code
stringlengths
501
4.91M
package
stringlengths
2
88
path
stringlengths
11
291
filename
stringlengths
4
197
parsed_code
stringlengths
0
4.91M
quality_prob
float64
0
0.99
learning_prob
float64
0.02
1
import numpy as np import pandas as pd import allantools as allan import ahrs.filters as filters from scipy import constants, signal, integrate from sklearn import preprocessing from skdiveMove.tdrsource import _load_dataset from .allan import allan_coefs from .vector import rotate_vector _TIME_NAME = "timestamp" _DEPTH_NAME = "depth" _ACCEL_NAME = "acceleration" _OMEGA_NAME = "angular_velocity" _MAGNT_NAME = "magnetic_density" class IMUBase: """Define IMU data source Use :class:`xarray.Dataset` to ensure pseudo-standard metadata. Attributes ---------- imu_file : str String indicating the file where the data comes from. imu : xarray.Dataset Dataset with input data. imu_var_names : list Names of the data variables with accelerometer, angular velocity, and magnetic density measurements. has_depth : bool Whether input data include depth measurements. depth_name : str Name of the data variable with depth measurements. time_name : str Name of the time dimension in the dataset. quats : numpy.ndarray Array of quaternions representing the orientation relative to the frame of the IMU object data. Note that the scalar component is last, following `scipy`'s convention. Examples -------- This example illustrates some of the issues encountered while reading data files in a real-world scenario. ``scikit-diveMove`` includes a NetCDF file with IMU signals collected using a Samsung Galaxy S5 mobile phone. Set up instance from NetCDF example data: >>> import pkg_resources as pkg_rsrc >>> import os.path as osp >>> import xarray as xr >>> import skdiveMove.imutools as imutools >>> icdf = (pkg_rsrc ... .resource_filename("skdiveMove", ... osp.join("tests", "data", ... "samsung_galaxy_s5.nc"))) The angular velocity and magnetic density arrays have two sets of measurements: output and measured, which, along with the sensor axis designation, constitutes a multi-index. These multi-indices can be rebuilt prior to instantiating IMUBase, as they provide significant advantages for indexing later: >>> s5ds = (xr.load_dataset(icdf) ... .set_index(gyroscope=["gyroscope_type", "gyroscope_axis"], ... magnetometer=["magnetometer_type", ... "magnetometer_axis"])) >>> imu = imutools.IMUBase(s5ds.sel(gyroscope="output", ... magnetometer="output"), ... imu_filename=icdf) See :doc:`demo_allan` demo for an extended example of typical usage of the methods in this class. """ def __init__(self, dataset, acceleration_name=_ACCEL_NAME, angular_velocity_name=_OMEGA_NAME, magnetic_density_name=_MAGNT_NAME, time_name=_TIME_NAME, has_depth=False, depth_name=_DEPTH_NAME, imu_filename=None): """Set up attributes for IMU objects Parameters ---------- dataset : xarray.Dataset Dataset containing IMU sensor DataArrays, and optionally other DataArrays. acceleration_name : str, optional Name of the acceleration ``DataArray`` in the ``Dataset``. angular_velocity_name : str, optional Name of the angular velocity ``DataArray`` in the ``Dataset``. magnetic_density_name : str, optional Name of the magnetic density ``DataArray`` in the ``Dataset``. time_name : str, optional Name of the time dimension in the dataset. has_depth : bool, optional Whether input data include depth measurements. depth_name : str, optional Name of the depth ``DataArray`` in the ``Dataset``. imu_filename : str, optional Name of the file from which ``dataset`` originated. """ self.time_name = time_name self.imu = dataset self.imu_var_names = [acceleration_name, angular_velocity_name, magnetic_density_name] if has_depth: self.has_depth = True self.depth_name = depth_name else: self.has_depth = False self.depth_name = None self.imu_file = imu_filename self.quats = None @classmethod def read_netcdf(cls, imu_file, acceleration_name=_ACCEL_NAME, angular_velocity_name=_OMEGA_NAME, magnetic_density_name=_MAGNT_NAME, time_name=_TIME_NAME, has_depth=False, depth_name=_DEPTH_NAME, **kwargs): """Instantiate object by loading Dataset from NetCDF file Provided all ``DataArray`` in the NetCDF file have the same dimensions (N, 3), this is an efficient way to instantiate. Parameters ---------- imu_file : str As first argument for :func:`xarray.load_dataset`. acceleration_name : str, optional Name of the acceleration ``DataArray`` in the ``Dataset``. angular_velocity_name : str, optional Name of the angular velocity ``DataArray`` in the ``Dataset``. magnetic_density_name : str, optional Name of the magnetic density ``DataArray`` in the ``Dataset``. dimension_names : list, optional Names of the dimensions of the data in each of the sensors. has_depth : bool, optional Whether input data include depth measurements. depth_name : str, optional Name of the depth ``DataArray`` in the ``Dataset``. **kwargs : optional keyword arguments Arguments passed to :func:`xarray.load_dataset`. Returns ------- obj : IMUBase Class matches the caller. """ dataset = _load_dataset(imu_file, **kwargs) return cls(dataset, acceleration_name=acceleration_name, angular_velocity_name=angular_velocity_name, magnetic_density_name=magnetic_density_name, time_name=time_name, has_depth=has_depth, depth_name=depth_name, imu_filename=imu_file) def __str__(self): x = self.imu objcls = ("IMU -- Class {} object\n" .format(self.__class__.__name__)) src = "{0:<20} {1}\n".format("Source File", self.imu_file) imu_desc = "IMU: {}".format(x.__str__()) return objcls + src + imu_desc def _allan_deviation(self, sensor, taus): """Compute Allan deviation for all axes of a given sensor Currently uses the modified Allan deviation in package `allantools`. Parameters ---------- sensor : str Attribute name of the sensor of interest taus : float, str Tau value, in seconds, for which to compute statistic. Can be one of "octave" or "decade" for automatic generation of the value. Returns ------- pandas.DataFrame Allan deviation and error for each sensor axis. DataFrame index is the averaging time `tau` for each estimate. """ sensor_obj = getattr(self, sensor) sampling_rate = sensor_obj.attrs["sampling_rate"] sensor_std = preprocessing.scale(sensor_obj, with_std=False) allan_l = [] for axis in sensor_std.T: taus, adevs, errs, ns = allan.mdev(axis, rate=sampling_rate, data_type="freq", taus=taus) # taus is common to all sensor axes adevs_df = pd.DataFrame(np.column_stack((adevs, errs)), columns=["allan_dev", "error"], index=taus) allan_l.append(adevs_df) keys = [sensor + "_" + i for i in list("xyz")] devs = pd.concat(allan_l, axis=1, keys=keys) return devs def allan_coefs(self, sensor, taus): """Estimate Allan deviation coefficients for each error type This procedure implements the autonomous regression method for Allan variance described in [1]_. Given averaging intervals ``taus`` and corresponding Allan deviation ``adevs``, compute the Allan deviation coefficient for each error type: - Quantization - (Angle, Velocity) Random Walk - Bias Instability - Rate Random Walk - Rate Ramp Parameters ---------- sensor : str Attribute name of the sensor of interest taus : float, str Tau value, in seconds, for which to compute statistic. Can be one of "octave" or "decade" for automatic generation of the value. Returns ------- coefs_all : pandas.DataFrame Allan deviation coefficient and corresponding averaging time for each sensor axis and error type. adevs : pandas.DataFrame `MultiIndex` DataFrame with Allan deviation, corresponding averaging time, and fitted ARMAV model estimates of the coefficients for each sensor axis and error type. Notes ----- Currently uses a modified Allan deviation formula. .. [1] Jurado, J, Schubert Kabban, CM, Raquet, J (2019). A regression-based methodology to improve estimation of inertial sensor errors using Allan variance data. Navigation 66:251-263. """ adevs_errs = self._allan_deviation(sensor, taus) taus = adevs_errs.index.to_numpy() adevs = adevs_errs.xs("allan_dev", level=1, axis=1).to_numpy() coefs_l = [] fitted_l = [] for adevs_i in adevs.T: coefs_i, adevs_fitted = allan_coefs(taus, adevs_i) # Parse output for dataframe coefs_l.append(pd.Series(coefs_i)) fitted_l.append(adevs_fitted) keys = [sensor + "_" + i for i in list("xyz")] coefs_all = pd.concat(coefs_l, keys=keys, axis=1) fitted_all = pd.DataFrame(np.column_stack(fitted_l), columns=keys, index=taus) fitted_all.columns = (pd.MultiIndex .from_tuples([(c, "fitted") for c in fitted_all])) adevs = (pd.concat([adevs_errs, fitted_all], axis=1) .sort_index(axis=1)) return (coefs_all, adevs) def compute_orientation(self, method="Madgwick", **kwargs): """Compute the orientation of IMU tri-axial signals The method must be one of the following estimators implemented in Python module :mod:`ahrs.filters`: - ``AngularRate``: Attitude from angular rate - ``AQUA``: Algebraic quaternion algorithm - ``Complementary``: Complementary filter - ``Davenport``: Davenport's q-method - ``EKF``: Extended Kalman filter - ``FAAM``: Fast accelerometer-magnetometer combination - ``FLAE``: Fast linear attitude estimator - ``Fourati``: Fourati's nonlinear attitude estimation - ``FQA``: Factored quaternion algorithm - ``Madgwick``: Madgwick orientation filter - ``Mahony``: Mahony orientation filter - ``OLEQ``: Optimal linear estimator quaternion - ``QUEST`` - ``ROLEQ``: Recursive optimal linear estimator of quaternion - ``SAAM``: Super-fast attitude from accelerometer and magnetometer - ``Tilt``: Attitude from gravity The estimated quaternions are stored in the ``quats`` attribute. Parameters ---------- method : str, optional Name of the filtering method to use. **kwargs : optional keyword arguments Arguments passed to filtering method. """ orienter_cls = getattr(filters, method) orienter = orienter_cls(acc=self.acceleration, gyr=self.angular_velocity, mag=self.magnetic_density, Dt=self.sampling_interval, **kwargs) self.quats = orienter.Q def dead_reckon(self, g=constants.g, Wn=1.0, k=1.0): """Calculate position assuming orientation is already known Integrate dynamic acceleration in the body frame to calculate velocity and position. If the IMU instance has a depth signal, it is used in the integration instead of acceleration in the vertical dimension. Parameters ---------- g : float, optional Assume gravity (:math:`m / s^2`) is equal to this value. Default to standard gravity. Wn : float, optional Cutoff frequency for second-order Butterworth lowpass filter. k : float, optional Scalar to apply to scale lowpass-filtered dynamic acceleration. This scaling has the effect of making position estimates realistic for dead-reckoning tracking purposes. Returns ------- vel, pos : numpy.ndarray Velocity and position 2D arrays. """ # Acceleration, velocity, and position from q and the measured # acceleration, get the \frac{d^2x}{dt^2}. Retrieved sampling # frequency assumes common frequency fs = self.acceleration.attrs["sampling_rate"] # Shift quaternions to scalar last to match convention quats = np.roll(self.quats, -1, axis=1) g_v = rotate_vector(np.array([0, 0, g]), quats, inverse=True) acc_sensor = self.acceleration - g_v acc_space = rotate_vector(acc_sensor, quats, inverse=False) # Low-pass Butterworth filter design b, a = signal.butter(2, Wn, btype="lowpass", output="ba", fs=fs) acc_space_f = signal.filtfilt(b, a, acc_space, axis=0) # Position and Velocity through integration, assuming 0-velocity at t=0 vel = integrate.cumulative_trapezoid(acc_space_f / k, dx=1.0 / fs, initial=0, axis=0) # Use depth derivative (on FLU) for the vertical dimension if self.has_depth: pos_z = self.depth zdiff = np.append([0], np.diff(pos_z)) vel[:, -1] = -zdiff pos = np.nan * np.ones_like(acc_space) pos[:, -1] = pos_z pos[:, :2] = (integrate .cumulative_trapezoid(vel[:, :2], dx=1.0 / fs, axis=0, initial=0)) else: pos = integrate.cumulative_trapezoid(vel, dx=1.0 / fs, axis=0, initial=0) return vel, pos def _get_acceleration(self): # Acceleration name is the first return self.imu[self.imu_var_names[0]] acceleration = property(_get_acceleration) """Return acceleration array Returns ------- xarray.DataArray """ def _get_angular_velocity(self): # Angular velocity name is the second return self.imu[self.imu_var_names[1]] angular_velocity = property(_get_angular_velocity) """Return angular velocity array Returns ------- xarray.DataArray """ def _get_magnetic_density(self): # Magnetic density name is the last one return self.imu[self.imu_var_names[-1]] magnetic_density = property(_get_magnetic_density) """Return magnetic_density array Returns ------- xarray.DataArray """ def _get_depth(self): return getattr(self.imu, self.depth_name) depth = property(_get_depth) """Return depth array Returns ------- xarray.DataArray """ def _get_sampling_interval(self): # Retrieve sampling rate from one DataArray sampling_rate = self.acceleration.attrs["sampling_rate"] sampling_rate_units = (self.acceleration .attrs["sampling_rate_units"]) if sampling_rate_units.lower() == "hz": itvl = 1.0 / sampling_rate else: itvl = sampling_rate return itvl sampling_interval = property(_get_sampling_interval) """Return sampling interval Assuming all `DataArray`s have the same interval, the sampling interval is retrieved from the acceleration `DataArray`. Returns ------- xarray.DataArray Warnings -------- The sampling rate is retrieved from the attribute named `sampling_rate` in the NetCDF file, which is assumed to be in Hz units. """
scikit-diveMove
/scikit-diveMove-0.3.0.tar.gz/scikit-diveMove-0.3.0/skdiveMove/imutools/imu.py
imu.py
import numpy as np import pandas as pd import allantools as allan import ahrs.filters as filters from scipy import constants, signal, integrate from sklearn import preprocessing from skdiveMove.tdrsource import _load_dataset from .allan import allan_coefs from .vector import rotate_vector _TIME_NAME = "timestamp" _DEPTH_NAME = "depth" _ACCEL_NAME = "acceleration" _OMEGA_NAME = "angular_velocity" _MAGNT_NAME = "magnetic_density" class IMUBase: """Define IMU data source Use :class:`xarray.Dataset` to ensure pseudo-standard metadata. Attributes ---------- imu_file : str String indicating the file where the data comes from. imu : xarray.Dataset Dataset with input data. imu_var_names : list Names of the data variables with accelerometer, angular velocity, and magnetic density measurements. has_depth : bool Whether input data include depth measurements. depth_name : str Name of the data variable with depth measurements. time_name : str Name of the time dimension in the dataset. quats : numpy.ndarray Array of quaternions representing the orientation relative to the frame of the IMU object data. Note that the scalar component is last, following `scipy`'s convention. Examples -------- This example illustrates some of the issues encountered while reading data files in a real-world scenario. ``scikit-diveMove`` includes a NetCDF file with IMU signals collected using a Samsung Galaxy S5 mobile phone. Set up instance from NetCDF example data: >>> import pkg_resources as pkg_rsrc >>> import os.path as osp >>> import xarray as xr >>> import skdiveMove.imutools as imutools >>> icdf = (pkg_rsrc ... .resource_filename("skdiveMove", ... osp.join("tests", "data", ... "samsung_galaxy_s5.nc"))) The angular velocity and magnetic density arrays have two sets of measurements: output and measured, which, along with the sensor axis designation, constitutes a multi-index. These multi-indices can be rebuilt prior to instantiating IMUBase, as they provide significant advantages for indexing later: >>> s5ds = (xr.load_dataset(icdf) ... .set_index(gyroscope=["gyroscope_type", "gyroscope_axis"], ... magnetometer=["magnetometer_type", ... "magnetometer_axis"])) >>> imu = imutools.IMUBase(s5ds.sel(gyroscope="output", ... magnetometer="output"), ... imu_filename=icdf) See :doc:`demo_allan` demo for an extended example of typical usage of the methods in this class. """ def __init__(self, dataset, acceleration_name=_ACCEL_NAME, angular_velocity_name=_OMEGA_NAME, magnetic_density_name=_MAGNT_NAME, time_name=_TIME_NAME, has_depth=False, depth_name=_DEPTH_NAME, imu_filename=None): """Set up attributes for IMU objects Parameters ---------- dataset : xarray.Dataset Dataset containing IMU sensor DataArrays, and optionally other DataArrays. acceleration_name : str, optional Name of the acceleration ``DataArray`` in the ``Dataset``. angular_velocity_name : str, optional Name of the angular velocity ``DataArray`` in the ``Dataset``. magnetic_density_name : str, optional Name of the magnetic density ``DataArray`` in the ``Dataset``. time_name : str, optional Name of the time dimension in the dataset. has_depth : bool, optional Whether input data include depth measurements. depth_name : str, optional Name of the depth ``DataArray`` in the ``Dataset``. imu_filename : str, optional Name of the file from which ``dataset`` originated. """ self.time_name = time_name self.imu = dataset self.imu_var_names = [acceleration_name, angular_velocity_name, magnetic_density_name] if has_depth: self.has_depth = True self.depth_name = depth_name else: self.has_depth = False self.depth_name = None self.imu_file = imu_filename self.quats = None @classmethod def read_netcdf(cls, imu_file, acceleration_name=_ACCEL_NAME, angular_velocity_name=_OMEGA_NAME, magnetic_density_name=_MAGNT_NAME, time_name=_TIME_NAME, has_depth=False, depth_name=_DEPTH_NAME, **kwargs): """Instantiate object by loading Dataset from NetCDF file Provided all ``DataArray`` in the NetCDF file have the same dimensions (N, 3), this is an efficient way to instantiate. Parameters ---------- imu_file : str As first argument for :func:`xarray.load_dataset`. acceleration_name : str, optional Name of the acceleration ``DataArray`` in the ``Dataset``. angular_velocity_name : str, optional Name of the angular velocity ``DataArray`` in the ``Dataset``. magnetic_density_name : str, optional Name of the magnetic density ``DataArray`` in the ``Dataset``. dimension_names : list, optional Names of the dimensions of the data in each of the sensors. has_depth : bool, optional Whether input data include depth measurements. depth_name : str, optional Name of the depth ``DataArray`` in the ``Dataset``. **kwargs : optional keyword arguments Arguments passed to :func:`xarray.load_dataset`. Returns ------- obj : IMUBase Class matches the caller. """ dataset = _load_dataset(imu_file, **kwargs) return cls(dataset, acceleration_name=acceleration_name, angular_velocity_name=angular_velocity_name, magnetic_density_name=magnetic_density_name, time_name=time_name, has_depth=has_depth, depth_name=depth_name, imu_filename=imu_file) def __str__(self): x = self.imu objcls = ("IMU -- Class {} object\n" .format(self.__class__.__name__)) src = "{0:<20} {1}\n".format("Source File", self.imu_file) imu_desc = "IMU: {}".format(x.__str__()) return objcls + src + imu_desc def _allan_deviation(self, sensor, taus): """Compute Allan deviation for all axes of a given sensor Currently uses the modified Allan deviation in package `allantools`. Parameters ---------- sensor : str Attribute name of the sensor of interest taus : float, str Tau value, in seconds, for which to compute statistic. Can be one of "octave" or "decade" for automatic generation of the value. Returns ------- pandas.DataFrame Allan deviation and error for each sensor axis. DataFrame index is the averaging time `tau` for each estimate. """ sensor_obj = getattr(self, sensor) sampling_rate = sensor_obj.attrs["sampling_rate"] sensor_std = preprocessing.scale(sensor_obj, with_std=False) allan_l = [] for axis in sensor_std.T: taus, adevs, errs, ns = allan.mdev(axis, rate=sampling_rate, data_type="freq", taus=taus) # taus is common to all sensor axes adevs_df = pd.DataFrame(np.column_stack((adevs, errs)), columns=["allan_dev", "error"], index=taus) allan_l.append(adevs_df) keys = [sensor + "_" + i for i in list("xyz")] devs = pd.concat(allan_l, axis=1, keys=keys) return devs def allan_coefs(self, sensor, taus): """Estimate Allan deviation coefficients for each error type This procedure implements the autonomous regression method for Allan variance described in [1]_. Given averaging intervals ``taus`` and corresponding Allan deviation ``adevs``, compute the Allan deviation coefficient for each error type: - Quantization - (Angle, Velocity) Random Walk - Bias Instability - Rate Random Walk - Rate Ramp Parameters ---------- sensor : str Attribute name of the sensor of interest taus : float, str Tau value, in seconds, for which to compute statistic. Can be one of "octave" or "decade" for automatic generation of the value. Returns ------- coefs_all : pandas.DataFrame Allan deviation coefficient and corresponding averaging time for each sensor axis and error type. adevs : pandas.DataFrame `MultiIndex` DataFrame with Allan deviation, corresponding averaging time, and fitted ARMAV model estimates of the coefficients for each sensor axis and error type. Notes ----- Currently uses a modified Allan deviation formula. .. [1] Jurado, J, Schubert Kabban, CM, Raquet, J (2019). A regression-based methodology to improve estimation of inertial sensor errors using Allan variance data. Navigation 66:251-263. """ adevs_errs = self._allan_deviation(sensor, taus) taus = adevs_errs.index.to_numpy() adevs = adevs_errs.xs("allan_dev", level=1, axis=1).to_numpy() coefs_l = [] fitted_l = [] for adevs_i in adevs.T: coefs_i, adevs_fitted = allan_coefs(taus, adevs_i) # Parse output for dataframe coefs_l.append(pd.Series(coefs_i)) fitted_l.append(adevs_fitted) keys = [sensor + "_" + i for i in list("xyz")] coefs_all = pd.concat(coefs_l, keys=keys, axis=1) fitted_all = pd.DataFrame(np.column_stack(fitted_l), columns=keys, index=taus) fitted_all.columns = (pd.MultiIndex .from_tuples([(c, "fitted") for c in fitted_all])) adevs = (pd.concat([adevs_errs, fitted_all], axis=1) .sort_index(axis=1)) return (coefs_all, adevs) def compute_orientation(self, method="Madgwick", **kwargs): """Compute the orientation of IMU tri-axial signals The method must be one of the following estimators implemented in Python module :mod:`ahrs.filters`: - ``AngularRate``: Attitude from angular rate - ``AQUA``: Algebraic quaternion algorithm - ``Complementary``: Complementary filter - ``Davenport``: Davenport's q-method - ``EKF``: Extended Kalman filter - ``FAAM``: Fast accelerometer-magnetometer combination - ``FLAE``: Fast linear attitude estimator - ``Fourati``: Fourati's nonlinear attitude estimation - ``FQA``: Factored quaternion algorithm - ``Madgwick``: Madgwick orientation filter - ``Mahony``: Mahony orientation filter - ``OLEQ``: Optimal linear estimator quaternion - ``QUEST`` - ``ROLEQ``: Recursive optimal linear estimator of quaternion - ``SAAM``: Super-fast attitude from accelerometer and magnetometer - ``Tilt``: Attitude from gravity The estimated quaternions are stored in the ``quats`` attribute. Parameters ---------- method : str, optional Name of the filtering method to use. **kwargs : optional keyword arguments Arguments passed to filtering method. """ orienter_cls = getattr(filters, method) orienter = orienter_cls(acc=self.acceleration, gyr=self.angular_velocity, mag=self.magnetic_density, Dt=self.sampling_interval, **kwargs) self.quats = orienter.Q def dead_reckon(self, g=constants.g, Wn=1.0, k=1.0): """Calculate position assuming orientation is already known Integrate dynamic acceleration in the body frame to calculate velocity and position. If the IMU instance has a depth signal, it is used in the integration instead of acceleration in the vertical dimension. Parameters ---------- g : float, optional Assume gravity (:math:`m / s^2`) is equal to this value. Default to standard gravity. Wn : float, optional Cutoff frequency for second-order Butterworth lowpass filter. k : float, optional Scalar to apply to scale lowpass-filtered dynamic acceleration. This scaling has the effect of making position estimates realistic for dead-reckoning tracking purposes. Returns ------- vel, pos : numpy.ndarray Velocity and position 2D arrays. """ # Acceleration, velocity, and position from q and the measured # acceleration, get the \frac{d^2x}{dt^2}. Retrieved sampling # frequency assumes common frequency fs = self.acceleration.attrs["sampling_rate"] # Shift quaternions to scalar last to match convention quats = np.roll(self.quats, -1, axis=1) g_v = rotate_vector(np.array([0, 0, g]), quats, inverse=True) acc_sensor = self.acceleration - g_v acc_space = rotate_vector(acc_sensor, quats, inverse=False) # Low-pass Butterworth filter design b, a = signal.butter(2, Wn, btype="lowpass", output="ba", fs=fs) acc_space_f = signal.filtfilt(b, a, acc_space, axis=0) # Position and Velocity through integration, assuming 0-velocity at t=0 vel = integrate.cumulative_trapezoid(acc_space_f / k, dx=1.0 / fs, initial=0, axis=0) # Use depth derivative (on FLU) for the vertical dimension if self.has_depth: pos_z = self.depth zdiff = np.append([0], np.diff(pos_z)) vel[:, -1] = -zdiff pos = np.nan * np.ones_like(acc_space) pos[:, -1] = pos_z pos[:, :2] = (integrate .cumulative_trapezoid(vel[:, :2], dx=1.0 / fs, axis=0, initial=0)) else: pos = integrate.cumulative_trapezoid(vel, dx=1.0 / fs, axis=0, initial=0) return vel, pos def _get_acceleration(self): # Acceleration name is the first return self.imu[self.imu_var_names[0]] acceleration = property(_get_acceleration) """Return acceleration array Returns ------- xarray.DataArray """ def _get_angular_velocity(self): # Angular velocity name is the second return self.imu[self.imu_var_names[1]] angular_velocity = property(_get_angular_velocity) """Return angular velocity array Returns ------- xarray.DataArray """ def _get_magnetic_density(self): # Magnetic density name is the last one return self.imu[self.imu_var_names[-1]] magnetic_density = property(_get_magnetic_density) """Return magnetic_density array Returns ------- xarray.DataArray """ def _get_depth(self): return getattr(self.imu, self.depth_name) depth = property(_get_depth) """Return depth array Returns ------- xarray.DataArray """ def _get_sampling_interval(self): # Retrieve sampling rate from one DataArray sampling_rate = self.acceleration.attrs["sampling_rate"] sampling_rate_units = (self.acceleration .attrs["sampling_rate_units"]) if sampling_rate_units.lower() == "hz": itvl = 1.0 / sampling_rate else: itvl = sampling_rate return itvl sampling_interval = property(_get_sampling_interval) """Return sampling interval Assuming all `DataArray`s have the same interval, the sampling interval is retrieved from the acceleration `DataArray`. Returns ------- xarray.DataArray Warnings -------- The sampling rate is retrieved from the attribute named `sampling_rate` in the NetCDF file, which is assumed to be in Hz units. """
0.91055
0.622746
import logging import re import numpy as np import pandas as pd import statsmodels.formula.api as smf import matplotlib.pyplot as plt import matplotlib.dates as mdates import scipy.signal as signal import xarray as xr from skdiveMove.tdrsource import _load_dataset from .imu import (IMUBase, _ACCEL_NAME, _OMEGA_NAME, _MAGNT_NAME, _DEPTH_NAME) _TRIAXIAL_VARS = [_ACCEL_NAME, _OMEGA_NAME, _MAGNT_NAME] _MONOAXIAL_VARS = [_DEPTH_NAME, "light_levels"] _AXIS_NAMES = list("xyz") logger = logging.getLogger(__name__) # Add the null handler if importing as library; whatever using this library # should set up logging.basicConfig() as needed logger.addHandler(logging.NullHandler()) class IMUcalibrate(IMUBase): r"""Calibration framework for IMU measurements Measurements from most IMU sensors are influenced by temperature, among other artifacts. The IMUcalibrate class implements the following procedure to remove the effects of temperature from IMU signals: - For each axis, fit a piecewise or simple linear regression of measured (lowpass-filtered) data against temperature. - Compute predicted signal from the model. - Select a reference temperature :math:`T_{\alpha}` to standardize all measurements at. - The standardized measurement (:math:`x_\sigma`) at :math:`T_{\alpha}` is calculated as: .. math:: :label: 5 x_\sigma = x - (\hat{x} - \hat{x}_{\alpha}) where :math:`\hat{x}` is the value predicted from the model at the measured temperature, and :math:`\hat{x}_{\alpha}` is the predicted value at :math:`T_{\alpha}`. The models fit to signals from a *motionless* (i.e. experimental) IMU device in the first step can subsequently be used to remove or minimize temperature effects from an IMU device measuring motions of interest, provided the temperature is within the range observed in experiments. In addition to attributes in :class:`IMUBase`, ``IMUcalibrate`` adds the attributes listed below. Attributes ---------- periods : list List of slices with the beginning and ending timestamps defining periods in ``x_calib`` where valid calibration data are available. Periods are assumed to be ordered chronologically. models_l : list List of dictionaries as long as there are periods, with each element corresponding to a sensor, in turn containing another dictionary with each element corresponding to each sensor axis. axis_order : list List of characters specifying which axis ``x``, ``y``, or ``z`` was pointing in the same direction as gravity in each period in ``periods``. Examples -------- Construct IMUcalibrate from NetCDF file with samples of IMU signals and a list with begining and ending timestamps for experimental periods: >>> import pkg_resources as pkg_rsrc >>> import os.path as osp >>> import skdiveMove.imutools as imutools >>> icdf = (pkg_rsrc ... .resource_filename("skdiveMove", ... osp.join("tests", "data", ... "cats_temperature_calib.nc"))) >>> pers = [slice("2021-09-20T09:00:00", "2021-09-21T10:33:00"), ... slice("2021-09-21T10:40:00", "2021-09-22T11:55:00"), ... slice("2021-09-22T12:14:00", "2021-09-23T11:19:00")] >>> imucal = (imutools.IMUcalibrate ... .read_netcdf(icdf, periods=pers, ... axis_order=list("zxy"), ... time_name="timestamp_utc")) >>> print(imucal) # doctest: +ELLIPSIS IMU -- Class IMUcalibrate object Source File None IMU: <xarray.Dataset> Dimensions: (timestamp_utc: 268081, axis: 3) Coordinates: * axis (axis) object 'x' 'y' 'z' * timestamp_utc (timestamp_utc) datetime64[ns] ... Data variables: acceleration (timestamp_utc, axis) float64 ... angular_velocity (timestamp_utc, axis) float64 ... magnetic_density (timestamp_utc, axis) float64 ... depth (timestamp_utc) float64 ... temperature (timestamp_utc) float64 ... Attributes:... history: Resampled from 20 Hz to 1 Hz Periods: 0:['2021-09-20T09:00:00', '2021-09-21T10:33:00'] 1:['2021-09-21T10:40:00', '2021-09-22T11:55:00'] 2:['2021-09-22T12:14:00', '2021-09-23T11:19:00'] Plot signals from a given period: >>> fig, axs, axs_temp = imucal.plot_experiment(0, var="acceleration") Build temperature models for a given variable and chosen :math:`T_{\alpha}`, without low-pass filtering the input signals: >>> fs = 1.0 >>> acc_cal = imucal.build_tmodels("acceleration", T_alpha=8, ... use_axis_order=True, ... win_len=int(2 * 60 * fs) - 1) Plot model of IMU variable against temperature: >>> fig, axs = imucal.plot_var_model("acceleration", ... use_axis_order=True) Notes ----- This class redefines :meth:`IMUBase.read_netcdf`. """ def __init__(self, x_calib, periods, axis_order=list("xyz"), **kwargs): """Set up attributes required for calibration Parameters ---------- x_calib : xarray.Dataset Dataset with temperature and tri-axial data from *motionless* IMU experiments. Data are assumed to be in FLU coordinate frame. periods : list List of slices with the beginning and ending timestamps defining periods in `x_calib` where valid calibration data are available. Periods are assumed to be ordered chronologically. axis_order : list List of characters specifying which axis ``x``, ``y``, or ``z`` was pointing in the same direction as gravity in each period in ``periods``. **kwargs : optional keyword arguments Arguments passed to the `IMUBase.__init__` for instantiation. """ super(IMUcalibrate, self).__init__(x_calib, **kwargs) self.periods = periods models_l = [] for period in periods: models_1d = {i: dict() for i in _MONOAXIAL_VARS} models_2d = dict.fromkeys(_TRIAXIAL_VARS) for k in models_2d: models_2d[k] = dict.fromkeys(axis_order) models_l.append(dict(**models_1d, **models_2d)) self.models_l = models_l self.axis_order = axis_order # Private attribute collecting DataArrays with standardized data self._stdda_l = [] @classmethod def read_netcdf(cls, imu_nc, load_dataset_kwargs=dict(), **kwargs): """Create IMUcalibrate from NetCDF file and list of slices This method redefines :meth:`IMUBase.read_netcdf`. Parameters ---------- imu_nc : str Path to NetCDF file. load_dataset_kwargs : dict, optional Dictionary of optional keyword arguments passed to :func:`xarray.load_dataset`. **kwargs : optional keyword arguments Additional arguments passed to :meth:`IMUcalibrate.__init__` method, except ``has_depth`` or ``imu_filename``. The input ``Dataset`` is assumed to have a depth ``DataArray``. Returns ------- out : """ imu = _load_dataset(imu_nc, **load_dataset_kwargs) ocls = cls(imu, **kwargs) return ocls def __str__(self): super_str = super(IMUcalibrate, self).__str__() pers_ends = [] for per in self.periods: pers_ends.append([per.start, per.stop]) msg = ("\n".join("{}:{}".format(i, per) for i, per in enumerate(pers_ends))) return super_str + "\nPeriods:\n{}".format(msg) def savgol_filter(self, var, period_idx, win_len, polyorder=1): """Apply Savitzky-Golay filter on tri-axial IMU signals Parameters ---------- var : str Name of the variable in ``x`` with tri-axial signals. period_idx : int Index of period to plot (zero-based). win_len : int Window length for the low pass filter. polyorder : int, optional Polynomial order to use. Returns ------- xarray.DataArray Array with filtered signals, with the same coordinates, dimensions, and updated attributes. """ darray = self.subset_imu(period_idx)[var] var_df = darray.to_dataframe().unstack() var_sg = signal.savgol_filter(var_df, window_length=win_len, polyorder=polyorder, axis=0) new_history = (("{}: Savitzky-Golay filter: win_len={}, " "polyorder={}\n") .format(pd.to_datetime("today") .strftime("%Y-%m-%d"), win_len, polyorder)) darray_new = xr.DataArray(var_sg, coords=darray.coords, dims=darray.dims, name=darray.name, attrs=darray.attrs) darray_new.attrs["history"] = (darray_new.attrs["history"] + new_history) return darray_new def build_tmodels(self, var, T_alpha=None, T_brk=None, use_axis_order=False, filter_sig=True, **kwargs): r"""Build temperature models for experimental tri-axial IMU sensor signals Perform thermal compensation on *motionless* tri-axial IMU sensor data. A simple approach is used for the compensation: - For each axis, build a piecewise or simple linear regression of measured data against temperature. If a breakpoint is known, as per manufacturer specifications or experimentation, use piecewise regression. - Compute predicted signal from the model. - Select a reference temperature :math:`T_{\alpha}` to standardize all measurements at. - The standardized measurement at :math:`T_{\alpha}` is calculated as :math:`x - (\hat{x} - x_{T_{\alpha}})`, where :math:`\hat{x}` is the value predicted from the model at the measured temperature, and :math:`x_{T_{\alpha}}` is the predicted value at :math:`T_{\alpha}`. Parameters ---------- var : str Name of the variable in `x` with tri-axial data. T_alpha : float, optional Reference temperature at which all measurements will be adjusted to. Defaults to the mean temperature for each period, rounded to the nearest integer. T_brk : float, optional Temperature change point separating data to be fit differently. A piecewise regression model is fit. Default is a simple linear model is fit. use_axis_order : bool, optional Whether to use axis order from the instance. If True, only one sensor axis per period is considered to have valid calibration data for the correction. Otherwise, all three axes for each period are used in the correction. filter_sig : bool, optional Whether to filter in the measured signal for thermal correction. Default is to apply a Savitzky-Golay filter to the signal for characterizing the temperature relationship, and to calculate the standardized signal. **kwargs : optional keyword arguments Arguments passed to `savgol_filter` (e.g. ``win_len`` and ``polyorder``). Returns ------- list List of tuples as long as there are periods, with tuple elements: - Dictionary with regression model objects for each sensor axis. - DataFrame with hierarchical column index with sensor axis label at the first level. The following columns are in the second level: - temperature - var_name - var_name_pred - var_name_temp_refC - var_name_adj Notes ----- A new DataArray with signal standardized at :math:`T_{\alpha}` is added to the instance Dataset. These signals correspond to the lowpass-filtered form of the input used to build the models. See Also -------- apply_model """ # Iterate through periods per_l = [] # output list as long as periods for idx in range(len(self.periods)): per = self.subset_imu(idx) # Subset the requested variable, smoothing if necessary if filter_sig: per_var = self.savgol_filter(var, idx, **kwargs) else: per_var = per[var] per_temp = per["temperature"] var_df = xr.merge([per_var, per_temp]).to_dataframe() if T_alpha is None: t_alpha = np.rint(per_temp.mean().to_numpy().item()) logger.info("Period {} T_alpha set to {:.2f}" .format(idx, t_alpha)) else: t_alpha = T_alpha odata_l = [] models_d = self.models_l[idx] if use_axis_order: axis_names = [self.axis_order[idx]] elif len(per_var.dims) > 1: axis_names = per_var[per_var.dims[-1]].to_numpy() else: axis_names = [per_var.dims[0]] std_colname = "{}_std".format(var) pred_colname = "{}_pred".format(var) for i, axis in enumerate(axis_names): # do all axes if isinstance(var_df.index, pd.MultiIndex): data_axis = var_df.xs(axis, level="axis").copy() else: data_axis = var_df.copy() if T_brk is not None: temp0 = (data_axis["temperature"] .where(data_axis["temperature"] < T_brk, 0)) data_axis.loc[:, "temp0"] = temp0 temp1 = (data_axis["temperature"] .where(data_axis["temperature"] > T_brk, 0)) data_axis.loc[:, "temp1"] = temp1 fmla = "{} ~ temperature + temp0 + temp1".format(var) else: fmla = "{} ~ temperature".format(var) model_fit = smf.ols(formula=fmla, data=data_axis).fit() models_d[var][axis] = model_fit data_axis.loc[:, pred_colname] = model_fit.fittedvalues # Data at reference temperature ref_colname = "{}_{}C".format(var, t_alpha) if T_brk is not None: if t_alpha < T_brk: pred = model_fit.predict(exog=dict( temperature=t_alpha, temp0=t_alpha, temp1=0)).to_numpy().item() data_axis[ref_colname] = pred else: pred = model_fit.predict(exog=dict( temperature=t_alpha, temp0=0, temp1=t_alpha)).to_numpy().item() data_axis[ref_colname] = pred data_axis.drop(["temp0", "temp1"], axis=1, inplace=True) else: pred = model_fit.predict(exog=dict( temperature=t_alpha)).to_numpy().item() data_axis.loc[:, ref_colname] = pred logger.info("Predicted {} ({}, rounded) at {:.2f}: {:.3f}" .format(var, axis, t_alpha, pred)) data_axis[std_colname] = (data_axis[var] - (data_axis[pred_colname] - data_axis[ref_colname])) odata_l.append(data_axis) # Update instance models_l attribute self.models_l[idx][var][axis] = model_fit if var in _MONOAXIAL_VARS: odata = pd.concat(odata_l) std_data = xr.DataArray(odata.loc[:, std_colname], name=std_colname) else: odata = pd.concat(odata_l, axis=1, keys=axis_names[:i + 1], names=["axis", "variable"]) std_data = xr.DataArray(odata.xs(std_colname, axis=1, level=1), name=std_colname) per_l.append((models_d, odata)) std_data.attrs = per_var.attrs new_description = ("{} standardized at {}C" .format(std_data.attrs["description"], t_alpha)) std_data.attrs["description"] = new_description new_history = ("{}: temperature_model: temperature models\n" .format(pd.to_datetime("today") .strftime("%Y-%m-%d"))) std_data.attrs["history"] = (std_data.attrs["history"] + new_history) # Update instance _std_da_l attribute with DataArray having an # additional dimension for the period index std_data = std_data.expand_dims(period=[idx]) self._stdda_l.append(std_data) return per_l def plot_experiment(self, period_idx, var, units_label=None, **kwargs): """Plot experimental IMU Parameters ---------- period_idx : int Index of period to plot (zero-based). var : str Name of the variable in with tri-axial data. units_label : str, optional Label for the units of the chosen variable. Defaults to the "units_label" attribute available in the DataArray. **kwargs : optional keyword arguments Arguments passed to :func:`~matplotlib.pyplot.subplots` (e.g. ``figsize``). Returns ------- fig : matplotlib.Figure axs : array_like Array of :class:`~matplotlib.axes.Axes` instances in ``fig`` with IMU signal plots. axs_temp : array_like Array of :class:`~matplotlib.axes.Axes` instances in ``fig`` with temperature plots. See Also -------- plot_var_model plot_standardized """ per_da = self.subset_imu(period_idx) per_var = per_da[var] per_temp = per_da["temperature"] def _plot(var, temp, ax): """Plot variable and temperature""" ax_temp = ax.twinx() var.plot.line(ax=ax, label="measured", color="k", linewidth=0.5) temp.plot.line(ax=ax_temp, label="temperature", color="r", linewidth=0.5, alpha=0.5) ax.set_title("") ax.set_xlabel("") # Adjust ylim to exclude outliers ax.set_ylim(var.quantile(1e-5).to_numpy().item(), var.quantile(1 - 1e-5).to_numpy().item()) # Axis locators and formatters dlocator = mdates.AutoDateLocator(minticks=3, maxticks=7) dformatter = mdates.ConciseDateFormatter(dlocator) ax.xaxis.set_major_locator(dlocator) ax.xaxis.set_major_formatter(dformatter) ax.xaxis.set_tick_params(rotation=0) return ax_temp if units_label is None: units_label = per_var.attrs["units_label"] ylabel_pre = "{} [{}]".format(per_var.attrs["full_name"], units_label) temp_label = "{} [{}]".format(per_temp.attrs["full_name"], per_temp.attrs["units_label"]) ndims = len(per_var.dims) axs_temp = [] if ndims == 1: fig, axs = plt.subplots(**kwargs) ax_temp = _plot(per_var, per_temp, axs) axs.set_xlabel("") axs.set_title("") axs.set_ylabel(ylabel_pre) ax_temp.set_ylabel(temp_label) axs_temp.append(ax_temp) else: fig, axs = plt.subplots(3, 1, sharex=True, **kwargs) ax_x, ax_y, ax_z = axs axis_names = per_var[per_var.dims[-1]].to_numpy() for i, axis in enumerate(axis_names): ymeasured = per_var.sel(axis=axis) ax_temp = _plot(ymeasured, per_temp, axs[i]) axs[i].set_title("") axs[i].set_xlabel("") axs[i].set_ylabel("{} {}".format(ylabel_pre, axis)) if i == 1: ax_temp.set_ylabel(temp_label) else: ax_temp.set_ylabel("") axs_temp.append(ax_temp) ax_z.set_xlabel("") return fig, axs, axs_temp def plot_var_model(self, var, use_axis_order=True, units_label=None, axs=None, **kwargs): """Plot IMU variable against temperature and fitted model A multi-panel plot of the selected variable against temperature from all periods. Parameters ---------- var : str IMU variable to plot. use_axis_order : bool Whether to use axis order from the instance. If True, only one sensor axis per period is considered to have valid calibration data for the correction. Otherwise, all three axes for each period are used in the correction. Ignored for uniaxial variables. units_label : str Label for the units of the chosen variable. Defaults to the "units_label" attribute available in the DataArray. axs : array_like, optional Array of Axes instances to plot in. **kwargs : optional keyword arguments Arguments passed to :func:`~matplotlib.pyplot.subplots` (e.g. ``figsize``). Returns ------- fig : matplotlib.Figure axs : array_like Array of :class:`~matplotlib.axes.Axes` instances in ``fig`` with IMU signal plots. See Also -------- plot_experiment plot_standardized """ def _plot_signal(x, y, idx, model_fit, ax): ax.plot(x, y, ".", markersize=2, alpha=0.03, label="Period {}".format(idx)) # Adjust ylim to exclude outliers ax.set_ylim(np.quantile(y, 1e-3), np.quantile(y, 1 - 1e-3)) # Linear model xpred = np.linspace(x.min(), x.max()) ypreds = (model_fit .get_prediction(exog=dict(Intercept=1, temperature=xpred)) .summary_frame()) ypred_0 = ypreds["mean"] ypred_l = ypreds["obs_ci_lower"] ypred_u = ypreds["obs_ci_upper"] ax.plot(xpred, ypred_0, color="k", alpha=0.5) ax.plot(xpred, ypred_l, color="k", linestyle="dashed", linewidth=1, alpha=0.5) ax.plot(xpred, ypred_u, color="k", linestyle="dashed", linewidth=1, alpha=0.5) per0 = self.subset_imu(0) if units_label is None: units_label = per0[var].attrs["units_label"] xlabel = "{} [{}]".format(per0["temperature"].attrs["full_name"], per0["temperature"].attrs["units_label"]) ylabel_pre = "{} [{}]".format(per0[var].attrs["full_name"], units_label) nperiods = len(self.periods) if axs is not None: fig = plt.gcf() if var in _MONOAXIAL_VARS: if axs is None: fig, axs = plt.subplots(1, nperiods, **kwargs) for per_i in range(nperiods): peri = self.subset_imu(per_i) per_var = peri[var] per_temp = peri["temperature"] xdata = per_temp.to_numpy() ydata = per_var.to_numpy() # Linear model model_fit = self.get_model(var, period=per_i, axis=per_var.dims[0]) ax_i = axs[per_i] _plot_signal(x=xdata, y=ydata, idx=per_i, model_fit=model_fit, ax=ax_i) ax_i.set_xlabel(xlabel) axs[0].set_ylabel(ylabel_pre) elif use_axis_order: if axs is None: fig, axs = plt.subplots(3, 1, **kwargs) axs[-1].set_xlabel(xlabel) for i, axis in enumerate(_AXIS_NAMES): idx = self.axis_order.index(axis) peri = self.subset_imu(idx) xdata = peri["temperature"].to_numpy() ydata = peri[var].sel(axis=axis).to_numpy() # Linear model model_fit = self.get_model(var, period=idx, axis=axis) ax_i = axs[i] _plot_signal(xdata, y=ydata, idx=idx, model_fit=model_fit, ax=ax_i) ax_i.set_ylabel("{} {}".format(ylabel_pre, axis)) ax_i.legend(loc=9, bbox_to_anchor=(0.5, 1), frameon=False, borderaxespad=0) else: if axs is None: fig, axs = plt.subplots(3, nperiods, **kwargs) for vert_i in range(nperiods): peri = self.subset_imu(vert_i) xdata = peri["temperature"].to_numpy() axs_xyz = axs[:, vert_i] for i, axis in enumerate(_AXIS_NAMES): ydata = (peri[var].sel(axis=axis).to_numpy()) # Linear model model_fit = self.get_model(var, period=vert_i, axis=axis) ax_i = axs_xyz[i] _plot_signal(xdata, y=ydata, idx=vert_i, model_fit=model_fit, ax=ax_i) ax_i.set_ylabel("{} {}".format(ylabel_pre, axis)) axs_xyz[0].set_title("Period {}".format(vert_i)) axs_xyz[-1].set_xlabel(xlabel) return fig, axs def plot_standardized(self, var, use_axis_order=True, units_label=None, ref_val=None, axs=None, **kwargs): r"""Plot IMU measured and standardized variable along with temperature A multi-panel time series plot of the selected variable, measured and standardized, for all periods. Parameters ---------- var : str IMU variable to plot. use_axis_order : bool, optional Whether to use axis order from the instance. If True, only one sensor axis per period is considered to have valid calibration data for the correction. Otherwise, all three axes for each period are used in the correction. units_label : str, optional Label for the units of the chosen variable. Defaults to the "units_label" attribute available in the DataArray. ref_val : float Reference value for the chosen variable (e.g. gravity, for acceleration). If provided, a horizontal line is included in the plot for reference. axs : array_like, optional Array of Axes instances to plot in. **kwargs : optional keyword arguments Arguments passed to :func:`~matplotlib.pyplot.subplots` (e.g. ``figsize``). Returns ------- fig : matplotlib.Figure axs : array_like Array of :class:`~matplotlib.axes.Axes` instances in ``fig`` with IMU signal plots. axs_temp : array_like Array of :class:`~matplotlib.axes.Axes` instances in ``fig`` with temperature plots. See Also -------- plot_experiment plot_var_model """ def _plot_signal(ymeasured, ystd, temp, ax, neg_ref=False): ax_temp = ax.twinx() (ymeasured.plot.line(ax=ax, label="measured", color="k", linewidth=0.5)) (ystd.plot.line(ax=ax, label="standardized", color="b", linewidth=0.5, alpha=0.5)) temp.plot.line(ax=ax_temp, label="temperature", color="r", linewidth=0.5, alpha=0.5) txt_desc = ystd.attrs["description"] t_alpha_match = re.search(r'[-+]?