K, probs=P, depth_bounds=DB) >>> tdrX.detect_wet() >>> tdrX.detect_dives(3) >>> tdrX.detect_dive_phases("unimodal", descent_crit_q=0.01, ... ascent_crit_q=0, knot_factor=20) >>> tdrX.plot_zoc() # doctest: +ELLIPSIS (<Figure ... with 3 Axes>, array([<AxesSubplot:...'>, <AxesSubplot:...'>, <AxesSubplot:...>], dtype=object)) """ zoc_method = self.zoc_method depth_msrd = self.get_depth("measured") ylab = ("{0} [{1}]" .format(depth_msrd.attrs["full_name"], depth_msrd.attrs["units"])) if zoc_method == "filter": zoc_filters = self.zoc_filters depth = depth_msrd.to_series() if "ylab" not in kwargs: kwargs.update(ylab=ylab) fig, ax = (plotting ._plot_zoc_filters(depth, zoc_filters, xlim, ylim, **kwargs)) elif zoc_method == "offset": depth_msrd = depth_msrd.to_series() depth_zoc = self.get_depth("zoc").to_series() fig, ax = plotting.plt.subplots(1, 1, **kwargs) ax = depth_msrd.plot(ax=ax, rot=0, label="measured") depth_zoc.plot(ax=ax, label="zoc") ax.axhline(0, linestyle="--", linewidth=0.75, color="k") ax.set_xlabel("") ax.set_ylabel(ylab) ax.legend(loc="lower right") ax.set_xlim(xlim) ax.set_ylim(ylim) ax.invert_yaxis() return (fig, ax) def plot_phases(self, diveNo=None, concur_vars=None, concur_var_titles=None, surface=False, **kwargs): """Plot major phases found on the object Parameters ---------- diveNo : array_like, optional List of dive numbers (1-based) to plot. concur_vars : str or list, optional String or list of strings with names of columns in input to select additional data to plot. concur_var_titles : str or list, optional String or list of strings with y-axis labels for `concur_vars`. surface : bool, optional Whether to plot surface readings. **kwargs : optional keyword arguments Arguments passed to plotting function. Returns ------- tuple :class:`~matplotlib.figure.Figure`, :class:`~matplotlib.axes.Axes` instances. Examples -------- >>> from skdiveMove.tests import diveMove2skd >>> tdrX = diveMove2skd() >>> tdrX.zoc("offset", offset=3) >>> tdrX.detect_wet() >>> tdrX.detect_dives(3) >>> tdrX.detect_dive_phases("unimodal", descent_crit_q=0.01, ... ascent_crit_q=0, knot_factor=20) >>> tdrX.plot_phases(list(range(250, 300)), ... surface=True) # doctest: +ELLIPSIS (<Figure ... with 1 Axes>, <AxesSubplot:...>) """ row_ids = self.get_dives_details("row_ids") dive_ids = row_ids["dive_id"] dive_ids_uniq = dive_ids.unique() postdive_ids = row_ids["postdive_id"] if diveNo is None: diveNo = np.arange(1, row_ids["dive_id"].max() + 1).tolist() else: diveNo = [x for x in sorted(diveNo) if x in dive_ids_uniq] depth_all = self.get_depth("zoc").to_dataframe() # DataFrame if concur_vars is None: dives_all = depth_all else: concur_df = self.tdr.to_dataframe().loc[:, concur_vars] dives_all = pd.concat((depth_all, concur_df), axis=1) isin_dive_ids = dive_ids.isin(diveNo) isin_postdive_ids = postdive_ids.isin(diveNo) if surface: isin = isin_dive_ids | isin_postdive_ids dives_in = dives_all[isin] sfce0_idx = (postdive_ids[postdive_ids == diveNo[0] - 1] .last_valid_index()) dives_df = pd.concat((dives_all.loc[[sfce0_idx]], dives_in), axis=0) details_df = pd.concat((row_ids.loc[[sfce0_idx]], row_ids[isin]), axis=0) else: idx_ok = _get_dive_indices(dive_ids, diveNo) dives_df = dives_all.iloc[idx_ok, :] details_df = row_ids.iloc[idx_ok, :] wet_dry = self.time_budget(ignore_z=True, ignore_du=True) drys = wet_dry[wet_dry["phase_label"] == "L"][["beg", "end"]] if (drys.shape[0] > 0): dry_time = drys else: dry_time = None if concur_vars is None: fig, ax = (plotting .plot_tdr(dives_df.iloc[:, 0], phase_cat=details_df["dive_phase"], dry_time=dry_time, **kwargs)) else: fig, ax = (plotting .plot_tdr(dives_df.iloc[:, 0], concur_vars=dives_df.iloc[:, 1:], concur_var_titles=concur_var_titles, phase_cat=details_df["dive_phase"], dry_time=dry_time, **kwargs)) return (fig, ax) def plot_dive_model(self, diveNo=None, **kwargs): """Plot dive model for selected dive Parameters ---------- diveNo : array_like, optional List of dive numbers (1-based) to plot. **kwargs : optional keyword arguments Arguments passed to plotting function. Returns ------- tuple :class:`~matplotlib.figure.Figure`, :class:`~matplotlib.axes.Axes` instances. Examples -------- >>> from skdiveMove.tests import diveMove2skd >>> tdrX = diveMove2skd() >>> tdrX.zoc("offset", offset=3) >>> tdrX.detect_wet() >>> tdrX.detect_dives(3) >>> tdrX.detect_dive_phases("unimodal", descent_crit_q=0.01, ... ascent_crit_q=0, knot_factor=20) >>> tdrX.plot_dive_model(diveNo=20, ... figsize=(10, 10)) # doctest: +ELLIPSIS (<Figure ... with 2 Axes>, (<AxesSubplot:...>, <AxesSubplot:...>)) """ dive_ids = self.get_dives_details("row_ids", "dive_id") crit_vals = self.get_dives_details("crit_vals").loc[diveNo] idxs = _get_dive_indices(dive_ids, diveNo) depth = self.get_depth("zoc").to_dataframe().iloc[idxs] depth_s = self._get_dive_spline_slot(diveNo, "xy") depth_deriv = (self.get_dives_details("spline_derivs").loc[diveNo]) # Index with time stamp if depth.shape[0] < 4: depth_s_idx = pd.date_range(depth.index[0], depth.index[-1], periods=depth_s.shape[0], tz=depth.index.tz) depth_s = pd.Series(depth_s.to_numpy(), index=depth_s_idx) dderiv_idx = pd.date_range(depth.index[0], depth.index[-1], periods=depth_deriv.shape[0], tz=depth.index.tz) # Extract only the series and index with time stamp depth_deriv = pd.Series(depth_deriv["y"].to_numpy(), index=dderiv_idx) else: depth_s = pd.Series(depth_s.to_numpy(), index=depth.index[0] + depth_s.index) # Extract only the series and index with time stamp depth_deriv = pd.Series(depth_deriv["y"].to_numpy(), index=depth.index[0] + depth_deriv.index) # Force integer again as `loc` coerced to float above d_crit = crit_vals["descent_crit"].astype(int) a_crit = crit_vals["ascent_crit"].astype(int) d_crit_rate = crit_vals["descent_crit_rate"] a_crit_rate = crit_vals["ascent_crit_rate"] title = "Dive: {:d}".format(diveNo) fig, axs = plotting.plot_dive_model(depth, depth_s=depth_s, depth_deriv=depth_deriv, d_crit=d_crit, a_crit=a_crit, d_crit_rate=d_crit_rate, a_crit_rate=a_crit_rate, leg_title=title, **kwargs) return (fig, axs) def get_depth(self, kind="measured"): """Retrieve depth records Parameters ---------- kind : {"measured", "zoc"} Which depth to retrieve. Returns ------- xarray.DataArray """ kinds = ["measured", "zoc"] if kind == kinds[0]: odepth = self.depth elif kind == kinds[1]: odepth = self.depth_zoc if odepth is None: msg = "ZOC depth not available." logger.error(msg) raise LookupError(msg) else: msg = "kind must be one of: {}".format(kinds) logger.error(msg) raise LookupError(msg) return odepth def get_speed(self, kind="measured"): """Retrieve speed records Parameters ---------- kind : {"measured", "calibrated"} Which speed to retrieve. Returns ------- xarray.DataArray """ kinds = ["measured", "calibrated"] ispeed = self.speed if kind == kinds[0]: ospeed = ispeed elif kind == kinds[1]: qfit = self.speed_calib_fit if qfit is None: msg = "Calibrated speed not available." logger.error(msg) raise LookupError(msg) else: coefs = qfit.params coef_a = coefs[0] coef_b = coefs[1] ospeed = (ispeed - coef_a) / coef_b _append_xr_attr(ospeed, "history", "speed_calib_fit") else: msg = "kind must be one of: {}".format(kinds) logger.error(msg) raise LookupError(msg) return ospeed def get_tdr(self, calib_depth=True, calib_speed=True): """Return a copy of tdr Dataset Parameters ---------- calib_depth : bool, optional Whether to return calibrated depth measurements. calib_speed : bool, optional Whether to return calibrated speed measurements. Returns ------- xarray.Dataset """ tdr = self.tdr.copy() if calib_depth: depth_name = self.depth_name depth_cal = self.get_depth("zoc") tdr[depth_name] = depth_cal if self.has_speed and calib_speed: speed_name = self.speed_name speed_cal = self.get_speed("calibrated") tdr[speed_name] = speed_cal return tdr def extract_dives(self, diveNo, **kwargs): """Extract TDR data corresponding to a particular set of dives Parameters ---------- diveNo : array_like, optional List of dive numbers (1-based) to plot. **kwargs : optional keyword arguments Passed to :meth:`get_tdr` Returns ------- xarray.Dataset Examples -------- >>> from skdiveMove.tests import diveMove2skd >>> tdrX = diveMove2skd(has_speed=False) >>> tdrX.zoc("offset", offset=3) >>> tdrX.detect_wet() >>> tdrX.detect_dives(3) >>> tdrX.detect_dive_phases("unimodal", descent_crit_q=0.01, ... ascent_crit_q=0, knot_factor=20) >>> tdrX.extract_dives(diveNo=20) # doctest: +ELLIPSIS <xarray.Dataset> Dimensions: ... """ dive_ids = self.get_dives_details("row_ids", "dive_id") idx_name = dive_ids.index.name idxs = _get_dive_indices(dive_ids, diveNo) tdr = self.get_tdr(**kwargs) tdr_i = tdr[{idx_name: idxs.astype(int)}] return tdr_i def calibrate(tdr_file, config_file=None): """Perform all major TDR calibration operations Detect periods of major activities in a `TDR` object, calibrate depth readings, and speed if appropriate, in preparation for subsequent summaries of diving behaviour. This function is a convenience wrapper around :meth:`~TDR.detect_wet`, :meth:`~TDR.detect_dives`, :meth:`~TDR.detect_dive_phases`, :meth:`~TDR.zoc`, and :meth:`~TDR.calibrate_speed`. It performs wet/dry phase detection, zero-offset correction of depth, detection of dives, as well as proper labelling of the latter, and calibrates speed data if appropriate. Due to the complexity of this procedure, and the number of settings required for it, a calibration configuration file (JSON) is used to guide the operations. Parameters ---------- tdr_file : str, Path or xarray.backends.