\d+\.\d+', txt_desc) ax_temp.axhline(float(txt_desc[t_alpha_match.start(): t_alpha_match.end()]), linestyle="dashed", linewidth=1, color="r", label=r"$T_\alpha$") q0 = ymeasured.quantile(1e-5).to_numpy().item() q1 = ymeasured.quantile(1 - 11e-5).to_numpy().item() if ref_val is not None: # Assumption of FLU with axes pointing against field if neg_ref: ref_i = -ref_val else: ref_i = ref_val ax.axhline(ref_i, linestyle="dashdot", color="m", linewidth=1, label="reference") ylim0 = np.minimum(q0, ref_i) ylim1 = np.maximum(q1, ref_i) else: ylim0 = q0 ylim1 = q1 ax.set_title("") ax.set_xlabel("") # Adjust ylim to exclude outliers ax.set_ylim(ylim0, ylim1) # Axis locators and formatters dlocator = mdates.AutoDateLocator(minticks=3, maxticks=7) dformatter = mdates.ConciseDateFormatter(dlocator) ax.xaxis.set_major_locator(dlocator) ax.xaxis.set_major_formatter(dformatter) ax.xaxis.set_tick_params(rotation=0) return ax_temp per0 = self.subset_imu(0) if units_label is None: units_label = per0[var].attrs["units_label"] ylabel_pre = "{} [{}]".format(per0[var].attrs["full_name"], units_label) var_std = var + "_std" nperiods = len(self.periods) if axs is not None: fig = plt.gcf() std_ds = xr.merge(self._stdda_l) if var in _MONOAXIAL_VARS: if axs is None: fig, axs = plt.subplots(1, nperiods, **kwargs) axs_temp = np.empty_like(axs) for per_i in range(nperiods): peri = self.subset_imu(per_i) per_var = peri[var] per_std = std_ds.loc[dict(period=per_i)][var_std] per_temp = peri["temperature"] ax_i = axs[per_i] ax_temp = _plot_signal(per_var, ystd=per_std, temp=per_temp, ax=ax_i) ax_i.set_ylabel(ylabel_pre) axs_temp[per_i] = ax_temp # legend at center top panel axs[1].legend(loc=9, bbox_to_anchor=(0.5, 1.15), ncol=3, frameon=False, borderaxespad=0) # Temperature legend at the bottom axs_temp[1].legend(loc=9, bbox_to_anchor=(0.5, -0.23), ncol=2, frameon=False, borderaxespad=0) elif use_axis_order: if axs is None: fig, axs = plt.subplots(3, 1, sharex=False, **kwargs) axs_temp = np.empty_like(axs) for i, axis in enumerate(_AXIS_NAMES): idx = self.axis_order.index(axis) peri = self.subset_imu(idx) per_var = peri[var].sel(axis=axis, drop=True) per_std = (std_ds.loc[dict(period=idx)][var_std] .sel(axis=axis, drop=True)) per_temp = peri["temperature"] ax_i = axs[i] if axis == "x": neg_ref = True else: neg_ref = False ax_temp = _plot_signal(per_var, ystd=per_std, temp=per_temp, ax=ax_i, neg_ref=neg_ref) ax_i.set_xlabel("Period {}".format(idx)) ax_i.set_ylabel("{} {}".format(ylabel_pre, axis)) axs_temp[i] = ax_temp # legend at top panel axs[0].legend(loc=9, bbox_to_anchor=(0.5, 1.15), ncol=3, frameon=False, borderaxespad=0) # Temperature legend at the bottom axs_temp[i].legend(loc=9, bbox_to_anchor=(0.5, -0.23), ncol=2, frameon=False, borderaxespad=0) else: if axs is None: fig, axs = plt.subplots(3, nperiods, **kwargs) axs_temp = np.empty_like(axs) for vert_i in range(nperiods): axs_xyz = axs[:, vert_i] for i, axis in enumerate(_AXIS_NAMES): peri = self.subset_imu(vert_i) per_var = peri[var].sel(axis=axis, drop=True) per_std = (std_ds.loc[dict(period=vert_i)][var_std] .sel(axis=axis, drop=True)) per_temp = peri["temperature"] ax_i = axs_xyz[i] ax_temp = _plot_signal(per_var, ystd=per_std, temp=per_temp, ax=ax_i) axs_temp[i, vert_i] = ax_temp if vert_i == 0: ax_i.set_ylabel("{} {}".format(ylabel_pre, axis)) else: ax_i.set_ylabel("") axs_xyz[0].set_title("Period {}".format(vert_i)) # legend at bottom panel leg0 = axs[-1, 1].legend(loc=9, bbox_to_anchor=(0.5, -0.23), ncol=3, frameon=False, borderaxespad=0) # Temperature legend at bottom panel leg1 = axs_temp[-1, 1].legend(loc=9, bbox_to_anchor=(0.5, -0.37), ncol=2, frameon=False, borderaxespad=0) axs[-1, 1].add_artist(leg0) axs_temp[-1, 1].add_artist(leg1) return fig, axs, axs_temp def get_model(self, var, period, axis=None): """Retrieve linear model for a given IMU sensor axis signal Parameters ---------- var : str Name of the variable to calculate offset for. period: int Period containing calibration model to use. axis : str, optional Name of the sensor axis the signal comes from, if `var` is tri-axial; ignored otherwise. Returns ------- RegressionResultsWrapper """ if var in _MONOAXIAL_VARS: model_d = self.models_l[period][var] model_fit = [*model_d.values()][0] else: model_fit = self.models_l[period][var][axis] return model_fit def get_offset(self, var, period, T_alpha, ref_val, axis=None): """Calculate signal ofset at given temperature from calibration model Parameters ---------- var : str Name of the variable to calculate offset for. period: int Period (zero-based) containing calibration model to use. T_alpha : float Temperature at which to compute offset. ref_val : float Reference value for the chosen variable (e.g. gravity, for acceleration). axis : str, optional Name of the sensor axis the signal comes from, if ``var`` is tri-axial; ignored otherwise. Returns ------- float Notes ----- For obtaining offset and gain of magnetometer signals, the ellipsoid method from the the ``ellipsoid`` module yields far more accurate results, as it allows for the simultaneous three-dimensional estimation of the offset. """ if var in _MONOAXIAL_VARS: model_fit = self.get_model(var, period=period) else: model_fit = self.get_model(var, period=period, axis=axis) ypred = (model_fit.predict(exog=dict(temperature=T_alpha)) .to_numpy().item()) logger.info("Predicted {} ({}, rounded) at T_alpha: {:.3f}" .format(var, axis, ypred)) offset = ypred - ref_val return offset def apply_model(self, var, dataset, T_alpha=None, ref_vals=None, use_axis_order=True, model_idx=None): """Apply fitted temperature compensation model to Dataset The selected models for tri-axial sensor data are applied to input Dataset, standardizing signals at :math:`T_{\alpha}`, optionally subtracting the offset at :math:`T_{\alpha}`. Parameters ---------- var : str Name of the variable with tri-axial data. dataset : xarray.Dataset Dataset with temperature and tri-axial data from motionless IMU. T_alpha : float, optional Reference temperature at which all measurements will be adjusted to. Default is the mean temperature in the input dataset. ref_vals : list, optional Sequence of three floats with target values to compare against the signal from each sensor axis. If provided, the offset of each signal at :math:`T_{\alpha}` is computed and subtracted from the temperature-standardized signal. The order should be the same as in the `axis_order` attribute if `use_axis_order` is True, or ``x``, ``y``, ``z`` otherwise. use_axis_order : bool, optional Whether to use axis order from the instance. If True, retrieve model to apply using instance's ``axis_order`` attribute. Otherwise, use the models defined by ``model_idx`` argument. Ignored if `var` is monoaxial. model_idx : list or int, optional Sequence of three integers identifying the period (zero-based) from which to retrieve the models for ``x``, ``y``, and ``z`` sensor axes, in that order. If ``var`` is monoaxial, an integer specifying the period for the model to use. Ignored if ``use_axis_order`` is True. Returns ------- xarray.Dataset """ temp_obs = dataset["temperature"] darray = dataset[var] if T_alpha is None: T_alpha = temp_obs.mean().item() logger.info("T_alpha set to {:.2f}".format(T_alpha)) def _standardize_array(darray, model_fit, period_idx, axis=None): x_hat = (model_fit .get_prediction(exog=dict(Intercept=1, temperature=temp_obs)) .predicted_mean) x_alpha = (model_fit .get_prediction(exog=dict(Intercept=1, temperature=T_alpha)) .predicted_mean) x_sigma = darray - (x_hat - x_alpha) if ref_vals is not None: off = self.get_offset(var, axis=axis, period=period_idx, T_alpha=T_alpha, ref_val=ref_vals[period_idx]) x_sigma -= off return x_sigma darray_l = [] if var in _MONOAXIAL_VARS: model_fit = self.get_model(var, period=model_idx) x_sigma = _standardize_array(darray, model_fit=model_fit, period_idx=model_idx) darray_l.append(x_sigma) elif use_axis_order: for i, axis in enumerate(_AXIS_NAMES): idx = self.axis_order.index(axis) model_fit = self.get_model(var, period=idx, axis=axis) x_i = darray.sel(axis=axis) x_sigma = _standardize_array(x_i, model_fit=model_fit, period_idx=idx, axis=axis) darray_l.append(x_sigma) else: for i, axis in enumerate(_AXIS_NAMES): model_fit = self.get_model(var, period=model_idx[i], axis=axis) x_i = darray.sel(axis=axis) x_sigma = _standardize_array(x_i, model_fit=model_fit, period_idx=model_idx[i], axis=axis) darray_l.append(x_sigma) if len(darray_l) > 1: darray_new = xr.concat(darray_l, dim="axis").transpose() else: darray_new = darray_l[0] darray_new.attrs = darray.attrs new_history = ("{}: Applied temperature model at: T={}\n" .format(pd.to_datetime("today") .strftime("%Y-%m-%d"), T_alpha)) darray_new.attrs["history"] = (darray_new.attrs["history"] + new_history) return darray_new def subset_imu(self, period_idx): """Subset IMU dataset given a period index The dataset is subset using the slice corresponding to the period index. Parameters ---------- period_idx : int Index of the experiment period to subset. Returns ------- xarray.Dataset """ time_name = self.time_name return self.imu.loc[{time_name: self.periods[period_idx]}]
scikit-diveMove
/scikit-diveMove-0.3.0.tar.gz/scikit-diveMove-0.3.0/skdiveMove/imutools/imucalibrate.py
imucalibrate.py
import logging import re import numpy as np import pandas as pd import statsmodels.formula.api as smf import matplotlib.pyplot as plt import matplotlib.dates as mdates import scipy.signal as signal import xarray as xr from skdiveMove.tdrsource import _load_dataset from .imu import (IMUBase, _ACCEL_NAME, _OMEGA_NAME, _MAGNT_NAME, _DEPTH_NAME) _TRIAXIAL_VARS = [_ACCEL_NAME, _OMEGA_NAME, _MAGNT_NAME] _MONOAXIAL_VARS = [_DEPTH_NAME, "light_levels"] _AXIS_NAMES = list("xyz") logger = logging.getLogger(__name__) # Add the null handler if importing as library; whatever using this library # should set up logging.basicConfig() as needed logger.addHandler(logging.NullHandler()) class IMUcalibrate(IMUBase): r"""Calibration framework for IMU measurements Measurements from most IMU sensors are influenced by temperature, among other artifacts. The IMUcalibrate class implements the following procedure to remove the effects of temperature from IMU signals: - For each axis, fit a piecewise or simple linear regression of measured (lowpass-filtered) data against temperature. - Compute predicted signal from the model. - Select a reference temperature :math:`T_{\alpha}` to standardize all measurements at. - The standardized measurement (:math:`x_\sigma`) at :math:`T_{\alpha}` is calculated as: .. math:: :label: 5 x_\sigma = x - (\hat{x} - \hat{x}_{\alpha}) where :math:`\hat{x}` is the value predicted from the model at the measured temperature, and :math:`\hat{x}_{\alpha}` is the predicted value at :math:`T_{\alpha}`. The models fit to signals from a *motionless* (i.e. experimental) IMU device in the first step can subsequently be used to remove or minimize temperature effects from an IMU device measuring motions of interest, provided the temperature is within the range observed in experiments. In addition to attributes in :class:`IMUBase`, ``IMUcalibrate`` adds the attributes listed below. Attributes ---------- periods : list List of slices with the beginning and ending timestamps defining periods in ``x_calib`` where valid calibration data are available. Periods are assumed to be ordered chronologically. models_l : list List of dictionaries as long as there are periods, with each element corresponding to a sensor, in turn containing another dictionary with each element corresponding to each sensor axis. axis_order : list List of characters specifying which axis ``x``, ``y``, or ``z`` was pointing in the same direction as gravity in each period in ``periods``. Examples -------- Construct IMUcalibrate from NetCDF file with samples of IMU signals and a list with begining and ending timestamps for experimental periods: >>> import pkg_resources as pkg_rsrc >>> import os.path as osp >>> import skdiveMove.imutools as imutools >>> icdf = (pkg_rsrc ... .resource_filename("skdiveMove", ... osp.join("tests", "data", ... "cats_temperature_calib.nc"))) >>> pers = [slice("2021-09-20T09:00:00", "2021-09-21T10:33:00"), ... slice("2021-09-21T10:40:00", "2021-09-22T11:55:00"), ... slice("2021-09-22T12:14:00", "2021-09-23T11:19:00")] >>> imucal = (imutools.IMUcalibrate ... .read_netcdf(icdf, periods=pers, ... axis_order=list("zxy"), ... time_name="timestamp_utc")) >>> print(imucal) # doctest: +ELLIPSIS IMU -- Class IMUcalibrate object Source File None IMU: <xarray.Dataset> Dimensions: (timestamp_utc: 268081, axis: 3) Coordinates: * axis (axis) object 'x' 'y' 'z' * timestamp_utc (timestamp_utc) datetime64[ns] ... Data variables: acceleration (timestamp_utc, axis) float64 ... angular_velocity (timestamp_utc, axis) float64 ... magnetic_density (timestamp_utc, axis) float64 ... depth (timestamp_utc) float64 ... temperature (timestamp_utc) float64 ... Attributes:... history: Resampled from 20 Hz to 1 Hz Periods: 0:['2021-09-20T09:00:00', '2021-09-21T10:33:00'] 1:['2021-09-21T10:40:00', '2021-09-22T11:55:00'] 2:['2021-09-22T12:14:00', '2021-09-23T11:19:00'] Plot signals from a given period: >>> fig, axs, axs_temp = imucal.plot_experiment(0, var="acceleration") Build temperature models for a given variable and chosen :math:`T_{\alpha}`, without low-pass filtering the input signals: >>> fs = 1.0 >>> acc_cal = imucal.build_tmodels("acceleration", T_alpha=8, ... use_axis_order=True, ... win_len=int(2 * 60 * fs) - 1) Plot model of IMU variable against temperature: >>> fig, axs = imucal.plot_var_model("acceleration", ... use_axis_order=True) Notes ----- This class redefines :meth:`IMUBase.read_netcdf`. """ def __init__(self, x_calib, periods, axis_order=list("xyz"), **kwargs): """Set up attributes required for calibration Parameters ---------- x_calib : xarray.Dataset Dataset with temperature and tri-axial data from *motionless* IMU experiments. Data are assumed to be in FLU coordinate frame. periods : list List of slices with the beginning and ending timestamps defining periods in `x_calib` where valid calibration data are available. Periods are assumed to be ordered chronologically. axis_order : list List of characters specifying which axis ``x``, ``y``, or ``z`` was pointing in the same direction as gravity in each period in ``periods``. **kwargs : optional keyword arguments Arguments passed to the `IMUBase.__init__` for instantiation. """ super(IMUcalibrate, self).__init__(x_calib, **kwargs) self.periods = periods models_l = [] for period in periods: models_1d = {i: dict() for i in _MONOAXIAL_VARS} models_2d = dict.fromkeys(_TRIAXIAL_VARS) for k in models_2d: models_2d[k] = dict.fromkeys(axis_order) models_l.append(dict(**models_1d, **models_2d)) self.models_l = models_l self.axis_order = axis_order # Private attribute collecting DataArrays with standardized data self._stdda_l = [] @classmethod def read_netcdf(cls, imu_nc, load_dataset_kwargs=dict(), **kwargs): """Create IMUcalibrate from NetCDF file and list of slices This method redefines :meth:`IMUBase.read_netcdf`. Parameters ---------- imu_nc : str Path to NetCDF file. load_dataset_kwargs : dict, optional Dictionary of optional keyword arguments passed to :func:`xarray.load_dataset`. **kwargs : optional keyword arguments Additional arguments passed to :meth:`IMUcalibrate.__init__` method, except ``has_depth`` or ``imu_filename``. The input ``Dataset`` is assumed to have a depth ``DataArray``. Returns ------- out : """ imu = _load_dataset(imu_nc, **load_dataset_kwargs) ocls = cls(imu, **kwargs) return ocls def __str__(self): super_str = super(IMUcalibrate, self).__str__() pers_ends = [] for per in self.periods: pers_ends.append([per.start, per.stop]) msg = ("\n".join("{}:{}".format(i, per) for i, per in enumerate(pers_ends))) return super_str + "\nPeriods:\n{}".format(msg) def savgol_filter(self, var, period_idx, win_len, polyorder=1): """Apply Savitzky-Golay filter on tri-axial IMU signals Parameters ---------- var : str Name of the variable in ``x`` with tri-axial signals. period_idx : int Index of period to plot (zero-based). win_len : int Window length for the low pass filter. polyorder : int, optional Polynomial order to use. Returns ------- xarray.DataArray Array with filtered signals, with the same coordinates, dimensions, and updated attributes. """ darray = self.subset_imu(period_idx)[var] var_df = darray.to_dataframe().unstack() var_sg = signal.savgol_filter(var_df, window_length=win_len, polyorder=polyorder, axis=0) new_history = (("{}: Savitzky-Golay filter: win_len={}, " "polyorder={}\n") .format(pd.to_datetime("today") .strftime("%Y-%m-%d"), win_len, polyorder)) darray_new = xr.DataArray(var_sg, coords=darray.coords, dims=darray.dims, name=darray.name, attrs=darray.attrs) darray_new.attrs["history"] = (darray_new.attrs["history"] + new_history) return darray_new def build_tmodels(self, var, T_alpha=None, T_brk=None, use_axis_order=False, filter_sig=True, **kwargs): r"""Build temperature models for experimental tri-axial IMU sensor signals Perform thermal compensation on *motionless* tri-axial IMU sensor data. A simple approach is used for the compensation: - For each axis, build a piecewise or simple linear regression of measured data against temperature. If a breakpoint is known, as per manufacturer specifications or experimentation, use piecewise regression. - Compute predicted signal from the model. - Select a reference temperature :math:`T_{\alpha}` to standardize all measurements at. - The standardized measurement at :math:`T_{\alpha}` is calculated as :math:`x - (\hat{x} - x_{T_{\alpha}})`, where :math:`\hat{x}` is the value predicted from the model at the measured temperature, and :math:`x_{T_{\alpha}}` is the predicted value at :math:`T_{\alpha}`. Parameters ---------- var : str Name of the variable in `x` with tri-axial data. T_alpha : float, optional Reference temperature at which all measurements will be adjusted to. Defaults to the mean temperature for each period, rounded to the nearest integer. T_brk : float, optional Temperature change point separating data to be fit differently. A piecewise regression model is fit. Default is a simple linear model is fit. use_axis_order : bool, optional Whether to use axis order from the instance. If True, only one sensor axis per period is considered to have valid calibration data for the correction. Otherwise, all three axes for each period are used in the correction. filter_sig : bool, optional Whether to filter in the measured signal for thermal correction. Default is to apply a Savitzky-Golay filter to the signal for characterizing the temperature relationship, and to calculate the standardized signal. **kwargs : optional keyword arguments Arguments passed to `savgol_filter` (e.g. ``win_len`` and ``polyorder``). Returns ------- list List of tuples as long as there are periods, with tuple elements: - Dictionary with regression model objects for each sensor axis. - DataFrame with hierarchical column index with sensor axis label at the first level. The following columns are in the second level: - temperature - var_name - var_name_pred - var_name_temp_refC - var_name_adj Notes ----- A new DataArray with signal standardized at :math:`T_{\alpha}` is added to the instance Dataset. These signals correspond to the lowpass-filtered form of the input used to build the models. See Also -------- apply_model """ # Iterate through periods per_l = [] # output list as long as periods for idx in range(len(self.periods)): per = self.subset_imu(idx) # Subset the requested variable, smoothing if necessary if filter_sig: per_var = self.savgol_filter(var, idx, **kwargs) else: per_var = per[var] per_temp = per["temperature"] var_df = xr.merge([per_var, per_temp]).to_dataframe() if T_alpha is None: t_alpha = np.rint(per_temp.mean().to_numpy().item()) logger.info("Period {} T_alpha set to {:.2f}" .format(idx, t_alpha)) else: t_alpha = T_alpha odata_l = [] models_d = self.models_l[idx] if use_axis_order: axis_names = [self.axis_order[idx]] elif len(per_var.dims) > 1: axis_names = per_var[per_var.dims[-1]].to_numpy() else: axis_names = [per_var.dims[0]] std_colname = "{}_std".format(var) pred_colname = "{}_pred".format(var) for i, axis in enumerate(axis_names): # do all axes if isinstance(var_df.index, pd.MultiIndex): data_axis = var_df.xs(axis, level="axis").copy() else: data_axis = var_df.copy() if T_brk is not None: temp0 = (data_axis["temperature"] .where(data_axis["temperature"] < T_brk, 0)) data_axis.loc[:, "temp0"] = temp0 temp1 = (data_axis["temperature"] .where(data_axis["temperature"] > T_brk, 0)) data_axis.loc[:, "temp1"] = temp1 fmla = "{} ~ temperature + temp0 + temp1".format(var) else: fmla = "{} ~ temperature".format(var) model_fit = smf.ols(formula=fmla, data=data_axis).fit() models_d[var][axis] = model_fit data_axis.loc[:, pred_colname] = model_fit.fittedvalues # Data at reference temperature ref_colname = "{}_{}C".format(var, t_alpha) if T_brk is not None: if t_alpha < T_brk: pred = model_fit.predict(exog=dict( temperature=t_alpha, temp0=t_alpha, temp1=0)).to_numpy().item() data_axis[ref_colname] = pred else: pred = model_fit.predict(exog=dict( temperature=t_alpha, temp0=0, temp1=t_alpha)).to_numpy().item() data_axis[ref_colname] = pred data_axis.drop(["temp0", "temp1"], axis=1, inplace=True) else: pred = model_fit.predict(exog=dict( temperature=t_alpha)).to_numpy().item() data_axis.loc[:, ref_colname] = pred logger.info("Predicted {} ({}, rounded) at {:.2f}: {:.3f}" .format(var, axis, t_alpha, pred)) data_axis[std_colname] = (data_axis[var] - (data_axis[pred_colname] - data_axis[ref_colname])) odata_l.append(data_axis) # Update instance models_l attribute self.models_l[idx][var][axis] = model_fit if var in _MONOAXIAL_VARS: odata = pd.concat(odata_l) std_data = xr.DataArray(odata.loc[:, std_colname], name=std_colname) else: odata = pd.concat(odata_l, axis=1, keys=axis_names[:i + 1], names=["axis", "variable"]) std_data = xr.DataArray(odata.xs(std_colname, axis=1, level=1), name=std_colname) per_l.append((models_d, odata)) std_data.attrs = per_var.attrs new_description = ("{} standardized at {}C" .format(std_data.attrs["description"], t_alpha)) std_data.attrs["description"] = new_description new_history = ("{}: temperature_model: temperature models\n" .format(pd.to_datetime("today") .strftime("%Y-%m-%d"))) std_data.attrs["history"] = (std_data.attrs["history"] + new_history) # Update instance _std_da_l attribute with DataArray having an # additional dimension for the period index std_data = std_data.expand_dims(period=[idx]) self._stdda_l.append(std_data) return per_l def plot_experiment(self, period_idx, var, units_label=None, **kwargs): """Plot experimental IMU Parameters ---------- period_idx : int Index of period to plot (zero-based). var : str Name of the variable in with tri-axial data. units_label : str, optional Label for the units of the chosen variable. Defaults to the "units_label" attribute available in the DataArray. **kwargs : optional keyword arguments Arguments passed to :func:`~matplotlib.pyplot.subplots` (e.g. ``figsize``). Returns ------- fig : matplotlib.Figure axs : array_like Array of :class:`~matplotlib.axes.Axes` instances in ``fig`` with IMU signal plots. axs_temp : array_like Array of :class:`~matplotlib.axes.Axes` instances in ``fig`` with temperature plots. See Also -------- plot_var_model plot_standardized """ per_da = self.subset_imu(period_idx) per_var = per_da[var] per_temp = per_da["temperature"] def _plot(var, temp, ax): """Plot variable and temperature""" ax_temp = ax.twinx() var.plot.line(ax=ax, label="measured", color="k", linewidth=0.5) temp.plot.line(ax=ax_temp, label="temperature", color="r", linewidth=0.5, alpha=0.5) ax.set_title("") ax.set_xlabel("") # Adjust ylim to exclude outliers ax.set_ylim(var.quantile(1e-5).to_numpy().item(), var.quantile(1 - 1e-5).to_numpy().item()) # Axis locators and formatters dlocator = mdates.AutoDateLocator(minticks=3, maxticks=7) dformatter = mdates.ConciseDateFormatter(dlocator) ax.xaxis.set_major_locator(dlocator) ax.xaxis.set_major_formatter(dformatter) ax.xaxis.set_tick_params(rotation=0) return ax_temp if units_label is None: units_label = per_var.attrs["units_label"] ylabel_pre = "{} [{}]".format(per_var.attrs["full_name"], units_label) temp_label = "{} [{}]".format(per_temp.attrs["full_name"], per_temp.attrs["units_label"]) ndims = len(per_var.dims) axs_temp = [] if ndims == 1: fig, axs = plt.subplots(**kwargs) ax_temp = _plot(per_var, per_temp, axs) axs.set_xlabel("") axs.set_title("") axs.set_ylabel(ylabel_pre) ax_temp.set_ylabel(temp_label) axs_temp.append(ax_temp) else: fig, axs = plt.subplots(3, 1, sharex=True, **kwargs) ax_x, ax_y, ax_z = axs axis_names = per_var[per_var.dims[-1]].to_numpy() for i, axis in enumerate(axis_names): ymeasured = per_var.sel(axis=axis) ax_temp = _plot(ymeasured, per_temp, axs[i]) axs[i].set_title("") axs[i].set_xlabel("") axs[i].set_ylabel("{} {}".format(ylabel_pre, axis)) if i == 1: ax_temp.set_ylabel(temp_label) else: ax_temp.set_ylabel("") axs_temp.append(ax_temp) ax_z.set_xlabel("") return fig, axs, axs_temp def plot_var_model(self, var, use_axis_order=True, units_label=None, axs=None, **kwargs): """Plot IMU variable against temperature and fitted model A multi-panel plot of the selected variable against temperature from all periods. Parameters ---------- var : str IMU variable to plot. use_axis_order : bool Whether to use axis order from the instance. If True, only one sensor axis per period is considered to have valid calibration data for the correction. Otherwise, all three axes for each period are used in the correction. Ignored for uniaxial variables. units_label : str Label for the units of the chosen variable. Defaults to the "units_label" attribute available in the DataArray. axs : array_like, optional Array of Axes instances to plot in. **kwargs : optional keyword arguments Arguments passed to :func:`~matplotlib.pyplot.subplots` (e.g. ``figsize``). Returns ------- fig : matplotlib.Figure axs : array_like Array of :class:`~matplotlib.axes.Axes` instances in ``fig`` with IMU signal plots. See Also -------- plot_experiment plot_standardized """ def _plot_signal(x, y, idx, model_fit, ax): ax.plot(x, y, ".", markersize=2, alpha=0.03, label="Period {}".format(idx)) # Adjust ylim to exclude outliers ax.set_ylim(np.quantile(y, 1e-3), np.quantile(y, 1 - 1e-3)) # Linear model xpred = np.linspace(x.min(), x.max()) ypreds = (model_fit .get_prediction(exog=dict(Intercept=1, temperature=xpred)) .summary_frame()) ypred_0 = ypreds["mean"] ypred_l = ypreds["obs_ci_lower"] ypred_u = ypreds["obs_ci_upper"] ax.plot(xpred, ypred_0, color="k", alpha=0.5) ax.plot(xpred, ypred_l, color="k", linestyle="dashed", linewidth=1, alpha=0.5) ax.plot(xpred, ypred_u, color="k", linestyle="dashed", linewidth=1, alpha=0.5) per0 = self.subset_imu(0) if units_label is None: units_label = per0[var].attrs["units_label"] xlabel = "{} [{}]".format(per0["temperature"].attrs["full_name"], per0["temperature"].attrs["units_label"]) ylabel_pre = "{} [{}]".format(per0[var].attrs["full_name"], units_label) nperiods = len(self.periods) if axs is not None: fig = plt.gcf() if var in _MONOAXIAL_VARS: if axs is None: fig, axs = plt.subplots(1, nperiods, **kwargs) for per_i in range(nperiods): peri = self.subset_imu(per_i) per_var = peri[var] per_temp = peri["temperature"] xdata = per_temp.to_numpy() ydata = per_var.to_numpy() # Linear model model_fit = self.get_model(var, period=per_i, axis=per_var.dims[0]) ax_i = axs[per_i] _plot_signal(x=xdata, y=ydata, idx=per_i, model_fit=model_fit, ax=ax_i) ax_i.set_xlabel(xlabel) axs[0].set_ylabel(ylabel_pre) elif use_axis_order: if axs is None: fig, axs = plt.subplots(3, 1, **kwargs) axs[-1].set_xlabel(xlabel) for i, axis in enumerate(_AXIS_NAMES): idx = self.axis_order.index(axis) peri = self.subset_imu(idx) xdata = peri["temperature"].to_numpy() ydata = peri[var].sel(axis=axis).to_numpy() # Linear model model_fit = self.get_model(var, period=idx, axis=axis) ax_i = axs[i] _plot_signal(xdata, y=ydata, idx=idx, model_fit=model_fit, ax=ax_i) ax_i.set_ylabel("{} {}".format(ylabel_pre, axis)) ax_i.legend(loc=9, bbox_to_anchor=(0.5, 1), frameon=False, borderaxespad=0) else: if axs is None: fig, axs = plt.subplots(3, nperiods, **kwargs) for vert_i in range(nperiods): peri = self.subset_imu(vert_i) xdata = peri["temperature"].to_numpy() axs_xyz = axs[:, vert_i] for i, axis in enumerate(_AXIS_NAMES): ydata = (peri[var].sel(axis=axis).to_numpy()) # Linear model model_fit = self.get_model(var, period=vert_i, axis=axis) ax_i = axs_xyz[i] _plot_signal(xdata, y=ydata, idx=vert_i, model_fit=model_fit, ax=ax_i) ax_i.set_ylabel("{} {}".format(ylabel_pre, axis)) axs_xyz[0].set_title("Period {}".format(vert_i)) axs_xyz[-1].set_xlabel(xlabel) return fig, axs def plot_standardized(self, var, use_axis_order=True, units_label=None, ref_val=None, axs=None, **kwargs): r"""Plot IMU measured and standardized variable along with temperature A multi-panel time series plot of the selected variable, measured and standardized, for all periods. Parameters ---------- var : str IMU variable to plot. use_axis_order : bool, optional Whether to use axis order from the instance. If True, only one sensor axis per period is considered to have valid calibration data for the correction. Otherwise, all three axes for each period are used in the correction. units_label : str, optional Label for the units of the chosen variable. Defaults to the "units_label" attribute available in the DataArray. ref_val : float Reference value for the chosen variable (e.g. gravity, for acceleration). If provided, a horizontal line is included in the plot for reference. axs : array_like, optional Array of Axes instances to plot in. **kwargs : optional keyword arguments Arguments passed to :func:`~matplotlib.pyplot.subplots` (e.g. ``figsize``). Returns ------- fig : matplotlib.Figure axs : array_like Array of :class:`~matplotlib.axes.Axes` instances in ``fig`` with IMU signal plots. axs_temp : array_like Array of :class:`~matplotlib.axes.Axes` instances in ``fig`` with temperature plots. See Also -------- plot_experiment plot_var_model """ def _plot_signal(ymeasured, ystd, temp, ax, neg_ref=False): ax_temp = ax.twinx() (ymeasured.plot.line(ax=ax, label="measured", color="k", linewidth=0.5)) (ystd.plot.line(ax=ax, label="standardized", color="b", linewidth=0.5, alpha=0.5)) temp.plot.line(ax=ax_temp, label="temperature", color="r", linewidth=0.5, alpha=0.5) txt_desc = ystd.attrs["description"] t_alpha_match = re.search(r'[-+]?\d+\.\d+', txt_desc) ax_temp.axhline(float(txt_desc[t_alpha_match.start(): t_alpha_match.end()]), linestyle="dashed", linewidth=1, color="r", label=r"$T_\alpha$") q0 = ymeasured.quantile(1e-5).to_numpy().item() q1 = ymeasured.quantile(1 - 11e-5).to_numpy().item() if ref_val is not None: # Assumption of FLU with axes pointing against field if neg_ref: ref_i = -ref_val else: ref_i = ref_val ax.axhline(ref_i, linestyle="dashdot", color="m", linewidth=1, label="reference") ylim0 = np.minimum(q0, ref_i) ylim1 = np.maximum(q1, ref_i) else: ylim0 = q0 ylim1 = q1 ax.set_title("") ax.set_xlabel("") # Adjust ylim to exclude outliers ax.set_ylim(ylim0, ylim1) # Axis locators and formatters dlocator = mdates.AutoDateLocator(minticks=3, maxticks=7) dformatter = mdates.ConciseDateFormatter(dlocator) ax.xaxis.set_major_locator(dlocator) ax.xaxis.set_major_formatter(dformatter) ax.xaxis.set_tick_params(rotation=0) return ax_temp per0 = self.subset_imu(0) if units_label is None: units_label = per0[var].attrs["units_label"] ylabel_pre = "{} [{}]".format(per0[var].attrs["full_name"], units_label) var_std = var + "_std" nperiods = len(self.periods) if axs is not None: fig = plt.gcf() std_ds = xr.merge(self._stdda_l) if var in _MONOAXIAL_VARS: if axs is None: fig, axs = plt.subplots(1, nperiods, **kwargs) axs_temp = np.empty_like(axs) for per_i in range(nperiods): peri = self.subset_imu(per_i) per_var = peri[var] per_std = std_ds.loc[dict(period=per_i)][var_std] per_temp = peri["temperature"] ax_i = axs[per_i] ax_temp = _plot_signal(per_var, ystd=per_std, temp=per_temp, ax=ax_i) ax_i.set_ylabel(ylabel_pre) axs_temp[per_i] = ax_temp # legend at center top panel axs[1].legend(loc=9, bbox_to_anchor=(0.5, 1.15), ncol=3, frameon=False, borderaxespad=0) # Temperature legend at the bottom axs_temp[1].legend(loc=9, bbox_to_anchor=(0.5, -0.23), ncol=2, frameon=False, borderaxespad=0) elif use_axis_order: if axs is None: fig, axs = plt.subplots(3, 1, sharex=False, **kwargs) axs_temp = np.empty_like(axs) for i, axis in enumerate(_AXIS_NAMES): idx = self.axis_order.index(axis) peri = self.subset_imu(idx) per_var = peri[var].sel(axis=axis, drop=True) per_std = (std_ds.loc[dict(period=idx)][var_std] .sel(axis=axis, drop=True)) per_temp = peri["temperature"] ax_i = axs[i] if axis == "x": neg_ref = True else: neg_ref = False ax_temp = _plot_signal(per_var, ystd=per_std, temp=per_temp, ax=ax_i, neg_ref=neg_ref) ax_i.set_xlabel("Period {}".format(idx)) ax_i.set_ylabel("{} {}".format(ylabel_pre, axis)) axs_temp[i] = ax_temp # legend at top panel axs[0].legend(loc=9, bbox_to_anchor=(0.5, 1.15), ncol=3, frameon=False, borderaxespad=0) # Temperature legend at the bottom axs_temp[i].legend(loc=9, bbox_to_anchor=(0.5, -0.23), ncol=2, frameon=False, borderaxespad=0) else: if axs is None: fig, axs = plt.subplots(3, nperiods, **kwargs) axs_temp = np.empty_like(axs) for vert_i in range(nperiods): axs_xyz = axs[:, vert_i] for i, axis in enumerate(_AXIS_NAMES): peri = self.subset_imu(vert_i) per_var = peri[var].sel(axis=axis, drop=True) per_std = (std_ds.loc[dict(period=vert_i)][var_std] .sel(axis=axis, drop=True)) per_temp = peri["temperature"] ax_i = axs_xyz[i] ax_temp = _plot_signal(per_var, ystd=per_std, temp=per_temp, ax=ax_i) axs_temp[i, vert_i] = ax_temp if vert_i == 0: ax_i.set_ylabel("{} {}".format(ylabel_pre, axis)) else: ax_i.set_ylabel("") axs_xyz[0].set_title("Period {}".format(vert_i)) # legend at bottom panel leg0 = axs[-1, 1].legend(loc=9, bbox_to_anchor=(0.5, -0.23), ncol=3, frameon=False, borderaxespad=0) # Temperature legend at bottom panel leg1 = axs_temp[-1, 1].legend(loc=9, bbox_to_anchor=(0.5, -0.37), ncol=2, frameon=False, borderaxespad=0) axs[-1, 1].add_artist(leg0) axs_temp[-1, 1].add_artist(leg1) return fig, axs, axs_temp def get_model(self, var, period, axis=None): """Retrieve linear model for a given IMU sensor axis signal Parameters ---------- var : str Name of the variable to calculate offset for. period: int Period containing calibration model to use. axis : str, optional Name of the sensor axis the signal comes from, if `var` is tri-axial; ignored otherwise. Returns ------- RegressionResultsWrapper """ if var in _MONOAXIAL_VARS: model_d = self.models_l[period][var] model_fit = [*model_d.values()][0] else: model_fit = self.models_l[period][var][axis] return model_fit def get_offset(self, var, period, T_alpha, ref_val, axis=None): """Calculate signal ofset at given temperature from calibration model Parameters ---------- var : str Name of the variable to calculate offset for. period: int Period (zero-based) containing calibration model to use. T_alpha : float Temperature at which to compute offset. ref_val : float Reference value for the chosen variable (e.g. gravity, for acceleration). axis : str, optional Name of the sensor axis the signal comes from, if ``var`` is tri-axial; ignored otherwise. Returns ------- float Notes ----- For obtaining offset and gain of magnetometer signals, the ellipsoid method from the the ``ellipsoid`` module yields far more accurate results, as it allows for the simultaneous three-dimensional estimation of the offset. """ if var in _MONOAXIAL_VARS: model_fit = self.get_model(var, period=period) else: model_fit = self.get_model(var, period=period, axis=axis) ypred = (model_fit.predict(exog=dict(temperature=T_alpha)) .to_numpy().item()) logger.info("Predicted {} ({}, rounded) at T_alpha: {:.3f}" .format(var, axis, ypred)) offset = ypred - ref_val return offset def apply_model(self, var, dataset, T_alpha=None, ref_vals=None, use_axis_order=True, model_idx=None): """Apply fitted temperature compensation model to Dataset The selected models for tri-axial sensor data are applied to input Dataset, standardizing signals at :math:`T_{\alpha}`, optionally subtracting the offset at :math:`T_{\alpha}`. Parameters ---------- var : str Name of the variable with tri-axial data. dataset : xarray.Dataset Dataset with temperature and tri-axial data from motionless IMU. T_alpha : float, optional Reference temperature at which all measurements will be adjusted to. Default is the mean temperature in the input dataset. ref_vals : list, optional Sequence of three floats with target values to compare against the signal from each sensor axis. If provided, the offset of each signal at :math:`T_{\alpha}` is computed and subtracted from the temperature-standardized signal. The order should be the same as in the `axis_order` attribute if `use_axis_order` is True, or ``x``, ``y``, ``z`` otherwise. use_axis_order : bool, optional Whether to use axis order from the instance. If True, retrieve model to apply using instance's ``axis_order`` attribute. Otherwise, use the models defined by ``model_idx`` argument. Ignored if `var` is monoaxial. model_idx : list or int, optional Sequence of three integers identifying the period (zero-based) from which to retrieve the models for ``x``, ``y``, and ``z`` sensor axes, in that order. If ``var`` is monoaxial, an integer specifying the period for the model to use. Ignored if ``use_axis_order`` is True. Returns ------- xarray.Dataset """ temp_obs = dataset["temperature"] darray = dataset[var] if T_alpha is None: T_alpha = temp_obs.mean().item() logger.info("T_alpha set to {:.2f}".format(T_alpha)) def _standardize_array(darray, model_fit, period_idx, axis=None): x_hat = (model_fit .get_prediction(exog=dict(Intercept=1, temperature=temp_obs)) .predicted_mean) x_alpha = (model_fit .get_prediction(exog=dict(Intercept=1, temperature=T_alpha)) .predicted_mean) x_sigma = darray - (x_hat - x_alpha) if ref_vals is not None: off = self.get_offset(var, axis=axis, period=period_idx, T_alpha=T_alpha, ref_val=ref_vals[period_idx]) x_sigma -= off return x_sigma darray_l = [] if var in _MONOAXIAL_VARS: model_fit = self.get_model(var, period=model_idx) x_sigma = _standardize_array(darray, model_fit=model_fit, period_idx=model_idx) darray_l.append(x_sigma) elif use_axis_order: for i, axis in enumerate(_AXIS_NAMES): idx = self.axis_order.index(axis) model_fit = self.get_model(var, period=idx, axis=axis) x_i = darray.sel(axis=axis) x_sigma = _standardize_array(x_i, model_fit=model_fit, period_idx=idx, axis=axis) darray_l.append(x_sigma) else: for i, axis in enumerate(_AXIS_NAMES): model_fit = self.get_model(var, period=model_idx[i], axis=axis) x_i = darray.sel(axis=axis) x_sigma = _standardize_array(x_i, model_fit=model_fit, period_idx=model_idx[i], axis=axis) darray_l.append(x_sigma) if len(darray_l) > 1: darray_new = xr.concat(darray_l, dim="axis").transpose() else: darray_new = darray_l[0] darray_new.attrs = darray.attrs new_history = ("{}: Applied temperature model at: T={}\n" .format(pd.to_datetime("today") .strftime("%Y-%m-%d"), T_alpha)) darray_new.attrs["history"] = (darray_new.attrs["history"] + new_history) return darray_new def subset_imu(self, period_idx): """Subset IMU dataset given a period index The dataset is subset using the slice corresponding to the period index. Parameters ---------- period_idx : int Index of the experiment period to subset. Returns ------- xarray.Dataset """ time_name = self.time_name return self.imu.loc[{time_name: self.periods[period_idx]}]
0.785884
0.480662
import numpy as np # Types of ellipsoid accepted fits _ELLIPSOID_FTYPES = ["rxyz", "xyz", "xy", "xz", "yz", "sxyz"] def fit_ellipsoid(vectors, f="rxyz"): """Fit a (non) rotated ellipsoid or sphere to 3D vector data Parameters ---------- vectors: (N,3) array Array of measured x, y, z vector components. f: str String indicating the model to fit (one of 'rxyz', 'xyz', 'xy', 'xz', 'yz', or 'sxyz'): rxyz : rotated ellipsoid (any axes) xyz : non-rotated ellipsoid xy : radius x=y xz : radius x=z yz : radius y=z sxyz : radius x=y=z sphere Returns ------- otuple: tuple Tuple with offset, gain, and rotation matrix, in that order. """ if f not in _ELLIPSOID_FTYPES: raise ValueError("f must be one of: {}" .format(_ELLIPSOID_FTYPES)) x = vectors[:, 0, np.newaxis] y = vectors[:, 1, np.newaxis] z = vectors[:, 2, np.newaxis] if f == "rxyz": D = np.hstack((x ** 2, y ** 2, z ** 2, 2 * x * y, 2 * x * z, 2 * y * z, 2 * x, 2 * y, 2 * z)) elif f == "xyz": D = np.hstack((x ** 2, y ** 2, z ** 2, 2 * x, 2 * y, 2 * z)) elif f == "xy": D = np.hstack((x ** 2 + y ** 2, z ** 2, 2 * x, 2 * y, 2 * z)) elif f == "xz": D = np.hstack((x ** 2 + z ** 2, y ** 2, 2 * x, 2 * y, 2 * z)) elif f == "yz": D = np.hstack((y ** 2 + z ** 2, x ** 2, 2 * x, 2 * y, 2 * z)) else: # sxyz D = np.hstack((x ** 2 + y ** 2 + z ** 2, 2 * x, 2 * y, 2 * z)) v = np.linalg.lstsq(D, np.ones(D.shape[0]), rcond=None)[0] if f == "rxyz": A = np.array([[v[0], v[3], v[4], v[6]], [v[3], v[1], v[5], v[7]], [v[4], v[5], v[2], v[8]], [v[6], v[7], v[8], -1]]) ofs = np.linalg.lstsq(-A[:3, :3], v[[6, 7, 8]], rcond=None)[0] Tmtx = np.eye(4) Tmtx[3, :3] = ofs AT = Tmtx @ A @ Tmtx.T # ellipsoid translated to 0, 0, 0 ev, rotM = np.linalg.eig(AT[:3, :3] / -AT[3, 3]) rotM = np.fliplr(rotM) ev = np.flip(ev) gain = np.sqrt(1.0 / ev) else: if f == "xyz": v = np.array([v[0], v[1], v[2], 0, 0, 0, v[3], v[4], v[5]]) elif f == "xy": v = np.array([v[0], v[0], v[1], 0, 0, 0, v[2], v[3], v[4]]) elif f == "xz": v = np.array([v[0], v[1], v[0], 0, 0, 0, v[2], v[3], v[4]]) elif f == "yz": v = np.array([v[1], v[0], v[0], 0, 0, 0, v[2], v[3], v[4]]) else: v = np.array([v[0], v[0], v[0], 0, 0, 0, v[1], v[2], v[3]]) ofs = -(v[6:] / v[:3]) rotM = np.eye(3) g = 1 + (v[6] ** 2 / v[0] + v[7] ** 2 / v[1] + v[8] ** 2 / v[2]) gain = (np.sqrt(g / v[:3])) return (ofs, gain, rotM) def _refine_ellipsoid_fit(gain, rotM): """Refine ellipsoid fit""" # m = 0 # rm = 0 # cm = 0 pass def apply_ellipsoid(vectors, offset, gain, rotM, ref_r): """Apply ellipsoid fit to vector array""" vectors_new = vectors.copy() - offset vectors_new = vectors_new @ rotM # Scale to sphere vectors_new = vectors_new / gain * ref_r return vectors_new
scikit-diveMove
/scikit-diveMove-0.3.0.tar.gz/scikit-diveMove-0.3.0/skdiveMove/imutools/ellipsoid.py
ellipsoid.py
import numpy as np # Types of ellipsoid accepted fits _ELLIPSOID_FTYPES = ["rxyz", "xyz", "xy", "xz", "yz", "sxyz"] def fit_ellipsoid(vectors, f="rxyz"): """Fit a (non) rotated ellipsoid or sphere to 3D vector data Parameters ---------- vectors: (N,3) array Array of measured x, y, z vector components. f: str String indicating the model to fit (one of 'rxyz', 'xyz', 'xy', 'xz', 'yz', or 'sxyz'): rxyz : rotated ellipsoid (any axes) xyz : non-rotated ellipsoid xy : radius x=y xz : radius x=z yz : radius y=z sxyz : radius x=y=z sphere Returns ------- otuple: tuple Tuple with offset, gain, and rotation matrix, in that order. """ if f not in _ELLIPSOID_FTYPES: raise ValueError("f must be one of: {}" .format(_ELLIPSOID_FTYPES)) x = vectors[:, 0, np.newaxis] y = vectors[:, 1, np.newaxis] z = vectors[:, 2, np.newaxis] if f == "rxyz": D = np.hstack((x ** 2, y ** 2, z ** 2, 2 * x * y, 2 * x * z, 2 * y * z, 2 * x, 2 * y, 2 * z)) elif f == "xyz": D = np.hstack((x ** 2, y ** 2, z ** 2, 2 * x, 2 * y, 2 * z)) elif f == "xy": D = np.hstack((x ** 2 + y ** 2, z ** 2, 2 * x, 2 * y, 2 * z)) elif f == "xz": D = np.hstack((x ** 2 + z ** 2, y ** 2, 2 * x, 2 * y, 2 * z)) elif f == "yz": D = np.hstack((y ** 2 + z ** 2, x ** 2, 2 * x, 2 * y, 2 * z)) else: # sxyz D = np.hstack((x ** 2 + y ** 2 + z ** 2, 2 * x, 2 * y, 2 * z)) v = np.linalg.lstsq(D, np.ones(D.shape[0]), rcond=None)[0] if f == "rxyz": A = np.array([[v[0], v[3], v[4], v[6]], [v[3], v[1], v[5], v[7]], [v[4], v[5], v[2], v[8]], [v[6], v[7], v[8], -1]]) ofs = np.linalg.lstsq(-A[:3, :3], v[[6, 7, 8]], rcond=None)[0] Tmtx = np.eye(4) Tmtx[3, :3] = ofs AT = Tmtx @ A @ Tmtx.T # ellipsoid translated to 0, 0, 0 ev, rotM = np.linalg.eig(AT[:3, :3] / -AT[3, 3]) rotM = np.fliplr(rotM) ev = np.flip(ev) gain = np.sqrt(1.0 / ev) else: if f == "xyz": v = np.array([v[0], v[1], v[2], 0, 0, 0, v[3], v[4], v[5]]) elif f == "xy": v = np.array([v[0], v[0], v[1], 0, 0, 0, v[2], v[3], v[4]]) elif f == "xz": v = np.array([v[0], v[1], v[0], 0, 0, 0, v[2], v[3], v[4]]) elif f == "yz": v = np.array([v[1], v[0], v[0], 0, 0, 0, v[2], v[3], v[4]]) else: v = np.array([v[0], v[0], v[0], 0, 0, 0, v[1], v[2], v[3]]) ofs = -(v[6:] / v[:3]) rotM = np.eye(3) g = 1 + (v[6] ** 2 / v[0] + v[7] ** 2 / v[1] + v[8] ** 2 / v[2]) gain = (np.sqrt(g / v[:3])) return (ofs, gain, rotM) def _refine_ellipsoid_fit(gain, rotM): """Refine ellipsoid fit""" # m = 0 # rm = 0 # cm = 0 pass def apply_ellipsoid(vectors, offset, gain, rotM, ref_r): """Apply ellipsoid fit to vector array""" vectors_new = vectors.copy() - offset vectors_new = vectors_new @ rotM # Scale to sphere vectors_new = vectors_new / gain * ref_r return vectors_new
0.849441
0.810066
import logging from abc import ABCMeta, abstractmethod import numpy as np import pandas as pd import statsmodels.formula.api as smf from scipy.optimize import curve_fit import matplotlib.pyplot as plt from skdiveMove.helpers import rle_key logger = logging.getLogger(__name__) # Add the null handler if importing as library; whatever using this library # should set up logging.basicConfig() as needed logger.addHandler(logging.NullHandler()) def nlsLL(x, coefs): r"""Generalized log-likelihood for Random Poisson mixtures This is a generalized form taking any number of Poisson processes. Parameters ---------- x : array_like Independent data array described by the function coefs : array_like 2-D array with coefficients ('a', :math:'\lambda') in rows for each process of the model in columns. Returns ------- out : array_like Same shape as `x` with the evaluated log-likelihood. """ def calc_term(params): return params[0] * params[1] * np.exp(-params[1] * x) terms = np.apply_along_axis(calc_term, 0, coefs) terms_sum = terms.sum(1) if np.any(terms_sum <= 0): logger.warning("Negative values at: {}".format(coefs)) return np.log(terms_sum) def calc_p(coefs): r"""Calculate `p` (proportion) parameter from `a` coefficients Parameters ---------- coefs : pandas.DataFrame DataFrame with model coefficients in columns, and indexed by parameter names "a" and "lambda". Returns ------- p : list Proportion parameters implied in `coef`. lambdas : pandas.Series A series with with the :math:`\lambda` parameters from `coef`. """ ncoefs = coefs.shape[1] coef_arr = np.arange(ncoefs) pairs = [(i, i + 1) for i in coef_arr[:-1]] p_ll = [] # build mixing ratios for pair in pairs: procn1 = coefs.columns[pair[0]] # name of process 1 procn2 = coefs.columns[pair[1]] # name of process 2 a1 = coefs.loc["a", procn1] a2 = coefs.loc["a", procn2] p_i = a1 / (a1 + a2) p_ll.append(p_i) return (p_ll, coefs.loc["lambda"]) def ecdf(x, p, lambdas): r"""Estimated cumulative frequency for Poisson mixture models ECDF for two- or three-process mixture models. Parameters ---------- x : array_like Independent data array described by model with parameters `p`, :math:`\lambda_f`, and :math:`\lambda_s`. p : list List with mixing parameters of the model. lambdas : pandas.Series Series with the density parameters (:math:`\lambda`) of the model. Its length must be length(p) + 1. Returns ------- out : array_like Same shape as `x` with the evaluated function. """ ncoefs = lambdas.size # We assume at least two processes p0 = p[0] lda0 = lambdas.iloc[0] term0 = 1 - p0 * np.exp(-lda0 * x) if ncoefs == 2: lda1 = lambdas.iloc[1] term1 = (1 - p0) * np.exp(-lda1 * x) cdf = term0 - term1 elif ncoefs == 3: p1 = p[1] lda1 = lambdas.iloc[1] term1 = p1 * (1 - p0) * np.exp(-lda1 * x) lda2 = lambdas.iloc[2] term2 = (1 - p0) * (1 - p1) * np.exp(-lda2 * x) cdf = term0 - term1 - term2 else: msg = "Only mixtures of <= 3 processes are implemented" raise KeyError(msg) return cdf def label_bouts(x, bec, as_diff=False): """Classify data into bouts based on bout ending criteria Parameters ---------- x : pandas.Series Series with data to classify according to `bec`. bec : array_like Array with bout-ending criteria. It is assumed to be sorted. as_diff : bool, optional Whether to apply `diff` on `x` so it matches `bec`'s scale. Returns ------- out : numpy.ndarray Integer array with the same shape as `x`. """ if as_diff: xx = x.diff().fillna(0) else: xx = x.copy() xx_min = np.array(xx.min()) xx_max = np.array(xx.max()) brks = np.append(np.append(xx_min, bec), xx_max) xx_cat = pd.cut(xx, bins=brks, include_lowest=True) xx_bouts = rle_key(xx_cat) return xx_bouts def _plot_bec(bec_x, bec_y, ax, xytext, horizontalalignment="left"): """Plot bout-ending criteria on `Axes` Private helper function only for convenience here. Parameters ---------- bec_x : numpy.ndarray, shape (n,) x coordinate for bout-ending criteria. bec_y : numpy.ndarray, shape (n,) y coordinate for bout-ending criteria. ax : matplotlib.Axes An Axes instance to use as target. xytext : 2-tuple Argument passed to `matplotlib.annotate`; interpreted with textcoords="offset points". horizontalalignment : str Argument passed to `matplotlib.annotate`. """ ylims = ax.get_ylim() ax.vlines(bec_x, ylims[0], bec_y, linestyle="--") ax.scatter(bec_x, bec_y, c="r", marker="v") # Annotations fmtstr = "bec_{0} = {1:.3f}" if bec_x.size == 1: bec_x = bec_x.item() ax.annotate(fmtstr.format(0, bec_x), (bec_x, bec_y), xytext=xytext, textcoords="offset points", horizontalalignment=horizontalalignment) else: for i, bec_i in enumerate(bec_x): ax.annotate(fmtstr.format(i, bec_i), (bec_i, bec_y[i]), xytext=xytext, textcoords="offset points", horizontalalignment=horizontalalignment) class Bouts(metaclass=ABCMeta): """Abstract base class for models of log-transformed frequencies This is a base class for other classes to build on, and do the model fitting. `Bouts` is an abstract base class to set up bout identification procedures. Subclasses must implement `fit` and `bec` methods, or re-use the default NLS methods in `Bouts`. Attributes ---------- x : array_like 1D array with input data. method : str Method used for calculating the histogram. lnfreq : pandas.DataFrame DataFrame with the centers of histogram bins, and corresponding log-frequencies of `x`. """ def __init__(self, x, bw, method="standard"): """Histogram of log transformed frequencies of `x` Parameters ---------- x : array_like 1D array with data where bouts will be identified based on `method`. bw : float Bin width for the histogram method : {"standard", "seq_diff"}, optional Method to use for calculating the frequencies: "standard" simply uses `x`, which "seq_diff" uses the sequential differences method. **kwargs : optional keywords Passed to histogram """ self.x = x self.method = method if method == "standard": upper = x.max() brks = np.arange(x.min(), upper, bw) if brks[-1] < upper: brks = np.append(brks, brks[-1] + bw) h, edges = np.histogram(x, bins=brks) elif method == "seq_diff": x_diff = np.abs(np.diff(x)) upper = x_diff.max() brks = np.arange(0, upper, bw) if brks[-1] < upper: brks = np.append(brks, brks[-1] + bw) h, edges = np.histogram(x_diff, bins=brks) ctrs = edges[:-1] + np.diff(edges) / 2 ok = h > 0 ok_at = np.where(ok)[0] + 1 # 1-based indices freq_adj = h[ok] / np.diff(np.insert(ok_at, 0, 0)) self.lnfreq = pd.DataFrame({"x": ctrs[ok], "lnfreq": np.log(freq_adj)}) def __str__(self): method = self.method lnfreq = self.lnfreq objcls = ("Class {} object\n".format(self.__class__.__name__)) meth_str = "{0:<20} {1}\n".format("histogram method: ", method) lnfreq_str = ("{0:<20}\n{1}" .format("log-frequency histogram:", lnfreq.describe())) return objcls + meth_str + lnfreq_str def init_pars(self, x_break, plot=True, ax=None, **kwargs): """Find starting values for mixtures of random Poisson processes Starting values are calculated using the "broken stick" method. Parameters ---------- x_break : array_like One- or two-element array with values determining the break(s) for broken stick model, such that x < x_break[0] is first process, x >= x_break[1] & x < x_break[2] is second process, and x >= x_break[2] is third one. plot : bool, optional Whether to plot the broken stick model. ax : matplotlib.Axes, optional An Axes instance to use as target. Default is to create one. **kwargs : optional keyword arguments Passed to plotting function. Returns ------- out : pandas.DataFrame DataFrame with coefficients for each process. """ nproc = len(x_break) if (nproc > 2): msg = "x_break must be length <= 2" raise IndexError(msg) lnfreq = self.lnfreq ctrs = lnfreq["x"] xmin = ctrs.min() xmax = ctrs.max() xbins = [xmin] xbins.extend(x_break) xbins.extend([xmax]) procf = pd.cut(ctrs, bins=xbins, right=True, include_lowest=True) lnfreq_grp = lnfreq.groupby(procf) coefs_ll = [] for name, grp in lnfreq_grp: fit = smf.ols("lnfreq ~ x", data=grp).fit() coefs_ll.append(fit.params.rename(name)) coefs = pd.concat(coefs_ll, axis=1) def calculate_pars(p): """Poisson process parameters from linear model """ lda = -p["x"] a = np.exp(p["Intercept"]) / lda return pd.Series({"a": a, "lambda": lda}) pars = coefs.apply(calculate_pars) if plot: if ax is None: ax = plt.gca() freq_min = lnfreq["lnfreq"].min() freq_max = lnfreq["lnfreq"].max() for name, grp in lnfreq_grp: ax.scatter(x="x", y="lnfreq", data=grp, label=name) # Plot current "stick" coef_i = coefs[name] y_stick = coef_i["Intercept"] + ctrs * coef_i["x"] # Limit the "stick" line to min/max of data ok = (y_stick >= freq_min) & (y_stick <= freq_max) ax.plot(ctrs[ok], y_stick[ok], linestyle="--") x_pred = np.linspace(xmin, xmax, num=101) # matches R's curve y_pred = nlsLL(x_pred, pars) ax.plot(x_pred, y_pred, alpha=0.5, label="model") ax.legend(loc="upper right") ax.set_xlabel("x") ax.set_ylabel("log frequency") return pars @abstractmethod def fit(self, start, **kwargs): """Fit Poisson mixture model to log frequencies Default is non-linear least squares method. Parameters ---------- start : pandas.DataFrame DataFrame with coefficients for each process in columns. **kwargs : optional keyword arguments Passed to `scipy.optimize.curve_fit`. Returns ------- coefs : pandas.DataFrame Coefficients of the model. pcov : 2D array Covariance of coefs. """ lnfreq = self.lnfreq xdata = lnfreq["x"] ydata = lnfreq["lnfreq"] def _nlsLL(x, *args): """Wrapper to nlsLL to allow for array argument""" # Pass in original shape, damn it! Note order="F" needed coefs = np.array(args).reshape(start.shape, order="F") return nlsLL(x, coefs) # Rearrange starting values into a 1D array (needs to be flat) init_flat = start.to_numpy().T.reshape((start.size,)) popt, pcov = curve_fit(_nlsLL, xdata, ydata, p0=init_flat, **kwargs) # Reshape coefs back into init shape coefs = pd.DataFrame(popt.reshape(start.shape, order="F"), columns=start.columns, index=start.index) return (coefs, pcov) @abstractmethod def bec(self, coefs): """Calculate bout ending criteria from model coefficients Implementing default as from NLS method. Parameters ---------- coefs : pandas.DataFrame DataFrame with model coefficients in columns, and indexed by parameter names "a" and "lambda". Returns ------- out : numpy.ndarray, shape (n,) 1-D array with BECs implied by `coefs`. Length is coefs.shape[1] """ # Find bec's per process by pairing columns ncoefs = coefs.shape[1] coef_arr = np.arange(ncoefs) pairs = [(i, i + 1) for i in coef_arr[:-1]] becs = [] for pair in pairs: procn1 = coefs.columns[pair[0]] # name of process 1 procn2 = coefs.columns[pair[1]] # name of process 2 a1 = coefs.loc["a", procn1] lambda1 = coefs.loc["lambda", procn1] a2 = coefs.loc["a", procn2] lambda2 = coefs.loc["lambda", procn2] bec = (np.log((a1 * lambda1) / (a2 * lambda2)) / (lambda1 - lambda2)) becs.append(bec) return np.array(becs) def plot_fit(self, coefs, ax=None): """Plot log frequency histogram and fitted model Parameters ---------- coefs : pandas.DataFrame DataFrame with model coefficients in columns, and indexed by parameter names "a" and "lambda". ax : matplotlib.Axes instance An Axes instance to use as target. Returns ------- ax : `matplotlib.Axes` """ lnfreq = self.lnfreq ctrs = lnfreq["x"] xmin = ctrs.min() xmax = ctrs.max() x_pred = np.linspace(xmin, xmax, num=101) # matches R's curve y_pred = nlsLL(x_pred, coefs) if ax is None: ax = plt.gca() # Plot data ax.scatter(x="x", y="lnfreq", data=lnfreq, alpha=0.5, label="histogram") # Plot predicted ax.plot(x_pred, y_pred, alpha=0.5, label="model") # Plot BEC (note this plots all BECs in becx) bec_x = self.bec(coefs) # need an array for nlsLL bec_y = nlsLL(bec_x, coefs) _plot_bec(bec_x, bec_y, ax=ax, xytext=(5, 5)) ax.legend(loc=8, bbox_to_anchor=(0.5, 1), frameon=False, borderaxespad=0.1, ncol=2) ax.set_xlabel("x") ax.set_ylabel("log frequency") return ax def _plot_ecdf(x_pred_expm1, y_pred, ax): """Plot Empirical Frequency Distribution Plot the ECDF at predicted x and corresponding y locations. Parameters ---------- x_pred : numpy.ndarray, shape (n,) Values of the variable at which to plot the ECDF. y_pred : numpy.ndarray, shape (n,) Values of the ECDF at `x_pred`. ax : matplotlib.axes.Axes An Axes instance to use as target. """ pass
scikit-diveMove
/scikit-diveMove-0.3.0.tar.gz/scikit-diveMove-0.3.0/skdiveMove/bouts/bouts.py
bouts.py
import logging from abc import ABCMeta, abstractmethod import numpy as np import pandas as pd import statsmodels.formula.api as smf from scipy.optimize import curve_fit import matplotlib.pyplot as plt from skdiveMove.helpers import rle_key logger = logging.getLogger(__name__) # Add the null handler if importing as library; whatever using this library # should set up logging.basicConfig() as needed logger.addHandler(logging.NullHandler()) def nlsLL(x, coefs): r"""Generalized log-likelihood for Random Poisson mixtures This is a generalized form taking any number of Poisson processes. Parameters ---------- x : array_like Independent data array described by the function coefs : array_like 2-D array with coefficients ('a', :math:'\lambda') in rows for each process of the model in columns. Returns ------- out : array_like Same shape as `x` with the evaluated log-likelihood. """ def calc_term(params): return params[0] * params[1] * np.exp(-params[1] * x) terms = np.apply_along_axis(calc_term, 0, coefs) terms_sum = terms.sum(1) if np.any(terms_sum <= 0): logger.warning("Negative values at: {}".format(coefs)) return np.log(terms_sum) def calc_p(coefs): r"""Calculate `p` (proportion) parameter from `a` coefficients Parameters ---------- coefs : pandas.DataFrame DataFrame with model coefficients in columns, and indexed by parameter names "a" and "lambda". Returns ------- p : list Proportion parameters implied in `coef`. lambdas : pandas.Series A series with with the :math:`\lambda` parameters from `coef`. """ ncoefs = coefs.shape[1] coef_arr = np.arange(ncoefs) pairs = [(i, i + 1) for i in coef_arr[:-1]] p_ll = [] # build mixing ratios for pair in pairs: procn1 = coefs.columns[pair[0]] # name of process 1 procn2 = coefs.columns[pair[1]] # name of process 2 a1 = coefs.loc["a", procn1] a2 = coefs.loc["a", procn2] p_i = a1 / (a1 + a2) p_ll.append(p_i) return (p_ll, coefs.loc["lambda"]) def ecdf(x, p, lambdas): r"""Estimated cumulative frequency for Poisson mixture models ECDF for two- or three-process mixture models. Parameters ---------- x : array_like Independent data array described by model with parameters `p`, :math:`\lambda_f`, and :math:`\lambda_s`. p : list List with mixing parameters of the model. lambdas : pandas.Series Series with the density parameters (:math:`\lambda`) of the model. Its length must be length(p) + 1. Returns ------- out : array_like Same shape as `x` with the evaluated function. """ ncoefs = lambdas.size # We assume at least two processes p0 = p[0] lda0 = lambdas.iloc[0] term0 = 1 - p0 * np.exp(-lda0 * x) if ncoefs == 2: lda1 = lambdas.iloc[1] term1 = (1 - p0) * np.exp(-lda1 * x) cdf = term0 - term1 elif ncoefs == 3: p1 = p[1] lda1 = lambdas.iloc[1] term1 = p1 * (1 - p0) * np.exp(-lda1 * x) lda2 = lambdas.iloc[2] term2 = (1 - p0) * (1 - p1) * np.exp(-lda2 * x) cdf = term0 - term1 - term2 else: msg = "Only mixtures of <= 3 processes are implemented" raise KeyError(msg) return cdf def label_bouts(x, bec, as_diff=False): """Classify data into bouts based on bout ending criteria Parameters ---------- x : pandas.Series Series with data to classify according to `bec`. bec : array_like Array with bout-ending criteria. It is assumed to be sorted. as_diff : bool, optional Whether to apply `diff` on `x` so it matches `bec`'s scale. Returns ------- out : numpy.ndarray Integer array with the same shape as `x`. """ if as_diff: xx = x.diff().fillna(0) else: xx = x.copy() xx_min = np.array(xx.min()) xx_max = np.array(xx.max()) brks = np.append(np.append(xx_min, bec), xx_max) xx_cat = pd.cut(xx, bins=brks, include_lowest=True) xx_bouts = rle_key(xx_cat) return xx_bouts def _plot_bec(bec_x, bec_y, ax, xytext, horizontalalignment="left"): """Plot bout-ending criteria on `Axes` Private helper function only for convenience here. Parameters ---------- bec_x : numpy.ndarray, shape (n,) x coordinate for bout-ending criteria. bec_y : numpy.ndarray, shape (n,) y coordinate for bout-ending criteria. ax : matplotlib.Axes An Axes instance to use as target. xytext : 2-tuple Argument passed to `matplotlib.annotate`; interpreted with textcoords="offset points". horizontalalignment : str Argument passed to `matplotlib.annotate`. """ ylims = ax.get_ylim() ax.vlines(bec_x, ylims[0], bec_y, linestyle="--") ax.scatter(bec_x, bec_y, c="r", marker="v") # Annotations fmtstr = "bec_{0} = {1:.3f}" if bec_x.size == 1: bec_x = bec_x.item() ax.annotate(fmtstr.format(0, bec_x), (bec_x, bec_y), xytext=xytext, textcoords="offset points", horizontalalignment=horizontalalignment) else: for i, bec_i in enumerate(bec_x): ax.annotate(fmtstr.format(i, bec_i), (bec_i, bec_y[i]), xytext=xytext, textcoords="offset points", horizontalalignment=horizontalalignment) class Bouts(metaclass=ABCMeta): """Abstract base class for models of log-transformed frequencies This is a base class for other classes to build on, and do the model fitting. `Bouts` is an abstract base class to set up bout identification procedures. Subclasses must implement `fit` and `bec` methods, or re-use the default NLS methods in `Bouts`. Attributes ---------- x : array_like 1D array with input data. method : str Method used for calculating the histogram. lnfreq : pandas.DataFrame DataFrame with the centers of histogram bins, and corresponding log-frequencies of `x`. """ def __init__(self, x, bw, method="standard"): """Histogram of log transformed frequencies of `x` Parameters ---------- x : array_like 1D array with data where bouts will be identified based on `method`. bw : float Bin width for the histogram method : {"standard", "seq_diff"}, optional Method to use for calculating the frequencies: "standard" simply uses `x`, which "seq_diff" uses the sequential differences method. **kwargs : optional keywords Passed to histogram """ self.x = x self.method = method if method == "standard": upper = x.max() brks = np.arange(x.min(), upper, bw) if brks[-1] < upper: brks = np.append(brks, brks[-1] + bw) h, edges = np.histogram(x, bins=brks) elif method == "seq_diff": x_diff = np.abs(np.diff(x)) upper = x_diff.max() brks = np.arange(0, upper, bw) if brks[-1] < upper: brks = np.append(brks, brks[-1] + bw) h, edges = np.histogram(x_diff, bins=brks) ctrs = edges[:-1] + np.diff(edges) / 2 ok = h > 0 ok_at = np.where(ok)[0] + 1 # 1-based indices freq_adj = h[ok] / np.diff(np.insert(ok_at, 0, 0)) self.lnfreq = pd.DataFrame({"x": ctrs[ok], "lnfreq": np.log(freq_adj)}) def __str__(self): method = self.method lnfreq = self.lnfreq objcls = ("Class {} object\n".format(self.__class__.__name__)) meth_str = "{0:<20} {1}\n".format("histogram method: ", method) lnfreq_str = ("{0:<20}\n{1}" .format("log-frequency histogram:", lnfreq.describe())) return objcls + meth_str + lnfreq_str def init_pars(self, x_break, plot=True, ax=None, **kwargs): """Find starting values for mixtures of random Poisson processes Starting values are calculated using the "broken stick" method. Parameters ---------- x_break : array_like One- or two-element array with values determining the break(s) for broken stick model, such that x < x_break[0] is first process, x >= x_break[1] & x < x_break[2] is second process, and x >= x_break[2] is third one. plot : bool, optional Whether to plot the broken stick model. ax : matplotlib.Axes, optional An Axes instance to use as target. Default is to create one. **kwargs : optional keyword arguments Passed to plotting function. Returns ------- out : pandas.DataFrame DataFrame with coefficients for each process. """ nproc = len(x_break) if (nproc > 2): msg = "x_break must be length <= 2" raise IndexError(msg) lnfreq = self.lnfreq ctrs = lnfreq["x"] xmin = ctrs.min() xmax = ctrs.max() xbins = [xmin] xbins.extend(x_break) xbins.extend([xmax]) procf = pd.cut(ctrs, bins=xbins, right=True, include_lowest=True) lnfreq_grp = lnfreq.groupby(procf) coefs_ll = [] for name, grp in lnfreq_grp: fit = smf.ols("lnfreq ~ x", data=grp).fit() coefs_ll.append(fit.params.rename(name)) coefs = pd.concat(coefs_ll, axis=1) def calculate_pars(p): """Poisson process parameters from linear model """ lda = -p["x"] a = np.exp(p["Intercept"]) / lda return pd.Series({"a": a, "lambda": lda}) pars = coefs.apply(calculate_pars) if plot: if ax is None: ax = plt.gca() freq_min = lnfreq["lnfreq"].min() freq_max = lnfreq["lnfreq"].max() for name, grp in lnfreq_grp: ax.scatter(x="x", y="lnfreq", data=grp, label=name) # Plot current "stick" coef_i = coefs[name] y_stick = coef_i["Intercept"] + ctrs * coef_i["x"] # Limit the "stick" line to min/max of data ok = (y_stick >= freq_min) & (y_stick <= freq_max) ax.plot(ctrs[ok], y_stick[ok], linestyle="--") x_pred = np.linspace(xmin, xmax, num=101) # matches R's curve y_pred = nlsLL(x_pred, pars) ax.plot(x_pred, y_pred, alpha=0.5, label="model") ax.legend(loc="upper right") ax.set_xlabel("x") ax.set_ylabel("log frequency") return pars @abstractmethod def fit(self, start, **kwargs): """Fit Poisson mixture model to log frequencies Default is non-linear least squares method. Parameters ---------- start : pandas.DataFrame DataFrame with coefficients for each process in columns. **kwargs : optional keyword arguments Passed to `scipy.optimize.curve_fit`. Returns ------- coefs : pandas.DataFrame Coefficients of the model. pcov : 2D array Covariance of coefs. """ lnfreq = self.lnfreq xdata = lnfreq["x"] ydata = lnfreq["lnfreq"] def _nlsLL(x, *args): """Wrapper to nlsLL to allow for array argument""" # Pass in original shape, damn it! Note order="F" needed coefs = np.array(args).reshape(start.shape, order="F") return nlsLL(x, coefs) # Rearrange starting values into a 1D array (needs to be flat) init_flat = start.to_numpy().T.reshape((start.size,)) popt, pcov = curve_fit(_nlsLL, xdata, ydata, p0=init_flat, **kwargs) # Reshape coefs back into init shape coefs = pd.DataFrame(popt.reshape(start.shape, order="F"), columns=start.columns, index=start.index) return (coefs, pcov) @abstractmethod def bec(self, coefs): """Calculate bout ending criteria from model coefficients Implementing default as from NLS method. Parameters ---------- coefs : pandas.DataFrame DataFrame with model coefficients in columns, and indexed by parameter names "a" and "lambda". Returns ------- out : numpy.ndarray, shape (n,) 1-D array with BECs implied by `coefs`. Length is coefs.shape[1] """ # Find bec's per process by pairing columns ncoefs = coefs.shape[1] coef_arr = np.arange(ncoefs) pairs = [(i, i + 1) for i in coef_arr[:-1]] becs = [] for pair in pairs: procn1 = coefs.columns[pair[0]] # name of process 1 procn2 = coefs.columns[pair[1]] # name of process 2 a1 = coefs.loc["a", procn1] lambda1 = coefs.loc["lambda", procn1] a2 = coefs.loc["a", procn2] lambda2 = coefs.loc["lambda", procn2] bec = (np.log((a1 * lambda1) / (a2 * lambda2)) / (lambda1 - lambda2)) becs.append(bec) return np.array(becs) def plot_fit(self, coefs, ax=None): """Plot log frequency histogram and fitted model Parameters ---------- coefs : pandas.DataFrame DataFrame with model coefficients in columns, and indexed by parameter names "a" and "lambda". ax : matplotlib.Axes instance An Axes instance to use as target. Returns ------- ax : `matplotlib.Axes` """ lnfreq = self.lnfreq ctrs = lnfreq["x"] xmin = ctrs.min() xmax = ctrs.max() x_pred = np.linspace(xmin, xmax, num=101) # matches R's curve y_pred = nlsLL(x_pred, coefs) if ax is None: ax = plt.gca() # Plot data ax.scatter(x="x", y="lnfreq", data=lnfreq, alpha=0.5, label="histogram") # Plot predicted ax.plot(x_pred, y_pred, alpha=0.5, label="model") # Plot BEC (note this plots all BECs in becx) bec_x = self.bec(coefs) # need an array for nlsLL bec_y = nlsLL(bec_x, coefs) _plot_bec(bec_x, bec_y, ax=ax, xytext=(5, 5)) ax.legend(loc=8, bbox_to_anchor=(0.5, 1), frameon=False, borderaxespad=0.1, ncol=2) ax.set_xlabel("x") ax.set_ylabel("log frequency") return ax def _plot_ecdf(x_pred_expm1, y_pred, ax): """Plot Empirical Frequency Distribution Plot the ECDF at predicted x and corresponding y locations. Parameters ---------- x_pred : numpy.ndarray, shape (n,) Values of the variable at which to plot the ECDF. y_pred : numpy.ndarray, shape (n,) Values of the ECDF at `x_pred`. ax : matplotlib.axes.Axes An Axes instance to use as target. """ pass
0.929424
0.57678
import logging import numpy as np import pandas as pd from scipy.optimize import minimize from scipy.special import logit, expit from statsmodels.distributions.empirical_distribution import ECDF import matplotlib.pyplot as plt from matplotlib.ticker import ScalarFormatter from . import bouts logger = logging.getLogger(__name__) # Add the null handler if importing as library; whatever using this library # should set up logging.basicConfig() as needed logger.addHandler(logging.NullHandler()) def mleLL(x, p, lambdas): r"""Random Poisson processes function The current implementation takes two or three random Poisson processes. Parameters ---------- x : array_like Independent data array described by model with parameters `p`, :math:`\lambda_f`, and :math:`\lambda_s`. p : list List with mixing parameters of the model. lambdas : array_like 1-D Array with the density parameters (:math:`\lambda`) of the model. Its length must be length(p) + 1. Returns ------- out : array_like Same shape as `x` with the evaluated function. """ logmsg = "p={0}, lambdas={1}".format(p, lambdas) logger.info(logmsg) nproc = lambdas.size # We assume at least two processes p0 = p[0] lda0 = lambdas[0] term0 = p0 * lda0 * np.exp(-lda0 * x) if nproc == 2: lda1 = lambdas[1] term1 = (1 - p0) * lda1 * np.exp(-lda1 * x) res = term0 + term1 else: # 3 processes; capabilities enforced in mleLL p1 = p[1] lda1 = lambdas[1] term1 = p1 * (1 - p0) * lda1 * np.exp(-lda1 * x) lda2 = lambdas[2] term2 = (1 - p1) * (1 - p0) * lda2 * np.exp(-lda2 * x) res = term0 + term1 + term2 return np.log(res) class BoutsMLE(bouts.Bouts): r"""Maximum Likelihood estimation for models of Poisson process mixtures Methods for modelling log-frequency data as a mixture of Poisson processes via maximum likelihood estimation [2]_, [3]_. Mixtures of two or three Poisson processes are supported. Even in these relatively simple cases, it is very important to provide good starting values for the parameters. One useful strategy to get good starting parameter values is to proceed in 4 steps. First, fit a broken stick model to the log frequencies of binned data (see :meth:`~Bouts.init_pars`), to obtain estimates of 4 parameters in a 2-process model [1]_, or 6 in a 3-process model. Second, calculate parameter(s) :math:`p` from the :math:`\alpha` parameters obtained by fitting the broken stick model, to get tentative initial values as in [2]_. Third, obtain MLE estimates for these parameters, but using a reparameterized version of the -log L2 function. Lastly, obtain the final MLE estimates for the three parameters by using the estimates from step 3, un-transformed back to their original scales, maximizing the original parameterization of the -log L2 function. :meth:`~Bouts.init_pars` can be used to perform step 1. Calculation of the mixing parameters :math:`p` in step 2 is trivial from these estimates. Method :meth:`negMLEll` calculates the negative log-likelihood for a reparameterized version of the -log L2 function given by [1]_, so can be used for step 3. This uses a logit transformation of the mixing parameter :math:`p`, and log transformations for density parameters :math:`\lambda`. Method :meth:`negMLEll` is used again to compute the -log L2 function corresponding to the un-transformed model for step 4. The :meth:`fit` method performs the main job of maximizing the -log L2 functions, and is essentially a wrapper around :func:`~scipy.optimize.minimize`. It only takes the -log L2 function, a `DataFrame` of starting values, and the variable to be modelled, all of which are passed to :func:`~scipy.optimize.minimize` for optimization. Additionally, any other arguments are also passed to :func:`~scipy.optimize.minimize`, hence great control is provided for fitting any of the -log L2 functions. In practice, step 3 does not pose major problems using the reparameterized -log L2 function, but it might be useful to use method 'L-BFGS-B' with appropriate lower and upper bounds. Step 4 can be a bit more problematic, because the parameters are usually on very different scales and there can be multiple minima. Therefore, it is almost always the rule to use method 'L-BFGS-B', again bounding the parameter search, as well as other settings for controlling the optimization. References ---------- .. [2] Langton, S.; Collett, D. and Sibly, R. (1995) Splitting behaviour into bouts; a maximum likelihood approach. Behaviour 132, 9-10. .. [3] Luque, S.P. and Guinet, C. (2007) A maximum likelihood approach for identifying dive bouts improves accuracy, precision, and objectivity. Behaviour, 144, 1315-1332. Examples -------- See :doc:`demo_simulbouts` for a detailed example. """ def negMLEll(self, params, x, istransformed=True): r"""Log likelihood function of parameters given observed data Parameters ---------- params : array_like 1-D array with parameters to fit. Currently must be either 3-length, with mixing parameter :math:`p`, density parameter :math:`\lambda_f` and :math:`\lambda_s`, in that order, or 5-length, with :math:`p_f`, :math:`p_fs`, :math:`\lambda_f`, :math:`\lambda_m`, :math:`\lambda_s`. x : array_like Independent data array described by model with parameters `params`. istransformed : bool Whether `params` are transformed and need to be un-transformed to calculate the likelihood. Returns ------- out : """ if len(params) == 3: # Need list `p` for mle_fun p = [params[0]] lambdas = params[1:] elif len(params) == 5: p = params[:2] lambdas = params[2:] else: msg = "Only mixtures of <= 3 processes are implemented" raise KeyError(msg) if istransformed: p = expit(p) lambdas = np.exp(lambdas) ll = -sum(mleLL(x, p, lambdas)) logger.info("LL={}".format(ll)) return ll def fit(self, start, fit1_opts=None, fit2_opts=None): """Maximum likelihood estimation of log frequencies Parameters ---------- start : pandas.DataFrame DataFrame with starting values for coefficients of each process in columns. These can come from the "broken stick" method as in :meth:`Bouts.init_pars`, and will be transformed to minimize the first log likelihood function. fit1_opts, fit2_opts : dict Dictionaries with keywords to be passed to :func:`scipy.optimize.minimize`, for the first and second fits. Returns ------- fit1, fit2 : scipy.optimize.OptimizeResult Objects with the optimization result from the first and second fit, having a `x` attribute with coefficients of the solution. Notes ----- Current implementation handles mixtures of two Poisson processes. """ # Calculate `p` p0, lambda0 = bouts.calc_p(start) # transform parameters for first fit lambda0 = np.log(lambda0) x0 = np.array([*logit(p0), *lambda0]) logger.info("Starting first fit") if fit1_opts: fit1 = minimize(self.negMLEll, x0=x0, args=(self.x,), **fit1_opts) else: fit1 = minimize(self.negMLEll, x0=x0, args=(self.x,)) coef0 = fit1.x start2 = [expit(coef0[0]), *np.exp(coef0[1:])] logger.info("Starting second fit") if fit2_opts: fit2 = minimize(self.negMLEll, x0=start2, args=(self.x, False), **fit2_opts) else: fit2 = minimize(self.negMLEll, x0=start2, args=(self.x, False)) logger.info("N iter fit 1: {0}, fit 2: {1}" .format(fit1.nit, fit2.nit)) return (fit1, fit2) def bec(self, fit): """Calculate bout ending criteria from model coefficients Parameters ---------- fit : scipy.optimize.OptimizeResult Object with the optimization result, having a `x` attribute with coefficients of the solution. Returns ------- out : numpy.ndarray Notes ----- Current implementation is for a two-process mixture, hence an array of a single float is returned. """ coefs = fit.x if len(coefs) == 3: p_hat = coefs[0] lda1_hat = coefs[1] lda2_hat = coefs[2] bec = (np.log((p_hat * lda1_hat) / ((1 - p_hat) * lda2_hat)) / (lda1_hat - lda2_hat)) elif len(coefs) == 5: p0_hat, p1_hat = coefs[:2] lda0_hat, lda1_hat, lda2_hat = coefs[2:] bec0 = (np.log((p0_hat * lda0_hat) / ((1 - p0_hat) * lda1_hat)) / (lda0_hat - lda1_hat)) bec1 = (np.log((p1_hat * lda1_hat) / ((1 - p1_hat) * lda2_hat)) / (lda1_hat - lda2_hat)) bec = [bec0, bec1] return np.array(bec) def plot_fit(self, fit, ax=None): """Plot log frequency histogram and fitted model Parameters ---------- fit : scipy.optimize.OptimizeResult Object with the optimization result, having a `x` attribute with coefficients of the solution. ax : matplotlib.axes.Axes instance An Axes instance to use as target. Returns ------- ax : :class:`~matplotlib.axes.Axes` instances. """ # Method is redefined from Bouts x = self.x coefs = fit.x if len(coefs) == 3: p_hat = [coefs[0]] lda_hat = coefs[1:] elif len(coefs) == 5: p_hat = coefs[:2] lda_hat = coefs[2:] xmin = x.min() xmax = x.max() x_pred = np.linspace(xmin, xmax, num=101) # matches R's curve # Need to transpose to unpack columns rather than rows y_pred = mleLL(x_pred, p_hat, lda_hat) if ax is None: ax = plt.gca() # Data rug plot ax.plot(x, np.ones_like(x) * y_pred.max(), "|", color="k", label="observed") # Plot predicted ax.plot(x_pred, y_pred, label="model") # Plot BEC bec_x = self.bec(fit) bec_y = mleLL(bec_x, p_hat, lda_hat) bouts._plot_bec(bec_x, bec_y, ax=ax, xytext=(5, 5)) ax.legend(loc=8, bbox_to_anchor=(0.5, 1), frameon=False, borderaxespad=0.1, ncol=2) ax.set_xlabel("x") ax.set_ylabel("log frequency") return ax def plot_ecdf(self, fit, ax=None, **kwargs): """Plot observed and modelled empirical cumulative frequencies Parameters ---------- fit : scipy.optimize.OptimizeResult Object with the optimization result, having a `x` attribute with coefficients of the solution. ax : matplotlib.axes.Axes instance An Axes instance to use as target. **kwargs : optional keyword arguments Passed to `matplotlib.pyplot.gca`. Returns ------- ax : :class:`~matplotlib.axes.Axes` instances. """ x = self.x xx = np.log1p(x) x_ecdf = ECDF(xx) x_pred = np.linspace(0, xx.max(), num=101) x_pred_expm1 = np.expm1(x_pred) y_pred = x_ecdf(x_pred) if ax is None: ax = plt.gca(**kwargs) # Plot ECDF of data ax.step(x_pred_expm1, y_pred, label="observed") ax.set_xscale("log") ax.xaxis.set_major_formatter(ScalarFormatter()) ax.set_xlim(np.exp(xx).min(), np.exp(xx).max()) # Plot estimated CDF coefs = fit.x if len(coefs) == 3: p_hat = [coefs[0]] # list to bouts.ecdf() lda_hat = pd.Series(coefs[1:], name="lambda") elif len(coefs) == 5: p_hat = coefs[:2] lda_hat = pd.Series(coefs[2:], name="lambda") y_mod = bouts.ecdf(x_pred_expm1, p_hat, lda_hat) ax.plot(x_pred_expm1, y_mod, label="model") # Add a little offset to ylim for visibility yoffset = (0.05, 1.05) ax.set_ylim(*yoffset) # add some spacing # Plot BEC bec_x = self.bec(fit) bec_y = bouts.ecdf(bec_x, p=p_hat, lambdas=lda_hat) bouts._plot_bec(bec_x, bec_y=bec_y, ax=ax, xytext=(-5, 5), horizontalalignment="right") ax.legend(loc="upper left") ax.set_xlabel("x") ax.set_ylabel("ECDF [x]") return ax if __name__ == '__main__': # Set up info level logging logging.basicConfig(level=logging.INFO) from skdiveMove.tests import diveMove2skd tdrX = diveMove2skd() pars = {"offset_zoc": 3, "dry_thr": 70, "wet_thr": 3610, "dive_thr": 3, "dive_model": "unimodal", "smooth_par": 0.1, "knot_factor": 20, "descent_crit_q": 0.01, "ascent_crit_q": 0} tdrX.calibrate(zoc_method="offset", offset=pars["offset_zoc"], dry_thr=pars["dry_thr"], wet_thr=pars["dry_thr"], dive_thr=pars["dive_thr"], dive_model=pars["dive_model"], smooth_par=pars["smooth_par"], knot_factor=pars["knot_factor"], descent_crit_q=pars["descent_crit_q"], ascent_crit_q=pars["ascent_crit_q"]) stats = tdrX.dive_stats() stamps = tdrX.stamp_dives(ignore_z=True) stats_tab = pd.concat((stamps, stats), axis=1) # 2=4 here postdives = stats_tab["postdive_dur"][stats_tab["phase_id"] == 4] postdives_diff = postdives.dt.total_seconds().diff()[1:].abs() # Remove isolated dives postdives_diff = postdives_diff[postdives_diff < 2000] # Set up instance bouts_postdive = BoutsMLE(postdives_diff, 0.1) # Get init parameters from broken stick model bout_init_pars = bouts_postdive.init_pars([50], plot=False) # Knowing p_bnd = (-2, None) lda1_bnd = (-5, None) lda2_bnd = (-10, None) bd1 = (p_bnd, lda1_bnd, lda2_bnd) p_bnd = (1e-8, None) lda1_bnd = (1e-8, None) lda2_bnd = (1e-8, None) bd2 = (p_bnd, lda1_bnd, lda2_bnd) fit1, fit2 = bouts_postdive.fit(bout_init_pars, fit1_opts=dict(method="L-BFGS-B", bounds=bd1), fit2_opts=dict(method="L-BFGS-B", bounds=bd2)) # BEC becx = bouts_postdive.bec(fit2) ax = bouts_postdive.plot_fit(fit2) bouts_postdive.plot_ecdf(fit2)
scikit-diveMove
/scikit-diveMove-0.3.0.tar.gz/scikit-diveMove-0.3.0/skdiveMove/bouts/boutsmle.py
boutsmle.py
import logging import numpy as np import pandas as pd from scipy.optimize import minimize from scipy.special import logit, expit from statsmodels.distributions.empirical_distribution import ECDF import matplotlib.pyplot as plt from matplotlib.ticker import ScalarFormatter from . import bouts logger = logging.getLogger(__name__) # Add the null handler if importing as library; whatever using this library # should set up logging.basicConfig() as needed logger.addHandler(logging.NullHandler()) def mleLL(x, p, lambdas): r"""Random Poisson processes function The current implementation takes two or three random Poisson processes. Parameters ---------- x : array_like Independent data array described by model with parameters `p`, :math:`\lambda_f`, and :math:`\lambda_s`. p : list List with mixing parameters of the model. lambdas : array_like 1-D Array with the density parameters (:math:`\lambda`) of the model. Its length must be length(p) + 1. Returns ------- out : array_like Same shape as `x` with the evaluated function. """ logmsg = "p={0}, lambdas={1}".format(p, lambdas) logger.info(logmsg) nproc = lambdas.size # We assume at least two processes p0 = p[0] lda0 = lambdas[0] term0 = p0 * lda0 * np.exp(-lda0 * x) if nproc == 2: lda1 = lambdas[1] term1 = (1 - p0) * lda1 * np.exp(-lda1 * x) res = term0 + term1 else: # 3 processes; capabilities enforced in mleLL p1 = p[1] lda1 = lambdas[1] term1 = p1 * (1 - p0) * lda1 * np.exp(-lda1 * x) lda2 = lambdas[2] term2 = (1 - p1) * (1 - p0) * lda2 * np.exp(-lda2 * x) res = term0 + term1 + term2 return np.log(res) class BoutsMLE(bouts.Bouts): r"""Maximum Likelihood estimation for models of Poisson process mixtures Methods for modelling log-frequency data as a mixture of Poisson processes via maximum likelihood estimation [2]_, [3]_. Mixtures of two or three Poisson processes are supported. Even in these relatively simple cases, it is very important to provide good starting values for the parameters. One useful strategy to get good starting parameter values is to proceed in 4 steps. First, fit a broken stick model to the log frequencies of binned data (see :meth:`~Bouts.init_pars`), to obtain estimates of 4 parameters in a 2-process model [1]_, or 6 in a 3-process model. Second, calculate parameter(s) :math:`p` from the :math:`\alpha` parameters obtained by fitting the broken stick model, to get tentative initial values as in [2]_. Third, obtain MLE estimates for these parameters, but using a reparameterized version of the -log L2 function. Lastly, obtain the final MLE estimates for the three parameters by using the estimates from step 3, un-transformed back to their original scales, maximizing the original parameterization of the -log L2 function. :meth:`~Bouts.init_pars` can be used to perform step 1. Calculation of the mixing parameters :math:`p` in step 2 is trivial from these estimates. Method :meth:`negMLEll` calculates the negative log-likelihood for a reparameterized version of the -log L2 function given by [1]_, so can be used for step 3. This uses a logit transformation of the mixing parameter :math:`p`, and log transformations for density parameters :math:`\lambda`. Method :meth:`negMLEll` is used again to compute the -log L2 function corresponding to the un-transformed model for step 4. The :meth:`fit` method performs the main job of maximizing the -log L2 functions, and is essentially a wrapper around :func:`~scipy.optimize.minimize`. It only takes the -log L2 function, a `DataFrame` of starting values, and the variable to be modelled, all of which are passed to :func:`~scipy.optimize.minimize` for optimization. Additionally, any other arguments are also passed to :func:`~scipy.optimize.minimize`, hence great control is provided for fitting any of the -log L2 functions. In practice, step 3 does not pose major problems using the reparameterized -log L2 function, but it might be useful to use method 'L-BFGS-B' with appropriate lower and upper bounds. Step 4 can be a bit more problematic, because the parameters are usually on very different scales and there can be multiple minima. Therefore, it is almost always the rule to use method 'L-BFGS-B', again bounding the parameter search, as well as other settings for controlling the optimization. References ---------- .. [2] Langton, S.; Collett, D. and Sibly, R. (1995) Splitting behaviour into bouts; a maximum likelihood approach. Behaviour 132, 9-10. .. [3] Luque, S.P. and Guinet, C. (2007) A maximum likelihood approach for identifying dive bouts improves accuracy, precision, and objectivity. Behaviour, 144, 1315-1332. Examples -------- See :doc:`demo_simulbouts` for a detailed example. """ def negMLEll(self, params, x, istransformed=True): r"""Log likelihood function of parameters given observed data Parameters ---------- params : array_like 1-D array with parameters to fit. Currently must be either 3-length, with mixing parameter :math:`p`, density parameter :math:`\lambda_f` and :math:`\lambda_s`, in that order, or 5-length, with :math:`p_f`, :math:`p_fs`, :math:`\lambda_f`, :math:`\lambda_m`, :math:`\lambda_s`. x : array_like Independent data array described by model with parameters `params`. istransformed : bool Whether `params` are transformed and need to be un-transformed to calculate the likelihood. Returns ------- out : """ if len(params) == 3: # Need list `p` for mle_fun p = [params[0]] lambdas = params[1:] elif len(params) == 5: p = params[:2] lambdas = params[2:] else: msg = "Only mixtures of <= 3 processes are implemented" raise KeyError(msg) if istransformed: p = expit(p) lambdas = np.exp(lambdas) ll = -sum(mleLL(x, p, lambdas)) logger.info("LL={}".format(ll)) return ll def fit(self, start, fit1_opts=None, fit2_opts=None): """Maximum likelihood estimation of log frequencies Parameters ---------- start : pandas.DataFrame DataFrame with starting values for coefficients of each process in columns. These can come from the "broken stick" method as in :meth:`Bouts.init_pars`, and will be transformed to minimize the first log likelihood function. fit1_opts, fit2_opts : dict Dictionaries with keywords to be passed to :func:`scipy.optimize.minimize`, for the first and second fits. Returns ------- fit1, fit2 : scipy.optimize.OptimizeResult Objects with the optimization result from the first and second fit, having a `x` attribute with coefficients of the solution. Notes ----- Current implementation handles mixtures of two Poisson processes. """ # Calculate `p` p0, lambda0 = bouts.calc_p(start) # transform parameters for first fit lambda0 = np.log(lambda0) x0 = np.array([*logit(p0), *lambda0]) logger.info("Starting first fit") if fit1_opts: fit1 = minimize(self.negMLEll, x0=x0, args=(self.x,), **fit1_opts) else: fit1 = minimize(self.negMLEll, x0=x0, args=(self.x,)) coef0 = fit1.x start2 = [expit(coef0[0]), *np.exp(coef0[1:])] logger.info("Starting second fit") if fit2_opts: fit2 = minimize(self.negMLEll, x0=start2, args=(self.x, False), **fit2_opts) else: fit2 = minimize(self.negMLEll, x0=start2, args=(self.x, False)) logger.info("N iter fit 1: {0}, fit 2: {1}" .format(fit1.nit, fit2.nit)) return (fit1, fit2) def bec(self, fit): """Calculate bout ending criteria from model coefficients Parameters ---------- fit : scipy.optimize.OptimizeResult Object with the optimization result, having a `x` attribute with coefficients of the solution. Returns ------- out : numpy.ndarray Notes ----- Current implementation is for a two-process mixture, hence an array of a single float is returned. """ coefs = fit.x if len(coefs) == 3: p_hat = coefs[0] lda1_hat = coefs[1] lda2_hat = coefs[2] bec = (np.log((p_hat * lda1_hat) / ((1 - p_hat) * lda2_hat)) / (lda1_hat - lda2_hat)) elif len(coefs) == 5: p0_hat, p1_hat = coefs[:2] lda0_hat, lda1_hat, lda2_hat = coefs[2:] bec0 = (np.log((p0_hat * lda0_hat) / ((1 - p0_hat) * lda1_hat)) / (lda0_hat - lda1_hat)) bec1 = (np.log((p1_hat * lda1_hat) / ((1 - p1_hat) * lda2_hat)) / (lda1_hat - lda2_hat)) bec = [bec0, bec1] return np.array(bec) def plot_fit(self, fit, ax=None): """Plot log frequency histogram and fitted model Parameters ---------- fit : scipy.optimize.OptimizeResult Object with the optimization result, having a `x` attribute with coefficients of the solution. ax : matplotlib.axes.Axes instance An Axes instance to use as target. Returns ------- ax : :class:`~matplotlib.axes.Axes` instances. """ # Method is redefined from Bouts x = self.x coefs = fit.x if len(coefs) == 3: p_hat = [coefs[0]] lda_hat = coefs[1:] elif len(coefs) == 5: p_hat = coefs[:2] lda_hat = coefs[2:] xmin = x.min() xmax = x.max() x_pred = np.linspace(xmin, xmax, num=101) # matches R's curve # Need to transpose to unpack columns rather than rows y_pred = mleLL(x_pred, p_hat, lda_hat) if ax is None: ax = plt.gca() # Data rug plot ax.plot(x, np.ones_like(x) * y_pred.max(), "|", color="k", label="observed") # Plot predicted ax.plot(x_pred, y_pred, label="model") # Plot BEC bec_x = self.bec(fit) bec_y = mleLL(bec_x, p_hat, lda_hat) bouts._plot_bec(bec_x, bec_y, ax=ax, xytext=(5, 5)) ax.legend(loc=8, bbox_to_anchor=(0.5, 1), frameon=False, borderaxespad=0.1, ncol=2) ax.set_xlabel("x") ax.set_ylabel("log frequency") return ax def plot_ecdf(self, fit, ax=None, **kwargs): """Plot observed and modelled empirical cumulative frequencies Parameters ---------- fit : scipy.optimize.OptimizeResult Object with the optimization result, having a `x` attribute with coefficients of the solution. ax : matplotlib.axes.Axes instance An Axes instance to use as target. **kwargs : optional keyword arguments Passed to `matplotlib.pyplot.gca`. Returns ------- ax : :class:`~matplotlib.axes.Axes` instances. """ x = self.x xx = np.log1p(x) x_ecdf = ECDF(xx) x_pred = np.linspace(0, xx.max(), num=101) x_pred_expm1 = np.expm1(x_pred) y_pred = x_ecdf(x_pred) if ax is None: ax = plt.gca(**kwargs) # Plot ECDF of data ax.step(x_pred_expm1, y_pred, label="observed") ax.set_xscale("log") ax.xaxis.set_major_formatter(ScalarFormatter()) ax.set_xlim(np.exp(xx).min(), np.exp(xx).max()) # Plot estimated CDF coefs = fit.x if len(coefs) == 3: p_hat = [coefs[0]] # list to bouts.ecdf() lda_hat = pd.Series(coefs[1:], name="lambda") elif len(coefs) == 5: p_hat = coefs[:2] lda_hat = pd.Series(coefs[2:], name="lambda") y_mod = bouts.ecdf(x_pred_expm1, p_hat, lda_hat) ax.plot(x_pred_expm1, y_mod, label="model") # Add a little offset to ylim for visibility yoffset = (0.05, 1.05) ax.set_ylim(*yoffset) # add some spacing # Plot BEC bec_x = self.bec(fit) bec_y = bouts.ecdf(bec_x, p=p_hat, lambdas=lda_hat) bouts._plot_bec(bec_x, bec_y=bec_y, ax=ax, xytext=(-5, 5), horizontalalignment="right") ax.legend(loc="upper left") ax.set_xlabel("x") ax.set_ylabel("ECDF [x]") return ax if __name__ == '__main__': # Set up info level logging logging.basicConfig(level=logging.INFO) from skdiveMove.tests import diveMove2skd tdrX = diveMove2skd() pars = {"offset_zoc": 3, "dry_thr": 70, "wet_thr": 3610, "dive_thr": 3, "dive_model": "unimodal", "smooth_par": 0.1, "knot_factor": 20, "descent_crit_q": 0.01, "ascent_crit_q": 0} tdrX.calibrate(zoc_method="offset", offset=pars["offset_zoc"], dry_thr=pars["dry_thr"], wet_thr=pars["dry_thr"], dive_thr=pars["dive_thr"], dive_model=pars["dive_model"], smooth_par=pars["smooth_par"], knot_factor=pars["knot_factor"], descent_crit_q=pars["descent_crit_q"], ascent_crit_q=pars["ascent_crit_q"]) stats = tdrX.dive_stats() stamps = tdrX.stamp_dives(ignore_z=True) stats_tab = pd.concat((stamps, stats), axis=1) # 2=4 here postdives = stats_tab["postdive_dur"][stats_tab["phase_id"] == 4] postdives_diff = postdives.dt.total_seconds().diff()[1:].abs() # Remove isolated dives postdives_diff = postdives_diff[postdives_diff < 2000] # Set up instance bouts_postdive = BoutsMLE(postdives_diff, 0.1) # Get init parameters from broken stick model bout_init_pars = bouts_postdive.init_pars([50], plot=False) # Knowing p_bnd = (-2, None) lda1_bnd = (-5, None) lda2_bnd = (-10, None) bd1 = (p_bnd, lda1_bnd, lda2_bnd) p_bnd = (1e-8, None) lda1_bnd = (1e-8, None) lda2_bnd = (1e-8, None) bd2 = (p_bnd, lda1_bnd, lda2_bnd) fit1, fit2 = bouts_postdive.fit(bout_init_pars, fit1_opts=dict(method="L-BFGS-B", bounds=bd1), fit2_opts=dict(method="L-BFGS-B", bounds=bd2)) # BEC becx = bouts_postdive.bec(fit2) ax = bouts_postdive.plot_fit(fit2) bouts_postdive.plot_ecdf(fit2)