*DataStore As first argument for :func:`xarray.load_dataset`. config_file : str A valid string path for TDR calibration configuration file. Returns ------- out : TDR See Also -------- dump_config_template : configuration template """ if config_file is None: config = calibconfig._DEFAULT_CONFIG else: config = calibconfig.read_config(config_file) logger = logging.getLogger(__name__) logger.setLevel(config["log_level"]) load_dataset_kwargs = config["read"].pop("load_dataset_kwargs") logger.info("Reading config: {}, {}" .format(config["read"], load_dataset_kwargs)) tdr = TDR.read_netcdf(tdr_file, **config["read"], **load_dataset_kwargs) do_zoc = config["zoc"].pop("required") if do_zoc: logger.info("ZOC config: {}".format(config["zoc"])) tdr.zoc(config["zoc"]["method"], **config["zoc"]["parameters"]) logger.info("Wet/Dry config: {}".format(config["wet_dry"])) tdr.detect_wet(**config["wet_dry"]) logger.info("Dives config: {}".format(config["dives"])) tdr.detect_dives(config["dives"].pop("dive_thr")) tdr.detect_dive_phases(**config["dives"]) do_speed_calib = bool(config["speed_calib"].pop("required")) if tdr.has_speed and do_speed_calib: logger.info("Speed calibration config: {}" .format(config["speed_calib"])) tdr.calibrate_speed(**config["speed_calib"], plot=False) return tdr if __name__ == '__main__': # Set up info level logging logging.basicConfig(level=logging.INFO) ifile = r"tests/data/ag_mk7_2002_022.nc" tdrX = TDR.read_netcdf(ifile, has_speed=True) # tdrX = TDRSource(ifile, has_speed=True) # print(tdrX)
0.884583
0.378947
import json __all__ = ["dump_config_template", "dump_config", "read_config"] _DEFAULT_CONFIG = { 'log_level': "INFO", 'read': { 'depth_name': "depth", 'time_name': "timestamp", 'subsample': 5, 'has_speed': False, 'load_dataset_kwargs': {} }, 'zoc': { 'required': True, 'method': "offset", 'parameters': {'offset': 0} }, 'wet_dry': { 'dry_thr': 70, 'wet_thr': 3610, 'interp_wet': False }, 'dives': { 'dive_thr': 4, 'dive_model': "unimodal", 'knot_factor': 3, 'descent_crit_q': 0, 'ascent_crit_q': 0 }, 'speed_calib': { 'required': False, 'tau': 0.1, 'contour_level': 0.1, 'z': 0, 'bad': [0, 0] } } _DUMP_INDENT = 4 def dump_config_template(fname): """Dump configuration template file Dump a json configuration template file to set up TDR calibration. Parameters ---------- fname : str or file-like A valid string path, or `file-like` object, for output file. Examples -------- >>> dump_config_template("tdr_config.json") # doctest: +SKIP Edit the file to your specifications. """ with open(fname, "w") as ofile: json.dump(_DEFAULT_CONFIG, ofile, indent=_DUMP_INDENT) def read_config(config_file): """Read configuration file into dictionary Parameters ---------- config_file : str or file-like A valid string path, or `file-like` object, for input file. Returns ------- out : dict """ with open(config_file, "r") as ifile: config = json.load(ifile) return config def dump_config(fname, config_dict): """Dump configuration dictionary to file Dump a dictionary onto a JSON configuration file to set up TDR calibration. Parameters ---------- fname : str or file-like A valid string path, or `file-like` object, for output file. config_dict : dict Dictionary to dump. """ with open(fname, "w") as ofile: json.dump(config_dict, ofile, indent=_DUMP_INDENT) if __name__ == '__main__': dump_config_template("tdr_config.json") config = read_config("tdr_config.json")
scikit-diveMove
/scikit-diveMove-0.3.0.tar.gz/scikit-diveMove-0.3.0/skdiveMove/calibconfig.py
calibconfig.py