0.92412
0.617916
import numpy as np import matplotlib.pyplot as plt from matplotlib.ticker import ScalarFormatter from statsmodels.distributions.empirical_distribution import ECDF from . import bouts class BoutsNLS(bouts.Bouts): """Nonlinear Least Squares fitting for models of Poisson process mixtures Methods for modelling log-frequency data as a mixture of Poisson processes via nonlinear least squares [1]_. References ---------- .. [1] Sibly, R.; Nott, H. and Fletcher, D. (1990) Splitting behaviour into bouts Animal Behaviour 39, 63-69. Examples -------- Draw 1000 samples from a mixture where the first process occurs with :math:`p < 0.7` and the second process occurs with the remaining probability. >>> from skdiveMove.tests import random_mixexp >>> rng = np.random.default_rng(123) >>> x2 = random_mixexp(1000, p=0.7, lda=np.array([0.05, 0.005]), ... rng=rng) >>> xbouts2 = BoutsNLS(x2, bw=5) >>> init_pars = xbouts2.init_pars([80], plot=False) Fit the model and retrieve coefficients: >>> coefs, pcov = xbouts2.fit(init_pars) >>> print(np.round(coefs, 4)) (2.519, 80.0] (80.0, 1297.52] a 3648.8547 1103.4423 lambda 0.0388 0.0032 Calculate bout-ending criterion (returns array): >>> print(np.round(xbouts2.bec(coefs), 4)) [103.8648] Plot observed and predicted data: >>> xbouts2.plot_fit(coefs) # doctest: +ELLIPSIS <AxesSubplot:...> Plot ECDF: >>> xbouts2.plot_ecdf(coefs) # doctest: +ELLIPSIS <AxesSubplot:...> """ def fit(self, start, **kwargs): """Fit non-linear least squares model to log frequencies The metaclass :class:`bouts.Bouts` implements this method. Parameters ---------- start : pandas.DataFrame DataFrame with coefficients for each process in columns. **kwargs : optional keyword arguments Passed to `scipy.optimize.curve_fit`. Returns ------- coefs : pandas.DataFrame Coefficients of the model. pcov : 2D array Covariance of coefs. """ return bouts.Bouts.fit(self, start, **kwargs) def bec(self, coefs): """Calculate bout ending criteria from model coefficients The metaclass :class:`bouts.Bouts` implements this method. Parameters ---------- coefs : pandas.DataFrame DataFrame with model coefficients in columns. Returns ------- out : numpy.ndarray, shape (n,) 1-D array with BECs implied by `coefs`. Length is coefs.shape[1] """ # The metaclass implements this method return bouts.Bouts.bec(self, coefs) def plot_ecdf(self, coefs, ax=None, **kwargs): """Plot observed and modelled empirical cumulative frequencies Parameters ---------- coefs : pandas.DataFrame DataFrame with model coefficients in columns. ax : matplotlib.axes.Axes instance An Axes instance to use as target. **kwargs : optional keyword arguments Passed to `matplotlib.pyplot.gca`. Returns ------- ax : :class:`~matplotlib.axes.Axes` instances. """ x = self.x xx = np.log1p(x) x_ecdf = ECDF(xx) x_pred = np.linspace(0, xx.max(), num=101) x_pred_expm1 = np.expm1(x_pred) y_pred = x_ecdf(x_pred) if ax is None: ax = plt.gca(**kwargs) # Plot ECDF of data ax.step(x_pred_expm1, y_pred, label="observed") ax.set_xscale("log") ax.xaxis.set_major_formatter(ScalarFormatter()) ax.set_xlim(np.exp(xx).min(), np.exp(xx).max()) # Plot estimated CDF p, lambdas = bouts.calc_p(coefs) y_mod = bouts.ecdf(x_pred_expm1, p, lambdas) ax.plot(x_pred_expm1, y_mod, label="model") # Add a little offset to ylim for visibility yoffset = (0.05, 1.05) ax.set_ylim(*yoffset) # add some spacing # Plot BEC bec_x = self.bec(coefs) bec_y = bouts.ecdf(bec_x, p=p, lambdas=lambdas) bouts._plot_bec(bec_x, bec_y=bec_y, ax=ax, xytext=(-5, 5), horizontalalignment="right") ax.legend(loc="upper left") ax.set_xlabel("x") ax.set_ylabel("ECDF [x]") return ax if __name__ == '__main__': from skdiveMove.tests import diveMove2skd import pandas as pd tdrX = diveMove2skd() pars = {"offset_zoc": 3, "dry_thr": 70, "wet_thr": 3610, "dive_thr": 3, "dive_model": "unimodal", "smooth_par": 0.1, "knot_factor": 20, "descent_crit_q": 0.01, "ascent_crit_q": 0} tdrX.calibrate(zoc_method="offset", offset=pars["offset_zoc"], dry_thr=pars["dry_thr"], wet_thr=pars["dry_thr"], dive_thr=pars["dive_thr"], dive_model=pars["dive_model"], smooth_par=pars["smooth_par"], knot_factor=pars["knot_factor"], descent_crit_q=pars["descent_crit_q"], ascent_crit_q=pars["ascent_crit_q"]) stats = tdrX.dive_stats() stamps = tdrX.stamp_dives(ignore_z=True) stats_tab = pd.concat((stamps, stats), axis=1) # 2=4 here postdives = stats_tab["postdive_dur"][stats_tab["phase_id"] == 4] postdives_diff = postdives.dt.total_seconds().diff()[1:].abs() # Remove isolated dives postdives_diff = postdives_diff[postdives_diff < 2000] # Set up instance bouts_postdive = BoutsNLS(postdives_diff, 0.1) # Get init parameters bout_init_pars = bouts_postdive.init_pars([50], plot=False) nls_coefs, _ = bouts_postdive.fit(bout_init_pars) # BEC bouts_postdive.bec(nls_coefs) bouts_postdive.plot_fit(nls_coefs) # ECDF fig1, ax1 = bouts_postdive.plot_ecdf(nls_coefs) # Try 3 processes # Get init parameters bout_init_pars = bouts_postdive.init_pars([50, 550], plot=False) nls_coefs, _ = bouts_postdive.fit(bout_init_pars) # BEC bouts_postdive.bec(nls_coefs) bouts_postdive.plot_fit(nls_coefs) # ECDF fig2, ax2 = bouts_postdive.plot_ecdf(nls_coefs)
scikit-diveMove
/scikit-diveMove-0.3.0.tar.gz/scikit-diveMove-0.3.0/skdiveMove/bouts/boutsnls.py
boutsnls.py
import numpy as np import matplotlib.pyplot as plt from matplotlib.ticker import ScalarFormatter from statsmodels.distributions.empirical_distribution import ECDF from . import bouts class BoutsNLS(bouts.Bouts): """Nonlinear Least Squares fitting for models of Poisson process mixtures Methods for modelling log-frequency data as a mixture of Poisson processes via nonlinear least squares [1]_. References ---------- .. [1] Sibly, R.; Nott, H. and Fletcher, D. (1990) Splitting behaviour into bouts Animal Behaviour 39, 63-69. Examples -------- Draw 1000 samples from a mixture where the first process occurs with :math:`p < 0.7` and the second process occurs with the remaining probability. >>> from skdiveMove.tests import random_mixexp >>> rng = np.random.default_rng(123) >>> x2 = random_mixexp(1000, p=0.7, lda=np.array([0.05, 0.005]), ... rng=rng) >>> xbouts2 = BoutsNLS(x2, bw=5) >>> init_pars = xbouts2.init_pars([80], plot=False) Fit the model and retrieve coefficients: >>> coefs, pcov = xbouts2.fit(init_pars) >>> print(np.round(coefs, 4)) (2.519, 80.0] (80.0, 1297.52] a 3648.8547 1103.4423 lambda 0.0388 0.0032 Calculate bout-ending criterion (returns array): >>> print(np.round(xbouts2.bec(coefs), 4)) [103.8648] Plot observed and predicted data: >>> xbouts2.plot_fit(coefs) # doctest: +ELLIPSIS <AxesSubplot:...> Plot ECDF: >>> xbouts2.plot_ecdf(coefs) # doctest: +ELLIPSIS <AxesSubplot:...> """ def fit(self, start, **kwargs): """Fit non-linear least squares model to log frequencies The metaclass :class:`bouts.Bouts` implements this method. Parameters ---------- start : pandas.DataFrame DataFrame with coefficients for each process in columns. **kwargs : optional keyword arguments Passed to `scipy.optimize.curve_fit`. Returns ------- coefs : pandas.DataFrame Coefficients of the model. pcov : 2D array Covariance of coefs. """ return bouts.Bouts.fit(self, start, **kwargs) def bec(self, coefs): """Calculate bout ending criteria from model coefficients The metaclass :class:`bouts.Bouts` implements this method. Parameters ---------- coefs : pandas.DataFrame DataFrame with model coefficients in columns. Returns ------- out : numpy.ndarray, shape (n,) 1-D array with BECs implied by `coefs`. Length is coefs.shape[1] """ # The metaclass implements this method return bouts.Bouts.bec(self, coefs) def plot_ecdf(self, coefs, ax=None, **kwargs): """Plot observed and modelled empirical cumulative frequencies Parameters ---------- coefs : pandas.DataFrame DataFrame with model coefficients in columns. ax : matplotlib.axes.Axes instance An Axes instance to use as target. **kwargs : optional keyword arguments Passed to `matplotlib.pyplot.gca`. Returns ------- ax : :class:`~matplotlib.axes.Axes` instances. """ x = self.x xx = np.log1p(x) x_ecdf = ECDF(xx) x_pred = np.linspace(0, xx.max(), num=101) x_pred_expm1 = np.expm1(x_pred) y_pred = x_ecdf(x_pred) if ax is None: ax = plt.gca(**kwargs) # Plot ECDF of data ax.step(x_pred_expm1, y_pred, label="observed") ax.set_xscale("log") ax.xaxis.set_major_formatter(ScalarFormatter()) ax.set_xlim(np.exp(xx).min(), np.exp(xx).max()) # Plot estimated CDF p, lambdas = bouts.calc_p(coefs) y_mod = bouts.ecdf(x_pred_expm1, p, lambdas) ax.plot(x_pred_expm1, y_mod, label="model") # Add a little offset to ylim for visibility yoffset = (0.05, 1.05) ax.set_ylim(*yoffset) # add some spacing # Plot BEC bec_x = self.bec(coefs) bec_y = bouts.ecdf(bec_x, p=p, lambdas=lambdas) bouts._plot_bec(bec_x, bec_y=bec_y, ax=ax, xytext=(-5, 5), horizontalalignment="right") ax.legend(loc="upper left") ax.set_xlabel("x") ax.set_ylabel("ECDF [x]") return ax if __name__ == '__main__': from skdiveMove.tests import diveMove2skd import pandas as pd tdrX = diveMove2skd() pars = {"offset_zoc": 3, "dry_thr": 70, "wet_thr": 3610, "dive_thr": 3, "dive_model": "unimodal", "smooth_par": 0.1, "knot_factor": 20, "descent_crit_q": 0.01, "ascent_crit_q": 0} tdrX.calibrate(zoc_method="offset", offset=pars["offset_zoc"], dry_thr=pars["dry_thr"], wet_thr=pars["dry_thr"], dive_thr=pars["dive_thr"], dive_model=pars["dive_model"], smooth_par=pars["smooth_par"], knot_factor=pars["knot_factor"], descent_crit_q=pars["descent_crit_q"], ascent_crit_q=pars["ascent_crit_q"]) stats = tdrX.dive_stats() stamps = tdrX.stamp_dives(ignore_z=True) stats_tab = pd.concat((stamps, stats), axis=1) # 2=4 here postdives = stats_tab["postdive_dur"][stats_tab["phase_id"] == 4] postdives_diff = postdives.dt.total_seconds().diff()[1:].abs() # Remove isolated dives postdives_diff = postdives_diff[postdives_diff < 2000] # Set up instance bouts_postdive = BoutsNLS(postdives_diff, 0.1) # Get init parameters bout_init_pars = bouts_postdive.init_pars([50], plot=False) nls_coefs, _ = bouts_postdive.fit(bout_init_pars) # BEC bouts_postdive.bec(nls_coefs) bouts_postdive.plot_fit(nls_coefs) # ECDF fig1, ax1 = bouts_postdive.plot_ecdf(nls_coefs) # Try 3 processes # Get init parameters bout_init_pars = bouts_postdive.init_pars([50, 550], plot=False) nls_coefs, _ = bouts_postdive.fit(bout_init_pars) # BEC bouts_postdive.bec(nls_coefs) bouts_postdive.plot_fit(nls_coefs) # ECDF fig2, ax2 = bouts_postdive.plot_ecdf(nls_coefs)
0.936677
0.774328
r"""Tools and classes for the identification of behavioural bouts A histogram of log-transformed frequencies of `x` with a chosen bin width and upper limit forms the basis for models. Histogram bins following empty ones have their frequencies averaged over the number of previous empty bins plus one. Models attempt to discern the number of random Poisson processes, and their parameters, generating the underlying distribution of log-transformed frequencies. The abstract class :class:`Bouts` provides basic methods. Abstract class & methods summary -------------------------------- .. autosummary:: Bouts Bouts.init_pars Bouts.fit Bouts.bec Bouts.plot_fit Nonlinear least squares models ------------------------------ Currently, the model describing the histogram as it is built is implemented in the :class:`BoutsNLS` class. For the case of a mixture of two Poisson processes, this class would set up the model: .. math:: :label: 1 y = log[N_f \lambda_f e^{-\lambda_f t} + N_s \lambda_s e^{-\lambda_s t}] where :math:`N_f` and :math:`N_s` are the number of events belonging to process :math:`f` and :math:`s`, respectively; and :math:`\lambda_f` and :math:`\lambda_s` are the probabilities of an event occurring in each process. Mixtures of more processes can also be added to the model. The bout-ending criterion (BEC) corresponding to equation :eq:`1` is: .. math:: :label: 2 BEC = \frac{1}{\lambda_f - \lambda_s} log \frac{N_f \lambda_f}{N_s \lambda_s} Note that there is one BEC per transition between Poisson processes. The methods of this subclass are provided by the abstract super class :class:`Bouts`, and defining those listed below. Methods summary --------------- .. autosummary:: BoutsNLS.plot_ecdf Maximum likelihood models ------------------------- This is the preferred approach to modelling mixtures of random Poisson processes, as it does not rely on the subjective construction of a histogram. The histogram is only used to generate reasonable starting values, but the underlying paramters of the model are obtained via maximum likelihood, so it is more robust. For the case of a mixture of two processes, as above, the log likelihood of all the :math:`N_t` in a mixture can be expressed as: .. math:: :label: 3 log\ L_2 = \sum_{i=1}^{N_t} log[p \lambda_f e^{-\lambda_f t_i} + (1-p) \lambda_s e^{-\lambda_s t_i}] where :math:`p` is a mixing parameter indicating the proportion of fast to slow process events in the sampled population. The BEC in this case can be estimated as: .. math:: :label: 4 BEC = \frac{1}{\lambda_f - \lambda_s} log \frac{p\lambda_f}{(1-p)\lambda_s} The subclass :class:`BoutsMLE` offers the framework for these models. Class & methods summary ----------------------- .. autosummary:: BoutsMLE.negMLEll BoutsMLE.fit BoutsMLE.bec BoutsMLE.plot_fit BoutsMLE.plot_ecdf API --- """ from .bouts import Bouts, label_bouts from .boutsnls import BoutsNLS from .boutsmle import BoutsMLE from skdiveMove.tests import random_mixexp __all__ = ["Bouts", "BoutsNLS", "BoutsMLE", "label_bouts", "random_mixexp"]
scikit-diveMove
/scikit-diveMove-0.3.0.tar.gz/scikit-diveMove-0.3.0/skdiveMove/bouts/__init__.py
__init__.py
r"""Tools and classes for the identification of behavioural bouts A histogram of log-transformed frequencies of `x` with a chosen bin width and upper limit forms the basis for models. Histogram bins following empty ones have their frequencies averaged over the number of previous empty bins plus one. Models attempt to discern the number of random Poisson processes, and their parameters, generating the underlying distribution of log-transformed frequencies. The abstract class :class:`Bouts` provides basic methods. Abstract class & methods summary -------------------------------- .. autosummary:: Bouts Bouts.init_pars Bouts.fit Bouts.bec Bouts.plot_fit Nonlinear least squares models ------------------------------ Currently, the model describing the histogram as it is built is implemented in the :class:`BoutsNLS` class. For the case of a mixture of two Poisson processes, this class would set up the model: .. math:: :label: 1 y = log[N_f \lambda_f e^{-\lambda_f t} + N_s \lambda_s e^{-\lambda_s t}] where :math:`N_f` and :math:`N_s` are the number of events belonging to process :math:`f` and :math:`s`, respectively; and :math:`\lambda_f` and :math:`\lambda_s` are the probabilities of an event occurring in each process. Mixtures of more processes can also be added to the model. The bout-ending criterion (BEC) corresponding to equation :eq:`1` is: .. math:: :label: 2 BEC = \frac{1}{\lambda_f - \lambda_s} log \frac{N_f \lambda_f}{N_s \lambda_s} Note that there is one BEC per transition between Poisson processes. The methods of this subclass are provided by the abstract super class :class:`Bouts`, and defining those listed below. Methods summary --------------- .. autosummary:: BoutsNLS.plot_ecdf Maximum likelihood models ------------------------- This is the preferred approach to modelling mixtures of random Poisson processes, as it does not rely on the subjective construction of a histogram. The histogram is only used to generate reasonable starting values, but the underlying paramters of the model are obtained via maximum likelihood, so it is more robust. For the case of a mixture of two processes, as above, the log likelihood of all the :math:`N_t` in a mixture can be expressed as: .. math:: :label: 3 log\ L_2 = \sum_{i=1}^{N_t} log[p \lambda_f e^{-\lambda_f t_i} + (1-p) \lambda_s e^{-\lambda_s t_i}] where :math:`p` is a mixing parameter indicating the proportion of fast to slow process events in the sampled population. The BEC in this case can be estimated as: .. math:: :label: 4 BEC = \frac{1}{\lambda_f - \lambda_s} log \frac{p\lambda_f}{(1-p)\lambda_s} The subclass :class:`BoutsMLE` offers the framework for these models. Class & methods summary ----------------------- .. autosummary:: BoutsMLE.negMLEll BoutsMLE.fit BoutsMLE.bec BoutsMLE.plot_fit BoutsMLE.plot_ecdf API --- """ from .bouts import Bouts, label_bouts from .boutsnls import BoutsNLS from .boutsmle import BoutsMLE from skdiveMove.tests import random_mixexp __all__ = ["Bouts", "BoutsNLS", "BoutsMLE", "label_bouts", "random_mixexp"]
0.916801
0.969584
# scikit-downscale Statistical downscaling and postprocessing models for climate and weather model simulations. [![CI](https://github.com/jhamman/scikit-downscale/workflows/CI/badge.svg)](https://github.com/jhamman/scikit-downscale/actions?query=workflow%3ACI+branch%3Amain+) [![Documentation Status](https://readthedocs.org/projects/scikit-downscale/badge/?version=latest)](https://scikit-downscale.readthedocs.io/en/latest/?badge=latest) [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/pangeo-data/scikit-downscale/HEAD) [![](https://img.shields.io/pypi/v/scikit-downscale.svg)](https://pypi.org/pypi/name/) ![Conda (channel only)](https://img.shields.io/conda/vn/conda-forge/scikit-downscale)
scikit-downscale
/scikit-downscale-0.1.5.tar.gz/scikit-downscale-0.1.5/README.md
README.md
# scikit-downscale Statistical downscaling and postprocessing models for climate and weather model simulations. [![CI](https://github.com/jhamman/scikit-downscale/workflows/CI/badge.svg)](https://github.com/jhamman/scikit-downscale/actions?query=workflow%3ACI+branch%3Amain+) [![Documentation Status](https://readthedocs.org/projects/scikit-downscale/badge/?version=latest)](https://scikit-downscale.readthedocs.io/en/latest/?badge=latest) [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/pangeo-data/scikit-downscale/HEAD) [![](https://img.shields.io/pypi/v/scikit-downscale.svg)](https://pypi.org/pypi/name/) ![Conda (channel only)](https://img.shields.io/conda/vn/conda-forge/scikit-downscale)
0.624523
0.51562
.. scikit-downscale documentation master file, created by sphinx-quickstart on Wed Oct 9 13:59:33 2019. You can adapt this file completely to your liking, but it should at least contain the root `toctree` directive. Scikit-downscale: toolkit for statistical downscaling ===================================================== Scikit-downscale is a toolkit for statistical downscaling using Scikit-Learn_. It is meant to support the development of new and existing downscaling methods in a common framework. It implements Scikit-learn's `fit`/`predict` API facilitating the development of a wide range of statitical downscaling models. Utilities and a high-level API built on Xarray_ and Dask_ support both point-wise and global downscaling applications. .. _Xarray: http://xarray.pydata.org .. _Scikit-Learn: https://scikit-learn.org .. _Dask: https://dask.org Under Active Development ~~~~~~~~~~~~~~~~~~~~~~~~ Scikit-downscale is under active development. We are looking for additional contributors to help fill out the list of downscaling methods supported here. We are also looking to find collaborators interested in using deep learning to build global downscaling tools. Get in touch with us on our `GitHub page <https://github.com/jhamman/scikit-downscale>`_. .. toctree:: :maxdepth: 2 :caption: Contents: roadmap api Indices and tables ================== * :ref:`genindex` * :ref:`modindex` * :ref:`search`
scikit-downscale
/scikit-downscale-0.1.5.tar.gz/scikit-downscale-0.1.5/docs/index.rst
index.rst
.. scikit-downscale documentation master file, created by sphinx-quickstart on Wed Oct 9 13:59:33 2019. You can adapt this file completely to your liking, but it should at least contain the root `toctree` directive. Scikit-downscale: toolkit for statistical downscaling ===================================================== Scikit-downscale is a toolkit for statistical downscaling using Scikit-Learn_. It is meant to support the development of new and existing downscaling methods in a common framework. It implements Scikit-learn's `fit`/`predict` API facilitating the development of a wide range of statitical downscaling models. Utilities and a high-level API built on Xarray_ and Dask_ support both point-wise and global downscaling applications. .. _Xarray: http://xarray.pydata.org .. _Scikit-Learn: https://scikit-learn.org .. _Dask: https://dask.org Under Active Development ~~~~~~~~~~~~~~~~~~~~~~~~ Scikit-downscale is under active development. We are looking for additional contributors to help fill out the list of downscaling methods supported here. We are also looking to find collaborators interested in using deep learning to build global downscaling tools. Get in touch with us on our `GitHub page <https://github.com/jhamman/scikit-downscale>`_. .. toctree:: :maxdepth: 2 :caption: Contents: roadmap api Indices and tables ================== * :ref:`genindex` * :ref:`modindex` * :ref:`search`
0.82379
0.348396
.. _roadmap: Development Roadmap =================== Author: Joe Hamman Date:September 15, 2019 Background and scope -------------------- Scikit-downscale is a toolkit for statistical downscaling using Xarray. It is meant to support the development of new and existing downscaling methods in a common framework. It implements a fit/predict API that accepts Xarray objects, similiar to Python's Scikit-Learn, for building a range of downscaling models. For example, implementing a BCSD workflow may look something like this: .. code-block:: Python from skdownscale.pointwise_models import PointWiseDownscaler from skdownscale.models.bcsd import BCSDTemperature, bcsd_disaggregator # da_temp_train: xarray.DataArray (monthly) # da_temp_obs: xarray.DataArray (monthly) # da_temp_obs_daily: xarray.DataArray (daily) # da_temp_predict: xarray.DataArray (monthly) # create a model bcsd_model = PointWiseDownscaler(BCSDTemperature(), dim='time') # train the model bcsd_model.train(da_temp_train, da_temp_obs) # predict with the model (downscaled_temp: xr.DataArray) downscaled_temp = bcsd_model.predict(da_temp_predict) # disaggregate the downscaled data (final: xr.DataArray) final = bcsd_disaggregator(downscaled_temp, da_temp_obs_daily) We are currently envisioning the project having three componenets (described in the components section below). While we haven't started work on the deep learning models component, this is certainly a central motivation to this package and I am looking forward to starting on this work soon. Principles ---------- - Open - aim to take the sausage making out downscaling; open-source methods, comparable, extensible - Scalable - plug into existing frameworks (e.g. dask/pangeo) to scale up, allow for use a single points to scale down - Portable - unopionated when it comes to compute platform - Tested - Rigourously tested, both on the computational and scientific implementation Components ---------- 1. `pointwise_models`: a collection of linear models that are intended to be applied point-by-point. These may be sklearn Pipelines or custom sklearn-like models (e.g. BCSDTemperature). 2. `global_models`: (not implemented) concept space for deep learning-based models. 3. `metrics`: (not implemented) concept space for a benchmarking suite Models ------ Scikit-downscale should provide a collection of a common set of downscaling models and the building blocks to construct new models. As a starter, I intend to implement the following models: Pointwise models ~~~~~~~~~~~~~~~~ 1. BCSD_[Temperature, Precipitation]: Wood et al 2002 2. ARRM: Stoner et al 2012 3. Delta Method 4. Hybrid Delta Method 5. GARD: https://github.com/NCAR/GARD 6. ? Other methods, like LOCA, MACA, BCCA, etc, should also be possible. Global models ~~~~~~~~~~~~~ This category of methods is really what is motivating the development of this package. We've seen some early work from TJ Vandal in this area but there is more work to be done. For now, I'll just jot down what a possible API might look like: .. code-block:: Python from skdownscale.global_models import GlobalDownscaler from skdownscale.global_models.deepsd import DeepSD # ... # create a model model = GlobalDownscaler(DeepSD()) # train the model model.train(da_temp_train, da_temp_obs) # predict with the model (downscaled_temp: xr.DataArray) downscaled_temp = model.predict(da_temp_predict) Dependencies ------------ - Core: Xarray, Pandas, Dask, Scikit-learn, Numpy, Scipy - Optional: Statsmodels, Keras, PyTorch, Tensorflow, etc. Related projects ---------------- - FUDGE: https://github.com/NOAA-GFDL/FUDGE - GARD: https://github.com/NCAR/GARD - DeepSD: https://github.com/tjvandal/deepsd
scikit-downscale
/scikit-downscale-0.1.5.tar.gz/scikit-downscale-0.1.5/docs/roadmap.rst
roadmap.rst
.. _roadmap: Development Roadmap =================== Author: Joe Hamman Date:September 15, 2019 Background and scope -------------------- Scikit-downscale is a toolkit for statistical downscaling using Xarray. It is meant to support the development of new and existing downscaling methods in a common framework. It implements a fit/predict API that accepts Xarray objects, similiar to Python's Scikit-Learn, for building a range of downscaling models. For example, implementing a BCSD workflow may look something like this: .. code-block:: Python from skdownscale.pointwise_models import PointWiseDownscaler from skdownscale.models.bcsd import BCSDTemperature, bcsd_disaggregator # da_temp_train: xarray.DataArray (monthly) # da_temp_obs: xarray.DataArray (monthly) # da_temp_obs_daily: xarray.DataArray (daily) # da_temp_predict: xarray.DataArray (monthly) # create a model bcsd_model = PointWiseDownscaler(BCSDTemperature(), dim='time') # train the model bcsd_model.train(da_temp_train, da_temp_obs) # predict with the model (downscaled_temp: xr.DataArray) downscaled_temp = bcsd_model.predict(da_temp_predict) # disaggregate the downscaled data (final: xr.DataArray) final = bcsd_disaggregator(downscaled_temp, da_temp_obs_daily) We are currently envisioning the project having three componenets (described in the components section below). While we haven't started work on the deep learning models component, this is certainly a central motivation to this package and I am looking forward to starting on this work soon. Principles ---------- - Open - aim to take the sausage making out downscaling; open-source methods, comparable, extensible - Scalable - plug into existing frameworks (e.g. dask/pangeo) to scale up, allow for use a single points to scale down - Portable - unopionated when it comes to compute platform - Tested - Rigourously tested, both on the computational and scientific implementation Components ---------- 1. `pointwise_models`: a collection of linear models that are intended to be applied point-by-point. These may be sklearn Pipelines or custom sklearn-like models (e.g. BCSDTemperature). 2. `global_models`: (not implemented) concept space for deep learning-based models. 3. `metrics`: (not implemented) concept space for a benchmarking suite Models ------ Scikit-downscale should provide a collection of a common set of downscaling models and the building blocks to construct new models. As a starter, I intend to implement the following models: Pointwise models ~~~~~~~~~~~~~~~~ 1. BCSD_[Temperature, Precipitation]: Wood et al 2002 2. ARRM: Stoner et al 2012 3. Delta Method 4. Hybrid Delta Method 5. GARD: https://github.com/NCAR/GARD 6. ? Other methods, like LOCA, MACA, BCCA, etc, should also be possible. Global models ~~~~~~~~~~~~~ This category of methods is really what is motivating the development of this package. We've seen some early work from TJ Vandal in this area but there is more work to be done. For now, I'll just jot down what a possible API might look like: .. code-block:: Python from skdownscale.global_models import GlobalDownscaler from skdownscale.global_models.deepsd import DeepSD # ... # create a model model = GlobalDownscaler(DeepSD()) # train the model model.train(da_temp_train, da_temp_obs) # predict with the model (downscaled_temp: xr.DataArray) downscaled_temp = model.predict(da_temp_predict) Dependencies ------------ - Core: Xarray, Pandas, Dask, Scikit-learn, Numpy, Scipy - Optional: Statsmodels, Keras, PyTorch, Tensorflow, etc. Related projects ---------------- - FUDGE: https://github.com/NOAA-GFDL/FUDGE - GARD: https://github.com/NCAR/GARD - DeepSD: https://github.com/tjvandal/deepsd
0.900846
0.672424
``` %matplotlib inline import matplotlib.pyplot as plt import numpy as np import pandas as pd import scipy import xarray as xr from skdownscale.pointwise_models import BcsdPrecipitation, BcsdTemperature # utilities for plotting cdfs def plot_cdf(ax=None, **kwargs): if ax: plt.sca(ax) else: ax = plt.gca() for label, X in kwargs.items(): vals = np.sort(X, axis=0) pp = scipy.stats.mstats.plotting_positions(vals) ax.plot(pp, vals, label=label) ax.legend() return ax def plot_cdf_by_month(ax=None, **kwargs): fig, axes = plt.subplots(4, 3, sharex=True, sharey=False, figsize=(12, 8)) for label, X in kwargs.items(): for month, ax in zip(range(1, 13), axes.flat): vals = np.sort(X[X.index.month == month], axis=0) pp = scipy.stats.mstats.plotting_positions(vals) ax.plot(pp, vals, label=label) ax.set_title(month) ax.legend() return ax # open a small dataset for training training = xr.open_zarr("../data/downscale_test_data.zarr.zip", group="training") training # open a small dataset of observations (targets) targets = xr.open_zarr("../data/downscale_test_data.zarr.zip", group="targets") targets # extract 1 point of training data for precipitation and temperature X_temp = training.isel(point=0).to_dataframe()[["T2max"]].resample("MS").mean() - 273.13 X_pcp = training.isel(point=0).to_dataframe()[["PREC_TOT"]].resample("MS").sum() * 24 display(X_temp.head(), X_pcp.head()) # extract 1 point of target data for precipitation and temperature y_temp = targets.isel(point=0).to_dataframe()[["Tmax"]].resample("MS").mean() y_pcp = targets.isel(point=0).to_dataframe()[["Prec"]].resample("MS").sum() display(y_temp.head(), y_pcp.head()) # Fit/predict the BCSD Temperature model bcsd_temp = BcsdTemperature() bcsd_temp.fit(X_temp, y_temp) out = bcsd_temp.predict(X_temp) + X_temp plot_cdf(X=X_temp, y=y_temp, out=out) out.plot() plot_cdf_by_month(X=X_temp, y=y_temp, out=out) # Fit/predict the BCSD Precipitation model bcsd_pcp = BcsdPrecipitation() bcsd_pcp.fit(X_pcp, y_pcp) out = bcsd_pcp.predict(X_pcp) * X_pcp plot_cdf(X=X_pcp, y=y_pcp, out=out) plot_cdf_by_month(X=X_pcp, y=y_pcp, out=out) ```
scikit-downscale
/scikit-downscale-0.1.5.tar.gz/scikit-downscale-0.1.5/examples/bcsd_example.ipynb
bcsd_example.ipynb
%matplotlib inline import matplotlib.pyplot as plt import numpy as np import pandas as pd import scipy import xarray as xr from skdownscale.pointwise_models import BcsdPrecipitation, BcsdTemperature # utilities for plotting cdfs def plot_cdf(ax=None, **kwargs): if ax: plt.sca(ax) else: ax = plt.gca() for label, X in kwargs.items(): vals = np.sort(X, axis=0) pp = scipy.stats.mstats.plotting_positions(vals) ax.plot(pp, vals, label=label) ax.legend() return ax def plot_cdf_by_month(ax=None, **kwargs): fig, axes = plt.subplots(4, 3, sharex=True, sharey=False, figsize=(12, 8)) for label, X in kwargs.items(): for month, ax in zip(range(1, 13), axes.flat): vals = np.sort(X[X.index.month == month], axis=0) pp = scipy.stats.mstats.plotting_positions(vals) ax.plot(pp, vals, label=label) ax.set_title(month) ax.legend() return ax # open a small dataset for training training = xr.open_zarr("../data/downscale_test_data.zarr.zip", group="training") training # open a small dataset of observations (targets) targets = xr.open_zarr("../data/downscale_test_data.zarr.zip", group="targets") targets # extract 1 point of training data for precipitation and temperature X_temp = training.isel(point=0).to_dataframe()[["T2max"]].resample("MS").mean() - 273.13 X_pcp = training.isel(point=0).to_dataframe()[["PREC_TOT"]].resample("MS").sum() * 24 display(X_temp.head(), X_pcp.head()) # extract 1 point of target data for precipitation and temperature y_temp = targets.isel(point=0).to_dataframe()[["Tmax"]].resample("MS").mean() y_pcp = targets.isel(point=0).to_dataframe()[["Prec"]].resample("MS").sum() display(y_temp.head(), y_pcp.head()) # Fit/predict the BCSD Temperature model bcsd_temp = BcsdTemperature() bcsd_temp.fit(X_temp, y_temp) out = bcsd_temp.predict(X_temp) + X_temp plot_cdf(X=X_temp, y=y_temp, out=out) out.plot() plot_cdf_by_month(X=X_temp, y=y_temp, out=out) # Fit/predict the BCSD Precipitation model bcsd_pcp = BcsdPrecipitation() bcsd_pcp.fit(X_pcp, y_pcp) out = bcsd_pcp.predict(X_pcp) * X_pcp plot_cdf(X=X_pcp, y=y_pcp, out=out) plot_cdf_by_month(X=X_pcp, y=y_pcp, out=out)
0.525612
0.648209
import numpy as np import pandas as pd import probscale import scipy import seaborn as sns import xarray as xr from matplotlib import pyplot as plt def get_sample_data(kind): if kind == 'training': data = xr.open_zarr('../data/downscale_test_data.zarr.zip', group=kind) # extract 1 point of training data for precipitation and temperature df = ( data.isel(point=0) .to_dataframe()[['T2max', 'PREC_TOT']] .rename(columns={'T2max': 'tmax', 'PREC_TOT': 'pcp'}) ) df['tmax'] -= 273.13 df['pcp'] *= 24 return df.resample('1d').first() elif kind == 'targets': data = xr.open_zarr('../data/downscale_test_data.zarr.zip', group=kind) # extract 1 point of training data for precipitation and temperature return ( data.isel(point=0) .to_dataframe()[['Tmax', 'Prec']] .rename(columns={'Tmax': 'tmax', 'Prec': 'pcp'}) ) elif kind == 'wind-hist': return ( xr.open_dataset( '../data/uas/uas.hist.CanESM2.CRCM5-UQAM.day.NAM-44i.raw.Colorado.19801990.nc' )['uas'] .sel(lat=40.25, lon=-109.2, method='nearest') .squeeze() .to_dataframe()[['uas']] ) elif kind == 'wind-obs': return ( xr.open_dataset('../data/uas/uas.gridMET.NAM-44i.Colorado.19801990.nc')['uas'] .sel(lat=40.25, lon=-109.2, method='nearest') .squeeze() .to_dataframe()[['uas']] ) elif kind == 'wind-rcp': return ( xr.open_dataset( '../data/uas/uas.rcp85.CanESM2.CRCM5-UQAM.day.NAM-44i.raw.Colorado.19902000.nc' )['uas'] .sel(lat=40.25, lon=-109.2, method='nearest') .squeeze() .to_dataframe()[['uas']] ) else: raise ValueError(kind) return df def prob_plots(x, y, y_hat, shape=(2, 2), figsize=(8, 8)): fig, axes = plt.subplots(*shape, sharex=True, sharey=True, figsize=figsize) scatter_kws = dict(label='', marker=None, linestyle='-') common_opts = dict(plottype='qq', problabel='', datalabel='') for ax, (label, series) in zip(axes.flat, y_hat.items()): scatter_kws['label'] = 'original' fig = probscale.probplot(x, ax=ax, scatter_kws=scatter_kws, **common_opts) scatter_kws['label'] = 'target' fig = probscale.probplot(y, ax=ax, scatter_kws=scatter_kws, **common_opts) scatter_kws['label'] = 'corrected' fig = probscale.probplot(series, ax=ax, scatter_kws=scatter_kws, **common_opts) ax.set_title(label) ax.legend() [ax.set_xlabel('Standard Normal Quantiles') for ax in axes[-1]] [ax.set_ylabel('Temperature [C]') for ax in axes[:, 0]] [fig.delaxes(ax) for ax in axes.flat[len(y_hat.keys()) :]] fig.tight_layout() return fig def zscore_ds_plot(training, target, future, corrected): labels = ['training', 'future', 'target', 'corrected'] colors = {k: c for (k, c) in zip(labels, sns.color_palette('Set2', n_colors=4))} alpha = 0.5 time_target = pd.date_range('1980-01-01', '1989-12-31', freq='D') time_training = time_target[~((time_target.month == 2) & (time_target.day == 29))] time_future = pd.date_range('1990-01-01', '1999-12-31', freq='D') time_future = time_future[~((time_future.month == 2) & (time_future.day == 29))] plt.figure(figsize=(8, 4)) plt.plot(time_training, training.uas, label='training', alpha=alpha, c=colors['training']) plt.plot(time_target, target.uas, label='target', alpha=alpha, c=colors['target']) plt.plot(time_future, future.uas, label='future', alpha=alpha, c=colors['future']) plt.plot( time_future, corrected.uas, label='corrected', alpha=alpha, c=colors['corrected'], ) plt.xlabel('Time') plt.ylabel('Eastward Near-Surface Wind (m s-1)') plt.legend() return def zscore_correction_plot(zscore): training_mean = zscore.fit_stats_dict_['X_mean'] training_std = zscore.fit_stats_dict_['X_std'] target_mean = zscore.fit_stats_dict_['y_mean'] target_std = zscore.fit_stats_dict_['y_std'] future_mean = zscore.predict_stats_dict_['meani'] future_mean = future_mean.groupby(future_mean.index.dayofyear).mean() future_std = zscore.predict_stats_dict_['stdi'] future_std = future_std.groupby(future_std.index.dayofyear).mean() corrected_mean = zscore.predict_stats_dict_['meanf'] corrected_mean = corrected_mean.groupby(corrected_mean.index.dayofyear).mean() corrected_std = zscore.predict_stats_dict_['stdf'] corrected_std = corrected_std.groupby(corrected_std.index.dayofyear).mean() labels = ['training', 'future', 'target', 'corrected'] colors = {k: c for (k, c) in zip(labels, sns.color_palette('Set2', n_colors=4))} doy = 20 plt.figure() x, y = _gaus(training_mean, training_std, doy) plt.plot(x, y, c=colors['training'], label='training') x, y = _gaus(target_mean, target_std, doy) plt.plot(x, y, c=colors['target'], label='target') x, y = _gaus(future_mean, future_std, doy) plt.plot(x, y, c=colors['future'], label='future') x, y = _gaus(corrected_mean, corrected_std, doy) plt.plot(x, y, c=colors['corrected'], label='corrected') plt.legend() return def _gaus(mean, std, doy): mu = mean[doy] sigma = std[doy] x = np.linspace(mu - 3 * sigma, mu + 3 * sigma, 100) y = scipy.stats.norm.pdf(x, mu, sigma) return x, y
scikit-downscale
/scikit-downscale-0.1.5.tar.gz/scikit-downscale-0.1.5/examples/utils.py
utils.py
import numpy as np import pandas as pd import probscale import scipy import seaborn as sns import xarray as xr from matplotlib import pyplot as plt def get_sample_data(kind): if kind == 'training': data = xr.open_zarr('../data/downscale_test_data.zarr.zip', group=kind) # extract 1 point of training data for precipitation and temperature df = ( data.isel(point=0) .to_dataframe()[['T2max', 'PREC_TOT']] .rename(columns={'T2max': 'tmax', 'PREC_TOT': 'pcp'}) ) df['tmax'] -= 273.13 df['pcp'] *= 24 return df.resample('1d').first() elif kind == 'targets': data = xr.open_zarr('../data/downscale_test_data.zarr.zip', group=kind) # extract 1 point of training data for precipitation and temperature return ( data.isel(point=0) .to_dataframe()[['Tmax', 'Prec']] .rename(columns={'Tmax': 'tmax', 'Prec': 'pcp'}) ) elif kind == 'wind-hist': return ( xr.open_dataset( '../data/uas/uas.hist.CanESM2.CRCM5-UQAM.day.NAM-44i.raw.Colorado.19801990.nc' )['uas'] .sel(lat=40.25, lon=-109.2, method='nearest') .squeeze() .to_dataframe()[['uas']] ) elif kind == 'wind-obs': return ( xr.open_dataset('../data/uas/uas.gridMET.NAM-44i.Colorado.19801990.nc')['uas'] .sel(lat=40.25, lon=-109.2, method='nearest') .squeeze() .to_dataframe()[['uas']] ) elif kind == 'wind-rcp': return ( xr.open_dataset( '../data/uas/uas.rcp85.CanESM2.CRCM5-UQAM.day.NAM-44i.raw.Colorado.19902000.nc' )['uas'] .sel(lat=40.25, lon=-109.2, method='nearest') .squeeze() .to_dataframe()[['uas']] ) else: raise ValueError(kind) return df def prob_plots(x, y, y_hat, shape=(2, 2), figsize=(8, 8)): fig, axes = plt.subplots(*shape, sharex=True, sharey=True, figsize=figsize) scatter_kws = dict(label='', marker=None, linestyle='-') common_opts = dict(plottype='qq', problabel='', datalabel='') for ax, (label, series) in zip(axes.flat, y_hat.items()): scatter_kws['label'] = 'original' fig = probscale.probplot(x, ax=ax, scatter_kws=scatter_kws, **common_opts) scatter_kws['label'] = 'target' fig = probscale.probplot(y, ax=ax, scatter_kws=scatter_kws, **common_opts) scatter_kws['label'] = 'corrected' fig = probscale.probplot(series, ax=ax, scatter_kws=scatter_kws, **common_opts) ax.set_title(label) ax.legend() [ax.set_xlabel('Standard Normal Quantiles') for ax in axes[-1]] [ax.set_ylabel('Temperature [C]') for ax in axes[:, 0]] [fig.delaxes(ax) for ax in axes.flat[len(y_hat.keys()) :]] fig.tight_layout() return fig def zscore_ds_plot(training, target, future, corrected): labels = ['training', 'future', 'target', 'corrected'] colors = {k: c for (k, c) in zip(labels, sns.color_palette('Set2', n_colors=4))} alpha = 0.5 time_target = pd.date_range('1980-01-01', '1989-12-31', freq='D') time_training = time_target[~((time_target.month == 2) & (time_target.day == 29))] time_future = pd.date_range('1990-01-01', '1999-12-31', freq='D') time_future = time_future[~((time_future.month == 2) & (time_future.day == 29))] plt.figure(figsize=(8, 4)) plt.plot(time_training, training.uas, label='training', alpha=alpha, c=colors['training']) plt.plot(time_target, target.uas, label='target', alpha=alpha, c=colors['target']) plt.plot(time_future, future.uas, label='future', alpha=alpha, c=colors['future']) plt.plot( time_future, corrected.uas, label='corrected', alpha=alpha, c=colors['corrected'], ) plt.xlabel('Time') plt.ylabel('Eastward Near-Surface Wind (m s-1)') plt.legend() return def zscore_correction_plot(zscore): training_mean = zscore.fit_stats_dict_['X_mean'] training_std = zscore.fit_stats_dict_['X_std'] target_mean = zscore.fit_stats_dict_['y_mean'] target_std = zscore.fit_stats_dict_['y_std'] future_mean = zscore.predict_stats_dict_['meani'] future_mean = future_mean.groupby(future_mean.index.dayofyear).mean() future_std = zscore.predict_stats_dict_['stdi'] future_std = future_std.groupby(future_std.index.dayofyear).mean() corrected_mean = zscore.predict_stats_dict_['meanf'] corrected_mean = corrected_mean.groupby(corrected_mean.index.dayofyear).mean() corrected_std = zscore.predict_stats_dict_['stdf'] corrected_std = corrected_std.groupby(corrected_std.index.dayofyear).mean() labels = ['training', 'future', 'target', 'corrected'] colors = {k: c for (k, c) in zip(labels, sns.color_palette('Set2', n_colors=4))} doy = 20 plt.figure() x, y = _gaus(training_mean, training_std, doy) plt.plot(x, y, c=colors['training'], label='training') x, y = _gaus(target_mean, target_std, doy) plt.plot(x, y, c=colors['target'], label='target') x, y = _gaus(future_mean, future_std, doy) plt.plot(x, y, c=colors['future'], label='future') x, y = _gaus(corrected_mean, corrected_std, doy) plt.plot(x, y, c=colors['corrected'], label='corrected') plt.legend() return def _gaus(mean, std, doy): mu = mean[doy] sigma = std[doy] x = np.linspace(mu - 3 * sigma, mu + 3 * sigma, 100) y = scipy.stats.norm.pdf(x, mu, sigma) return x, y
0.519521
0.40392
``` %matplotlib inline import matplotlib.pyplot as plt import numpy as np import pandas as pd import scipy import xarray as xr from skdownscale.pointwise_models import AnalogRegression, PureAnalog # open a small dataset for training training = xr.open_zarr("../data/downscale_test_data.zarr.zip", group="training") training # open a small dataset of observations (targets) targets = xr.open_zarr("../data/downscale_test_data.zarr.zip", group="targets") targets # extract 1 point of training data for precipitation and temperature X_temp = training.isel(point=0).to_dataframe()[["T2max"]] - 273.13 X_pcp = training.isel(point=0).to_dataframe()[["PREC_TOT"]] * 24 display(X_temp.head(), X_pcp.head()) # extract 1 point of target data for precipitation and temperature y_temp = targets.isel(point=0).to_dataframe()[["Tmax"]] y_pcp = targets.isel(point=0).to_dataframe()[["Prec"]] display(y_temp.head(), y_pcp.head()) # Fit/predict using the PureAnalog class for kind in ["best_analog", "sample_analogs", "weight_analogs", "mean_analogs"]: pure_analog = PureAnalog(kind=kind, n_analogs=10) pure_analog.fit(X_temp[:1000], y_temp[:1000]) out = pure_analog.predict(X_temp[1000:]) plt.plot(out[:300], label=kind) # Fit/predict using the AnalogRegression class analog_reg = AnalogRegression(n_analogs=100) analog_reg.fit(X_temp[:1000], y_temp[:1000]) out = analog_reg.predict(X_temp[1000:]) plt.plot(out[:300], label="AnalogRegression") plt.legend() ```
scikit-downscale
/scikit-downscale-0.1.5.tar.gz/scikit-downscale-0.1.5/examples/gard_example.ipynb
gard_example.ipynb
%matplotlib inline import matplotlib.pyplot as plt import numpy as np import pandas as pd import scipy import xarray as xr from skdownscale.pointwise_models import AnalogRegression, PureAnalog # open a small dataset for training training = xr.open_zarr("../data/downscale_test_data.zarr.zip", group="training") training # open a small dataset of observations (targets) targets = xr.open_zarr("../data/downscale_test_data.zarr.zip", group="targets") targets # extract 1 point of training data for precipitation and temperature X_temp = training.isel(point=0).to_dataframe()[["T2max"]] - 273.13 X_pcp = training.isel(point=0).to_dataframe()[["PREC_TOT"]] * 24 display(X_temp.head(), X_pcp.head()) # extract 1 point of target data for precipitation and temperature y_temp = targets.isel(point=0).to_dataframe()[["Tmax"]] y_pcp = targets.isel(point=0).to_dataframe()[["Prec"]] display(y_temp.head(), y_pcp.head()) # Fit/predict using the PureAnalog class for kind in ["best_analog", "sample_analogs", "weight_analogs", "mean_analogs"]: pure_analog = PureAnalog(kind=kind, n_analogs=10) pure_analog.fit(X_temp[:1000], y_temp[:1000]) out = pure_analog.predict(X_temp[1000:]) plt.plot(out[:300], label=kind) # Fit/predict using the AnalogRegression class analog_reg = AnalogRegression(n_analogs=100) analog_reg.fit(X_temp[:1000], y_temp[:1000]) out = analog_reg.predict(X_temp[1000:]) plt.plot(out[:300], label="AnalogRegression") plt.legend()
0.483892
0.701432
import gc import os import click import pandas as pd import xarray as xr from xsd.bcsd import bcsd, disagg @click.command() @click.option('--obs', type=str, help='Obs filename') @click.option('--ref', type=str, help='Reference filename') @click.option('--predict', type=str, help='Predict filename') @click.option('--out_prefix', type=str, help='output_prefix') @click.option('--kind', type=str, help='domain flag') def main(obs, ref, predict, out_prefix, kind): obs = obs.replace('\\', '') ref = ref.replace('\\', '') predict = predict.replace('\\', '') print(obs, ref, predict) # make out directory dirname = os.path.dirname(out_prefix) os.makedirs(dirname, exist_ok=True) if kind == 'ak': anoms, out = run_ak(obs, ref, predict) elif kind == 'hi': anoms, out = run_hi(obs, ref, predict) # watch output files anoms.load().to_netcdf(os.path.join(out_prefix + 'anoms.nc')) out.load().to_netcdf(os.path.join(out_prefix + 'out.nc')) def run_ak(obs_fname, train_fname, predict_fname): # Alaska varnames = {'tmax': 'tasmax', 'tmin': 'tasmin', 'pcp': 'pr'} chunks = None if 'hist' in predict_fname: predict_time_bounds = slice('1950', '2006') else: predict_time_bounds = slice('2006', '2099') anoms = xr.Dataset() out = xr.Dataset() # get variables from the obs/training/prediction datasets ds_obs = xr.open_mfdataset(obs_fname, chunks=chunks, concat_dim='time', data_vars='minimal') time_bounds = slice(ds_obs.indexes['time'][0], ds_obs.indexes['time'][-1]) ds_obs.coords['xc'] = ds_obs['xc'].where(ds_obs['xc'] >= 0, ds_obs.coords['xc'] + 360) attrs_to_delete = [ 'grid_mapping', 'cell_methods', 'remap', 'FieldType', 'MemoryOrder', 'stagger', 'sr_x', 'sr_y', ] for obs_var, gcm_var in varnames.items(): obs_keep_vars = [obs_var, 'xc', 'yc', 'xv', 'yv'] ds_obs_daily = ds_obs[obs_keep_vars] ds_obs_daily[obs_var] = ds_obs_daily[obs_var].astype('f4') times = pd.date_range('1980-01-01', '2017-12-31', freq='D') ds_obs_daily = ds_obs_daily.reindex(time=times, method='nearest') ds_obs_1var = ds_obs_daily.resample(time='MS', keep_attrs=True).mean('time').load() for i, v in enumerate(obs_keep_vars): ds_obs_1var[v].attrs = ds_obs[v].attrs if i: ds_obs_1var[v].encoding['_FillValue'] = None for v in ds_obs_1var: for attr in attrs_to_delete: if attr in ds_obs_1var[v].attrs: del ds_obs_1var[v].attrs[attr] if 'time' in ds_obs_1var['xv'].dims: ds_obs_1var['xv'] = ds_obs_1var['xv'].isel(time=0) ds_obs_1var['yv'] = ds_obs_1var['yv'].isel(time=0) print('ds_obs_1var') ds_obs_1var.info() da_train = ( xr.open_mfdataset( train_fname.format(gcm_var=gcm_var), chunks=chunks, concat_dim='time', data_vars='minimal', )[gcm_var] .sel(time=time_bounds) .astype('f4') .resample(time='MS') .mean('time') .load() ) da_predict = ( xr.open_mfdataset( predict_fname.format(gcm_var=gcm_var), chunks=chunks, concat_dim='time', data_vars='minimal', )[gcm_var] .sel(time=predict_time_bounds) .astype('f4') .resample(time='MS') .mean('time') .load() ) anoms[obs_var] = bcsd( ds_obs_1var, da_train.to_dataset(name=obs_var), da_predict.to_dataset(name=obs_var), var=obs_var, ) out[obs_var] = disagg(ds_obs_daily[obs_var], anoms[obs_var], var=obs_var) out['xv'] = ds_obs_1var['xv'] out['yv'] = ds_obs_1var['yv'] anoms['xv'] = ds_obs_1var['xv'] anoms['yv'] = ds_obs_1var['yv'] gc.collect() return anoms, out def run_hi(obs_fname, train_fname, predict_fname): varnames = {'tmax': 'tasmax', 'tmin': 'tasmin', 'pcp': 'pr'} chunks = None if 'hist' in predict_fname: predict_time_bounds = slice('1950', '2006') else: predict_time_bounds = slice('2006', '2099') anoms = xr.Dataset() out = xr.Dataset() # get variables from the obs/training/prediction datasets ds_obs = xr.open_mfdataset(obs_fname, chunks=chunks, concat_dim='time', data_vars='minimal') time_bounds = slice(ds_obs.indexes['time'][0], ds_obs.indexes['time'][-1]) for obs_var, gcm_var in varnames.items(): obs_keep_vars = [obs_var, 'lon', 'lat'] ds_obs_daily = ds_obs[obs_keep_vars] ds_obs_daily[obs_var] = ds_obs_daily[obs_var].astype('f4') times = pd.date_range('1990-01-01', '2014-12-31', freq='D') ds_obs_daily = ds_obs_daily.reindex(time=times, method='nearest') ds_obs_1var = ds_obs_daily.resample(time='MS', keep_attrs=True).mean('time').load() for i, v in enumerate(obs_keep_vars): ds_obs_1var[v].attrs = ds_obs[v].attrs if i: ds_obs_1var[v].encoding['_FillValue'] = None print('ds_obs_1var') ds_obs_1var.info() da_train = ( xr.open_mfdataset( train_fname.format(gcm_var=gcm_var), chunks=chunks, concat_dim='time', data_vars='minimal', )[gcm_var] .sel(time=time_bounds) .astype('f4') .resample(time='MS') .mean('time') .load() ) da_predict = ( xr.open_mfdataset( predict_fname.format(gcm_var=gcm_var), chunks=chunks, concat_dim='time', data_vars='minimal', )[gcm_var] .sel(time=predict_time_bounds) .astype('f4') .resample(time='MS') .mean('time') .load() ) anoms[obs_var] = bcsd( ds_obs_1var, da_train.to_dataset(name=obs_var), da_predict.to_dataset(name=obs_var), var=obs_var, ) out[obs_var] = disagg(ds_obs_daily[obs_var], anoms[obs_var], var=obs_var) gc.collect() return anoms, out if __name__ == '__main__': main() # pylint: disable=no-value-for-parameter
scikit-downscale
/scikit-downscale-0.1.5.tar.gz/scikit-downscale-0.1.5/scripts/run_bcsd.py
run_bcsd.py
import gc import os import click import pandas as pd import xarray as xr from xsd.bcsd import bcsd, disagg @click.command() @click.option('--obs', type=str, help='Obs filename') @click.option('--ref', type=str, help='Reference filename') @click.option('--predict', type=str, help='Predict filename') @click.option('--out_prefix', type=str, help='output_prefix') @click.option('--kind', type=str, help='domain flag') def main(obs, ref, predict, out_prefix, kind): obs = obs.replace('\\', '') ref = ref.replace('\\', '') predict = predict.replace('\\', '') print(obs, ref, predict) # make out directory dirname = os.path.dirname(out_prefix) os.makedirs(dirname, exist_ok=True) if kind == 'ak': anoms, out = run_ak(obs, ref, predict) elif kind == 'hi': anoms, out = run_hi(obs, ref, predict) # watch output files anoms.load().to_netcdf(os.path.join(out_prefix + 'anoms.nc')) out.load().to_netcdf(os.path.join(out_prefix + 'out.nc')) def run_ak(obs_fname, train_fname, predict_fname): # Alaska varnames = {'tmax': 'tasmax', 'tmin': 'tasmin', 'pcp': 'pr'} chunks = None if 'hist' in predict_fname: predict_time_bounds = slice('1950', '2006') else: predict_time_bounds = slice('2006', '2099') anoms = xr.Dataset() out = xr.Dataset() # get variables from the obs/training/prediction datasets ds_obs = xr.open_mfdataset(obs_fname, chunks=chunks, concat_dim='time', data_vars='minimal') time_bounds = slice(ds_obs.indexes['time'][0], ds_obs.indexes['time'][-1]) ds_obs.coords['xc'] = ds_obs['xc'].where(ds_obs['xc'] >= 0, ds_obs.coords['xc'] + 360) attrs_to_delete = [ 'grid_mapping', 'cell_methods', 'remap', 'FieldType', 'MemoryOrder', 'stagger', 'sr_x', 'sr_y', ] for obs_var, gcm_var in varnames.items(): obs_keep_vars = [obs_var, 'xc', 'yc', 'xv', 'yv'] ds_obs_daily = ds_obs[obs_keep_vars] ds_obs_daily[obs_var] = ds_obs_daily[obs_var].astype('f4') times = pd.date_range('1980-01-01', '2017-12-31', freq='D') ds_obs_daily = ds_obs_daily.reindex(time=times, method='nearest') ds_obs_1var = ds_obs_daily.resample(time='MS', keep_attrs=True).mean('time').load() for i, v in enumerate(obs_keep_vars): ds_obs_1var[v].attrs = ds_obs[v].attrs if i: ds_obs_1var[v].encoding['_FillValue'] = None for v in ds_obs_1var: for attr in attrs_to_delete: if attr in ds_obs_1var[v].attrs: del ds_obs_1var[v].attrs[attr] if 'time' in ds_obs_1var['xv'].dims: ds_obs_1var['xv'] = ds_obs_1var['xv'].isel(time=0) ds_obs_1var['yv'] = ds_obs_1var['yv'].isel(time=0) print('ds_obs_1var') ds_obs_1var.info() da_train = ( xr.open_mfdataset( train_fname.format(gcm_var=gcm_var), chunks=chunks, concat_dim='time', data_vars='minimal', )[gcm_var] .sel(time=time_bounds) .astype('f4') .resample(time='MS') .mean('time') .load() ) da_predict = ( xr.open_mfdataset( predict_fname.format(gcm_var=gcm_var), chunks=chunks, concat_dim='time', data_vars='minimal', )[gcm_var] .sel(time=predict_time_bounds) .astype('f4') .resample(time='MS') .mean('time') .load() ) anoms[obs_var] = bcsd( ds_obs_1var, da_train.to_dataset(name=obs_var), da_predict.to_dataset(name=obs_var), var=obs_var, ) out[obs_var] = disagg(ds_obs_daily[obs_var], anoms[obs_var], var=obs_var) out['xv'] = ds_obs_1var['xv'] out['yv'] = ds_obs_1var['yv'] anoms['xv'] = ds_obs_1var['xv'] anoms['yv'] = ds_obs_1var['yv'] gc.collect() return anoms, out def run_hi(obs_fname, train_fname, predict_fname): varnames = {'tmax': 'tasmax', 'tmin': 'tasmin', 'pcp': 'pr'} chunks = None if 'hist' in predict_fname: predict_time_bounds = slice('1950', '2006') else: predict_time_bounds = slice('2006', '2099') anoms = xr.Dataset() out = xr.Dataset() # get variables from the obs/training/prediction datasets ds_obs = xr.open_mfdataset(obs_fname, chunks=chunks, concat_dim='time', data_vars='minimal') time_bounds = slice(ds_obs.indexes['time'][0], ds_obs.indexes['time'][-1]) for obs_var, gcm_var in varnames.items(): obs_keep_vars = [obs_var, 'lon', 'lat'] ds_obs_daily = ds_obs[obs_keep_vars] ds_obs_daily[obs_var] = ds_obs_daily[obs_var].astype('f4') times = pd.date_range('1990-01-01', '2014-12-31', freq='D') ds_obs_daily = ds_obs_daily.reindex(time=times, method='nearest') ds_obs_1var = ds_obs_daily.resample(time='MS', keep_attrs=True).mean('time').load() for i, v in enumerate(obs_keep_vars): ds_obs_1var[v].attrs = ds_obs[v].attrs if i: ds_obs_1var[v].encoding['_FillValue'] = None print('ds_obs_1var') ds_obs_1var.info() da_train = ( xr.open_mfdataset( train_fname.format(gcm_var=gcm_var), chunks=chunks, concat_dim='time', data_vars='minimal', )[gcm_var] .sel(time=time_bounds) .astype('f4') .resample(time='MS') .mean('time') .load() ) da_predict = ( xr.open_mfdataset( predict_fname.format(gcm_var=gcm_var), chunks=chunks, concat_dim='time', data_vars='minimal', )[gcm_var] .sel(time=predict_time_bounds) .astype('f4') .resample(time='MS') .mean('time') .load() ) anoms[obs_var] = bcsd( ds_obs_1var, da_train.to_dataset(name=obs_var), da_predict.to_dataset(name=obs_var), var=obs_var, ) out[obs_var] = disagg(ds_obs_daily[obs_var], anoms[obs_var], var=obs_var) gc.collect() return anoms, out if __name__ == '__main__': main() # pylint: disable=no-value-for-parameter
0.407216
0.125977
import numpy as np import pandas as pd from .utils import default_none_kwargs class GroupedRegressor: """Grouped Regressor Wrapper supporting fitting seperate estimators distinct groups Parameters ---------- estimator : object Estimator object such as derived from `BaseEstimator`. This estimator will be fit to each group fit_grouper : object Grouper object, such as `pd.Grouper` or `PaddedDOYGrouper` used to split data into groups during fitting. predict_grouper : object, func, str Grouper object, such as `pd.Grouper` used to split data into groups during prediction. estimator_kwargs : dict Keyword arguments to pass onto the `estimator`'s contructor. fit_grouper_kwargs : dict Keyword arguments to pass onto the `fit_grouper`s contructor. predict_grouper_kwargs : dict Keyword arguments to pass onto the `predict_grouper`s contructor. """ def __init__( self, estimator, fit_grouper, predict_grouper, estimator_kwargs=None, fit_grouper_kwargs=None, predict_grouper_kwargs=None, ): self.estimator = estimator self.estimator_kwargs = estimator_kwargs self.fit_grouper = fit_grouper self.fit_grouper_kwargs = fit_grouper_kwargs self.predict_grouper = predict_grouper self.predict_grouper_kwargs = predict_grouper_kwargs def fit(self, X, y, **fit_kwargs): """Fit the grouped regressor Parameters ---------- X : pd.DataFrame, shape (n_samples, n_features) Training data y : pd.Series or pd.DataFrame, shape (n_samples, ) or (n_samples, n_targets) Target values **fit_kwargs Additional keyword arguments to pass onto the estimator's fit method Returns ------- self : returns an instance of self. """ fit_grouper_kwargs = default_none_kwargs(self.fit_grouper_kwargs) x_groups = self.fit_grouper(X.index, **fit_grouper_kwargs).groups y_groups = self.fit_grouper(y.index, **fit_grouper_kwargs).groups self.targets_ = list(y.keys()) estimator_kwargs = default_none_kwargs(self.estimator_kwargs) self.estimators_ = {key: self.estimator(**estimator_kwargs) for key in x_groups} for x_key, x_inds in x_groups.items(): y_inds = y_groups[x_key] self.estimators_[x_key].fit(X.iloc[x_inds], y.iloc[y_inds], **fit_kwargs) return self def predict(self, X): """Predict estimator target for X Parameters ---------- X : pd.DataFrame, shape (n_samples, n_features) Training data Returns ------- y : ndarray of shape (n_samples,) or (n_samples, n_outputs) The predicted values. """ predict_grouper_kwargs = default_none_kwargs(self.predict_grouper_kwargs) grouper = X.groupby(self.predict_grouper, **predict_grouper_kwargs) result = np.empty((len(X), len(self.targets_))) for key, inds in grouper.indices.items(): result[inds, ...] = self.estimators_[key].predict(X.iloc[inds]) return result class PaddedDOYGrouper: """Grouper to group an Index by day-of-year +/ pad Parameters ---------- index : pd.DatetimeIndex Pandas DatetimeIndex to be grouped. window : int Size of the padded offset for each day of year. """ def __init__(self, index, window): self.index = index self.window = window idoy = index.dayofyear n = idoy.max() # day-of-year x day-of-year groups temp_groups = np.zeros((n, n), dtype=np.bool) for i in range(n): inds = np.arange(i - self.window, i + self.window + 1) inds[inds < 0] += n inds[inds > n - 1] -= n temp_groups[i, inds] = True arr = temp_groups[idoy - 1] self._groups = {doy: np.nonzero(arr[:, doy - 1])[0] for doy in range(1, n + 1)} @property def groups(self): """Dict {doy -> group indicies}.""" return self._groups
scikit-downscale
/scikit-downscale-0.1.5.tar.gz/scikit-downscale-0.1.5/skdownscale/pointwise_models/grouping.py
grouping.py
import numpy as np import pandas as pd from .utils import default_none_kwargs class GroupedRegressor: """Grouped Regressor Wrapper supporting fitting seperate estimators distinct groups Parameters ---------- estimator : object Estimator object such as derived from `BaseEstimator`. This estimator will be fit to each group fit_grouper : object Grouper object, such as `pd.Grouper` or `PaddedDOYGrouper` used to split data into groups during fitting. predict_grouper : object, func, str Grouper object, such as `pd.Grouper` used to split data into groups during prediction. estimator_kwargs : dict Keyword arguments to pass onto the `estimator`'s contructor. fit_grouper_kwargs : dict Keyword arguments to pass onto the `fit_grouper`s contructor. predict_grouper_kwargs : dict Keyword arguments to pass onto the `predict_grouper`s contructor. """ def __init__( self, estimator, fit_grouper, predict_grouper, estimator_kwargs=None, fit_grouper_kwargs=None, predict_grouper_kwargs=None, ): self.estimator = estimator self.estimator_kwargs = estimator_kwargs self.fit_grouper = fit_grouper self.fit_grouper_kwargs = fit_grouper_kwargs self.predict_grouper = predict_grouper self.predict_grouper_kwargs = predict_grouper_kwargs def fit(self, X, y, **fit_kwargs): """Fit the grouped regressor Parameters ---------- X : pd.DataFrame, shape (n_samples, n_features) Training data y : pd.Series or pd.DataFrame, shape (n_samples, ) or (n_samples, n_targets) Target values **fit_kwargs Additional keyword arguments to pass onto the estimator's fit method Returns ------- self : returns an instance of self. """ fit_grouper_kwargs = default_none_kwargs(self.fit_grouper_kwargs) x_groups = self.fit_grouper(X.index, **fit_grouper_kwargs).groups y_groups = self.fit_grouper(y.index, **fit_grouper_kwargs).groups self.targets_ = list(y.keys()) estimator_kwargs = default_none_kwargs(self.estimator_kwargs) self.estimators_ = {key: self.estimator(**estimator_kwargs) for key in x_groups} for x_key, x_inds in x_groups.items(): y_inds = y_groups[x_key] self.estimators_[x_key].fit(X.iloc[x_inds], y.iloc[y_inds], **fit_kwargs) return self def predict(self, X): """Predict estimator target for X Parameters ---------- X : pd.DataFrame, shape (n_samples, n_features) Training data Returns ------- y : ndarray of shape (n_samples,) or (n_samples, n_outputs) The predicted values. """ predict_grouper_kwargs = default_none_kwargs(self.predict_grouper_kwargs) grouper = X.groupby(self.predict_grouper, **predict_grouper_kwargs) result = np.empty((len(X), len(self.targets_))) for key, inds in grouper.indices.items(): result[inds, ...] = self.estimators_[key].predict(X.iloc[inds]) return result class PaddedDOYGrouper: """Grouper to group an Index by day-of-year +/ pad Parameters ---------- index : pd.DatetimeIndex Pandas DatetimeIndex to be grouped. window : int Size of the padded offset for each day of year. """ def __init__(self, index, window): self.index = index self.window = window idoy = index.dayofyear n = idoy.max() # day-of-year x day-of-year groups temp_groups = np.zeros((n, n), dtype=np.bool) for i in range(n): inds = np.arange(i - self.window, i + self.window + 1) inds[inds < 0] += n inds[inds > n - 1] -= n temp_groups[i, inds] = True arr = temp_groups[idoy - 1] self._groups = {doy: np.nonzero(arr[:, doy - 1])[0] for doy in range(1, n + 1)} @property def groups(self): """Dict {doy -> group indicies}.""" return self._groups
0.868771
0.543651
import warnings import pandas as pd from sklearn.base import BaseEstimator, RegressorMixin from sklearn.utils import check_array, check_X_y from sklearn.utils.validation import check_is_fitted class TimeSynchronousDownscaler(BaseEstimator): def _check_X_y(self, X, y, **kwargs): if isinstance(X, pd.DataFrame) and isinstance(X, pd.DataFrame): assert X.index.equals(y.index) check_X_y(X, y) # this may be inefficient else: X, y = check_X_y(X, y) warnings.warn('X and y do not have pandas DateTimeIndexes, making one up...') index = pd.date_range(periods=len(X), start='1950', freq='MS') X = pd.DataFrame(X, index=index) y = pd.DataFrame(y, index=index) return X, y def _check_array(self, array, **kwargs): if isinstance(array, pd.DataFrame): check_array(array) else: array = check_array(array) warnings.warn('array does not have a pandas DateTimeIndex, making one up...') index = pd.date_range(periods=len(array), start='1950', freq=self._timestep) array = pd.DataFrame(array, index=index) return array def _validate_data(self, X, y=None, reset=True, validate_separately=False, **check_params): """Validate input data and set or check the `n_features_in_` attribute. Parameters ---------- X : {array-like, sparse matrix, dataframe} of shape \ (n_samples, n_features) The input samples. y : array-like of shape (n_samples,), default=None The targets. If None, `check_array` is called on `X` and `check_X_y` is called otherwise. reset : bool, default=True Whether to reset the `n_features_in_` attribute. If False, the input will be checked for consistency with data provided when reset was last True. validate_separately : False or tuple of dicts, default=False Only used if y is not None. If False, call validate_X_y(). Else, it must be a tuple of kwargs to be used for calling check_array() on X and y respectively. **check_params : kwargs Parameters passed to :func:`sklearn.utils.check_array` or :func:`sklearn.utils.check_X_y`. Ignored if validate_separately is not False. Returns ------- out : {ndarray, sparse matrix} or tuple of these The validated input. A tuple is returned if `y` is not None. """ if y is None: if self._get_tags()['requires_y']: raise ValueError( f'This {self.__class__.__name__} estimator ' f'requires y to be passed, but the target y is None.' ) X = self._check_array(X, **check_params) out = X else: if validate_separately: # We need this because some estimators validate X and y # separately, and in general, separately calling check_array() # on X and y isn't equivalent to just calling check_X_y() # :( check_X_params, check_y_params = validate_separately X = self._check_array(X, **check_X_params) y = self._check_array(y, **check_y_params) else: X, y = self._check_X_y(X, y, **check_params) out = X, y # TO-DO: add check_n_features attribute if check_params.get('ensure_2d', True): self._check_n_features(X, reset=reset) return out
scikit-downscale
/scikit-downscale-0.1.5.tar.gz/scikit-downscale-0.1.5/skdownscale/pointwise_models/base.py
base.py
import warnings import pandas as pd from sklearn.base import BaseEstimator, RegressorMixin from sklearn.utils import check_array, check_X_y from sklearn.utils.validation import check_is_fitted class TimeSynchronousDownscaler(BaseEstimator): def _check_X_y(self, X, y, **kwargs): if isinstance(X, pd.DataFrame) and isinstance(X, pd.DataFrame): assert X.index.equals(y.index) check_X_y(X, y) # this may be inefficient else: X, y = check_X_y(X, y) warnings.warn('X and y do not have pandas DateTimeIndexes, making one up...') index = pd.date_range(periods=len(X), start='1950', freq='MS') X = pd.DataFrame(X, index=index) y = pd.DataFrame(y, index=index) return X, y def _check_array(self, array, **kwargs): if isinstance(array, pd.DataFrame): check_array(array) else: array = check_array(array) warnings.warn('array does not have a pandas DateTimeIndex, making one up...') index = pd.date_range(periods=len(array), start='1950', freq=self._timestep) array = pd.DataFrame(array, index=index) return array def _validate_data(self, X, y=None, reset=True, validate_separately=False, **check_params): """Validate input data and set or check the `n_features_in_` attribute. Parameters ---------- X : {array-like, sparse matrix, dataframe} of shape \ (n_samples, n_features) The input samples. y : array-like of shape (n_samples,), default=None The targets. If None, `check_array` is called on `X` and `check_X_y` is called otherwise. reset : bool, default=True Whether to reset the `n_features_in_` attribute. If False, the input will be checked for consistency with data provided when reset was last True. validate_separately : False or tuple of dicts, default=False Only used if y is not None. If False, call validate_X_y(). Else, it must be a tuple of kwargs to be used for calling check_array() on X and y respectively. **check_params : kwargs Parameters passed to :func:`sklearn.utils.check_array` or :func:`sklearn.utils.check_X_y`. Ignored if validate_separately is not False. Returns ------- out : {ndarray, sparse matrix} or tuple of these The validated input. A tuple is returned if `y` is not None. """ if y is None: if self._get_tags()['requires_y']: raise ValueError( f'This {self.__class__.__name__} estimator ' f'requires y to be passed, but the target y is None.' ) X = self._check_array(X, **check_params) out = X else: if validate_separately: # We need this because some estimators validate X and y # separately, and in general, separately calling check_array() # on X and y isn't equivalent to just calling check_X_y() # :( check_X_params, check_y_params = validate_separately X = self._check_array(X, **check_X_params) y = self._check_array(y, **check_y_params) else: X, y = self._check_X_y(X, y, **check_params) out = X, y # TO-DO: add check_n_features attribute if check_params.get('ensure_2d', True): self._check_n_features(X, reset=reset) return out
0.880116
0.561996
import collections import copy import numpy as np from sklearn.base import BaseEstimator, RegressorMixin, TransformerMixin from sklearn.linear_model import LinearRegression from sklearn.utils import check_array from sklearn.utils.validation import check_is_fitted from .trend import LinearTrendTransformer from .utils import check_max_features, default_none_kwargs SYNTHETIC_MIN = -1e20 SYNTHETIC_MAX = 1e20 Cdf = collections.namedtuple('CDF', ['pp', 'vals']) def plotting_positions(n, alpha=0.4, beta=0.4): '''Returns a monotonic array of plotting positions. Parameters ---------- n : int Length of plotting positions to return. alpha, beta : float Plotting positions parameter. Default is 0.4. Returns ------- positions : ndarray Quantile mapped data with shape from `input_data` and probability distribution from `data_to_match`. See Also -------- scipy.stats.mstats.plotting_positions ''' return (np.arange(1, n + 1) - alpha) / (n + 1.0 - alpha - beta) class QuantileMapper(TransformerMixin, BaseEstimator): """Transform features using quantile mapping. Parameters ---------- detrend : boolean, optional If True, detrend the data before quantile mapping and add the trend back after transforming. Default is False. lt_kwargs : dict, optional Dictionary of keyword arguments to pass to the LinearTrendTransformer qm_kwargs : dict, optional Dictionary of keyword arguments to pass to the QuantileMapper Attributes ---------- x_cdf_fit_ : QuantileTransformer QuantileTranform for fit(X) """ _fit_attributes = ['x_cdf_fit_'] def __init__(self, detrend=False, lt_kwargs=None, qt_kwargs=None): self.detrend = detrend self.lt_kwargs = lt_kwargs self.qt_kwargs = qt_kwargs def fit(self, X, y=None): """Fit the quantile mapping model. Parameters ---------- X : array-like, shape [n_samples, n_features] Training data """ # TO-DO: fix validate data fctn X = self._validate_data(X) qt_kws = default_none_kwargs(self.qt_kwargs, copy=True) # maybe detrend the input datasets if self.detrend: lt_kwargs = default_none_kwargs(self.lt_kwargs) self.x_trend_fit_ = LinearTrendTransformer(**lt_kwargs).fit(X) x_to_cdf = self.x_trend_fit_.transform(X) else: x_to_cdf = X # calculate the cdfs for X qt = CunnaneTransformer(**qt_kws) self.x_cdf_fit_ = qt.fit(x_to_cdf) return self def transform(self, X): """Perform the quantile mapping. Parameters ---------- X : array_like, shape [n_samples, n_features] Samples. Returns ------- y : ndarray of shape (n_samples, ) Transformed data """ # validate input data check_is_fitted(self) # TO-DO: fix validate_data fctn X = self._validate_data(X) # maybe detrend the datasets if self.detrend: lt_kwargs = default_none_kwargs(self.lt_kwargs) x_trend = LinearTrendTransformer(**lt_kwargs).fit(X) x_to_cdf = x_trend.transform(X) else: x_to_cdf = X # do the final mapping qt_kws = default_none_kwargs(self.qt_kwargs, copy=True) x_quantiles = CunnaneTransformer(**qt_kws).fit_transform(x_to_cdf) x_qmapped = self.x_cdf_fit_.inverse_transform(x_quantiles) # add the trend back if self.detrend: x_qmapped = x_trend.inverse_transform(x_qmapped) # reset the baseline (remove bias) x_qmapped -= x_trend.lr_model_.intercept_ - self.x_trend_fit_.lr_model_.intercept_ return x_qmapped def _more_tags(self): return { '_xfail_checks': { 'check_estimators_dtypes': 'QuantileMapper only suppers 1 feature', 'check_fit_score_takes_y': 'QuantileMapper only suppers 1 feature', 'check_transformer_data_not_an_array': 'QuantileMapper only suppers 1 feature', 'check_estimators_fit_returns_self': 'QuantileMapper only suppers 1 feature', 'check_estimators_fit_returns_self(readonly_memmap=True)': 'QuantileMapper only suppers 1 feature', 'check_dtype_object': 'QuantileMapper only suppers 1 feature', 'check_pipeline_consistency': 'QuantileMapper only suppers 1 feature', 'check_estimators_nan_inf': 'QuantileMapper only suppers 1 feature', 'check_estimators_overwrite_params': 'QuantileMapper only suppers 1 feature', 'check_estimators_pickle': 'QuantileMapper only suppers 1 feature', 'check_fit2d_predict1d': 'QuantileMapper only suppers 1 feature', 'check_methods_subset_invariance': 'QuantileMapper only suppers 1 feature', 'check_fit2d_1sample': 'QuantileMapper only suppers 1 feature', 'check_dict_unchanged': 'QuantileMapper only suppers 1 feature', 'check_dont_overwrite_parameters': 'QuantileMapper only suppers 1 feature', 'check_fit_idempotent': 'QuantileMapper only suppers 1 feature', 'check_n_features_in': 'QuantileMapper only suppers 1 feature', 'check_estimators_empty_data_messages': 'skip due to odd sklearn string matching in unit test', 'check_fit_check_is_fitted': 'QuantileMapper only suppers 1 feature', 'check_transformer_general': 'QuantileMapper only suppers 1 feature', 'check_transformer_preserve_dtypes': 'QuantileMapper only suppers 1 feature', 'check_methods_sample_order_invariance': 'QuantileMapper only suppers 1 feature', }, } class QuantileMappingReressor(RegressorMixin, BaseEstimator): """Transform features using quantile mapping. Parameters ---------- extrapolate : str, optional How to extend the cdfs at the tails. Valid options include {`'min'`, `'max'`, `'both'`, `'1to1'`, `None`} n_endpoints : int Number of endpoints to include when extrapolating the tails of the cdf Attributes ---------- _X_cdf : Cdf NamedTuple representing the fit's X cdf _y_cdf : Cdf NamedTuple representing the fit's y cdf """ _fit_attributes = ['_X_cdf', '_y_cdf'] def __init__(self, extrapolate=None, n_endpoints=10): self.extrapolate = extrapolate self.n_endpoints = n_endpoints if self.n_endpoints < 2: raise ValueError('Invalid number of n_endpoints, must be >= 2') def fit(self, X, y, **kwargs): """Fit the quantile mapping regression model. Parameters ---------- X : array-like, shape [n_samples, 1] Training data. Returns ------- self : object """ X = check_array( X, dtype='numeric', ensure_min_samples=2 * self.n_endpoints + 1, ensure_2d=True ) y = check_array( y, dtype='numeric', ensure_min_samples=2 * self.n_endpoints + 1, ensure_2d=False ) X = check_max_features(X, n=1) self._X_cdf = self._calc_extrapolated_cdf(X, sort=True, extrapolate=self.extrapolate) self._y_cdf = self._calc_extrapolated_cdf(y, sort=True, extrapolate=self.extrapolate) return self def predict(self, X, **kwargs): """Predict regression for target X. Parameters ---------- X : array_like, shape [n_samples, 1] Samples. Returns ------- y : ndarray of shape (n_samples, ) Predicted data. """ check_is_fitted(self, self._fit_attributes) X = check_array(X, ensure_2d=True) X = X[:, 0] sort_inds = np.argsort(X) X_cdf = self._calc_extrapolated_cdf(X[sort_inds], sort=False, extrapolate=self.extrapolate) # Fill value for when x < xp[0] or x > xp[-1] (i.e. when X_cdf vals are out of range for self._X_cdf vals) left = -np.inf if self.extrapolate in ['min', 'both'] else None right = np.inf if self.extrapolate in ['max', 'both'] else None # For all values in future X, find the corresponding percentile in historical X X_cdf.pp[:] = np.interp( X_cdf.vals, self._X_cdf.vals, self._X_cdf.pp, left=left, right=right ) # Extrapolate the tails beyond 1.0 to handle "new extremes", only triggered when the new extremes are even more drastic then # the linear extrapolation result from historical X at SYNTHETIC_MIN and SYNTHETIC_MAX if np.isinf(X_cdf.pp).any(): lower_inds = np.nonzero(-np.inf == X_cdf.pp)[0] upper_inds = np.nonzero(np.inf == X_cdf.pp)[0] model = LinearRegression() if len(lower_inds): s = slice(lower_inds[-1] + 1, lower_inds[-1] + 1 + self.n_endpoints) model.fit(X_cdf.pp[s].reshape(-1, 1), X_cdf.vals[s].reshape(-1, 1)) X_cdf.pp[lower_inds] = model.predict(X_cdf.vals[lower_inds].reshape(-1, 1)) if len(upper_inds): s = slice(upper_inds[0] - self.n_endpoints, upper_inds[0]) model.fit(X_cdf.pp[s].reshape(-1, 1), X_cdf.vals[s].reshape(-1, 1)) X_cdf.pp[upper_inds] = model.predict(X_cdf.vals[upper_inds].reshape(-1, 1)) # do the full quantile mapping y_hat = np.full_like(X, np.nan) y_hat[sort_inds] = np.interp(X_cdf.pp, self._y_cdf.pp, self._y_cdf.vals)[1:-1] # If extrapolate is 1to1, apply the offset between X and y to the # tails of y_hat if self.extrapolate == '1to1': y_hat = self._extrapolate_1to1(X, y_hat) return y_hat def _extrapolate_1to1(self, X, y_hat): X_fit_len = len(self._X_cdf.vals) X_fit_min = self._X_cdf.vals[0] X_fit_max = self._X_cdf.vals[-1] y_fit_len = len(self._y_cdf.vals) y_fit_min = self._y_cdf.vals[0] y_fit_max = self._y_cdf.vals[-1] # adjust values over fit max inds = X > X_fit_max if inds.any(): if X_fit_len == y_fit_len: y_hat[inds] = y_fit_max + (X[inds] - X_fit_max) elif X_fit_len > y_fit_len: X_fit_at_y_fit_max = np.interp(self._y_cdf.pp[-1], self._X_cdf.pp, self._X_cdf.vals) y_hat[inds] = y_fit_max + (X[inds] - X_fit_at_y_fit_max) elif X_fit_len < y_fit_len: y_fit_at_X_fit_max = np.interp(self._X_cdf.pp[-1], self._y_cdf.pp, self._y_cdf.vals) y_hat[inds] = y_fit_at_X_fit_max + (X[inds] - X_fit_max) # adjust values under fit min inds = X < X_fit_min if inds.any(): if X_fit_len == y_fit_len: y_hat[inds] = y_fit_min + (X[inds] - X_fit_min) elif X_fit_len > y_fit_len: X_fit_at_y_fit_min = np.interp(self._y_cdf.pp[0], self._X_cdf.pp, self._X_cdf.vals) y_hat[inds] = X_fit_min + (X[inds] - X_fit_at_y_fit_min) elif X_fit_len < y_fit_len: y_fit_at_X_fit_min = np.interp(self._X_cdf.pp[0], self._y_cdf.pp, self._y_cdf.vals) y_hat[inds] = y_fit_at_X_fit_min + (X[inds] - X_fit_min) return y_hat def _calc_extrapolated_cdf( self, data, sort=True, extrapolate=None, pp_min=SYNTHETIC_MIN, pp_max=SYNTHETIC_MAX ): """Calculate a new extrapolated cdf The goal of this function is to create a CDF with bounds outside the [0, 1] range. This allows for quantile mapping beyond observed data points. Parameters ---------- data : array_like, shape [n_samples, 1] Input data (can be unsorted) sort : bool If true, sort the data before building the CDF extrapolate : str or None How to extend the cdfs at the tails. Valid options include {`'min'`, `'max'`, `'both'`, `'1to1'`, `None`} pp_min, pp_max : float Plotting position min/max values. Returns ------- cdf : Cdf (NamedTuple) """ n = len(data) # plotting positions pp = np.empty(n + 2) pp[1:-1] = plotting_positions(n) # extended data values (sorted) if data.ndim == 2: data = data[:, 0] if sort: data = np.sort(data) vals = np.full(n + 2, np.nan) vals[1:-1] = data vals[0] = data[0] vals[-1] = data[-1] # Add endpoints to the vector of plotting positions if extrapolate in [None, '1to1']: pp[0] = pp[1] pp[-1] = pp[-2] elif extrapolate == 'both': pp[0] = pp_min pp[-1] = pp_max elif extrapolate == 'max': pp[0] = pp[1] pp[-1] = pp_max elif extrapolate == 'min': pp[0] = pp_min pp[-1] = pp[-2] else: raise ValueError('unknown value for extrapolate: %s' % extrapolate) if extrapolate in ['min', 'max', 'both']: model = LinearRegression() # extrapolate lower end point if extrapolate in ['min', 'both']: s = slice(1, self.n_endpoints + 1) # fit linear model to first n_endpoints model.fit(pp[s].reshape(-1, 1), vals[s].reshape(-1, 1)) # calculate the data value pp[0] vals[0] = model.predict(pp[0].reshape(-1, 1)) # extrapolate upper end point if extrapolate in ['max', 'both']: s = slice(-self.n_endpoints - 1, -1) # fit linear model to last n_endpoints model.fit(pp[s].reshape(-1, 1), vals[s].reshape(-1, 1)) # calculate the data value pp[-1] vals[-1] = model.predict(pp[-1].reshape(-1, 1)) return Cdf(pp, vals) def _more_tags(self): return { '_xfail_checks': { 'check_estimators_dtypes': 'QuantileMappingReressor only suppers 1 feature', 'check_fit_score_takes_y': 'QuantileMappingReressor only suppers 1 feature', 'check_estimators_fit_returns_self': 'QuantileMappingReressor only suppers 1 feature', 'check_estimators_fit_returns_self(readonly_memmap=True)': 'QuantileMappingReressor only suppers 1 feature', 'check_dtype_object': 'QuantileMappingReressor only suppers 1 feature', 'check_pipeline_consistency': 'QuantileMappingReressor only suppers 1 feature', 'check_estimators_nan_inf': 'QuantileMappingReressor only suppers 1 feature', 'check_estimators_overwrite_params': 'QuantileMappingReressor only suppers 1 feature', 'check_estimators_pickle': 'QuantileMappingReressor only suppers 1 feature', 'check_fit2d_predict1d': 'QuantileMappingReressor only suppers 1 feature', 'check_methods_subset_invariance': 'QuantileMappingReressor only suppers 1 feature', 'check_fit2d_1sample': 'QuantileMappingReressor only suppers 1 feature', 'check_dict_unchanged': 'QuantileMappingReressor only suppers 1 feature', 'check_dont_overwrite_parameters': 'QuantileMappingReressor only suppers 1 feature', 'check_fit_idempotent': 'QuantileMappingReressor only suppers 1 feature', 'check_n_features_in': 'QuantileMappingReressor only suppers 1 feature', 'check_estimators_empty_data_messages': 'skip due to odd sklearn string matching in unit test', 'check_regressors_train': 'QuantileMappingReressor only suppers 1 feature', 'check_regressors_train(readonly_memmap=True)': 'QuantileMappingReressor only suppers 1 feature', 'check_regressors_train(readonly_memmap=True,X_dtype=float32)': 'QuantileMappingReressor only suppers 1 feature', 'check_regressor_data_not_an_array': 'QuantileMappingReressor only suppers 1 feature', 'check_regressors_no_decision_function': 'QuantileMappingReressor only suppers 1 feature', 'check_supervised_y_2d': 'QuantileMappingReressor only suppers 1 feature', 'check_regressors_int': 'QuantileMappingReressor only suppers 1 feature', 'check_methods_sample_order_invariance': 'QuantileMappingReressor only suppers 1 feature', 'check_fit_check_is_fitted': 'QuantileMappingReressor only suppers 1 feature', 'check_requires_y_none': 'QuantileMappingReressor only suppers 1 feature', }, } class CunnaneTransformer(TransformerMixin, BaseEstimator): """Quantile transform using Cunnane plotting positions with optional extrapolation. Parameters ---------- alpha : float, optional Plotting positions parameter. Default is 0.4. beta : float, optional Plotting positions parameter. Default is 0.4. extrapolate : str, optional How to extend the cdfs at the tails. Valid options include {`'min'`, `'max'`, `'both'`, `'1to1'`, `None`}. Default is None. n_endpoints : int Number of endpoints to include when extrapolating the tails of the cdf. Usused if ``extrapolate`` is None. Default is 10. Attributes ---------- cdf_ : Cdf NamedTuple representing the fit cdf """ _fit_attributes = ['cdf_'] def __init__(self, *, alpha=0.4, beta=0.4, extrapolate='both', n_endpoints=10): self.alpha = alpha self.beta = beta self.extrapolate = extrapolate self.n_endpoints = n_endpoints def fit(self, X, y=None): """Compute CDF and plotting positions for X. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, 1) The data used to scale along the features axis. If a sparse matrix is provided, it will be converted into a sparse ``csc_matrix``. Additionally, the sparse matrix needs to be nonnegative if `ignore_implicit_zeros` is False. y : None Ignored. Returns ------- self : object Fitted transformer. """ X = check_array(X, ensure_2d=True) if X.shape[1] > 1: raise ValueError('CunnaneTransformer.fit() only supports a single feature') X = X[:, 0] self.cdf_ = Cdf(plotting_positions(len(X)), np.sort(X)) return self def transform(self, X): """Perform the quantile transform. Parameters ---------- X : array_like, shape [n_samples, 1] Samples. Returns ------- y : ndarray of shape (n_samples, ) Transformed data """ X = check_array(X, ensure_2d=True) if X.shape[1] > 1: raise ValueError('CunnaneTransformer.transform() only supports a single feature') X = X[:, 0] left = -np.inf if self.extrapolate in ['min', 'both'] else None right = np.inf if self.extrapolate in ['max', 'both'] else None pps = np.interp(X, self.cdf_.vals, self.cdf_.pp, left=left, right=right) if np.isinf(pps).any(): lower_inds = np.nonzero(-np.inf == pps)[0] upper_inds = np.nonzero(np.inf == pps)[0] model = LinearRegression() if len(lower_inds): s = slice(None, self.n_endpoints) model.fit(self.cdf_.vals[s].reshape(-1, 1), self.cdf_.pp[s].reshape(-1, 1)) pps[lower_inds] = model.predict(X[lower_inds].values.reshape(-1, 1)).squeeze() if len(upper_inds): s = slice(-self.n_endpoints, None) model.fit(self.cdf_.vals[s].reshape(-1, 1), self.cdf_.pp[s].reshape(-1, 1)) pps[upper_inds] = model.predict(X[upper_inds].values.reshape(-1, 1)).squeeze() return pps.reshape(-1, 1) def fit_transform(self, X, y=None): """Fit `CunnaneTransform` to `X`, then transform `X`. Parameters ---------- X : array-like of shape (n_samples, n_features) The data used to generate the fit CDF. y : Ignored Not used, present for API consistency by convention. Returns ------- X_new : ndarray of shape (n_samples, n_features) Transformed data. """ return self.fit(X).transform(X) def inverse_transform(self, X): X = check_array(X, ensure_2d=True) X = X[:, 0] left = -np.inf if self.extrapolate in ['min', 'both'] else None right = np.inf if self.extrapolate in ['max', 'both'] else None vals = np.interp(X, self.cdf_.pp, self.cdf_.vals, left=left, right=right) if np.isinf(vals).any(): lower_inds = np.nonzero(-np.inf == vals)[0] upper_inds = np.nonzero(np.inf == vals)[0] model = LinearRegression() if len(lower_inds): s = slice(None, self.n_endpoints) model.fit(self.cdf_.pp[s].reshape(-1, 1), self.cdf_.vals[s].reshape(-1, 1)) vals[lower_inds] = model.predict(X[lower_inds].reshape(-1, 1)).squeeze() if len(upper_inds): s = slice(-self.n_endpoints, None) model.fit(self.cdf_.pp[s].reshape(-1, 1), self.cdf_.vals[s].reshape(-1, 1)) vals[upper_inds] = model.predict(X[upper_inds].reshape(-1, 1)).squeeze() return vals.reshape(-1, 1) def _more_tags(self): return { '_xfail_checks': { 'check_estimators_dtypes': 'CunnaneTransformer only suppers 1 feature', 'check_fit_score_takes_y': 'CunnaneTransformer only suppers 1 feature', 'check_transformer_data_not_an_array': 'CunnaneTransformer only suppers 1 feature', 'check_estimators_fit_returns_self': 'CunnaneTransformer only suppers 1 feature', 'check_estimators_fit_returns_self(readonly_memmap=True)': 'CunnaneTransformer only suppers 1 feature', 'check_dtype_object': 'CunnaneTransformer only suppers 1 feature', 'check_pipeline_consistency': 'CunnaneTransformer only suppers 1 feature', 'check_estimators_nan_inf': 'CunnaneTransformer only suppers 1 feature', 'check_estimators_overwrite_params': 'CunnaneTransformer only suppers 1 feature', 'check_estimators_pickle': 'CunnaneTransformer only suppers 1 feature', 'check_fit2d_predict1d': 'CunnaneTransformer only suppers 1 feature', 'check_methods_subset_invariance': 'CunnaneTransformer only suppers 1 feature', 'check_fit2d_1sample': 'CunnaneTransformer only suppers 1 feature', 'check_dict_unchanged': 'CunnaneTransformer only suppers 1 feature', 'check_dont_overwrite_parameters': 'CunnaneTransformer only suppers 1 feature', 'check_fit_idempotent': 'CunnaneTransformer only suppers 1 feature', 'check_n_features_in': 'CunnaneTransformer only suppers 1 feature', 'check_estimators_empty_data_messages': 'skip due to odd sklearn string matching in unit test', 'check_fit_check_is_fitted': 'CunnaneTransformer only suppers 1 feature', 'check_transformer_general': 'CunnaneTransformer only suppers 1 feature', 'check_transformer_preserve_dtypes': 'CunnaneTransformer only suppers 1 feature', 'check_methods_sample_order_invariance': 'CunnaneTransformer only suppers 1 feature', }, } class EquidistantCdfMatcher(QuantileMappingReressor): """Transform features using equidistant CDF matching, a version of quantile mapping that preserves the difference or ratio between X_test and X_train. Parameters ---------- extrapolate : str, optional How to extend the cdfs at the tails. Valid options include {`'min'`, `'max'`, `'both'`, `'1to1'`, `None`} n_endpoints : int Number of endpoints to include when extrapolating the tails of the cdf Attributes ---------- _X_cdf : Cdf NamedTuple representing the fit's X cdf _y_cdf : Cdf NamedTuple representing the fit's y cdf """ _fit_attributes = ['_X_cdf', '_y_cdf'] def __init__(self, kind='difference', extrapolate=None, n_endpoints=10, max_ratio=None): if kind not in ['difference', 'ratio']: raise NotImplementedError('kind must be either difference or ratio') self.kind = kind self.extrapolate = extrapolate self.n_endpoints = n_endpoints # MACA seems to have a max ratio for precip at 5.0 self.max_ratio = max_ratio if self.n_endpoints < 2: raise ValueError('Invalid number of n_endpoints, must be >= 2') def predict(self, X, **kwargs): """Predict regression for target X. Parameters ---------- X : array_like, shape [n_samples, 1] Samples. Returns ------- y : ndarray of shape (n_samples, ) Predicted data. """ check_is_fitted(self, self._fit_attributes) X = check_array(X, ensure_2d=True) X = X[:, 0] sort_inds = np.argsort(X) X_cdf = self._calc_extrapolated_cdf(X[sort_inds], sort=False, extrapolate=self.extrapolate) X_train_vals = np.interp(x=X_cdf.pp, xp=self._X_cdf.pp, fp=self._X_cdf.vals) # generate y value as historical y plus/multiply by quantile difference if self.kind == 'difference': diff = X_cdf.vals - X_train_vals sorted_y_hat = np.interp(x=X_cdf.pp, xp=self._y_cdf.pp, fp=self._y_cdf.vals) + diff elif self.kind == 'ratio': ratio = X_cdf.vals / X_train_vals if self.max_ratio is not None: ratio = np.min(ratio, self.max_ratio) sorted_y_hat = np.interp(x=X_cdf.pp, xp=self._y_cdf.pp, fp=self._y_cdf.vals) * ratio # put things into the right order y_hat = np.full_like(X, np.nan) y_hat[sort_inds] = sorted_y_hat[1:-1] # If extrapolate is 1to1, apply the offset between X and y to the # tails of y_hat if self.extrapolate == '1to1': y_hat = self._extrapolate_1to1(X, y_hat) return y_hat class TrendAwareQuantileMappingRegressor(RegressorMixin, BaseEstimator): """Experimental meta estimator for performing trend-aware quantile mapping Parameters ---------- qm_estimator : object, default=None Regressor object such as ``QuantileMappingReressor``. """ def __init__(self, qm_estimator=None, trend_transformer=None): self.qm_estimator = qm_estimator if trend_transformer is None: self.trend_transformer = LinearTrendTransformer() def fit(self, X, y): """Fit the model. Parameters ---------- X : array-like, shape [n_samples, n_features] Training data. Returns ------- self : object """ self._X_mean_fit = X.mean() self._y_mean_fit = y.mean() y_trend = copy.deepcopy(self.trend_transformer) y_detrend = y_trend.fit_transform(y) X_trend = copy.deepcopy(self.trend_transformer) x_detrend = X_trend.fit_transform(X) self.qm_estimator.fit(x_detrend, y_detrend) return self def predict(self, X): """Predict regression for target X. Parameters ---------- X : array_like, shape [n_samples, n_features] Samples. Returns ------- y : ndarray of shape (n_samples, ) Predicted data. """ X_trend = copy.deepcopy(self.trend_transformer) x_detrend = X_trend.fit_transform(X) y_hat = self.qm_estimator.predict(x_detrend).reshape(-1, 1) # add the mean and trend back # delta: X (predict) - X (fit) + y --> projected change + historical obs mean delta = (X.mean().values - self._X_mean_fit.values) + self._y_mean_fit.values # calculate the trendline # TODO: think about how this would need to change if we're using a rolling average trend trendline = X_trend.trendline(X) trendline -= trendline.mean() # center at 0 # apply the trend and delta y_hat += trendline + delta return y_hat