import json __all__ = ["dump_config_template", "dump_config", "read_config"] _DEFAULT_CONFIG = { 'log_level': "INFO", 'read': { 'depth_name': "depth", 'time_name': "timestamp", 'subsample': 5, 'has_speed': False, 'load_dataset_kwargs': {} }, 'zoc': { 'required': True, 'method': "offset", 'parameters': {'offset': 0} }, 'wet_dry': { 'dry_thr': 70, 'wet_thr': 3610, 'interp_wet': False }, 'dives': { 'dive_thr': 4, 'dive_model': "unimodal", 'knot_factor': 3, 'descent_crit_q': 0, 'ascent_crit_q': 0 }, 'speed_calib': { 'required': False, 'tau': 0.1, 'contour_level': 0.1, 'z': 0, 'bad': [0, 0] } } _DUMP_INDENT = 4 def dump_config_template(fname): """Dump configuration template file Dump a json configuration template file to set up TDR calibration. Parameters ---------- fname : str or file-like A valid string path, or `file-like` object, for output file. Examples -------- >>> dump_config_template("tdr_config.json") # doctest: +SKIP Edit the file to your specifications. """ with open(fname, "w") as ofile: json.dump(_DEFAULT_CONFIG, ofile, indent=_DUMP_INDENT) def read_config(config_file): """Read configuration file into dictionary Parameters ---------- config_file : str or file-like A valid string path, or `file-like` object, for input file. Returns ------- out : dict """ with open(config_file, "r") as ifile: config = json.load(ifile) return config def dump_config(fname, config_dict): """Dump configuration dictionary to file Dump a dictionary onto a JSON configuration file to set up TDR calibration. Parameters ---------- fname : str or file-like A valid string path, or `file-like` object, for output file. config_dict : dict Dictionary to dump. """ with open(fname, "w") as ofile: json.dump(config_dict, ofile, indent=_DUMP_INDENT) if __name__ == '__main__': dump_config_template("tdr_config.json") config = read_config("tdr_config.json")
0.680879
0.126111
import numpy as np from scipy.optimize import curve_fit # Mapping of error type with corresponding tau and slope _ERROR_DEFS = {"Q": [np.sqrt(3), -1], "ARW": [1.0, -0.5], "BI": [np.nan, 0], "RRW": [3.0, 0.5], "RR": [np.sqrt(2), 1]} def _armav_nls_fun(x, *args): coefs = np.array(args).reshape(len(args), 1) return np.log10(np.dot(x, coefs ** 2)).flatten() def _armav(taus, adevs): nsize = taus.size # Linear regressor matrix x0 = np.sqrt(np.column_stack([3 / (taus ** 2), 1 / taus, np.ones(nsize), taus / 3, taus ** 2 / 2])) # Ridge regression bias constant lambda0 = 5e-3 id0 = np.eye(5) sigma0 = np.linalg.solve((np.dot(x0.T, x0) + lambda0 * id0), np.dot(x0.T, adevs)) # TODO: need to be able to set bounds popt, pcov = curve_fit(_armav_nls_fun, x0 ** 2, np.log10(adevs ** 2), p0=sigma0) # Compute the bias instability sigma_hat = np.abs(popt) adev_reg = np.sqrt(np.dot(x0 ** 2, sigma_hat ** 2)) sigma_hat[2] = np.min(adev_reg) / np.sqrt((2 * np.log(2) / np.pi)) return (sigma_hat, popt, adev_reg) def _line_fun(t, alpha, tau_crit, adev_crit): """Find Allan sigma coefficient from line and point Log-log parameterization of the point-slope line equation. Parameters ---------- t : {float, array_like} Averaging time alpha : float Slope of Allan deviation line tau_crit : float Observed averaging time adev_crit : float Observed Allan deviation at `tau_crit` """ return (10 ** (alpha * (np.log10(t) - np.log10(tau_crit)) + np.log10(adev_crit))) def allan_coefs(taus, adevs): """Compute Allan deviation coefficients for each error type Given averaging intervals ``taus`` and corresponding Allan deviation ``adevs``, compute the Allan deviation coefficient for each error type: - Quantization - (Angle, Velocity) Random Walk - Bias Instability - Rate Random Walk - Rate Ramp Parameters ---------- taus : array_like Averaging times adevs : array_like Allan deviation Returns ------- sigmas_hat: dict Dictionary with `tau` value and associated Allan deviation coefficient for each error type. adev_reg : numpy.ndarray The array of Allan deviations fitted to `taus`. """ # Fit ARMAV model sigmas_hat, popt, adev_reg = _armav(taus, adevs) sigmas_d = dict(zip(_ERROR_DEFS.keys(), sigmas_hat)) return (sigmas_d, adev_reg)