scikit-downscale
/scikit-downscale-0.1.5.tar.gz/scikit-downscale-0.1.5/skdownscale/pointwise_models/quantile.py
quantile.py
import collections import copy import numpy as np from sklearn.base import BaseEstimator, RegressorMixin, TransformerMixin from sklearn.linear_model import LinearRegression from sklearn.utils import check_array from sklearn.utils.validation import check_is_fitted from .trend import LinearTrendTransformer from .utils import check_max_features, default_none_kwargs SYNTHETIC_MIN = -1e20 SYNTHETIC_MAX = 1e20 Cdf = collections.namedtuple('CDF', ['pp', 'vals']) def plotting_positions(n, alpha=0.4, beta=0.4): '''Returns a monotonic array of plotting positions. Parameters ---------- n : int Length of plotting positions to return. alpha, beta : float Plotting positions parameter. Default is 0.4. Returns ------- positions : ndarray Quantile mapped data with shape from `input_data` and probability distribution from `data_to_match`. See Also -------- scipy.stats.mstats.plotting_positions ''' return (np.arange(1, n + 1) - alpha) / (n + 1.0 - alpha - beta) class QuantileMapper(TransformerMixin, BaseEstimator): """Transform features using quantile mapping. Parameters ---------- detrend : boolean, optional If True, detrend the data before quantile mapping and add the trend back after transforming. Default is False. lt_kwargs : dict, optional Dictionary of keyword arguments to pass to the LinearTrendTransformer qm_kwargs : dict, optional Dictionary of keyword arguments to pass to the QuantileMapper Attributes ---------- x_cdf_fit_ : QuantileTransformer QuantileTranform for fit(X) """ _fit_attributes = ['x_cdf_fit_'] def __init__(self, detrend=False, lt_kwargs=None, qt_kwargs=None): self.detrend = detrend self.lt_kwargs = lt_kwargs self.qt_kwargs = qt_kwargs def fit(self, X, y=None): """Fit the quantile mapping model. Parameters ---------- X : array-like, shape [n_samples, n_features] Training data """ # TO-DO: fix validate data fctn X = self._validate_data(X) qt_kws = default_none_kwargs(self.qt_kwargs, copy=True) # maybe detrend the input datasets if self.detrend: lt_kwargs = default_none_kwargs(self.lt_kwargs) self.x_trend_fit_ = LinearTrendTransformer(**lt_kwargs).fit(X) x_to_cdf = self.x_trend_fit_.transform(X) else: x_to_cdf = X # calculate the cdfs for X qt = CunnaneTransformer(**qt_kws) self.x_cdf_fit_ = qt.fit(x_to_cdf) return self def transform(self, X): """Perform the quantile mapping. Parameters ---------- X : array_like, shape [n_samples, n_features] Samples. Returns ------- y : ndarray of shape (n_samples, ) Transformed data """ # validate input data check_is_fitted(self) # TO-DO: fix validate_data fctn X = self._validate_data(X) # maybe detrend the datasets if self.detrend: lt_kwargs = default_none_kwargs(self.lt_kwargs) x_trend = LinearTrendTransformer(**lt_kwargs).fit(X) x_to_cdf = x_trend.transform(X) else: x_to_cdf = X # do the final mapping qt_kws = default_none_kwargs(self.qt_kwargs, copy=True) x_quantiles = CunnaneTransformer(**qt_kws).fit_transform(x_to_cdf) x_qmapped = self.x_cdf_fit_.inverse_transform(x_quantiles) # add the trend back if self.detrend: x_qmapped = x_trend.inverse_transform(x_qmapped) # reset the baseline (remove bias) x_qmapped -= x_trend.lr_model_.intercept_ - self.x_trend_fit_.lr_model_.intercept_ return x_qmapped def _more_tags(self): return { '_xfail_checks': { 'check_estimators_dtypes': 'QuantileMapper only suppers 1 feature', 'check_fit_score_takes_y': 'QuantileMapper only suppers 1 feature', 'check_transformer_data_not_an_array': 'QuantileMapper only suppers 1 feature', 'check_estimators_fit_returns_self': 'QuantileMapper only suppers 1 feature', 'check_estimators_fit_returns_self(readonly_memmap=True)': 'QuantileMapper only suppers 1 feature', 'check_dtype_object': 'QuantileMapper only suppers 1 feature', 'check_pipeline_consistency': 'QuantileMapper only suppers 1 feature', 'check_estimators_nan_inf': 'QuantileMapper only suppers 1 feature', 'check_estimators_overwrite_params': 'QuantileMapper only suppers 1 feature', 'check_estimators_pickle': 'QuantileMapper only suppers 1 feature', 'check_fit2d_predict1d': 'QuantileMapper only suppers 1 feature', 'check_methods_subset_invariance': 'QuantileMapper only suppers 1 feature', 'check_fit2d_1sample': 'QuantileMapper only suppers 1 feature', 'check_dict_unchanged': 'QuantileMapper only suppers 1 feature', 'check_dont_overwrite_parameters': 'QuantileMapper only suppers 1 feature', 'check_fit_idempotent': 'QuantileMapper only suppers 1 feature', 'check_n_features_in': 'QuantileMapper only suppers 1 feature', 'check_estimators_empty_data_messages': 'skip due to odd sklearn string matching in unit test', 'check_fit_check_is_fitted': 'QuantileMapper only suppers 1 feature', 'check_transformer_general': 'QuantileMapper only suppers 1 feature', 'check_transformer_preserve_dtypes': 'QuantileMapper only suppers 1 feature', 'check_methods_sample_order_invariance': 'QuantileMapper only suppers 1 feature', }, } class QuantileMappingReressor(RegressorMixin, BaseEstimator): """Transform features using quantile mapping. Parameters ---------- extrapolate : str, optional How to extend the cdfs at the tails. Valid options include {`'min'`, `'max'`, `'both'`, `'1to1'`, `None`} n_endpoints : int Number of endpoints to include when extrapolating the tails of the cdf Attributes ---------- _X_cdf : Cdf NamedTuple representing the fit's X cdf _y_cdf : Cdf NamedTuple representing the fit's y cdf """ _fit_attributes = ['_X_cdf', '_y_cdf'] def __init__(self, extrapolate=None, n_endpoints=10): self.extrapolate = extrapolate self.n_endpoints = n_endpoints if self.n_endpoints < 2: raise ValueError('Invalid number of n_endpoints, must be >= 2') def fit(self, X, y, **kwargs): """Fit the quantile mapping regression model. Parameters ---------- X : array-like, shape [n_samples, 1] Training data. Returns ------- self : object """ X = check_array( X, dtype='numeric', ensure_min_samples=2 * self.n_endpoints + 1, ensure_2d=True ) y = check_array( y, dtype='numeric', ensure_min_samples=2 * self.n_endpoints + 1, ensure_2d=False ) X = check_max_features(X, n=1) self._X_cdf = self._calc_extrapolated_cdf(X, sort=True, extrapolate=self.extrapolate) self._y_cdf = self._calc_extrapolated_cdf(y, sort=True, extrapolate=self.extrapolate) return self def predict(self, X, **kwargs): """Predict regression for target X. Parameters ---------- X : array_like, shape [n_samples, 1] Samples. Returns ------- y : ndarray of shape (n_samples, ) Predicted data. """ check_is_fitted(self, self._fit_attributes) X = check_array(X, ensure_2d=True) X = X[:, 0] sort_inds = np.argsort(X) X_cdf = self._calc_extrapolated_cdf(X[sort_inds], sort=False, extrapolate=self.extrapolate) # Fill value for when x < xp[0] or x > xp[-1] (i.e. when X_cdf vals are out of range for self._X_cdf vals) left = -np.inf if self.extrapolate in ['min', 'both'] else None right = np.inf if self.extrapolate in ['max', 'both'] else None # For all values in future X, find the corresponding percentile in historical X X_cdf.pp[:] = np.interp( X_cdf.vals, self._X_cdf.vals, self._X_cdf.pp, left=left, right=right ) # Extrapolate the tails beyond 1.0 to handle "new extremes", only triggered when the new extremes are even more drastic then # the linear extrapolation result from historical X at SYNTHETIC_MIN and SYNTHETIC_MAX if np.isinf(X_cdf.pp).any(): lower_inds = np.nonzero(-np.inf == X_cdf.pp)[0] upper_inds = np.nonzero(np.inf == X_cdf.pp)[0] model = LinearRegression() if len(lower_inds): s = slice(lower_inds[-1] + 1, lower_inds[-1] + 1 + self.n_endpoints) model.fit(X_cdf.pp[s].reshape(-1, 1), X_cdf.vals[s].reshape(-1, 1)) X_cdf.pp[lower_inds] = model.predict(X_cdf.vals[lower_inds].reshape(-1, 1)) if len(upper_inds): s = slice(upper_inds[0] - self.n_endpoints, upper_inds[0]) model.fit(X_cdf.pp[s].reshape(-1, 1), X_cdf.vals[s].reshape(-1, 1)) X_cdf.pp[upper_inds] = model.predict(X_cdf.vals[upper_inds].reshape(-1, 1)) # do the full quantile mapping y_hat = np.full_like(X, np.nan) y_hat[sort_inds] = np.interp(X_cdf.pp, self._y_cdf.pp, self._y_cdf.vals)[1:-1] # If extrapolate is 1to1, apply the offset between X and y to the # tails of y_hat if self.extrapolate == '1to1': y_hat = self._extrapolate_1to1(X, y_hat) return y_hat def _extrapolate_1to1(self, X, y_hat): X_fit_len = len(self._X_cdf.vals) X_fit_min = self._X_cdf.vals[0] X_fit_max = self._X_cdf.vals[-1] y_fit_len = len(self._y_cdf.vals) y_fit_min = self._y_cdf.vals[0] y_fit_max = self._y_cdf.vals[-1] # adjust values over fit max inds = X > X_fit_max if inds.any(): if X_fit_len == y_fit_len: y_hat[inds] = y_fit_max + (X[inds] - X_fit_max) elif X_fit_len > y_fit_len: X_fit_at_y_fit_max = np.interp(self._y_cdf.pp[-1], self._X_cdf.pp, self._X_cdf.vals) y_hat[inds] = y_fit_max + (X[inds] - X_fit_at_y_fit_max) elif X_fit_len < y_fit_len: y_fit_at_X_fit_max = np.interp(self._X_cdf.pp[-1], self._y_cdf.pp, self._y_cdf.vals) y_hat[inds] = y_fit_at_X_fit_max + (X[inds] - X_fit_max) # adjust values under fit min inds = X < X_fit_min if inds.any(): if X_fit_len == y_fit_len: y_hat[inds] = y_fit_min + (X[inds] - X_fit_min) elif X_fit_len > y_fit_len: X_fit_at_y_fit_min = np.interp(self._y_cdf.pp[0], self._X_cdf.pp, self._X_cdf.vals) y_hat[inds] = X_fit_min + (X[inds] - X_fit_at_y_fit_min) elif X_fit_len < y_fit_len: y_fit_at_X_fit_min = np.interp(self._X_cdf.pp[0], self._y_cdf.pp, self._y_cdf.vals) y_hat[inds] = y_fit_at_X_fit_min + (X[inds] - X_fit_min) return y_hat def _calc_extrapolated_cdf( self, data, sort=True, extrapolate=None, pp_min=SYNTHETIC_MIN, pp_max=SYNTHETIC_MAX ): """Calculate a new extrapolated cdf The goal of this function is to create a CDF with bounds outside the [0, 1] range. This allows for quantile mapping beyond observed data points. Parameters ---------- data : array_like, shape [n_samples, 1] Input data (can be unsorted) sort : bool If true, sort the data before building the CDF extrapolate : str or None How to extend the cdfs at the tails. Valid options include {`'min'`, `'max'`, `'both'`, `'1to1'`, `None`} pp_min, pp_max : float Plotting position min/max values. Returns ------- cdf : Cdf (NamedTuple) """ n = len(data) # plotting positions pp = np.empty(n + 2) pp[1:-1] = plotting_positions(n) # extended data values (sorted) if data.ndim == 2: data = data[:, 0] if sort: data = np.sort(data) vals = np.full(n + 2, np.nan) vals[1:-1] = data vals[0] = data[0] vals[-1] = data[-1] # Add endpoints to the vector of plotting positions if extrapolate in [None, '1to1']: pp[0] = pp[1] pp[-1] = pp[-2] elif extrapolate == 'both': pp[0] = pp_min pp[-1] = pp_max elif extrapolate == 'max': pp[0] = pp[1] pp[-1] = pp_max elif extrapolate == 'min': pp[0] = pp_min pp[-1] = pp[-2] else: raise ValueError('unknown value for extrapolate: %s' % extrapolate) if extrapolate in ['min', 'max', 'both']: model = LinearRegression() # extrapolate lower end point if extrapolate in ['min', 'both']: s = slice(1, self.n_endpoints + 1) # fit linear model to first n_endpoints model.fit(pp[s].reshape(-1, 1), vals[s].reshape(-1, 1)) # calculate the data value pp[0] vals[0] = model.predict(pp[0].reshape(-1, 1)) # extrapolate upper end point if extrapolate in ['max', 'both']: s = slice(-self.n_endpoints - 1, -1) # fit linear model to last n_endpoints model.fit(pp[s].reshape(-1, 1), vals[s].reshape(-1, 1)) # calculate the data value pp[-1] vals[-1] = model.predict(pp[-1].reshape(-1, 1)) return Cdf(pp, vals) def _more_tags(self): return { '_xfail_checks': { 'check_estimators_dtypes': 'QuantileMappingReressor only suppers 1 feature', 'check_fit_score_takes_y': 'QuantileMappingReressor only suppers 1 feature', 'check_estimators_fit_returns_self': 'QuantileMappingReressor only suppers 1 feature', 'check_estimators_fit_returns_self(readonly_memmap=True)': 'QuantileMappingReressor only suppers 1 feature', 'check_dtype_object': 'QuantileMappingReressor only suppers 1 feature', 'check_pipeline_consistency': 'QuantileMappingReressor only suppers 1 feature', 'check_estimators_nan_inf': 'QuantileMappingReressor only suppers 1 feature', 'check_estimators_overwrite_params': 'QuantileMappingReressor only suppers 1 feature', 'check_estimators_pickle': 'QuantileMappingReressor only suppers 1 feature', 'check_fit2d_predict1d': 'QuantileMappingReressor only suppers 1 feature', 'check_methods_subset_invariance': 'QuantileMappingReressor only suppers 1 feature', 'check_fit2d_1sample': 'QuantileMappingReressor only suppers 1 feature', 'check_dict_unchanged': 'QuantileMappingReressor only suppers 1 feature', 'check_dont_overwrite_parameters': 'QuantileMappingReressor only suppers 1 feature', 'check_fit_idempotent': 'QuantileMappingReressor only suppers 1 feature', 'check_n_features_in': 'QuantileMappingReressor only suppers 1 feature', 'check_estimators_empty_data_messages': 'skip due to odd sklearn string matching in unit test', 'check_regressors_train': 'QuantileMappingReressor only suppers 1 feature', 'check_regressors_train(readonly_memmap=True)': 'QuantileMappingReressor only suppers 1 feature', 'check_regressors_train(readonly_memmap=True,X_dtype=float32)': 'QuantileMappingReressor only suppers 1 feature', 'check_regressor_data_not_an_array': 'QuantileMappingReressor only suppers 1 feature', 'check_regressors_no_decision_function': 'QuantileMappingReressor only suppers 1 feature', 'check_supervised_y_2d': 'QuantileMappingReressor only suppers 1 feature', 'check_regressors_int': 'QuantileMappingReressor only suppers 1 feature', 'check_methods_sample_order_invariance': 'QuantileMappingReressor only suppers 1 feature', 'check_fit_check_is_fitted': 'QuantileMappingReressor only suppers 1 feature', 'check_requires_y_none': 'QuantileMappingReressor only suppers 1 feature', }, } class CunnaneTransformer(TransformerMixin, BaseEstimator): """Quantile transform using Cunnane plotting positions with optional extrapolation. Parameters ---------- alpha : float, optional Plotting positions parameter. Default is 0.4. beta : float, optional Plotting positions parameter. Default is 0.4. extrapolate : str, optional How to extend the cdfs at the tails. Valid options include {`'min'`, `'max'`, `'both'`, `'1to1'`, `None`}. Default is None. n_endpoints : int Number of endpoints to include when extrapolating the tails of the cdf. Usused if ``extrapolate`` is None. Default is 10. Attributes ---------- cdf_ : Cdf NamedTuple representing the fit cdf """ _fit_attributes = ['cdf_'] def __init__(self, *, alpha=0.4, beta=0.4, extrapolate='both', n_endpoints=10): self.alpha = alpha self.beta = beta self.extrapolate = extrapolate self.n_endpoints = n_endpoints def fit(self, X, y=None): """Compute CDF and plotting positions for X. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, 1) The data used to scale along the features axis. If a sparse matrix is provided, it will be converted into a sparse ``csc_matrix``. Additionally, the sparse matrix needs to be nonnegative if `ignore_implicit_zeros` is False. y : None Ignored. Returns ------- self : object Fitted transformer. """ X = check_array(X, ensure_2d=True) if X.shape[1] > 1: raise ValueError('CunnaneTransformer.fit() only supports a single feature') X = X[:, 0] self.cdf_ = Cdf(plotting_positions(len(X)), np.sort(X)) return self def transform(self, X): """Perform the quantile transform. Parameters ---------- X : array_like, shape [n_samples, 1] Samples. Returns ------- y : ndarray of shape (n_samples, ) Transformed data """ X = check_array(X, ensure_2d=True) if X.shape[1] > 1: raise ValueError('CunnaneTransformer.transform() only supports a single feature') X = X[:, 0] left = -np.inf if self.extrapolate in ['min', 'both'] else None right = np.inf if self.extrapolate in ['max', 'both'] else None pps = np.interp(X, self.cdf_.vals, self.cdf_.pp, left=left, right=right) if np.isinf(pps).any(): lower_inds = np.nonzero(-np.inf == pps)[0] upper_inds = np.nonzero(np.inf == pps)[0] model = LinearRegression() if len(lower_inds): s = slice(None, self.n_endpoints) model.fit(self.cdf_.vals[s].reshape(-1, 1), self.cdf_.pp[s].reshape(-1, 1)) pps[lower_inds] = model.predict(X[lower_inds].values.reshape(-1, 1)).squeeze() if len(upper_inds): s = slice(-self.n_endpoints, None) model.fit(self.cdf_.vals[s].reshape(-1, 1), self.cdf_.pp[s].reshape(-1, 1)) pps[upper_inds] = model.predict(X[upper_inds].values.reshape(-1, 1)).squeeze() return pps.reshape(-1, 1) def fit_transform(self, X, y=None): """Fit `CunnaneTransform` to `X`, then transform `X`. Parameters ---------- X : array-like of shape (n_samples, n_features) The data used to generate the fit CDF. y : Ignored Not used, present for API consistency by convention. Returns ------- X_new : ndarray of shape (n_samples, n_features) Transformed data. """ return self.fit(X).transform(X) def inverse_transform(self, X): X = check_array(X, ensure_2d=True) X = X[:, 0] left = -np.inf if self.extrapolate in ['min', 'both'] else None right = np.inf if self.extrapolate in ['max', 'both'] else None vals = np.interp(X, self.cdf_.pp, self.cdf_.vals, left=left, right=right) if np.isinf(vals).any(): lower_inds = np.nonzero(-np.inf == vals)[0] upper_inds = np.nonzero(np.inf == vals)[0] model = LinearRegression() if len(lower_inds): s = slice(None, self.n_endpoints) model.fit(self.cdf_.pp[s].reshape(-1, 1), self.cdf_.vals[s].reshape(-1, 1)) vals[lower_inds] = model.predict(X[lower_inds].reshape(-1, 1)).squeeze() if len(upper_inds): s = slice(-self.n_endpoints, None) model.fit(self.cdf_.pp[s].reshape(-1, 1), self.cdf_.vals[s].reshape(-1, 1)) vals[upper_inds] = model.predict(X[upper_inds].reshape(-1, 1)).squeeze() return vals.reshape(-1, 1) def _more_tags(self): return { '_xfail_checks': { 'check_estimators_dtypes': 'CunnaneTransformer only suppers 1 feature', 'check_fit_score_takes_y': 'CunnaneTransformer only suppers 1 feature', 'check_transformer_data_not_an_array': 'CunnaneTransformer only suppers 1 feature', 'check_estimators_fit_returns_self': 'CunnaneTransformer only suppers 1 feature', 'check_estimators_fit_returns_self(readonly_memmap=True)': 'CunnaneTransformer only suppers 1 feature', 'check_dtype_object': 'CunnaneTransformer only suppers 1 feature', 'check_pipeline_consistency': 'CunnaneTransformer only suppers 1 feature', 'check_estimators_nan_inf': 'CunnaneTransformer only suppers 1 feature', 'check_estimators_overwrite_params': 'CunnaneTransformer only suppers 1 feature', 'check_estimators_pickle': 'CunnaneTransformer only suppers 1 feature', 'check_fit2d_predict1d': 'CunnaneTransformer only suppers 1 feature', 'check_methods_subset_invariance': 'CunnaneTransformer only suppers 1 feature', 'check_fit2d_1sample': 'CunnaneTransformer only suppers 1 feature', 'check_dict_unchanged': 'CunnaneTransformer only suppers 1 feature', 'check_dont_overwrite_parameters': 'CunnaneTransformer only suppers 1 feature', 'check_fit_idempotent': 'CunnaneTransformer only suppers 1 feature', 'check_n_features_in': 'CunnaneTransformer only suppers 1 feature', 'check_estimators_empty_data_messages': 'skip due to odd sklearn string matching in unit test', 'check_fit_check_is_fitted': 'CunnaneTransformer only suppers 1 feature', 'check_transformer_general': 'CunnaneTransformer only suppers 1 feature', 'check_transformer_preserve_dtypes': 'CunnaneTransformer only suppers 1 feature', 'check_methods_sample_order_invariance': 'CunnaneTransformer only suppers 1 feature', }, } class EquidistantCdfMatcher(QuantileMappingReressor): """Transform features using equidistant CDF matching, a version of quantile mapping that preserves the difference or ratio between X_test and X_train. Parameters ---------- extrapolate : str, optional How to extend the cdfs at the tails. Valid options include {`'min'`, `'max'`, `'both'`, `'1to1'`, `None`} n_endpoints : int Number of endpoints to include when extrapolating the tails of the cdf Attributes ---------- _X_cdf : Cdf NamedTuple representing the fit's X cdf _y_cdf : Cdf NamedTuple representing the fit's y cdf """ _fit_attributes = ['_X_cdf', '_y_cdf'] def __init__(self, kind='difference', extrapolate=None, n_endpoints=10, max_ratio=None): if kind not in ['difference', 'ratio']: raise NotImplementedError('kind must be either difference or ratio') self.kind = kind self.extrapolate = extrapolate self.n_endpoints = n_endpoints # MACA seems to have a max ratio for precip at 5.0 self.max_ratio = max_ratio if self.n_endpoints < 2: raise ValueError('Invalid number of n_endpoints, must be >= 2') def predict(self, X, **kwargs): """Predict regression for target X. Parameters ---------- X : array_like, shape [n_samples, 1] Samples. Returns ------- y : ndarray of shape (n_samples, ) Predicted data. """ check_is_fitted(self, self._fit_attributes) X = check_array(X, ensure_2d=True) X = X[:, 0] sort_inds = np.argsort(X) X_cdf = self._calc_extrapolated_cdf(X[sort_inds], sort=False, extrapolate=self.extrapolate) X_train_vals = np.interp(x=X_cdf.pp, xp=self._X_cdf.pp, fp=self._X_cdf.vals) # generate y value as historical y plus/multiply by quantile difference if self.kind == 'difference': diff = X_cdf.vals - X_train_vals sorted_y_hat = np.interp(x=X_cdf.pp, xp=self._y_cdf.pp, fp=self._y_cdf.vals) + diff elif self.kind == 'ratio': ratio = X_cdf.vals / X_train_vals if self.max_ratio is not None: ratio = np.min(ratio, self.max_ratio) sorted_y_hat = np.interp(x=X_cdf.pp, xp=self._y_cdf.pp, fp=self._y_cdf.vals) * ratio # put things into the right order y_hat = np.full_like(X, np.nan) y_hat[sort_inds] = sorted_y_hat[1:-1] # If extrapolate is 1to1, apply the offset between X and y to the # tails of y_hat if self.extrapolate == '1to1': y_hat = self._extrapolate_1to1(X, y_hat) return y_hat class TrendAwareQuantileMappingRegressor(RegressorMixin, BaseEstimator): """Experimental meta estimator for performing trend-aware quantile mapping Parameters ---------- qm_estimator : object, default=None Regressor object such as ``QuantileMappingReressor``. """ def __init__(self, qm_estimator=None, trend_transformer=None): self.qm_estimator = qm_estimator if trend_transformer is None: self.trend_transformer = LinearTrendTransformer() def fit(self, X, y): """Fit the model. Parameters ---------- X : array-like, shape [n_samples, n_features] Training data. Returns ------- self : object """ self._X_mean_fit = X.mean() self._y_mean_fit = y.mean() y_trend = copy.deepcopy(self.trend_transformer) y_detrend = y_trend.fit_transform(y) X_trend = copy.deepcopy(self.trend_transformer) x_detrend = X_trend.fit_transform(X) self.qm_estimator.fit(x_detrend, y_detrend) return self def predict(self, X): """Predict regression for target X. Parameters ---------- X : array_like, shape [n_samples, n_features] Samples. Returns ------- y : ndarray of shape (n_samples, ) Predicted data. """ X_trend = copy.deepcopy(self.trend_transformer) x_detrend = X_trend.fit_transform(X) y_hat = self.qm_estimator.predict(x_detrend).reshape(-1, 1) # add the mean and trend back # delta: X (predict) - X (fit) + y --> projected change + historical obs mean delta = (X.mean().values - self._X_mean_fit.values) + self._y_mean_fit.values # calculate the trendline # TODO: think about how this would need to change if we're using a rolling average trend trendline = X_trend.trendline(X) trendline -= trendline.mean() # center at 0 # apply the trend and delta y_hat += trendline + delta return y_hat
0.905947
0.528168
import numpy as np from sklearn.base import BaseEstimator, TransformerMixin from sklearn.linear_model import LinearRegression from sklearn.utils.validation import check_is_fitted from .utils import default_none_kwargs class LinearTrendTransformer(TransformerMixin, BaseEstimator): """Transform features by removing linear trends. Uses Ordinary least squares Linear Regression as implemented in sklear.linear_model.LinearRegression. Parameters ---------- **lr_kwargs Keyword arguments to pass to sklearn.linear_model.LinearRegression Attributes ---------- lr_model_ : sklearn.linear_model.LinearRegression Linear Regression object. """ def __init__(self, lr_kwargs=None): self.lr_kwargs = lr_kwargs def fit(self, X, y=None): """Compute the linear trend. Parameters ---------- X : array-like, shape [n_samples, n_features] Training data. """ X = self._validate_data(X) kwargs = default_none_kwargs(self.lr_kwargs) self.lr_model_ = LinearRegression(**kwargs) self.lr_model_.fit(np.arange(len(X)).reshape(-1, 1), X) return self def transform(self, X): """Perform transformation by removing the trend. Parameters ---------- X : array-like, shape [n_samples, n_features] The data that should be detrended. """ # validate input data check_is_fitted(self) X = self._validate_data(X) return X - self.trendline(X) def inverse_transform(self, X): """Add the trend back to the data. Parameters ---------- X : array-like, shape [n_samples, n_features] The data that should be transformed back. """ # validate input data check_is_fitted(self) X = self._validate_data(X) return X + self.trendline(X) def trendline(self, X): """helper function to calculate a linear trendline""" X = self._validate_data(X) return self.lr_model_.predict(np.arange(len(X)).reshape(-1, 1)) def _more_tags(self): return { '_xfail_checks': { 'check_methods_subset_invariance': 'because', 'check_methods_sample_order_invariance': 'temporal order matters', } }
scikit-downscale
/scikit-downscale-0.1.5.tar.gz/scikit-downscale-0.1.5/skdownscale/pointwise_models/trend.py
trend.py
import numpy as np from sklearn.base import BaseEstimator, TransformerMixin from sklearn.linear_model import LinearRegression from sklearn.utils.validation import check_is_fitted from .utils import default_none_kwargs class LinearTrendTransformer(TransformerMixin, BaseEstimator): """Transform features by removing linear trends. Uses Ordinary least squares Linear Regression as implemented in sklear.linear_model.LinearRegression. Parameters ---------- **lr_kwargs Keyword arguments to pass to sklearn.linear_model.LinearRegression Attributes ---------- lr_model_ : sklearn.linear_model.LinearRegression Linear Regression object. """ def __init__(self, lr_kwargs=None): self.lr_kwargs = lr_kwargs def fit(self, X, y=None): """Compute the linear trend. Parameters ---------- X : array-like, shape [n_samples, n_features] Training data. """ X = self._validate_data(X) kwargs = default_none_kwargs(self.lr_kwargs) self.lr_model_ = LinearRegression(**kwargs) self.lr_model_.fit(np.arange(len(X)).reshape(-1, 1), X) return self def transform(self, X): """Perform transformation by removing the trend. Parameters ---------- X : array-like, shape [n_samples, n_features] The data that should be detrended. """ # validate input data check_is_fitted(self) X = self._validate_data(X) return X - self.trendline(X) def inverse_transform(self, X): """Add the trend back to the data. Parameters ---------- X : array-like, shape [n_samples, n_features] The data that should be transformed back. """ # validate input data check_is_fitted(self) X = self._validate_data(X) return X + self.trendline(X) def trendline(self, X): """helper function to calculate a linear trendline""" X = self._validate_data(X) return self.lr_model_.predict(np.arange(len(X)).reshape(-1, 1)) def _more_tags(self): return { '_xfail_checks': { 'check_methods_subset_invariance': 'because', 'check_methods_sample_order_invariance': 'temporal order matters', } }
0.928433
0.530236
__all__ = ['sedumi2sdpa'] from scipy.sparse import csc_matrix, csr_matrix from scipy import sparse from numpy import matrix def sedumi2sdpa(filename, A, b, c, K): """Convert from Sedumi format to SDPA sparse format Arguments: filename: A string of output sdpa file name A, b, c, K: Input in sedumi format, where A,b,c are in Scipy matrices format """ A = sparse.csc_matrix(A) b = sparse.csc_matrix(b) c = sparse.csc_matrix(c) if c.get_shape()[1]>1: c=c.transpose() if not sparse.isspmatrix_csc(A): A = A.tocsc() if not sparse.isspmatrix_csc(b): b = b.tocsc() if not sparse.isspmatrix_csc(c): c = c.tocsc() if not 'l' in K.keys(): K['l'] = 0 fp = open(filename, "w") # write mDim mDim = A.get_shape()[0] fp.write(str(mDim) + "\n") # write nBlock if K['l']>0: fp.write(str(1+len(K['s'])) + "\n") else: fp.write(str(len(K['s'])) + "\n") # write blockStruct if K['l']>0: fp.write(str(-K['l']) + " ") fp.write(" ".join([ str(x) for x in K['s'] ]) + "\n") # write b fp.write(" ".join([ str(-b[i,0]) for i in range(b.shape[0])]) + "\n") # write C len_s = sum([x ** 2 for x in K['s'] ]) matnum = 0 blocknum = 0 curind = 0 # block one for linear cone if K['l']>0: blocknum += 1 c_l = -c[0:K['l'], :] list_row = [str(x + 1) for x in list(c_l.nonzero()[0])] list_val = [x for x in list(c_l.data)] length = len(list_row) for i in range(length): fp.write(" ".join((str(matnum), str(blocknum), list_row[i], list_row[i], list_val[i])) + "\n") curind = curind + K['l'] if len_s > 0: offset = 0 c_s = -c[curind :(curind + len_s), :] for blockSize in K['s']: blocknum += 1 list_row = list(c_s[offset:(offset + blockSize * blockSize), :].nonzero()[0]) list_val = [x for x in list(c_s[offset:(offset + blockSize * blockSize), :].data)] length = len(list_row) for i in range(length): setCol_row = (list_row[i] // blockSize) + 1 setCol_col = (list_row[i] % blockSize) + 1 if setCol_row <= setCol_col: fp.write(" ".join(("0", str(blocknum), str(setCol_row), str(setCol_col), str(list_val[i]))) + "\n") offset += blockSize * blockSize # write A blocknum = 0 curind = 0 if K['l'] > 0: blocknum += 1 A_l = -A[:, 0:K['l']] list_row = [str(x + 1) for x in list(A_l.nonzero()[0])] list_col = [str(x + 1) for x in list(A_l.nonzero()[1])] list_val = [x for x in list(A_l.data)] length = len(list_row) for i in range(length): fp.write(" ".join((list_row[i], str(blocknum), list_col[i], list_col[i], list_val[i])) + "\n") curind = curind + K['l'] if len_s > 0: offset = 0 A_s = -A[:, curind :(curind + len_s)] for blockSize in K['s']: blocknum += 1 list_row = [str(x + 1) for x in list(A_s[:, offset:(offset + blockSize * blockSize)]. nonzero()[0])] list_col = list(A_s[:, offset:(offset + blockSize * blockSize)]. nonzero()[1]) list_val = [x for x in list(A_s[:, offset:(offset + blockSize * blockSize)]. data)] length = len(list_row) for i in range(length): setCol_row = (list_col[i] // blockSize) + 1 setCol_col = (list_col[i] % blockSize) + 1 if setCol_row <= setCol_col: fp.write(" ".join((list_row[i], str(blocknum), str(setCol_row), str(setCol_col), str(list_val[i]))) + "\n") offset += blockSize * blockSize fp.close() return
scikit-dsdp
/scikit-dsdp-0.0.1.tar.gz/scikit-dsdp-0.0.1/dsdp/python/convert.py
convert.py
__all__ = ['sedumi2sdpa'] from scipy.sparse import csc_matrix, csr_matrix from scipy import sparse from numpy import matrix def sedumi2sdpa(filename, A, b, c, K): """Convert from Sedumi format to SDPA sparse format Arguments: filename: A string of output sdpa file name A, b, c, K: Input in sedumi format, where A,b,c are in Scipy matrices format """ A = sparse.csc_matrix(A) b = sparse.csc_matrix(b) c = sparse.csc_matrix(c) if c.get_shape()[1]>1: c=c.transpose() if not sparse.isspmatrix_csc(A): A = A.tocsc() if not sparse.isspmatrix_csc(b): b = b.tocsc() if not sparse.isspmatrix_csc(c): c = c.tocsc() if not 'l' in K.keys(): K['l'] = 0 fp = open(filename, "w") # write mDim mDim = A.get_shape()[0] fp.write(str(mDim) + "\n") # write nBlock if K['l']>0: fp.write(str(1+len(K['s'])) + "\n") else: fp.write(str(len(K['s'])) + "\n") # write blockStruct if K['l']>0: fp.write(str(-K['l']) + " ") fp.write(" ".join([ str(x) for x in K['s'] ]) + "\n") # write b fp.write(" ".join([ str(-b[i,0]) for i in range(b.shape[0])]) + "\n") # write C len_s = sum([x ** 2 for x in K['s'] ]) matnum = 0 blocknum = 0 curind = 0 # block one for linear cone if K['l']>0: blocknum += 1 c_l = -c[0:K['l'], :] list_row = [str(x + 1) for x in list(c_l.nonzero()[0])] list_val = [x for x in list(c_l.data)] length = len(list_row) for i in range(length): fp.write(" ".join((str(matnum), str(blocknum), list_row[i], list_row[i], list_val[i])) + "\n") curind = curind + K['l'] if len_s > 0: offset = 0 c_s = -c[curind :(curind + len_s), :] for blockSize in K['s']: blocknum += 1 list_row = list(c_s[offset:(offset + blockSize * blockSize), :].nonzero()[0]) list_val = [x for x in list(c_s[offset:(offset + blockSize * blockSize), :].data)] length = len(list_row) for i in range(length): setCol_row = (list_row[i] // blockSize) + 1 setCol_col = (list_row[i] % blockSize) + 1 if setCol_row <= setCol_col: fp.write(" ".join(("0", str(blocknum), str(setCol_row), str(setCol_col), str(list_val[i]))) + "\n") offset += blockSize * blockSize # write A blocknum = 0 curind = 0 if K['l'] > 0: blocknum += 1 A_l = -A[:, 0:K['l']] list_row = [str(x + 1) for x in list(A_l.nonzero()[0])] list_col = [str(x + 1) for x in list(A_l.nonzero()[1])] list_val = [x for x in list(A_l.data)] length = len(list_row) for i in range(length): fp.write(" ".join((list_row[i], str(blocknum), list_col[i], list_col[i], list_val[i])) + "\n") curind = curind + K['l'] if len_s > 0: offset = 0 A_s = -A[:, curind :(curind + len_s)] for blockSize in K['s']: blocknum += 1 list_row = [str(x + 1) for x in list(A_s[:, offset:(offset + blockSize * blockSize)]. nonzero()[0])] list_col = list(A_s[:, offset:(offset + blockSize * blockSize)]. nonzero()[1]) list_val = [x for x in list(A_s[:, offset:(offset + blockSize * blockSize)]. data)] length = len(list_row) for i in range(length): setCol_row = (list_col[i] // blockSize) + 1 setCol_col = (list_col[i] % blockSize) + 1 if setCol_row <= setCol_col: fp.write(" ".join((list_row[i], str(blocknum), str(setCol_row), str(setCol_col), str(list_val[i]))) + "\n") offset += blockSize * blockSize fp.close() return
0.379953
0.232768
__all__ = ['dsdp', 'dsdp_readsdpa'] from pydsdp.convert import * from numpy import * from pydsdp.pydsdp5 import pyreadsdpa from os import remove, path from tempfile import NamedTemporaryFile def dsdp(A, b, c, K, OPTIONS={}): tempdataF = NamedTemporaryFile(delete=False) data_filename=tempdataF.name tempdataF.close() sedumi2sdpa(data_filename, A, b, c, K) # tempoptionsF = None options_filename = "" if len(OPTIONS)>0: tempoptionsF = NamedTemporaryFile(delete=False) options_filename = tempoptionsF.name tempoptionsF.close() write_options_file(options_filename, OPTIONS) # solve the problem by dsdp5 [y,X,STATS] = dsdp_readsdpa(data_filename,options_filename) if path.isfile(data_filename): remove(data_filename) if path.isfile(options_filename): remove(options_filename) if not 'l' in K: K['l']=0 if not 's' in K: K['s']=() Xout = [] if K['l']>0: Xout.append(X[0:K['l']]) index = K['l']; if 's' in K: for d in K['s']: Xout.append(matrix(reshape(array(X[index:index+d*d]), [d,d]))) index = index+d*d if (STATS[0]==1): STATS[0] = "PDFeasible" elif (STATS[0]==3): STATS[0] = "Unbounded" elif (STATS[0]==4): STATS[0] = "InFeasible" STATSout = {} # Assign the name to STATS output, should be consistent with Rreadsdpa.c if (len(STATS)>3): STATSout=dict( zip(["stype", "dobj","pobj","r","mu","pstep","dstep","pnorm"],STATS) ) else: STATSout=dict( zip(["stype", "dobj","pobj"], STATS) ) return dict(zip(['y', 'X','STATS'],[y,Xout,STATSout])) def dsdp_readsdpa(data_filename,options_filename): # solve the problem by pyreadsdpa # result = [y,X,STATS] result = [] if ( path.isfile(data_filename) and (options_filename=="" or path.isfile(options_filename)) ): result = pyreadsdpa(data_filename,options_filename) return result def write_options_file(filename, OPTIONS): # write OPTIONS to file with open(filename, "a") as f: for option in OPTIONS.keys(): f.write("-" + option + " " +str(OPTIONS[option]) + "\n") f.close()
scikit-dsdp
/scikit-dsdp-0.0.1.tar.gz/scikit-dsdp-0.0.1/dsdp/python/dsdp5.py
dsdp5.py
__all__ = ['dsdp', 'dsdp_readsdpa'] from pydsdp.convert import * from numpy import * from pydsdp.pydsdp5 import pyreadsdpa from os import remove, path from tempfile import NamedTemporaryFile def dsdp(A, b, c, K, OPTIONS={}): tempdataF = NamedTemporaryFile(delete=False) data_filename=tempdataF.name tempdataF.close() sedumi2sdpa(data_filename, A, b, c, K) # tempoptionsF = None options_filename = "" if len(OPTIONS)>0: tempoptionsF = NamedTemporaryFile(delete=False) options_filename = tempoptionsF.name tempoptionsF.close() write_options_file(options_filename, OPTIONS) # solve the problem by dsdp5 [y,X,STATS] = dsdp_readsdpa(data_filename,options_filename) if path.isfile(data_filename): remove(data_filename) if path.isfile(options_filename): remove(options_filename) if not 'l' in K: K['l']=0 if not 's' in K: K['s']=() Xout = [] if K['l']>0: Xout.append(X[0:K['l']]) index = K['l']; if 's' in K: for d in K['s']: Xout.append(matrix(reshape(array(X[index:index+d*d]), [d,d]))) index = index+d*d if (STATS[0]==1): STATS[0] = "PDFeasible" elif (STATS[0]==3): STATS[0] = "Unbounded" elif (STATS[0]==4): STATS[0] = "InFeasible" STATSout = {} # Assign the name to STATS output, should be consistent with Rreadsdpa.c if (len(STATS)>3): STATSout=dict( zip(["stype", "dobj","pobj","r","mu","pstep","dstep","pnorm"],STATS) ) else: STATSout=dict( zip(["stype", "dobj","pobj"], STATS) ) return dict(zip(['y', 'X','STATS'],[y,Xout,STATSout])) def dsdp_readsdpa(data_filename,options_filename): # solve the problem by pyreadsdpa # result = [y,X,STATS] result = [] if ( path.isfile(data_filename) and (options_filename=="" or path.isfile(options_filename)) ): result = pyreadsdpa(data_filename,options_filename) return result def write_options_file(filename, OPTIONS): # write OPTIONS to file with open(filename, "a") as f: for option in OPTIONS.keys(): f.write("-" + option + " " +str(OPTIONS[option]) + "\n") f.close()
0.219588
0.151624
BSD 2-Clause License Copyright (c) 2017, Mark Wickert All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
scikit-dsp-comm
/scikit-dsp-comm-2.0.3.tar.gz/scikit-dsp-comm-2.0.3/LICENSE.md
LICENSE.md
BSD 2-Clause License Copyright (c) 2017, Mark Wickert All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
0.642208
0.08733
![Logo](logo.png) # scikit-dsp-comm [![pypi](https://img.shields.io/pypi/v/scikit-dsp-comm.svg)](https://pypi.python.org/pypi/scikit-dsp-comm) [![Anaconda-Server Badge](https://anaconda.org/conda-forge/scikit-dsp-comm/badges/version.svg)](https://anaconda.org/conda-forge/scikit-dsp-comm) [![Docs](https://readthedocs.org/projects/scikit-dsp-comm/badge/?version=latest)](http://scikit-dsp-comm.readthedocs.io/en/latest/?badge=latest) ## Background The origin of this package comes from the writing the book Signals and Systems for Dummies, published by Wiley in 2013. The original module for this book is named `ssd.py`. In `scikit-dsp-comm` this module is renamed to `sigsys.py` to better reflect the fact that signal processing and communications theory is founded in signals and systems, a traditional subject in electrical engineering curricula. ## Package High Level Overview This package is a collection of functions and classes to support signal processing and communications theory teaching and research. The foundation for this package is `scipy.signal`. The code in particular currently requires Python `>=3.5x`. **There are presently ten modules that make up scikit-dsp-comm:** 1. `sigsys.py` for basic signals and systems functions both continuous-time and discrete-time, including graphical display tools such as pole-zero plots, up-sampling and down-sampling. 2. `digitalcomm.py` for digital modulation theory components, including asynchronous resampling and variable time delay functions, both useful in advanced modem testing. 3. `synchronization.py` which contains phase-locked loop simulation functions and functions for carrier and phase synchronization of digital communications waveforms. 4. `fec_conv.py` for the generation rate one-half and one-third convolutional codes and soft decision Viterbi algorithm decoding, including soft and hard decisions, trellis and trellis-traceback display functions, and puncturing. 5. `fir_design_helper.py` which for easy design of lowpass, highpass, bandpass, and bandstop filters using the Kaiser window and equal-ripple designs, also includes a list plotting function for easily comparing magnitude, phase, and group delay frequency responses. 6. `iir_design_helper.py` which for easy design of lowpass, highpass, bandpass, and bandstop filters using scipy.signal Butterworth, Chebyshev I and II, and elliptical designs, including the use of the cascade of second-order sections (SOS) topology from scipy.signal, also includes a list plotting function for easily comparing of magnitude, phase, and group delay frequency responses. 7. `multirate.py` that encapsulate digital filters into objects for filtering, interpolation by an integer factor, and decimation by an integer factor. 8. `coeff2header.py` write `C/C++` header files for FIR and IIR filters implemented in `C/C++`, using the cascade of second-order section representation for the IIR case. This last module find use in real-time signal processing on embedded systems, but can be used for simulation models in `C/C++`. Presently the collection of modules contains about 125 functions and classes. The authors/maintainers are working to get more detailed documentation in place. ## Documentation Documentation is now housed on `readthedocs` which you can get to by clicking the docs badge near the top of this `README`. Example notebooks can be viewed on [GitHub pages](https://mwickert.github.io/scikit-dsp-comm/). In time more notebook postings will be extracted from [Dr. Wickert's Info Center](http://www.eas.uccs.edu/~mwickert/). ## Getting Set-up on Your System The best way to use this package is to clone this repository and then install it. ```bash git clone https://github.com/mwickert/scikit-dsp-comm.git ``` There are package dependencies for some modules that you may want to avoid. Specifically these are whenever hardware interfacing is involved. Specific hardware and software configuration details are discussed in [wiki pages](https://github.com/mwickert/SP-Comm-Tutorial-using-scikit-dsp-comm/wiki). For Windows users `pip` install takes care of almost everything. I assume below you have Python on your path, so for example with [Anaconda](https://www.anaconda.com/download/#macos), I suggest letting the installer set these paths up for you. ### Editable Install with Dependencies With the terminal in the root directory of the cloned repo perform an editable `pip` install using ```bash pip install -e . ``` ### Why an Editable Install? The advantage of the editable `pip` install is that it is very easy to keep `scikit-dsp-comm ` up to date. If you know that updates have been pushed to the master branch, you simply go to your local repo folder and ```bash git pull origin master ``` This will update you local repo and automatically update the Python install without the need to run `pip` again. **Note**: If you have any Python kernels running, such as a Jupyter Notebook, you will need to restart the kernel to insure any module changes get reloaded.