scikit-diveMove
/scikit-diveMove-0.3.0.tar.gz/scikit-diveMove-0.3.0/skdiveMove/imutools/allan.py
allan.py
import numpy as np from scipy.optimize import curve_fit # Mapping of error type with corresponding tau and slope _ERROR_DEFS = {"Q": [np.sqrt(3), -1], "ARW": [1.0, -0.5], "BI": [np.nan, 0], "RRW": [3.0, 0.5], "RR": [np.sqrt(2), 1]} def _armav_nls_fun(x, *args): coefs = np.array(args).reshape(len(args), 1) return np.log10(np.dot(x, coefs ** 2)).flatten() def _armav(taus, adevs): nsize = taus.size # Linear regressor matrix x0 = np.sqrt(np.column_stack([3 / (taus ** 2), 1 / taus, np.ones(nsize), taus / 3, taus ** 2 / 2])) # Ridge regression bias constant lambda0 = 5e-3 id0 = np.eye(5) sigma0 = np.linalg.solve((np.dot(x0.T, x0) + lambda0 * id0), np.dot(x0.T, adevs)) # TODO: need to be able to set bounds popt, pcov = curve_fit(_armav_nls_fun, x0 ** 2, np.log10(adevs ** 2), p0=sigma0) # Compute the bias instability sigma_hat = np.abs(popt) adev_reg = np.sqrt(np.dot(x0 ** 2, sigma_hat ** 2)) sigma_hat[2] = np.min(adev_reg) / np.sqrt((2 * np.log(2) / np.pi)) return (sigma_hat, popt, adev_reg) def _line_fun(t, alpha, tau_crit, adev_crit): """Find Allan sigma coefficient from line and point Log-log parameterization of the point-slope line equation. Parameters ---------- t : {float, array_like} Averaging time alpha : float Slope of Allan deviation line tau_crit : float Observed averaging time adev_crit : float Observed Allan deviation at `tau_crit` """ return (10 ** (alpha * (np.log10(t) - np.log10(tau_crit)) + np.log10(adev_crit))) def allan_coefs(taus, adevs): """Compute Allan deviation coefficients for each error type Given averaging intervals ``taus`` and corresponding Allan deviation ``adevs``, compute the Allan deviation coefficient for each error type: - Quantization - (Angle, Velocity) Random Walk - Bias Instability - Rate Random Walk - Rate Ramp Parameters ---------- taus : array_like Averaging times adevs : array_like Allan deviation Returns ------- sigmas_hat: dict Dictionary with `tau` value and associated Allan deviation coefficient for each error type. adev_reg : numpy.ndarray The array of Allan deviations fitted to `taus`. """ # Fit ARMAV model sigmas_hat, popt, adev_reg = _armav(taus, adevs) sigmas_d = dict(zip(_ERROR_DEFS.keys(), sigmas_hat)) return (sigmas_d, adev_reg)
0.786295
0.651577
import numpy as np from scipy.spatial.transform import Rotation as R def normalize(v): """Normalize vector Parameters ---------- v : array_like (N,) or (M,N) input vector Returns ------- numpy.ndarray Normalized vector having magnitude 1. """ return v / np.linalg.norm(v, axis=-1, keepdims=True) def vangle(v1, v2): """Angle between one or more vectors Parameters ---------- v1 : array_like (N,) or (M,N) vector 1 v2 : array_like (N,) or (M,N) vector 2 Returns ------- angle : double or numpy.ndarray(M,) angle between v1 and v2 Example ------- >>> v1 = np.array([[1,2,3], ... [4,5,6]]) >>> v2 = np.array([[1,0,0], ... [0,1,0]]) >>> vangle(v1,v2) array([1.30024656, 0.96453036]) Notes ----- .. image:: .static/images/vector_angle.png :scale: 75% .. math:: \\alpha =arccos(\\frac{\\vec{v_1} \\cdot \\vec{v_2}}{| \\vec{v_1} | \\cdot | \\vec{v_2}|}) """ v1_norm = v1 / np.linalg.norm(v1, axis=-1, keepdims=True) v2_norm = v2 / np.linalg.norm(v2, axis=-1, keepdims=True) v1v2 = np.einsum("ij,ij->i", *np.atleast_2d(v1_norm, v2_norm)) angle = np.arccos(v1v2) if len(angle) == 1: angle = angle.item() return angle def rotate_vector(vector, q, inverse=False): """Apply rotations to vector or array of vectors given quaternions Parameters ---------- vector : array_like One (1D) or more (2D) array with vectors to rotate. q : array_like One (1D) or more (2D) array with quaternion vectors. The scalar component must be last to match `scipy`'s convention. Returns ------- numpy.ndarray The rotated input vector array. Notes ----- .. image:: .static/images/vector_rotate.png :scale: 75% .. math:: q \\circ \\left( {\\vec x \\cdot \\vec I} \\right) \\circ {q^{ - 1}} = \\left( {{\\bf{R}} \\cdot \\vec x} \\right) \\cdot \\vec I More info under http://en.wikipedia.org/wiki/Quaternion """ rotator = R.from_quat(q) return rotator.apply(vector, inverse=inverse)
scikit-diveMove
/scikit-diveMove-0.3.0.tar.gz/scikit-diveMove-0.3.0/skdiveMove/imutools/vector.py
vector.py
import numpy as np from scipy.spatial.transform import Rotation as R def normalize(v): """Normalize vector Parameters ---------- v : array_like (N,) or (M,N) input vector Returns ------- numpy.ndarray Normalized vector having magnitude 1. """ return v / np.linalg.norm(v, axis=-1, keepdims=True) def vangle(v1, v2): """Angle between one or more vectors Parameters ---------- v1 : array_like (N,) or (M,N) vector 1 v2 : array_like (N,) or (M,N) vector 2 Returns ------- angle : double or numpy.ndarray(M,) angle between v1 and v2 Example ------- >>> v1 = np.array([[1,2,3], ... [4,5,6]]) >>> v2 = np.array([[1,0,0], ... [0,1,0]]) >>> vangle(v1,v2) array([1.30024656, 0.96453036]) Notes ----- .. image:: .static/images/vector_angle.png :scale: 75% .. math:: \\alpha =arccos(\\frac{\\vec{v_1} \\cdot \\vec{v_2}}{| \\vec{v_1} | \\cdot | \\vec{v_2}|}) """ v1_norm = v1 / np.linalg.norm(v1, axis=-1, keepdims=True) v2_norm = v2 / np.linalg.norm(v2, axis=-1, keepdims=True) v1v2 = np.einsum("ij,ij->i", *np.atleast_2d(v1_norm, v2_norm)) angle = np.arccos(v1v2) if len(angle) == 1: angle = angle.item() return angle def rotate_vector(vector, q, inverse=False): """Apply rotations to vector or array of vectors given quaternions Parameters ---------- vector : array_like One (1D) or more (2D) array with vectors to rotate. q : array_like One (1D) or more (2D) array with quaternion vectors. The scalar component must be last to match `scipy`'s convention. Returns ------- numpy.ndarray The rotated input vector array. Notes ----- .. image:: .static/images/vector_rotate.png :scale: 75% .. math:: q \\circ \\left( {\\vec x \\cdot \\vec I} \\right) \\circ {q^{ - 1}} = \\left( {{\\bf{R}} \\cdot \\vec x} \\right) \\cdot \\vec I More info under http://en.wikipedia.org/wiki/Quaternion """ rotator = R.from_quat(q) return rotator.apply(vector, inverse=inverse)
0.940463
0.70304