scikit-dsp-comm
/scikit-dsp-comm-2.0.3.tar.gz/scikit-dsp-comm-2.0.3/README.md
README.md
git clone https://github.com/mwickert/scikit-dsp-comm.git pip install -e . git pull origin master
0.632616
0.993661
![Logo](logo.png) # scikit-dsp-comm [![pypi](https://img.shields.io/pypi/v/scikit-dsp-comm.svg)](https://pypi.python.org/pypi/scikit-dsp-comm) [![Anaconda-Server Badge](https://anaconda.org/conda-forge/scikit-dsp-comm/badges/version.svg)](https://anaconda.org/conda-forge/scikit-dsp-comm) [![Docs](https://readthedocs.org/projects/scikit-dsp-comm/badge/?version=latest)](http://scikit-dsp-comm.readthedocs.io/en/latest/?badge=latest) ## Background The origin of this package comes from the writing the book Signals and Systems for Dummies, published by Wiley in 2013. The original module for this book is named `ssd.py`. In `scikit-dsp-comm` this module is renamed to `sigsys.py` to better reflect the fact that signal processing and communications theory is founded in signals and systems, a traditional subject in electrical engineering curricula. ## Package High Level Overview This package is a collection of functions and classes to support signal processing and communications theory teaching and research. The foundation for this package is `scipy.signal`. The code in particular currently requires Python `>=3.5x`. **There are presently ten modules that make up scikit-dsp-comm:** 1. `sigsys.py` for basic signals and systems functions both continuous-time and discrete-time, including graphical display tools such as pole-zero plots, up-sampling and down-sampling. 2. `digitalcomm.py` for digital modulation theory components, including asynchronous resampling and variable time delay functions, both useful in advanced modem testing. 3. `synchronization.py` which contains phase-locked loop simulation functions and functions for carrier and phase synchronization of digital communications waveforms. 4. `fec_conv.py` for the generation rate one-half and one-third convolutional codes and soft decision Viterbi algorithm decoding, including soft and hard decisions, trellis and trellis-traceback display functions, and puncturing. 5. `fir_design_helper.py` which for easy design of lowpass, highpass, bandpass, and bandstop filters using the Kaiser window and equal-ripple designs, also includes a list plotting function for easily comparing magnitude, phase, and group delay frequency responses. 6. `iir_design_helper.py` which for easy design of lowpass, highpass, bandpass, and bandstop filters using scipy.signal Butterworth, Chebyshev I and II, and elliptical designs, including the use of the cascade of second-order sections (SOS) topology from scipy.signal, also includes a list plotting function for easily comparing of magnitude, phase, and group delay frequency responses. 7. `multirate.py` that encapsulate digital filters into objects for filtering, interpolation by an integer factor, and decimation by an integer factor. 8. `coeff2header.py` write `C/C++` header files for FIR and IIR filters implemented in `C/C++`, using the cascade of second-order section representation for the IIR case. This last module find use in real-time signal processing on embedded systems, but can be used for simulation models in `C/C++`. Presently the collection of modules contains about 125 functions and classes. The authors/maintainers are working to get more detailed documentation in place. ## Documentation Documentation is now housed on `readthedocs` which you can get to by clicking the docs badge near the top of this `README`. Example notebooks can be viewed on [GitHub pages](https://mwickert.github.io/scikit-dsp-comm/). In time more notebook postings will be extracted from [Dr. Wickert's Info Center](http://www.eas.uccs.edu/~mwickert/). ## Getting Set-up on Your System The best way to use this package is to clone this repository and then install it. ```bash git clone https://github.com/mwickert/scikit-dsp-comm.git ``` There are package dependencies for some modules that you may want to avoid. Specifically these are whenever hardware interfacing is involved. Specific hardware and software configuration details are discussed in [wiki pages](https://github.com/mwickert/SP-Comm-Tutorial-using-scikit-dsp-comm/wiki). For Windows users `pip` install takes care of almost everything. I assume below you have Python on your path, so for example with [Anaconda](https://www.anaconda.com/download/#macos), I suggest letting the installer set these paths up for you. ### Editable Install with Dependencies With the terminal in the root directory of the cloned repo perform an editable `pip` install using ```bash pip install -e . ``` ### Why an Editable Install? The advantage of the editable `pip` install is that it is very easy to keep `scikit-dsp-comm ` up to date. If you know that updates have been pushed to the master branch, you simply go to your local repo folder and ```bash git pull origin master ``` This will update you local repo and automatically update the Python install without the need to run `pip` again. **Note**: If you have any Python kernels running, such as a Jupyter Notebook, you will need to restart the kernel to insure any module changes get reloaded.
scikit-dsp-comm
/scikit-dsp-comm-2.0.3.tar.gz/scikit-dsp-comm-2.0.3/README
README
git clone https://github.com/mwickert/scikit-dsp-comm.git pip install -e . git pull origin master
0.632616
0.993574
import numpy as np import scipy.special as special from .digitalcom import q_fctn from .fec_conv import binary from logging import getLogger log = getLogger(__name__) class FECHamming(object): """ Class responsible for creating hamming block codes and then encoding and decoding. Methods provided include hamm_gen, hamm_encoder(), hamm_decoder(). Parameters ---------- j: Hamming code order (in terms of parity bits) where n = 2^j-1, k = n-j, and the rate is k/n. Returns ------- Examples -------- Andrew Smit November 2018 """ def __init__(self,j): self.j = j self.G, self.H, self.R, self.n, self.k = self.hamm_gen(self.j) log.info('(%d,%d) hamming code object' %(self.n,self.k)) def hamm_gen(self,j): """ Generates parity check matrix (H) and generator matrix (G). Parameters ---------- j: Number of Hamming code parity bits with n = 2^j-1 and k = n-j returns ------- G: Systematic generator matrix with left-side identity matrix H: Systematic parity-check matrix with right-side identity matrix R: k x k identity matrix n: number of total bits/block k: number of source bits/block Andrew Smit November 2018 """ if(j < 3): raise ValueError('j must be > 2') # calculate codeword length n = 2**j-1 # calculate source bit length k = n-j # Allocate memory for Matrices G = np.zeros((k,n),dtype=int) H = np.zeros((j,n),dtype=int) P = np.zeros((j,k),dtype=int) R = np.zeros((k,n),dtype=int) # Encode parity-check matrix columns with binary 1-n for i in range(1,n+1): b = list(binary(i,j)) for m in range(0,len(b)): b[m] = int(b[m]) H[:,i-1] = np.array(b) # Reformat H to be systematic H1 = np.zeros((1,j),dtype=int) H2 = np.zeros((1,j),dtype=int) for i in range(0,j): idx1 = 2**i-1 idx2 = n-i-1 H1[0,:] = H[:,idx1] H2[0,:] = H[:,idx2] H[:,idx1] = H2 H[:,idx2] = H1 # Get parity matrix from H P = H[:,:k] # Use P to calcuate generator matrix P G[:,:k] = np.diag(np.ones(k)) G[:,k:] = P.T # Get k x k identity matrix R[:,:k] = np.diag(np.ones(k)) return G, H, R, n, k def hamm_encoder(self,x): """ Encodes input bit array x using hamming block code. parameters ---------- x: array of source bits to be encoded by block encoder. returns ------- codewords: array of code words generated by generator matrix G and input x. Andrew Smit November 2018 """ if(np.dtype(x[0]) != int): raise ValueError('Error: Invalid data type. Input must be a vector of ints') if(len(x) % self.k or len(x) < self.k): raise ValueError('Error: Invalid input vector length. Length must be a multiple of %d' %self.k) N_symbols = int(len(x)/self.k) codewords = np.zeros(N_symbols*self.n) x = np.reshape(x,(1,len(x))) for i in range(0,N_symbols): codewords[i*self.n:(i+1)*self.n] = np.matmul(x[:,i*self.k:(i+1)*self.k],self.G)%2 return codewords def hamm_decoder(self,codewords): """ Decode hamming encoded codewords. Make sure code words are of the appropriate length for the object. parameters --------- codewords: bit array of codewords returns ------- decoded_bits: bit array of decoded source bits Andrew Smit November 2018 """ if(np.dtype(codewords[0]) != int): raise ValueError('Error: Invalid data type. Input must be a vector of ints') if(len(codewords) % self.n or len(codewords) < self.n): raise ValueError('Error: Invalid input vector length. Length must be a multiple of %d' %self.n) # Calculate the number of symbols (codewords) in the input array N_symbols = int(len(codewords)/self.n) # Allocate memory for decoded sourcebits decoded_bits = np.zeros(N_symbols*self.k) # Loop through codewords to decode one block at a time codewords = np.reshape(codewords,(1,len(codewords))) for i in range(0,N_symbols): # find the syndrome of each codeword S = np.matmul(self.H,codewords[:,i*self.n:(i+1)*self.n].T) % 2 # convert binary syndrome to an integer bits = '' for m in range(0,len(S)): bit = str(int(S[m,:])) bits = bits + bit error_pos = int(bits,2) h_pos = self.H[:,error_pos-1] # Use the syndrome to find the position of an error within the block bits = '' for m in range(0,len(S)): bit = str(int(h_pos[m])) bits = bits + bit decoded_pos = int(bits,2)-1 # correct error if present if(error_pos): codewords[:,i*self.n+decoded_pos] = (codewords[:,i*self.n+decoded_pos] + 1) % 2 # Decode the corrected codeword decoded_bits[i*self.k:(i+1)*self.k] = np.matmul(self.R,codewords[:,i*self.n:(i+1)*self.n].T).T % 2 return decoded_bits.astype(int) class FECCyclic(object): """ Class responsible for creating cyclic block codes and then encoding and decoding. Methods provided include cyclic_encoder(), cyclic_decoder(). Parameters ---------- G: Generator polynomial used to create cyclic code object Suggested G values (from Ziemer and Peterson pg 430): j G ------------ 3 G = '1011' 4 G = '10011' 5 G = '101001' 6 G = '1100001' 7 G = '10100001' 8 G = '101110001' 9 G = '1000100001' 10 G = '10010000001' 11 G = '101000000001' 12 G = '1100101000001' 13 G = '11011000000001' 14 G = '110000100010001' 15 G = '1100000000000001' 16 G = '11010000000010001' 17 G = '100100000000000001' 18 G = '1000000100000000001' 19 G = '11100100000000000001' 20 G = '100100000000000000001' 21 G = '1010000000000000000001' 22 G = '11000000000000000000001' 23 G = '100001000000000000000001' 24 G = '1110000100000000000000001' Returns ------- Examples -------- Andrew Smit November 2018 """ def __init__(self,G='1011'): self.j = len(G)-1 self.n = 2**self.j - 1 self.k =self.n-self.j self.G = G if(G[0] == '0' or G[len(G)-1] == '0'): raise ValueError('Error: Invalid generator polynomial') log.info('(%d,%d) cyclic code object' %(self.n,self.k)) def cyclic_encoder(self,x,G='1011'): """ Encodes input bit array x using cyclic block code. parameters ---------- x: vector of source bits to be encoded by block encoder. Numpy array of integers expected. returns ------- codewords: vector of code words generated from input vector Andrew Smit November 2018 """ # Check block length if(len(x) % self.k or len(x) < self.k): raise ValueError('Error: Incomplete block in input array. Make sure input array length is a multiple of %d' %self.k) # Check data type of input vector if(np.dtype(x[0]) != int): raise ValueError('Error: Input array should be int data type') # Calculate number of blocks Num_blocks = int(len(x) / self.k) codewords = np.zeros((Num_blocks,self.n),dtype=int) x = np.reshape(x,(Num_blocks,self.k)) #print(x) for p in range(Num_blocks): S = np.zeros(len(self.G)) codeword = np.zeros(self.n) current_block = x[p,:] #print(current_block) for i in range(0,self.n): if(i < self.k): S[0] = current_block[i] S0temp = 0 for m in range(0,len(self.G)): if(self.G[m] == '1'): S0temp = S0temp + S[m] #print(j,S0temp,S[j]) S0temp = S0temp % 2 S = np.roll(S,1) codeword[i] = current_block[i] S[1] = S0temp else: out = 0 for m in range(1,len(self.G)): if(self.G[m] == '1'): out = out + S[m] codeword[i] = out % 2 S = np.roll(S,1) S[1] = 0 codewords[p,:] = codeword #print(codeword) codewords = np.reshape(codewords,np.size(codewords)) return codewords.astype(int) def cyclic_decoder(self,codewords): """ Decodes a vector of cyclic coded codewords. parameters ---------- codewords: vector of codewords to be decoded. Numpy array of integers expected. returns ------- decoded_blocks: vector of decoded bits Andrew Smit November 2018 """ # Check block length if(len(codewords) % self.n or len(codewords) < self.n): raise ValueError('Error: Incomplete coded block in input array. Make sure coded input array length is a multiple of %d' %self.n) # Check input data type if(np.dtype(codewords[0]) != int): raise ValueError('Error: Input array should be int data type') # Calculate number of blocks Num_blocks = int(len(codewords) / self.n) decoded_blocks = np.zeros((Num_blocks,self.k),dtype=int) codewords = np.reshape(codewords,(Num_blocks,self.n)) for p in range(Num_blocks): codeword = codewords[p,:] Ureg = np.zeros(self.n) S = np.zeros(len(self.G)) decoded_bits = np.zeros(self.k) output = np.zeros(self.n) for i in range(0,self.n): # Switch A closed B open Ureg = np.roll(Ureg,1) Ureg[0] = codeword[i] S0temp = 0 S[0] = codeword[i] for m in range(len(self.G)): if(self.G[m] == '1'): S0temp = S0temp + S[m] S0 = S S = np.roll(S,1) S[1] = S0temp % 2 for i in range(0,self.n): # Switch B closed A open Stemp = 0 for m in range(1,len(self.G)): if(self.G[m] == '1'): Stemp = Stemp + S[m] S = np.roll(S,1) S[1] = Stemp % 2 and_out = 1 for m in range(1,len(self.G)): if(m > 1): and_out = and_out and ((S[m]+1) % 2) else: and_out = and_out and S[m] output[i] = (and_out + Ureg[len(Ureg)-1]) % 2 Ureg = np.roll(Ureg,1) Ureg[0] = 0 decoded_bits = output[0:self.k].astype(int) decoded_blocks[p,:] = decoded_bits return np.reshape(decoded_blocks,np.size(decoded_blocks)).astype(int) def ser2ber(q,n,d,t,ps): """ Converts symbol error rate to bit error rate. Taken from Ziemer and Tranter page 650. Necessary when comparing different types of block codes. parameters ---------- q: size of the code alphabet for given modulation type (BPSK=2) n: number of channel bits d: distance (2e+1) where e is the number of correctable errors per code word. For hamming codes, e=1, so d=3. t: number of correctable errors per code word ps: symbol error probability vector returns ------- ber: bit error rate """ lnps = len(ps) # len of error vector ber = np.zeros(lnps) # inialize output vector for k in range(0,lnps): # iterate error vector ser = ps[k] # channel symbol error rate sum1 = 0 # initialize sums sum2 = 0 for i in range(t+1,d+1): term = special.comb(n,i)*(ser**i)*((1-ser))**(n-i) sum1 = sum1 + term for i in range(d+1,n+1): term = (i)*special.comb(n,i)*(ser**i)*((1-ser)**(n-i)) sum2 = sum2+term ber[k] = (q/(2*(q-1)))*((d/n)*sum1+(1/n)*sum2) return ber def block_single_error_Pb_bound(j,SNRdB,coded=True,M=2): """ Finds the bit error probability bounds according to Ziemer and Tranter page 656. parameters: ----------- j: number of parity bits used in single error correction block code SNRdB: Eb/N0 values in dB coded: Select single error correction code (True) or uncoded (False) M: modulation order returns: -------- Pb: bit error probability bound """ Pb = np.zeros_like(SNRdB) Ps = np.zeros_like(SNRdB) SNR = 10.**(SNRdB/10.) n = 2**j-1 k = n-j for i,SNRn in enumerate(SNR): if coded: # compute Hamming code Ps if M == 2: Ps[i] = q_fctn(np.sqrt(k * 2. * SNRn / n)) else: Ps[i] = 4./np.log2(M)*(1 - 1/np.sqrt(M))*\ np.gaussQ(np.sqrt(3*np.log2(M)/(M-1)*SNRn))/k else: # Compute Uncoded Pb if M == 2: Pb[i] = q_fctn(np.sqrt(2. * SNRn)) else: Pb[i] = 4./np.log2(M)*(1 - 1/np.sqrt(M))*\ np.gaussQ(np.sqrt(3*np.log2(M)/(M-1)*SNRn)) # Convert symbol error probability to bit error probability if coded: Pb = ser2ber(M,n,3,1,Ps) return Pb # .. ._.. .._ #
scikit-dsp-comm
/scikit-dsp-comm-2.0.3.tar.gz/scikit-dsp-comm-2.0.3/src/sk_dsp_comm/fec_block.py
fec_block.py
import numpy as np import scipy.special as special from .digitalcom import q_fctn from .fec_conv import binary from logging import getLogger log = getLogger(__name__) class FECHamming(object): """ Class responsible for creating hamming block codes and then encoding and decoding. Methods provided include hamm_gen, hamm_encoder(), hamm_decoder(). Parameters ---------- j: Hamming code order (in terms of parity bits) where n = 2^j-1, k = n-j, and the rate is k/n. Returns ------- Examples -------- Andrew Smit November 2018 """ def __init__(self,j): self.j = j self.G, self.H, self.R, self.n, self.k = self.hamm_gen(self.j) log.info('(%d,%d) hamming code object' %(self.n,self.k)) def hamm_gen(self,j): """ Generates parity check matrix (H) and generator matrix (G). Parameters ---------- j: Number of Hamming code parity bits with n = 2^j-1 and k = n-j returns ------- G: Systematic generator matrix with left-side identity matrix H: Systematic parity-check matrix with right-side identity matrix R: k x k identity matrix n: number of total bits/block k: number of source bits/block Andrew Smit November 2018 """ if(j < 3): raise ValueError('j must be > 2') # calculate codeword length n = 2**j-1 # calculate source bit length k = n-j # Allocate memory for Matrices G = np.zeros((k,n),dtype=int) H = np.zeros((j,n),dtype=int) P = np.zeros((j,k),dtype=int) R = np.zeros((k,n),dtype=int) # Encode parity-check matrix columns with binary 1-n for i in range(1,n+1): b = list(binary(i,j)) for m in range(0,len(b)): b[m] = int(b[m]) H[:,i-1] = np.array(b) # Reformat H to be systematic H1 = np.zeros((1,j),dtype=int) H2 = np.zeros((1,j),dtype=int) for i in range(0,j): idx1 = 2**i-1 idx2 = n-i-1 H1[0,:] = H[:,idx1] H2[0,:] = H[:,idx2] H[:,idx1] = H2 H[:,idx2] = H1 # Get parity matrix from H P = H[:,:k] # Use P to calcuate generator matrix P G[:,:k] = np.diag(np.ones(k)) G[:,k:] = P.T # Get k x k identity matrix R[:,:k] = np.diag(np.ones(k)) return G, H, R, n, k def hamm_encoder(self,x): """ Encodes input bit array x using hamming block code. parameters ---------- x: array of source bits to be encoded by block encoder. returns ------- codewords: array of code words generated by generator matrix G and input x. Andrew Smit November 2018 """ if(np.dtype(x[0]) != int): raise ValueError('Error: Invalid data type. Input must be a vector of ints') if(len(x) % self.k or len(x) < self.k): raise ValueError('Error: Invalid input vector length. Length must be a multiple of %d' %self.k) N_symbols = int(len(x)/self.k) codewords = np.zeros(N_symbols*self.n) x = np.reshape(x,(1,len(x))) for i in range(0,N_symbols): codewords[i*self.n:(i+1)*self.n] = np.matmul(x[:,i*self.k:(i+1)*self.k],self.G)%2 return codewords def hamm_decoder(self,codewords): """ Decode hamming encoded codewords. Make sure code words are of the appropriate length for the object. parameters --------- codewords: bit array of codewords returns ------- decoded_bits: bit array of decoded source bits Andrew Smit November 2018 """ if(np.dtype(codewords[0]) != int): raise ValueError('Error: Invalid data type. Input must be a vector of ints') if(len(codewords) % self.n or len(codewords) < self.n): raise ValueError('Error: Invalid input vector length. Length must be a multiple of %d' %self.n) # Calculate the number of symbols (codewords) in the input array N_symbols = int(len(codewords)/self.n) # Allocate memory for decoded sourcebits decoded_bits = np.zeros(N_symbols*self.k) # Loop through codewords to decode one block at a time codewords = np.reshape(codewords,(1,len(codewords))) for i in range(0,N_symbols): # find the syndrome of each codeword S = np.matmul(self.H,codewords[:,i*self.n:(i+1)*self.n].T) % 2 # convert binary syndrome to an integer bits = '' for m in range(0,len(S)): bit = str(int(S[m,:])) bits = bits + bit error_pos = int(bits,2) h_pos = self.H[:,error_pos-1] # Use the syndrome to find the position of an error within the block bits = '' for m in range(0,len(S)): bit = str(int(h_pos[m])) bits = bits + bit decoded_pos = int(bits,2)-1 # correct error if present if(error_pos): codewords[:,i*self.n+decoded_pos] = (codewords[:,i*self.n+decoded_pos] + 1) % 2 # Decode the corrected codeword decoded_bits[i*self.k:(i+1)*self.k] = np.matmul(self.R,codewords[:,i*self.n:(i+1)*self.n].T).T % 2 return decoded_bits.astype(int) class FECCyclic(object): """ Class responsible for creating cyclic block codes and then encoding and decoding. Methods provided include cyclic_encoder(), cyclic_decoder(). Parameters ---------- G: Generator polynomial used to create cyclic code object Suggested G values (from Ziemer and Peterson pg 430): j G ------------ 3 G = '1011' 4 G = '10011' 5 G = '101001' 6 G = '1100001' 7 G = '10100001' 8 G = '101110001' 9 G = '1000100001' 10 G = '10010000001' 11 G = '101000000001' 12 G = '1100101000001' 13 G = '11011000000001' 14 G = '110000100010001' 15 G = '1100000000000001' 16 G = '11010000000010001' 17 G = '100100000000000001' 18 G = '1000000100000000001' 19 G = '11100100000000000001' 20 G = '100100000000000000001' 21 G = '1010000000000000000001' 22 G = '11000000000000000000001' 23 G = '100001000000000000000001' 24 G = '1110000100000000000000001' Returns ------- Examples -------- Andrew Smit November 2018 """ def __init__(self,G='1011'): self.j = len(G)-1 self.n = 2**self.j - 1 self.k =self.n-self.j self.G = G if(G[0] == '0' or G[len(G)-1] == '0'): raise ValueError('Error: Invalid generator polynomial') log.info('(%d,%d) cyclic code object' %(self.n,self.k)) def cyclic_encoder(self,x,G='1011'): """ Encodes input bit array x using cyclic block code. parameters ---------- x: vector of source bits to be encoded by block encoder. Numpy array of integers expected. returns ------- codewords: vector of code words generated from input vector Andrew Smit November 2018 """ # Check block length if(len(x) % self.k or len(x) < self.k): raise ValueError('Error: Incomplete block in input array. Make sure input array length is a multiple of %d' %self.k) # Check data type of input vector if(np.dtype(x[0]) != int): raise ValueError('Error: Input array should be int data type') # Calculate number of blocks Num_blocks = int(len(x) / self.k) codewords = np.zeros((Num_blocks,self.n),dtype=int) x = np.reshape(x,(Num_blocks,self.k)) #print(x) for p in range(Num_blocks): S = np.zeros(len(self.G)) codeword = np.zeros(self.n) current_block = x[p,:] #print(current_block) for i in range(0,self.n): if(i < self.k): S[0] = current_block[i] S0temp = 0 for m in range(0,len(self.G)): if(self.G[m] == '1'): S0temp = S0temp + S[m] #print(j,S0temp,S[j]) S0temp = S0temp % 2 S = np.roll(S,1) codeword[i] = current_block[i] S[1] = S0temp else: out = 0 for m in range(1,len(self.G)): if(self.G[m] == '1'): out = out + S[m] codeword[i] = out % 2 S = np.roll(S,1) S[1] = 0 codewords[p,:] = codeword #print(codeword) codewords = np.reshape(codewords,np.size(codewords)) return codewords.astype(int) def cyclic_decoder(self,codewords): """ Decodes a vector of cyclic coded codewords. parameters ---------- codewords: vector of codewords to be decoded. Numpy array of integers expected. returns ------- decoded_blocks: vector of decoded bits Andrew Smit November 2018 """ # Check block length if(len(codewords) % self.n or len(codewords) < self.n): raise ValueError('Error: Incomplete coded block in input array. Make sure coded input array length is a multiple of %d' %self.n) # Check input data type if(np.dtype(codewords[0]) != int): raise ValueError('Error: Input array should be int data type') # Calculate number of blocks Num_blocks = int(len(codewords) / self.n) decoded_blocks = np.zeros((Num_blocks,self.k),dtype=int) codewords = np.reshape(codewords,(Num_blocks,self.n)) for p in range(Num_blocks): codeword = codewords[p,:] Ureg = np.zeros(self.n) S = np.zeros(len(self.G)) decoded_bits = np.zeros(self.k) output = np.zeros(self.n) for i in range(0,self.n): # Switch A closed B open Ureg = np.roll(Ureg,1) Ureg[0] = codeword[i] S0temp = 0 S[0] = codeword[i] for m in range(len(self.G)): if(self.G[m] == '1'): S0temp = S0temp + S[m] S0 = S S = np.roll(S,1) S[1] = S0temp % 2 for i in range(0,self.n): # Switch B closed A open Stemp = 0 for m in range(1,len(self.G)): if(self.G[m] == '1'): Stemp = Stemp + S[m] S = np.roll(S,1) S[1] = Stemp % 2 and_out = 1 for m in range(1,len(self.G)): if(m > 1): and_out = and_out and ((S[m]+1) % 2) else: and_out = and_out and S[m] output[i] = (and_out + Ureg[len(Ureg)-1]) % 2 Ureg = np.roll(Ureg,1) Ureg[0] = 0 decoded_bits = output[0:self.k].astype(int) decoded_blocks[p,:] = decoded_bits return np.reshape(decoded_blocks,np.size(decoded_blocks)).astype(int) def ser2ber(q,n,d,t,ps): """ Converts symbol error rate to bit error rate. Taken from Ziemer and Tranter page 650. Necessary when comparing different types of block codes. parameters ---------- q: size of the code alphabet for given modulation type (BPSK=2) n: number of channel bits d: distance (2e+1) where e is the number of correctable errors per code word. For hamming codes, e=1, so d=3. t: number of correctable errors per code word ps: symbol error probability vector returns ------- ber: bit error rate """ lnps = len(ps) # len of error vector ber = np.zeros(lnps) # inialize output vector for k in range(0,lnps): # iterate error vector ser = ps[k] # channel symbol error rate sum1 = 0 # initialize sums sum2 = 0 for i in range(t+1,d+1): term = special.comb(n,i)*(ser**i)*((1-ser))**(n-i) sum1 = sum1 + term for i in range(d+1,n+1): term = (i)*special.comb(n,i)*(ser**i)*((1-ser)**(n-i)) sum2 = sum2+term ber[k] = (q/(2*(q-1)))*((d/n)*sum1+(1/n)*sum2) return ber def block_single_error_Pb_bound(j,SNRdB,coded=True,M=2): """ Finds the bit error probability bounds according to Ziemer and Tranter page 656. parameters: ----------- j: number of parity bits used in single error correction block code SNRdB: Eb/N0 values in dB coded: Select single error correction code (True) or uncoded (False) M: modulation order returns: -------- Pb: bit error probability bound """ Pb = np.zeros_like(SNRdB) Ps = np.zeros_like(SNRdB) SNR = 10.**(SNRdB/10.) n = 2**j-1 k = n-j for i,SNRn in enumerate(SNR): if coded: # compute Hamming code Ps if M == 2: Ps[i] = q_fctn(np.sqrt(k * 2. * SNRn / n)) else: Ps[i] = 4./np.log2(M)*(1 - 1/np.sqrt(M))*\ np.gaussQ(np.sqrt(3*np.log2(M)/(M-1)*SNRn))/k else: # Compute Uncoded Pb if M == 2: Pb[i] = q_fctn(np.sqrt(2. * SNRn)) else: Pb[i] = 4./np.log2(M)*(1 - 1/np.sqrt(M))*\ np.gaussQ(np.sqrt(3*np.log2(M)/(M-1)*SNRn)) # Convert symbol error probability to bit error probability if coded: Pb = ser2ber(M,n,3,1,Ps) return Pb # .. ._.. .._ #
0.793306
0.450541
import numpy as np import scipy.signal as signal import matplotlib.pyplot as plt from logging import getLogger log = getLogger(__name__) def firwin_lpf(n_taps, fc, fs = 1.0): """ Design a windowed FIR lowpass filter in terms of passband critical frequencies f1 < f2 in Hz relative to sampling rate fs in Hz. The number of taps must be provided. Mark Wickert October 2016 """ return signal.firwin(n_taps, 2 * fc / fs) def firwin_bpf(n_taps, f1, f2, fs = 1.0, pass_zero=False): """ Design a windowed FIR bandpass filter in terms of passband critical frequencies f1 < f2 in Hz relative to sampling rate fs in Hz. The number of taps must be provided. Mark Wickert October 2016 """ return signal.firwin(n_taps, 2 * (f1, f2) / fs, pass_zero=pass_zero) def firwin_kaiser_lpf(f_pass, f_stop, d_stop, fs = 1.0, n_bump=0, status = True): """ Design an FIR lowpass filter using the sinc() kernel and a Kaiser window. The filter order is determined based on f_pass Hz, f_stop Hz, and the desired stopband attenuation d_stop in dB, all relative to a sampling rate of fs Hz. Note: the passband ripple cannot be set independent of the stopband attenuation. Mark Wickert October 2016 """ wc = 2*np.pi*(f_pass + f_stop)/2/fs delta_w = 2*np.pi*(f_stop - f_pass)/fs # Find the filter order M = np.ceil((d_stop - 8)/(2.285*delta_w)) # Adjust filter order up or down as needed M += n_bump N_taps = M + 1 # Obtain the Kaiser window beta = signal.kaiser_beta(d_stop) w_k = signal.kaiser(N_taps,beta) n = np.arange(N_taps) b_k = wc/np.pi*np.sinc(wc/np.pi*(n-M/2)) * w_k b_k /= np.sum(b_k) if status: log.info('Kaiser Win filter taps = %d.' % N_taps) return b_k def firwin_kaiser_hpf(f_stop, f_pass, d_stop, fs = 1.0, n_bump=0, status = True): """ Design an FIR highpass filter using the sinc() kernel and a Kaiser window. The filter order is determined based on f_pass Hz, f_stop Hz, and the desired stopband attenuation d_stop in dB, all relative to a sampling rate of fs Hz. Note: the passband ripple cannot be set independent of the stopband attenuation. Mark Wickert October 2016 """ # Transform HPF critical frequencies to lowpass equivalent f_pass_eq = fs/2. - f_pass f_stop_eq = fs/2. - f_stop # Design LPF equivalent wc = 2*np.pi*(f_pass_eq + f_stop_eq)/2/fs delta_w = 2*np.pi*(f_stop_eq - f_pass_eq)/fs # Find the filter order M = np.ceil((d_stop - 8)/(2.285*delta_w)) # Adjust filter order up or down as needed M += n_bump N_taps = M + 1 # Obtain the Kaiser window beta = signal.kaiser_beta(d_stop) w_k = signal.kaiser(N_taps,beta) n = np.arange(N_taps) b_k = wc/np.pi*np.sinc(wc/np.pi*(n-M/2)) * w_k b_k /= np.sum(b_k) # Transform LPF equivalent to HPF n = np.arange(len(b_k)) b_k *= (-1)**n if status: log.info('Kaiser Win filter taps = %d.' % N_taps) return b_k def firwin_kaiser_bpf(f_stop1, f_pass1, f_pass2, f_stop2, d_stop, fs = 1.0, n_bump=0, status = True): """ Design an FIR bandpass filter using the sinc() kernel and a Kaiser window. The filter order is determined based on f_stop1 Hz, f_pass1 Hz, f_pass2 Hz, f_stop2 Hz, and the desired stopband attenuation d_stop in dB for both stopbands, all relative to a sampling rate of fs Hz. Note: the passband ripple cannot be set independent of the stopband attenuation. Mark Wickert October 2016 """ # Design BPF starting from simple LPF equivalent # The upper and lower stopbands are assumed to have # the same attenuation level. The LPF equivalent critical # frequencies: f_pass = (f_pass2 - f_pass1)/2 f_stop = (f_stop2 - f_stop1)/2 # Continue to design equivalent LPF wc = 2*np.pi*(f_pass + f_stop)/2/fs delta_w = 2*np.pi*(f_stop - f_pass)/fs # Find the filter order M = np.ceil((d_stop - 8)/(2.285*delta_w)) # Adjust filter order up or down as needed M += n_bump N_taps = M + 1 # Obtain the Kaiser window beta = signal.kaiser_beta(d_stop) w_k = signal.kaiser(N_taps,beta) n = np.arange(N_taps) b_k = wc/np.pi*np.sinc(wc/np.pi*(n-M/2)) * w_k b_k /= np.sum(b_k) # Transform LPF to BPF f0 = (f_pass2 + f_pass1)/2 w0 = 2*np.pi*f0/fs n = np.arange(len(b_k)) b_k_bp = 2*b_k*np.cos(w0*(n-M/2)) if status: log.info('Kaiser Win filter taps = %d.' % N_taps) return b_k_bp def firwin_kaiser_bsf(f_stop1, f_pass1, f_pass2, f_stop2, d_stop, fs = 1.0, n_bump=0, status = True): """ Design an FIR bandstop filter using the sinc() kernel and a Kaiser window. The filter order is determined based on f_stop1 Hz, f_pass1 Hz, f_pass2 Hz, f_stop2 Hz, and the desired stopband attenuation d_stop in dB for both stopbands, all relative to a sampling rate of fs Hz. Note: The passband ripple cannot be set independent of the stopband attenuation. Note: The filter order is forced to be even (odd number of taps) so there is a center tap that can be used to form 1 - H_BPF. Mark Wickert October 2016 """ # First design a BPF starting from simple LPF equivalent # The upper and lower stopbands are assumed to have # the same attenuation level. The LPF equivalent critical # frequencies: f_pass = (f_pass2 - f_pass1)/2 f_stop = (f_stop2 - f_stop1)/2 # Continue to design equivalent LPF wc = 2*np.pi*(f_pass + f_stop)/2/fs delta_w = 2*np.pi*(f_stop - f_pass)/fs # Find the filter order M = np.ceil((d_stop - 8)/(2.285*delta_w)) # Adjust filter order up or down as needed M += n_bump # Make filter order even (odd number of taps) if ((M+1)/2.0-int((M+1)/2.0)) == 0: M += 1 N_taps = M + 1 # Obtain the Kaiser window beta = signal.kaiser_beta(d_stop) w_k = signal.kaiser(N_taps,beta) n = np.arange(N_taps) b_k = wc/np.pi*np.sinc(wc/np.pi*(n-M/2)) * w_k b_k /= np.sum(b_k) # Transform LPF to BPF f0 = (f_pass2 + f_pass1)/2 w0 = 2*np.pi*f0/fs n = np.arange(len(b_k)) b_k_bs = 2*b_k*np.cos(w0*(n-M/2)) # Transform BPF to BSF via 1 - BPF for odd N_taps b_k_bs = -b_k_bs b_k_bs[int(M/2)] += 1 if status: log.info('Kaiser Win filter taps = %d.' % N_taps) return b_k_bs def lowpass_order(f_pass, f_stop, dpass_dB, dstop_dB, fsamp = 1): """ Optimal FIR (equal ripple) Lowpass Order Determination Text reference: Ifeachor, Digital Signal Processing a Practical Approach, second edition, Prentice Hall, 2002. Journal paper reference: Herriman et al., Practical Design Rules for Optimum Finite Imulse Response Digitl Filters, Bell Syst. Tech. J., vol 52, pp. 769-799, July-Aug., 1973.IEEE, 1973. """ dpass = 1 - 10**(-dpass_dB/20) dstop = 10**(-dstop_dB/20) Df = (f_stop - f_pass)/fsamp a1 = 5.309e-3 a2 = 7.114e-2 a3 = -4.761e-1 a4 = -2.66e-3 a5 = -5.941e-1 a6 = -4.278e-1 Dinf = np.log10(dstop)*(a1*np.log10(dpass)**2 + a2*np.log10(dpass) + a3) \ + (a4*np.log10(dpass)**2 + a5*np.log10(dpass) + a6) f = 11.01217 + 0.51244*(np.log10(dpass) - np.log10(dstop)) N = Dinf/Df - f*Df + 1 ff = 2*np.array([0, f_pass, f_stop, fsamp/2])/fsamp aa = np.array([1, 1, 0, 0]) wts = np.array([1.0, dpass/dstop]) return int(N), ff, aa, wts def bandpass_order(f_stop1, f_pass1, f_pass2, f_stop2, dpass_dB, dstop_dB, fsamp = 1): """ Optimal FIR (equal ripple) Bandpass Order Determination Text reference: Ifeachor, Digital Signal Processing a Practical Approach, second edition, Prentice Hall, 2002. Journal paper reference: F. Mintzer & B. Liu, Practical Design Rules for Optimum FIR Bandpass Digital Filters, IEEE Transactions on Acoustics and Speech, pp. 204-206, April,1979. """ dpass = 1 - 10**(-dpass_dB/20) dstop = 10**(-dstop_dB/20) Df1 = (f_pass1 - f_stop1)/fsamp Df2 = (f_stop2 - f_pass2)/fsamp b1 = 0.01201 b2 = 0.09664 b3 = -0.51325 b4 = 0.00203 b5 = -0.5705 b6 = -0.44314 Df = min(Df1, Df2) Cinf = np.log10(dstop)*(b1*np.log10(dpass)**2 + b2*np.log10(dpass) + b3) \ + (b4*np.log10(dpass)**2 + b5*np.log10(dpass) + b6) g = -14.6*np.log10(dpass/dstop) - 16.9 N = Cinf/Df + g*Df + 1 ff = 2*np.array([0, f_stop1, f_pass1, f_pass2, f_stop2, fsamp/2])/fsamp aa = np.array([0, 0, 1, 1, 0, 0]) wts = np.array([dpass/dstop, 1, dpass/dstop]) return int(N), ff, aa, wts def bandstop_order(f_stop1, f_pass1, f_pass2, f_stop2, dpass_dB, dstop_dB, fsamp = 1): """ Optimal FIR (equal ripple) Bandstop Order Determination Text reference: Ifeachor, Digital Signal Processing a Practical Approach, second edition, Prentice Hall, 2002. Journal paper reference: F. Mintzer & B. Liu, Practical Design Rules for Optimum FIR Bandpass Digital Filters, IEEE Transactions on Acoustics and Speech, pp. 204-206, April,1979. """ dpass = 1 - 10**(-dpass_dB/20) dstop = 10**(-dstop_dB/20) Df1 = (f_pass1 - f_stop1)/fsamp Df2 = (f_stop2 - f_pass2)/fsamp b1 = 0.01201 b2 = 0.09664 b3 = -0.51325 b4 = 0.00203 b5 = -0.5705 b6 = -0.44314 Df = min(Df1, Df2) Cinf = np.log10(dstop)*(b1*np.log10(dpass)**2 + b2*np.log10(dpass) + b3) \ + (b4*np.log10(dpass)**2 + b5*np.log10(dpass) + b6) g = -14.6*np.log10(dpass/dstop) - 16.9 N = Cinf/Df + g*Df + 1 ff = 2*np.array([0, f_stop1, f_pass1, f_pass2, f_stop2, fsamp/2])/fsamp aa = np.array([1, 1, 0, 0, 1, 1]) wts = np.array([2, dpass/dstop, 2]) return int(N), ff, aa, wts def fir_remez_lpf(f_pass, f_stop, d_pass, d_stop, fs = 1.0, n_bump=5, status = True): """ Design an FIR lowpass filter using remez with order determination. The filter order is determined based on f_pass Hz, fstop Hz, and the desired passband ripple d_pass dB and stopband attenuation d_stop dB all relative to a sampling rate of fs Hz. Mark Wickert October 2016, updated October 2018 """ n, ff, aa, wts = lowpass_order(f_pass, f_stop, d_pass, d_stop, fsamp=fs) # Bump up the order by N_bump to bring down the final d_pass & d_stop N_taps = n N_taps += n_bump b = signal.remez(N_taps, ff, aa[0::2], wts,Hz=2) if status: log.info('Remez filter taps = %d.' % N_taps) return b def fir_remez_hpf(f_stop, f_pass, d_pass, d_stop, fs = 1.0, n_bump=5, status = True): """ Design an FIR highpass filter using remez with order determination. The filter order is determined based on f_pass Hz, fstop Hz, and the desired passband ripple d_pass dB and stopband attenuation d_stop dB all relative to a sampling rate of fs Hz. Mark Wickert October 2016, updated October 2018 """ # Transform HPF critical frequencies to lowpass equivalent f_pass_eq = fs/2. - f_pass f_stop_eq = fs/2. - f_stop # Design LPF equivalent n, ff, aa, wts = lowpass_order(f_pass_eq, f_stop_eq, d_pass, d_stop, fsamp=fs) # Bump up the order by N_bump to bring down the final d_pass & d_stop N_taps = n N_taps += n_bump b = signal.remez(N_taps, ff, aa[0::2], wts,Hz=2) # Transform LPF equivalent to HPF n = np.arange(len(b)) b *= (-1)**n if status: log.info('Remez filter taps = %d.' % N_taps) return b def fir_remez_bpf(f_stop1, f_pass1, f_pass2, f_stop2, d_pass, d_stop, fs = 1.0, n_bump=5, status = True): """ Design an FIR bandpass filter using remez with order determination. The filter order is determined based on f_stop1 Hz, f_pass1 Hz, f_pass2 Hz, f_stop2 Hz, and the desired passband ripple d_pass dB and stopband attenuation d_stop dB all relative to a sampling rate of fs Hz. Mark Wickert October 2016, updated October 2018 """ n, ff, aa, wts = bandpass_order(f_stop1, f_pass1, f_pass2, f_stop2, d_pass, d_stop, fsamp=fs) # Bump up the order by N_bump to bring down the final d_pass & d_stop N_taps = n N_taps += n_bump b = signal.remez(N_taps, ff, aa[0::2], wts,Hz=2) if status: log.info('Remez filter taps = %d.' % N_taps) return b def fir_remez_bsf(f_pass1, f_stop1, f_stop2, f_pass2, d_pass, d_stop, fs = 1.0, n_bump=5, status = True): """ Design an FIR bandstop filter using remez with order determination. The filter order is determined based on f_pass1 Hz, f_stop1 Hz, f_stop2 Hz, f_pass2 Hz, and the desired passband ripple d_pass dB and stopband attenuation d_stop dB all relative to a sampling rate of fs Hz. Mark Wickert October 2016, updated October 2018 """ n, ff, aa, wts = bandstop_order(f_pass1, f_stop1, f_stop2, f_pass2, d_pass, d_stop, fsamp=fs) # Bump up the order by N_bump to bring down the final d_pass & d_stop # Initially make sure the number of taps is even so N_bump needs to be odd if np.mod(n,2) != 0: n += 1 N_taps = n N_taps += n_bump b = signal.remez(N_taps, ff, aa[0::2], wts, Hz=2, maxiter = 25, grid_density = 16) if status: log.info('N_bump must be odd to maintain odd filter length') log.info('Remez filter taps = %d.' % N_taps) return b def freqz_resp_list(b, a=np.array([1]), mode = 'dB', fs=1.0, n_pts = 1024, fsize=(6, 4)): """ A method for displaying digital filter frequency response magnitude, phase, and group delay. A plot is produced using matplotlib freq_resp(self,mode = 'dB',Npts = 1024) A method for displaying the filter frequency response magnitude, phase, and group delay. A plot is produced using matplotlib freqz_resp(b,a=[1],mode = 'dB',Npts = 1024,fsize=(6,4)) b = ndarray of numerator coefficients a = ndarray of denominator coefficents mode = display mode: 'dB' magnitude, 'phase' in radians, or 'groupdelay_s' in samples and 'groupdelay_t' in sec, all versus frequency in Hz Npts = number of points to plot; default is 1024 fsize = figure size; defult is (6,4) inches Mark Wickert, January 2015 """ if type(b) == list: # We have a list of filters N_filt = len(b) f = np.arange(0, n_pts) / (2.0 * n_pts) for n in range(N_filt): w,H = signal.freqz(b[n],a[n],2*np.pi*f) if n == 0: plt.figure(figsize=fsize) if mode.lower() == 'db': plt.plot(f*fs,20*np.log10(np.abs(H))) if n == N_filt-1: plt.xlabel('Frequency (Hz)') plt.ylabel('Gain (dB)') plt.title('Frequency Response - Magnitude') elif mode.lower() == 'phase': plt.plot(f*fs,np.angle(H)) if n == N_filt-1: plt.xlabel('Frequency (Hz)') plt.ylabel('Phase (rad)') plt.title('Frequency Response - Phase') elif (mode.lower() == 'groupdelay_s') or (mode.lower() == 'groupdelay_t'): """ Notes ----- Since this calculation involves finding the derivative of the phase response, care must be taken at phase wrapping points and when the phase jumps by +/-pi, which occurs when the amplitude response changes sign. Since the amplitude response is zero when the sign changes, the jumps do not alter the group delay results. """ theta = np.unwrap(np.angle(H)) # Since theta for an FIR filter is likely to have many pi phase # jumps too, we unwrap a second time 2*theta and divide by 2 theta2 = np.unwrap(2*theta)/2. theta_dif = np.diff(theta2) f_diff = np.diff(f) Tg = -np.diff(theta2)/np.diff(w) # For gain almost zero set groupdelay = 0 idx = np.nonzero(np.ravel(20*np.log10(H[:-1]) < -400))[0] Tg[idx] = np.zeros(len(idx)) max_Tg = np.max(Tg) #print(max_Tg) if mode.lower() == 'groupdelay_t': max_Tg /= fs plt.plot(f[:-1]*fs,Tg/fs) plt.ylim([0,1.2*max_Tg]) else: plt.plot(f[:-1]*fs,Tg) plt.ylim([0,1.2*max_Tg]) if n == N_filt-1: plt.xlabel('Frequency (Hz)') if mode.lower() == 'groupdelay_t': plt.ylabel('Group Delay (s)') else: plt.ylabel('Group Delay (samples)') plt.title('Frequency Response - Group Delay') else: s1 = 'Error, mode must be "dB", "phase, ' s2 = '"groupdelay_s", or "groupdelay_t"' log.info(s1 + s2)
scikit-dsp-comm
/scikit-dsp-comm-2.0.3.tar.gz/scikit-dsp-comm-2.0.3/src/sk_dsp_comm/fir_design_helper.py
fir_design_helper.py
import numpy as np import scipy.signal as signal import matplotlib.pyplot as plt from logging import getLogger log = getLogger(__name__) def firwin_lpf(n_taps, fc, fs = 1.0): """ Design a windowed FIR lowpass filter in terms of passband critical frequencies f1 < f2 in Hz relative to sampling rate fs in Hz. The number of taps must be provided. Mark Wickert October 2016 """ return signal.firwin(n_taps, 2 * fc / fs) def firwin_bpf(n_taps, f1, f2, fs = 1.0, pass_zero=False): """ Design a windowed FIR bandpass filter in terms of passband critical frequencies f1 < f2 in Hz relative to sampling rate fs in Hz. The number of taps must be provided. Mark Wickert October 2016 """ return signal.firwin(n_taps, 2 * (f1, f2) / fs, pass_zero=pass_zero) def firwin_kaiser_lpf(f_pass, f_stop, d_stop, fs = 1.0, n_bump=0, status = True): """ Design an FIR lowpass filter using the sinc() kernel and a Kaiser window. The filter order is determined based on f_pass Hz, f_stop Hz, and the desired stopband attenuation d_stop in dB, all relative to a sampling rate of fs Hz. Note: the passband ripple cannot be set independent of the stopband attenuation. Mark Wickert October 2016 """ wc = 2*np.pi*(f_pass + f_stop)/2/fs delta_w = 2*np.pi*(f_stop - f_pass)/fs # Find the filter order M = np.ceil((d_stop - 8)/(2.285*delta_w)) # Adjust filter order up or down as needed M += n_bump N_taps = M + 1 # Obtain the Kaiser window beta = signal.kaiser_beta(d_stop) w_k = signal.kaiser(N_taps,beta) n = np.arange(N_taps) b_k = wc/np.pi*np.sinc(wc/np.pi*(n-M/2)) * w_k b_k /= np.sum(b_k) if status: log.info('Kaiser Win filter taps = %d.' % N_taps) return b_k def firwin_kaiser_hpf(f_stop, f_pass, d_stop, fs = 1.0, n_bump=0, status = True): """ Design an FIR highpass filter using the sinc() kernel and a Kaiser window. The filter order is determined based on f_pass Hz, f_stop Hz, and the desired stopband attenuation d_stop in dB, all relative to a sampling rate of fs Hz. Note: the passband ripple cannot be set independent of the stopband attenuation. Mark Wickert October 2016 """ # Transform HPF critical frequencies to lowpass equivalent f_pass_eq = fs/2. - f_pass f_stop_eq = fs/2. - f_stop # Design LPF equivalent wc = 2*np.pi*(f_pass_eq + f_stop_eq)/2/fs delta_w = 2*np.pi*(f_stop_eq - f_pass_eq)/fs # Find the filter order M = np.ceil((d_stop - 8)/(2.285*delta_w)) # Adjust filter order up or down as needed M += n_bump N_taps = M + 1 # Obtain the Kaiser window beta = signal.kaiser_beta(d_stop) w_k = signal.kaiser(N_taps,beta) n = np.arange(N_taps) b_k = wc/np.pi*np.sinc(wc/np.pi*(n-M/2)) * w_k b_k /= np.sum(b_k) # Transform LPF equivalent to HPF n = np.arange(len(b_k)) b_k *= (-1)**n if status: log.info('Kaiser Win filter taps = %d.' % N_taps) return b_k def firwin_kaiser_bpf(f_stop1, f_pass1, f_pass2, f_stop2, d_stop, fs = 1.0, n_bump=0, status = True): """ Design an FIR bandpass filter using the sinc() kernel and a Kaiser window. The filter order is determined based on f_stop1 Hz, f_pass1 Hz, f_pass2 Hz, f_stop2 Hz, and the desired stopband attenuation d_stop in dB for both stopbands, all relative to a sampling rate of fs Hz. Note: the passband ripple cannot be set independent of the stopband attenuation. Mark Wickert October 2016 """ # Design BPF starting from simple LPF equivalent # The upper and lower stopbands are assumed to have # the same attenuation level. The LPF equivalent critical # frequencies: f_pass = (f_pass2 - f_pass1)/2 f_stop = (f_stop2 - f_stop1)/2 # Continue to design equivalent LPF wc = 2*np.pi*(f_pass + f_stop)/2/fs delta_w = 2*np.pi*(f_stop - f_pass)/fs # Find the filter order M = np.ceil((d_stop - 8)/(2.285*delta_w)) # Adjust filter order up or down as needed M += n_bump N_taps = M + 1 # Obtain the Kaiser window beta = signal.kaiser_beta(d_stop) w_k = signal.kaiser(N_taps,beta) n = np.arange(N_taps) b_k = wc/np.pi*np.sinc(wc/np.pi*(n-M/2)) * w_k b_k /= np.sum(b_k) # Transform LPF to BPF f0 = (f_pass2 + f_pass1)/2 w0 = 2*np.pi*f0/fs n = np.arange(len(b_k)) b_k_bp = 2*b_k*np.cos(w0*(n-M/2)) if status: log.info('Kaiser Win filter taps = %d.' % N_taps) return b_k_bp def firwin_kaiser_bsf(f_stop1, f_pass1, f_pass2, f_stop2, d_stop, fs = 1.0, n_bump=0, status = True): """ Design an FIR bandstop filter using the sinc() kernel and a Kaiser window. The filter order is determined based on f_stop1 Hz, f_pass1 Hz, f_pass2 Hz, f_stop2 Hz, and the desired stopband attenuation d_stop in dB for both stopbands, all relative to a sampling rate of fs Hz. Note: The passband ripple cannot be set independent of the stopband attenuation. Note: The filter order is forced to be even (odd number of taps) so there is a center tap that can be used to form 1 - H_BPF. Mark Wickert October 2016 """ # First design a BPF starting from simple LPF equivalent # The upper and lower stopbands are assumed to have # the same attenuation level. The LPF equivalent critical # frequencies: f_pass = (f_pass2 - f_pass1)/2 f_stop = (f_stop2 - f_stop1)/2 # Continue to design equivalent LPF wc = 2*np.pi*(f_pass + f_stop)/2/fs delta_w = 2*np.pi*(f_stop - f_pass)/fs # Find the filter order M = np.ceil((d_stop - 8)/(2.285*delta_w)) # Adjust filter order up or down as needed M += n_bump # Make filter order even (odd number of taps) if ((M+1)/2.0-int((M+1)/2.0)) == 0: M += 1 N_taps = M + 1 # Obtain the Kaiser window beta = signal.kaiser_beta(d_stop) w_k = signal.kaiser(N_taps,beta) n = np.arange(N_taps) b_k = wc/np.pi*np.sinc(wc/np.pi*(n-M/2)) * w_k b_k /= np.sum(b_k) # Transform LPF to BPF f0 = (f_pass2 + f_pass1)/2 w0 = 2*np.pi*f0/fs n = np.arange(len(b_k)) b_k_bs = 2*b_k*np.cos(w0*(n-M/2)) # Transform BPF to BSF via 1 - BPF for odd N_taps b_k_bs = -b_k_bs b_k_bs[int(M/2)] += 1 if status: log.info('Kaiser Win filter taps = %d.' % N_taps) return b_k_bs def lowpass_order(f_pass, f_stop, dpass_dB, dstop_dB, fsamp = 1): """ Optimal FIR (equal ripple) Lowpass Order Determination Text reference: Ifeachor, Digital Signal Processing a Practical Approach, second edition, Prentice Hall, 2002. Journal paper reference: Herriman et al., Practical Design Rules for Optimum Finite Imulse Response Digitl Filters, Bell Syst. Tech. J., vol 52, pp. 769-799, July-Aug., 1973.IEEE, 1973. """ dpass = 1 - 10**(-dpass_dB/20) dstop = 10**(-dstop_dB/20) Df = (f_stop - f_pass)/fsamp a1 = 5.309e-3 a2 = 7.114e-2 a3 = -4.761e-1 a4 = -2.66e-3 a5 = -5.941e-1 a6 = -4.278e-1 Dinf = np.log10(dstop)*(a1*np.log10(dpass)**2 + a2*np.log10(dpass) + a3) \ + (a4*np.log10(dpass)**2 + a5*np.log10(dpass) + a6) f = 11.01217 + 0.51244*(np.log10(dpass) - np.log10(dstop)) N = Dinf/Df - f*Df + 1 ff = 2*np.array([0, f_pass, f_stop, fsamp/2])/fsamp aa = np.array([1, 1, 0, 0]) wts = np.array([1.0, dpass/dstop]) return int(N), ff, aa, wts def bandpass_order(f_stop1, f_pass1, f_pass2, f_stop2, dpass_dB, dstop_dB, fsamp = 1): """ Optimal FIR (equal ripple) Bandpass Order Determination Text reference: Ifeachor, Digital Signal Processing a Practical Approach, second edition, Prentice Hall, 2002. Journal paper reference: F. Mintzer & B. Liu, Practical Design Rules for Optimum FIR Bandpass Digital Filters, IEEE Transactions on Acoustics and Speech, pp. 204-206, April,1979. """ dpass = 1 - 10**(-dpass_dB/20) dstop = 10**(-dstop_dB/20) Df1 = (f_pass1 - f_stop1)/fsamp Df2 = (f_stop2 - f_pass2)/fsamp b1 = 0.01201 b2 = 0.09664 b3 = -0.51325 b4 = 0.00203 b5 = -0.5705 b6 = -0.44314 Df = min(Df1, Df2) Cinf = np.log10(dstop)*(b1*np.log10(dpass)**2 + b2*np.log10(dpass) + b3) \ + (b4*np.log10(dpass)**2 + b5*np.log10(dpass) + b6) g = -14.6*np.log10(dpass/dstop) - 16.9 N = Cinf/Df + g*Df + 1 ff = 2*np.array([0, f_stop1, f_pass1, f_pass2, f_stop2, fsamp/2])/fsamp aa = np.array([0, 0, 1, 1, 0, 0]) wts = np.array([dpass/dstop, 1, dpass/dstop]) return int(N), ff, aa, wts def bandstop_order(f_stop1, f_pass1, f_pass2, f_stop2, dpass_dB, dstop_dB, fsamp = 1): """ Optimal FIR (equal ripple) Bandstop Order Determination Text reference: Ifeachor, Digital Signal Processing a Practical Approach, second edition, Prentice Hall, 2002. Journal paper reference: F. Mintzer & B. Liu, Practical Design Rules for Optimum FIR Bandpass Digital Filters, IEEE Transactions on Acoustics and Speech, pp. 204-206, April,1979. """ dpass = 1 - 10**(-dpass_dB/20) dstop = 10**(-dstop_dB/20) Df1 = (f_pass1 - f_stop1)/fsamp Df2 = (f_stop2 - f_pass2)/fsamp b1 = 0.01201 b2 = 0.09664 b3 = -0.51325 b4 = 0.00203 b5 = -0.5705 b6 = -0.44314 Df = min(Df1, Df2) Cinf = np.log10(dstop)*(b1*np.log10(dpass)**2 + b2*np.log10(dpass) + b3) \ + (b4*np.log10(dpass)**2 + b5*np.log10(dpass) + b6) g = -14.6*np.log10(dpass/dstop) - 16.9 N = Cinf/Df + g*Df + 1 ff = 2*np.array([0, f_stop1, f_pass1, f_pass2, f_stop2, fsamp/2])/fsamp aa = np.array([1, 1, 0, 0, 1, 1]) wts = np.array([2, dpass/dstop, 2]) return int(N), ff, aa, wts def fir_remez_lpf(f_pass, f_stop, d_pass, d_stop, fs = 1.0, n_bump=5, status = True): """ Design an FIR lowpass filter using remez with order determination. The filter order is determined based on f_pass Hz, fstop Hz, and the desired passband ripple d_pass dB and stopband attenuation d_stop dB all relative to a sampling rate of fs Hz. Mark Wickert October 2016, updated October 2018 """ n, ff, aa, wts = lowpass_order(f_pass, f_stop, d_pass, d_stop, fsamp=fs) # Bump up the order by N_bump to bring down the final d_pass & d_stop N_taps = n N_taps += n_bump b = signal.remez(N_taps, ff, aa[0::2], wts,Hz=2) if status: log.info('Remez filter taps = %d.' % N_taps) return b def fir_remez_hpf(f_stop, f_pass, d_pass, d_stop, fs = 1.0, n_bump=5, status = True): """ Design an FIR highpass filter using remez with order determination. The filter order is determined based on f_pass Hz, fstop Hz, and the desired passband ripple d_pass dB and stopband attenuation d_stop dB all relative to a sampling rate of fs Hz. Mark Wickert October 2016, updated October 2018 """ # Transform HPF critical frequencies to lowpass equivalent f_pass_eq = fs/2. - f_pass f_stop_eq = fs/2. - f_stop # Design LPF equivalent n, ff, aa, wts = lowpass_order(f_pass_eq, f_stop_eq, d_pass, d_stop, fsamp=fs) # Bump up the order by N_bump to bring down the final d_pass & d_stop N_taps = n N_taps += n_bump b = signal.remez(N_taps, ff, aa[0::2], wts,Hz=2) # Transform LPF equivalent to HPF n = np.arange(len(b)) b *= (-1)**n if status: log.info('Remez filter taps = %d.' % N_taps) return b def fir_remez_bpf(f_stop1, f_pass1, f_pass2, f_stop2, d_pass, d_stop, fs = 1.0, n_bump=5, status = True): """ Design an FIR bandpass filter using remez with order determination. The filter order is determined based on f_stop1 Hz, f_pass1 Hz, f_pass2 Hz, f_stop2 Hz, and the desired passband ripple d_pass dB and stopband attenuation d_stop dB all relative to a sampling rate of fs Hz. Mark Wickert October 2016, updated October 2018 """ n, ff, aa, wts = bandpass_order(f_stop1, f_pass1, f_pass2, f_stop2, d_pass, d_stop, fsamp=fs) # Bump up the order by N_bump to bring down the final d_pass & d_stop N_taps = n N_taps += n_bump b = signal.remez(N_taps, ff, aa[0::2], wts,Hz=2) if status: log.info('Remez filter taps = %d.' % N_taps) return b def fir_remez_bsf(f_pass1, f_stop1, f_stop2, f_pass2, d_pass, d_stop, fs = 1.0, n_bump=5, status = True): """ Design an FIR bandstop filter using remez with order determination. The filter order is determined based on f_pass1 Hz, f_stop1 Hz, f_stop2 Hz, f_pass2 Hz, and the desired passband ripple d_pass dB and stopband attenuation d_stop dB all relative to a sampling rate of fs Hz. Mark Wickert October 2016, updated October 2018 """ n, ff, aa, wts = bandstop_order(f_pass1, f_stop1, f_stop2, f_pass2, d_pass, d_stop, fsamp=fs) # Bump up the order by N_bump to bring down the final d_pass & d_stop # Initially make sure the number of taps is even so N_bump needs to be odd if np.mod(n,2) != 0: n += 1 N_taps = n N_taps += n_bump b = signal.remez(N_taps, ff, aa[0::2], wts, Hz=2, maxiter = 25, grid_density = 16) if status: log.info('N_bump must be odd to maintain odd filter length') log.info('Remez filter taps = %d.' % N_taps) return b def freqz_resp_list(b, a=np.array([1]), mode = 'dB', fs=1.0, n_pts = 1024, fsize=(6, 4)): """ A method for displaying digital filter frequency response magnitude, phase, and group delay. A plot is produced using matplotlib freq_resp(self,mode = 'dB',Npts = 1024) A method for displaying the filter frequency response magnitude, phase, and group delay. A plot is produced using matplotlib freqz_resp(b,a=[1],mode = 'dB',Npts = 1024,fsize=(6,4)) b = ndarray of numerator coefficients a = ndarray of denominator coefficents mode = display mode: 'dB' magnitude, 'phase' in radians, or 'groupdelay_s' in samples and 'groupdelay_t' in sec, all versus frequency in Hz Npts = number of points to plot; default is 1024 fsize = figure size; defult is (6,4) inches Mark Wickert, January 2015 """ if type(b) == list: # We have a list of filters N_filt = len(b) f = np.arange(0, n_pts) / (2.0 * n_pts) for n in range(N_filt): w,H = signal.freqz(b[n],a[n],2*np.pi*f) if n == 0: plt.figure(figsize=fsize) if mode.lower() == 'db': plt.plot(f*fs,20*np.log10(np.abs(H))) if n == N_filt-1: plt.xlabel('Frequency (Hz)') plt.ylabel('Gain (dB)') plt.title('Frequency Response - Magnitude') elif mode.lower() == 'phase': plt.plot(f*fs,np.angle(H)) if n == N_filt-1: plt.xlabel('Frequency (Hz)') plt.ylabel('Phase (rad)') plt.title('Frequency Response - Phase') elif (mode.lower() == 'groupdelay_s') or (mode.lower() == 'groupdelay_t'): """ Notes ----- Since this calculation involves finding the derivative of the phase response, care must be taken at phase wrapping points and when the phase jumps by +/-pi, which occurs when the amplitude response changes sign. Since the amplitude response is zero when the sign changes, the jumps do not alter the group delay results. """ theta = np.unwrap(np.angle(H)) # Since theta for an FIR filter is likely to have many pi phase # jumps too, we unwrap a second time 2*theta and divide by 2 theta2 = np.unwrap(2*theta)/2. theta_dif = np.diff(theta2) f_diff = np.diff(f) Tg = -np.diff(theta2)/np.diff(w) # For gain almost zero set groupdelay = 0 idx = np.nonzero(np.ravel(20*np.log10(H[:-1]) < -400))[0] Tg[idx] = np.zeros(len(idx)) max_Tg = np.max(Tg) #print(max_Tg) if mode.lower() == 'groupdelay_t': max_Tg /= fs plt.plot(f[:-1]*fs,Tg/fs) plt.ylim([0,1.2*max_Tg]) else: plt.plot(f[:-1]*fs,Tg) plt.ylim([0,1.2*max_Tg]) if n == N_filt-1: plt.xlabel('Frequency (Hz)') if mode.lower() == 'groupdelay_t': plt.ylabel('Group Delay (s)') else: plt.ylabel('Group Delay (samples)') plt.title('Frequency Response - Group Delay') else: s1 = 'Error, mode must be "dB", "phase, ' s2 = '"groupdelay_s", or "groupdelay_t"' log.info(s1 + s2)
0.749912
0.37088
import numpy as np import scipy.signal as signal import matplotlib.pyplot as plt from logging import getLogger log = getLogger(__name__) def IIR_lpf(f_pass, f_stop, Ripple_pass, Atten_stop, fs = 1.00, ftype = 'butter', status = True): """ Design an IIR lowpass filter using scipy.signal.iirdesign. The filter order is determined based on f_pass Hz, f_stop Hz, and the desired stopband attenuation d_stop in dB, all relative to a sampling rate of fs Hz. Parameters ---------- f_pass : Passband critical frequency in Hz f_stop : Stopband critical frequency in Hz Ripple_pass : Filter gain in dB at f_pass Atten_stop : Filter attenuation in dB at f_stop fs : Sampling rate in Hz ftype : Analog prototype from 'butter' 'cheby1', 'cheby2', 'ellip', and 'bessel' Returns ------- b : ndarray of the numerator coefficients a : ndarray of the denominator coefficients sos : 2D ndarray of second-order section coefficients Notes ----- Additionally a text string telling the user the filter order is written to the console, e.g., IIR cheby1 order = 8. Examples -------- >>> fs = 48000 >>> f_pass = 5000 >>> f_stop = 8000 >>> b_but,a_but,sos_but = IIR_lpf(f_pass,f_stop,0.5,60,fs,'butter') >>> b_cheb1,a_cheb1,sos_cheb1 = IIR_lpf(f_pass,f_stop,0.5,60,fs,'cheby1') >>> b_cheb2,a_cheb2,sos_cheb2 = IIR_lpf(f_pass,f_stop,0.5,60,fs,'cheby2') >>> b_elli,a_elli,sos_elli = IIR_lpf(f_pass,f_stop,0.5,60,fs,'ellip') Mark Wickert October 2016 """ b,a = signal.iirdesign(2*float(f_pass)/fs, 2*float(f_stop)/fs, Ripple_pass, Atten_stop, ftype = ftype, output='ba') sos = signal.iirdesign(2*float(f_pass)/fs, 2*float(f_stop)/fs, Ripple_pass, Atten_stop, ftype = ftype, output='sos') tag = 'IIR ' + ftype + ' order' if status: log.info('%s = %d.' % (tag,len(a)-1)) return b, a, sos def IIR_hpf(f_stop, f_pass, Ripple_pass, Atten_stop, fs = 1.00, ftype = 'butter', status = True): """ Design an IIR highpass filter using scipy.signal.iirdesign. The filter order is determined based on f_pass Hz, f_stop Hz, and the desired stopband attenuation d_stop in dB, all relative to a sampling rate of fs Hz. Parameters ---------- f_stop : f_pass : Ripple_pass : Atten_stop : fs : sampling rate in Hz ftype : Analog prototype from 'butter' 'cheby1', 'cheby2', 'ellip', and 'bessel' Returns ------- b : ndarray of the numerator coefficients a : ndarray of the denominator coefficients sos : 2D ndarray of second-order section coefficients Examples -------- >>> fs = 48000 >>> f_pass = 8000 >>> f_stop = 5000 >>> b_but,a_but,sos_but = IIR_hpf(f_stop,f_pass,0.5,60,fs,'butter') >>> b_cheb1,a_cheb1,sos_cheb1 = IIR_hpf(f_stop,f_pass,0.5,60,fs,'cheby1') >>> b_cheb2,a_cheb2,sos_cheb2 = IIR_hpf(f_stop,f_pass,0.5,60,fs,'cheby2') >>> b_elli,a_elli,sos_elli = IIR_hpf(f_stop,f_pass,0.5,60,fs,'ellip') Mark Wickert October 2016 """ b,a = signal.iirdesign(2*float(f_pass)/fs, 2*float(f_stop)/fs, Ripple_pass, Atten_stop, ftype = ftype, output='ba') sos = signal.iirdesign(2*float(f_pass)/fs, 2*float(f_stop)/fs, Ripple_pass, Atten_stop, ftype =ftype, output='sos') tag = 'IIR ' + ftype + ' order' if status: log.info('%s = %d.' % (tag,len(a)-1)) return b, a, sos def IIR_bpf(f_stop1, f_pass1, f_pass2, f_stop2, Ripple_pass, Atten_stop, fs = 1.00, ftype = 'butter', status = True): """ Design an IIR bandpass filter using scipy.signal.iirdesign. The filter order is determined based on f_pass Hz, f_stop Hz, and the desired stopband attenuation d_stop in dB, all relative to a sampling rate of fs Hz. Parameters ---------- f_stop1 : ndarray of the numerator coefficients f_pass : ndarray of the denominator coefficients Ripple_pass : Atten_stop : fs : sampling rate in Hz ftype : Analog prototype from 'butter' 'cheby1', 'cheby2', 'ellip', and 'bessel' Returns ------- b : ndarray of the numerator coefficients a : ndarray of the denominator coefficients sos : 2D ndarray of second-order section coefficients Examples -------- >>> fs = 48000 >>> f_pass = 8000 >>> f_stop = 5000 >>> b_but,a_but,sos_but = IIR_hpf(f_stop,f_pass,0.5,60,fs,'butter') >>> b_cheb1,a_cheb1,sos_cheb1 = IIR_hpf(f_stop,f_pass,0.5,60,fs,'cheby1') >>> b_cheb2,a_cheb2,sos_cheb2 = IIR_hpf(f_stop,f_pass,0.5,60,fs,'cheby2') >>> b_elli,a_elli,sos_elli = IIR_hpf(f_stop,f_pass,0.5,60,fs,'ellip') Mark Wickert October 2016 """ b,a = signal.iirdesign([2*float(f_pass1)/fs, 2*float(f_pass2)/fs], [2*float(f_stop1)/fs, 2*float(f_stop2)/fs], Ripple_pass, Atten_stop, ftype = ftype, output='ba') sos = signal.iirdesign([2*float(f_pass1)/fs, 2*float(f_pass2)/fs], [2*float(f_stop1)/fs, 2*float(f_stop2)/fs], Ripple_pass, Atten_stop, ftype =ftype, output='sos') tag = 'IIR ' + ftype + ' order' if status: log.info('%s = %d.' % (tag,len(a)-1)) return b, a, sos def IIR_bsf(f_pass1, f_stop1, f_stop2, f_pass2, Ripple_pass, Atten_stop, fs = 1.00, ftype = 'butter', status = True): """ Design an IIR bandstop filter using scipy.signal.iirdesign. The filter order is determined based on f_pass Hz, f_stop Hz, and the desired stopband attenuation d_stop in dB, all relative to a sampling rate of fs Hz. Mark Wickert October 2016 """ b,a = signal.iirdesign([2*float(f_pass1)/fs, 2*float(f_pass2)/fs], [2*float(f_stop1)/fs, 2*float(f_stop2)/fs], Ripple_pass, Atten_stop, ftype = ftype, output='ba') sos = signal.iirdesign([2*float(f_pass1)/fs, 2*float(f_pass2)/fs], [2*float(f_stop1)/fs, 2*float(f_stop2)/fs], Ripple_pass, Atten_stop, ftype =ftype, output='sos') tag = 'IIR ' + ftype + ' order' if status: log.info('%s = %d.' % (tag,len(a)-1)) return b, a, sos def freqz_resp_list(b,a=np.array([1]),mode = 'dB',fs=1.0,Npts = 1024,fsize=(6,4)): """ A method for displaying digital filter frequency response magnitude, phase, and group delay. A plot is produced using matplotlib freq_resp(self,mode = 'dB',Npts = 1024) A method for displaying the filter frequency response magnitude, phase, and group delay. A plot is produced using matplotlib freqz_resp(b,a=[1],mode = 'dB',Npts = 1024,fsize=(6,4)) b = ndarray of numerator coefficients a = ndarray of denominator coefficents mode = display mode: 'dB' magnitude, 'phase' in radians, or 'groupdelay_s' in samples and 'groupdelay_t' in sec, all versus frequency in Hz Npts = number of points to plot; default is 1024 fsize = figure size; defult is (6,4) inches Mark Wickert, January 2015 """ if type(b) == list: # We have a list of filters N_filt = len(b) f = np.arange(0,Npts)/(2.0*Npts) for n in range(N_filt): w,H = signal.freqz(b[n],a[n],2*np.pi*f) if n == 0: plt.figure(figsize=fsize) if mode.lower() == 'db': plt.plot(f*fs,20*np.log10(np.abs(H))) if n == N_filt-1: plt.xlabel('Frequency (Hz)') plt.ylabel('Gain (dB)') plt.title('Frequency Response - Magnitude') elif mode.lower() == 'phase': plt.plot(f*fs,np.angle(H)) if n == N_filt-1: plt.xlabel('Frequency (Hz)') plt.ylabel('Phase (rad)') plt.title('Frequency Response - Phase') elif (mode.lower() == 'groupdelay_s') or (mode.lower() == 'groupdelay_t'): """ Notes ----- Since this calculation involves finding the derivative of the phase response, care must be taken at phase wrapping points and when the phase jumps by +/-pi, which occurs when the amplitude response changes sign. Since the amplitude response is zero when the sign changes, the jumps do not alter the group delay results. """ theta = np.unwrap(np.angle(H)) # Since theta for an FIR filter is likely to have many pi phase # jumps too, we unwrap a second time 2*theta and divide by 2 theta2 = np.unwrap(2*theta)/2. theta_dif = np.diff(theta2) f_diff = np.diff(f) Tg = -np.diff(theta2)/np.diff(w) # For gain almost zero set groupdelay = 0 idx = np.nonzero(np.ravel(20*np.log10(H[:-1]) < -400))[0] Tg[idx] = np.zeros(len(idx)) max_Tg = np.max(Tg) #print(max_Tg) if mode.lower() == 'groupdelay_t': max_Tg /= fs plt.plot(f[:-1]*fs,Tg/fs) plt.ylim([0,1.2*max_Tg]) else: plt.plot(f[:-1]*fs,Tg) plt.ylim([0,1.2*max_Tg]) if n == N_filt-1: plt.xlabel('Frequency (Hz)') if mode.lower() == 'groupdelay_t': plt.ylabel('Group Delay (s)') else: plt.ylabel('Group Delay (samples)') plt.title('Frequency Response - Group Delay') else: s1 = 'Error, mode must be "dB", "phase, ' s2 = '"groupdelay_s", or "groupdelay_t"' log.info(s1 + s2) def freqz_cas(sos,w): """ Cascade frequency response Mark Wickert October 2016 """ Ns,Mcol = sos.shape w,Hcas = signal.freqz(sos[0,:3],sos[0,3:],w) for k in range(1,Ns): w,Htemp = signal.freqz(sos[k,:3],sos[k,3:],w) Hcas *= Htemp return w, Hcas def freqz_resp_cas_list(sos, mode = 'dB', fs=1.0, n_pts=1024, fsize=(6, 4)): """ A method for displaying cascade digital filter form frequency response magnitude, phase, and group delay. A plot is produced using matplotlib freq_resp(self,mode = 'dB',Npts = 1024) A method for displaying the filter frequency response magnitude, phase, and group delay. A plot is produced using matplotlib freqz_resp(b,a=[1],mode = 'dB',Npts = 1024,fsize=(6,4)) b = ndarray of numerator coefficients a = ndarray of denominator coefficents mode = display mode: 'dB' magnitude, 'phase' in radians, or 'groupdelay_s' in samples and 'groupdelay_t' in sec, all versus frequency in Hz Npts = number of points to plot; default is 1024 fsize = figure size; defult is (6,4) inches Mark Wickert, January 2015 """ if type(sos) == list: # We have a list of filters N_filt = len(sos) f = np.arange(0, n_pts) / (2.0 * n_pts) for n in range(N_filt): w,H = freqz_cas(sos[n],2*np.pi*f) if n == 0: plt.figure(figsize=fsize) if mode.lower() == 'db': plt.plot(f*fs,20*np.log10(np.abs(H))) if n == N_filt-1: plt.xlabel('Frequency (Hz)') plt.ylabel('Gain (dB)') plt.title('Frequency Response - Magnitude') elif mode.lower() == 'phase': plt.plot(f*fs,np.angle(H)) if n == N_filt-1: plt.xlabel('Frequency (Hz)') plt.ylabel('Phase (rad)') plt.title('Frequency Response - Phase') elif (mode.lower() == 'groupdelay_s') or (mode.lower() == 'groupdelay_t'): """ Notes ----- Since this calculation involves finding the derivative of the phase response, care must be taken at phase wrapping points and when the phase jumps by +/-pi, which occurs when the amplitude response changes sign. Since the amplitude response is zero when the sign changes, the jumps do not alter the group delay results. """ theta = np.unwrap(np.angle(H)) # Since theta for an FIR filter is likely to have many pi phase # jumps too, we unwrap a second time 2*theta and divide by 2 theta2 = np.unwrap(2*theta)/2. theta_dif = np.diff(theta2) f_diff = np.diff(f) Tg = -np.diff(theta2)/np.diff(w) # For gain almost zero set groupdelay = 0 idx = np.nonzero(np.ravel(20*np.log10(H[:-1]) < -400))[0] Tg[idx] = np.zeros(len(idx)) max_Tg = np.max(Tg) #print(max_Tg) if mode.lower() == 'groupdelay_t': max_Tg /= fs plt.plot(f[:-1]*fs,Tg/fs) plt.ylim([0,1.2*max_Tg]) else: plt.plot(f[:-1]*fs,Tg) plt.ylim([0,1.2*max_Tg]) if n == N_filt-1: plt.xlabel('Frequency (Hz)') if mode.lower() == 'groupdelay_t': plt.ylabel('Group Delay (s)') else: plt.ylabel('Group Delay (samples)') plt.title('Frequency Response - Group Delay') else: s1 = 'Error, mode must be "dB", "phase, ' s2 = '"groupdelay_s", or "groupdelay_t"' log.info(s1 + s2) def unique_cpx_roots(rlist,tol = 0.001): """ The average of the root values is used when multiplicity is greater than one. Mark Wickert October 2016 """ uniq = [rlist[0]] mult = [1] for k in range(1,len(rlist)): N_uniq = len(uniq) for m in range(N_uniq): if abs(rlist[k]-uniq[m]) <= tol: mult[m] += 1 uniq[m] = (uniq[m]*(mult[m]-1) + rlist[k])/float(mult[m]) break uniq = np.hstack((uniq,rlist[k])) mult = np.hstack((mult,[1])) return np.array(uniq), np.array(mult) def sos_cascade(sos1,sos2): """ Mark Wickert October 2016 """ return np.vstack((sos1,sos2)) def sos_zplane(sos,auto_scale=True,size=2,tol = 0.001): """ Create an z-plane pole-zero plot. Create an z-plane pole-zero plot using the numerator and denominator z-domain system function coefficient ndarrays b and a respectively. Assume descending powers of z. Parameters ---------- sos : ndarray of the sos coefficients auto_scale : bool (default True) size : plot radius maximum when scale = False Returns ------- (M,N) : tuple of zero and pole counts + plot window Notes ----- This function tries to identify repeated poles and zeros and will place the multiplicity number above and to the right of the pole or zero. The difficulty is setting the tolerance for this detection. Currently it is set at 1e-3 via the function signal.unique_roots. Examples -------- >>> # Here the plot is generated using auto_scale >>> sos_zplane(sos) >>> # Here the plot is generated using manual scaling >>> sos_zplane(sos,False,1.5) """ Ns,Mcol = sos.shape # Extract roots from sos num and den removing z = 0 # roots due to first-order sections N_roots = [] for k in range(Ns): N_roots_tmp = np.roots(sos[k,:3]) if N_roots_tmp[1] == 0.: N_roots = np.hstack((N_roots,N_roots_tmp[0])) else: N_roots = np.hstack((N_roots,N_roots_tmp)) D_roots = [] for k in range(Ns): D_roots_tmp = np.roots(sos[k,3:]) if D_roots_tmp[1] == 0.: D_roots = np.hstack((D_roots,D_roots_tmp[0])) else: D_roots = np.hstack((D_roots,D_roots_tmp)) # Plot labels if multiplicity greater than 1 x_scale = 1.5*size y_scale = 1.5*size x_off = 0.02 y_off = 0.01 M = len(N_roots) N = len(D_roots) if auto_scale: if M > 0 and N > 0: size = max(np.max(np.abs(N_roots)),np.max(np.abs(D_roots)))+.1 elif M > 0: size = max(np.max(np.abs(N_roots)),1.0)+.1 elif N > 0: size = max(1.0,np.max(np.abs(D_roots)))+.1 else: size = 1.1 plt.figure(figsize=(5,5)) plt.axis('equal') r = np.linspace(0,2*np.pi,200) plt.plot(np.cos(r),np.sin(r),'r--') plt.plot([-size,size],[0,0],'k-.') plt.plot([0,0],[-size,size],'k-.') if M > 0: #N_roots = np.roots(b) N_uniq, N_mult=unique_cpx_roots(N_roots,tol=tol) plt.plot(np.real(N_uniq),np.imag(N_uniq),'ko',mfc='None',ms=8) idx_N_mult = np.nonzero(np.ravel(N_mult>1))[0] for k in range(len(idx_N_mult)): x_loc = np.real(N_uniq[idx_N_mult[k]]) + x_off*x_scale y_loc =np.imag(N_uniq[idx_N_mult[k]]) + y_off*y_scale plt.text(x_loc,y_loc,str(N_mult[idx_N_mult[k]]), ha='center',va='bottom',fontsize=10) if N > 0: #D_roots = np.roots(a) D_uniq, D_mult=unique_cpx_roots(D_roots,tol=tol) plt.plot(np.real(D_uniq),np.imag(D_uniq),'kx',ms=8) idx_D_mult = np.nonzero(np.ravel(D_mult>1))[0] for k in range(len(idx_D_mult)): x_loc = np.real(D_uniq[idx_D_mult[k]]) + x_off*x_scale y_loc =np.imag(D_uniq[idx_D_mult[k]]) + y_off*y_scale plt.text(x_loc,y_loc,str(D_mult[idx_D_mult[k]]), ha='center',va='bottom',fontsize=10) if M - N < 0: plt.plot(0.0,0.0,'bo',mfc='None',ms=8) elif M - N > 0: plt.plot(0.0,0.0,'kx',ms=8) if abs(M - N) > 1: plt.text(x_off*x_scale,y_off*y_scale,str(abs(M-N)), ha='center',va='bottom',fontsize=10) plt.xlabel('Real Part') plt.ylabel('Imaginary Part') plt.title('Pole-Zero Plot') #plt.grid() plt.axis([-size,size,-size,size]) return M,N
scikit-dsp-comm
/scikit-dsp-comm-2.0.3.tar.gz/scikit-dsp-comm-2.0.3/src/sk_dsp_comm/iir_design_helper.py
iir_design_helper.py
import numpy as np import scipy.signal as signal import matplotlib.pyplot as plt from logging import getLogger log = getLogger(__name__) def IIR_lpf(f_pass, f_stop, Ripple_pass, Atten_stop, fs = 1.00, ftype = 'butter', status = True): """ Design an IIR lowpass filter using scipy.signal.iirdesign. The filter order is determined based on f_pass Hz, f_stop Hz, and the desired stopband attenuation d_stop in dB, all relative to a sampling rate of fs Hz. Parameters ---------- f_pass : Passband critical frequency in Hz f_stop : Stopband critical frequency in Hz Ripple_pass : Filter gain in dB at f_pass Atten_stop : Filter attenuation in dB at f_stop fs : Sampling rate in Hz ftype : Analog prototype from 'butter' 'cheby1', 'cheby2', 'ellip', and 'bessel' Returns ------- b : ndarray of the numerator coefficients a : ndarray of the denominator coefficients sos : 2D ndarray of second-order section coefficients Notes ----- Additionally a text string telling the user the filter order is written to the console, e.g., IIR cheby1 order = 8. Examples -------- >>> fs = 48000 >>> f_pass = 5000 >>> f_stop = 8000 >>> b_but,a_but,sos_but = IIR_lpf(f_pass,f_stop,0.5,60,fs,'butter') >>> b_cheb1,a_cheb1,sos_cheb1 = IIR_lpf(f_pass,f_stop,0.5,60,fs,'cheby1') >>> b_cheb2,a_cheb2,sos_cheb2 = IIR_lpf(f_pass,f_stop,0.5,60,fs,'cheby2') >>> b_elli,a_elli,sos_elli = IIR_lpf(f_pass,f_stop,0.5,60,fs,'ellip') Mark Wickert October 2016 """ b,a = signal.iirdesign(2*float(f_pass)/fs, 2*float(f_stop)/fs, Ripple_pass, Atten_stop, ftype = ftype, output='ba') sos = signal.iirdesign(2*float(f_pass)/fs, 2*float(f_stop)/fs, Ripple_pass, Atten_stop, ftype = ftype, output='sos') tag = 'IIR ' + ftype + ' order' if status: log.info('%s = %d.' % (tag,len(a)-1)) return b, a, sos def IIR_hpf(f_stop, f_pass, Ripple_pass, Atten_stop, fs = 1.00, ftype = 'butter', status = True): """ Design an IIR highpass filter using scipy.signal.iirdesign. The filter order is determined based on f_pass Hz, f_stop Hz, and the desired stopband attenuation d_stop in dB, all relative to a sampling rate of fs Hz. Parameters ---------- f_stop : f_pass : Ripple_pass : Atten_stop : fs : sampling rate in Hz ftype : Analog prototype from 'butter' 'cheby1', 'cheby2', 'ellip', and 'bessel' Returns ------- b : ndarray of the numerator coefficients a : ndarray of the denominator coefficients sos : 2D ndarray of second-order section coefficients Examples -------- >>> fs = 48000 >>> f_pass = 8000 >>> f_stop = 5000 >>> b_but,a_but,sos_but = IIR_hpf(f_stop,f_pass,0.5,60,fs,'butter') >>> b_cheb1,a_cheb1,sos_cheb1 = IIR_hpf(f_stop,f_pass,0.5,60,fs,'cheby1') >>> b_cheb2,a_cheb2,sos_cheb2 = IIR_hpf(f_stop,f_pass,0.5,60,fs,'cheby2') >>> b_elli,a_elli,sos_elli = IIR_hpf(f_stop,f_pass,0.5,60,fs,'ellip') Mark Wickert October 2016 """ b,a = signal.iirdesign(2*float(f_pass)/fs, 2*float(f_stop)/fs, Ripple_pass, Atten_stop, ftype = ftype, output='ba') sos = signal.iirdesign(2*float(f_pass)/fs, 2*float(f_stop)/fs, Ripple_pass, Atten_stop, ftype =ftype, output='sos') tag = 'IIR ' + ftype + ' order' if status: log.info('%s = %d.' % (tag,len(a)-1)) return b, a, sos def IIR_bpf(f_stop1, f_pass1, f_pass2, f_stop2, Ripple_pass, Atten_stop, fs = 1.00, ftype = 'butter', status = True): """ Design an IIR bandpass filter using scipy.signal.iirdesign. The filter order is determined based on f_pass Hz, f_stop Hz, and the desired stopband attenuation d_stop in dB, all relative to a sampling rate of fs Hz. Parameters ---------- f_stop1 : ndarray of the numerator coefficients f_pass : ndarray of the denominator coefficients Ripple_pass : Atten_stop : fs : sampling rate in Hz ftype : Analog prototype from 'butter' 'cheby1', 'cheby2', 'ellip', and 'bessel' Returns ------- b : ndarray of the numerator coefficients a : ndarray of the denominator coefficients sos : 2D ndarray of second-order section coefficients Examples -------- >>> fs = 48000 >>> f_pass = 8000 >>> f_stop = 5000 >>> b_but,a_but,sos_but = IIR_hpf(f_stop,f_pass,0.5,60,fs,'butter') >>> b_cheb1,a_cheb1,sos_cheb1 = IIR_hpf(f_stop,f_pass,0.5,60,fs,'cheby1') >>> b_cheb2,a_cheb2,sos_cheb2 = IIR_hpf(f_stop,f_pass,0.5,60,fs,'cheby2') >>> b_elli,a_elli,sos_elli = IIR_hpf(f_stop,f_pass,0.5,60,fs,'ellip') Mark Wickert October 2016 """ b,a = signal.iirdesign([2*float(f_pass1)/fs, 2*float(f_pass2)/fs], [2*float(f_stop1)/fs, 2*float(f_stop2)/fs], Ripple_pass, Atten_stop, ftype = ftype, output='ba') sos = signal.iirdesign([2*float(f_pass1)/fs, 2*float(f_pass2)/fs], [2*float(f_stop1)/fs, 2*float(f_stop2)/fs], Ripple_pass, Atten_stop, ftype =ftype, output='sos') tag = 'IIR ' + ftype + ' order' if status: log.info('%s = %d.' % (tag,len(a)-1)) return b, a, sos def IIR_bsf(f_pass1, f_stop1, f_stop2, f_pass2, Ripple_pass, Atten_stop, fs = 1.00, ftype = 'butter', status = True): """ Design an IIR bandstop filter using scipy.signal.iirdesign. The filter order is determined based on f_pass Hz, f_stop Hz, and the desired stopband attenuation d_stop in dB, all relative to a sampling rate of fs Hz. Mark Wickert October 2016 """ b,a = signal.iirdesign([2*float(f_pass1)/fs, 2*float(f_pass2)/fs], [2*float(f_stop1)/fs, 2*float(f_stop2)/fs], Ripple_pass, Atten_stop, ftype = ftype, output='ba') sos = signal.iirdesign([2*float(f_pass1)/fs, 2*float(f_pass2)/fs], [2*float(f_stop1)/fs, 2*float(f_stop2)/fs], Ripple_pass, Atten_stop, ftype =ftype, output='sos') tag = 'IIR ' + ftype + ' order' if status: log.info('%s = %d.' % (tag,len(a)-1)) return b, a, sos def freqz_resp_list(b,a=np.array([1]),mode = 'dB',fs=1.0,Npts = 1024,fsize=(6,4)): """ A method for displaying digital filter frequency response magnitude, phase, and group delay. A plot is produced using matplotlib freq_resp(self,mode = 'dB',Npts = 1024) A method for displaying the filter frequency response magnitude, phase, and group delay. A plot is produced using matplotlib freqz_resp(b,a=[1],mode = 'dB',Npts = 1024,fsize=(6,4)) b = ndarray of numerator coefficients a = ndarray of denominator coefficents mode = display mode: 'dB' magnitude, 'phase' in radians, or 'groupdelay_s' in samples and 'groupdelay_t' in sec, all versus frequency in Hz Npts = number of points to plot; default is 1024 fsize = figure size; defult is (6,4) inches Mark Wickert, January 2015 """ if type(b) == list: # We have a list of filters N_filt = len(b) f = np.arange(0,Npts)/(2.0*Npts) for n in range(N_filt): w,H = signal.freqz(b[n],a[n],2*np.pi*f) if n == 0: plt.figure(figsize=fsize) if mode.lower() == 'db': plt.plot(f*fs,20*np.log10(np.abs(H))) if n == N_filt-1: plt.xlabel('Frequency (Hz)') plt.ylabel('Gain (dB)') plt.title('Frequency Response - Magnitude') elif mode.lower() == 'phase': plt.plot(f*fs,np.angle(H)) if n == N_filt-1: plt.xlabel('Frequency (Hz)') plt.ylabel('Phase (rad)') plt.title('Frequency Response - Phase') elif (mode.lower() == 'groupdelay_s') or (mode.lower() == 'groupdelay_t'): """ Notes ----- Since this calculation involves finding the derivative of the phase response, care must be taken at phase wrapping points and when the phase jumps by +/-pi, which occurs when the amplitude response changes sign. Since the amplitude response is zero when the sign changes, the jumps do not alter the group delay results. """ theta = np.unwrap(np.angle(H)) # Since theta for an FIR filter is likely to have many pi phase # jumps too, we unwrap a second time 2*theta and divide by 2 theta2 = np.unwrap(2*theta)/2. theta_dif = np.diff(theta2) f_diff = np.diff(f) Tg = -np.diff(theta2)/np.diff(w) # For gain almost zero set groupdelay = 0 idx = np.nonzero(np.ravel(20*np.log10(H[:-1]) < -400))[0] Tg[idx] = np.zeros(len(idx)) max_Tg = np.max(Tg) #print(max_Tg) if mode.lower() == 'groupdelay_t': max_Tg /= fs plt.plot(f[:-1]*fs,Tg/fs) plt.ylim([0,1.2*max_Tg]) else: plt.plot(f[:-1]*fs,Tg) plt.ylim([0,1.2*max_Tg]) if n == N_filt-1: plt.xlabel('Frequency (Hz)') if mode.lower() == 'groupdelay_t': plt.ylabel('Group Delay (s)') else: plt.ylabel('Group Delay (samples)') plt.title('Frequency Response - Group Delay') else: s1 = 'Error, mode must be "dB", "phase, ' s2 = '"groupdelay_s", or "groupdelay_t"' log.info(s1 + s2) def freqz_cas(sos,w): """ Cascade frequency response Mark Wickert October 2016 """ Ns,Mcol = sos.shape w,Hcas = signal.freqz(sos[0,:3],sos[0,3:],w) for k in range(1,Ns): w,Htemp = signal.freqz(sos[k,:3],sos[k,3:],w) Hcas *= Htemp return w, Hcas def freqz_resp_cas_list(sos, mode = 'dB', fs=1.0, n_pts=1024, fsize=(6, 4)): """ A method for displaying cascade digital filter form frequency response magnitude, phase, and group delay. A plot is produced using matplotlib freq_resp(self,mode = 'dB',Npts = 1024) A method for displaying the filter frequency response magnitude, phase, and group delay. A plot is produced using matplotlib freqz_resp(b,a=[1],mode = 'dB',Npts = 1024,fsize=(6,4)) b = ndarray of numerator coefficients a = ndarray of denominator coefficents mode = display mode: 'dB' magnitude, 'phase' in radians, or 'groupdelay_s' in samples and 'groupdelay_t' in sec, all versus frequency in Hz Npts = number of points to plot; default is 1024 fsize = figure size; defult is (6,4) inches Mark Wickert, January 2015 """ if type(sos) == list: # We have a list of filters N_filt = len(sos) f = np.arange(0, n_pts) / (2.0 * n_pts) for n in range(N_filt): w,H = freqz_cas(sos[n],2*np.pi*f) if n == 0: plt.figure(figsize=fsize) if mode.lower() == 'db': plt.plot(f*fs,20*np.log10(np.abs(H))) if n == N_filt-1: plt.xlabel('Frequency (Hz)') plt.ylabel('Gain (dB)') plt.title('Frequency Response - Magnitude') elif mode.lower() == 'phase': plt.plot(f*fs,np.angle(H)) if n == N_filt-1: plt.xlabel('Frequency (Hz)') plt.ylabel('Phase (rad)') plt.title('Frequency Response - Phase') elif (mode.lower() == 'groupdelay_s') or (mode.lower() == 'groupdelay_t'): """ Notes ----- Since this calculation involves finding the derivative of the phase response, care must be taken at phase wrapping points and when the phase jumps by +/-pi, which occurs when the amplitude response changes sign. Since the amplitude response is zero when the sign changes, the jumps do not alter the group delay results. """ theta = np.unwrap(np.angle(H)) # Since theta for an FIR filter is likely to have many pi phase # jumps too, we unwrap a second time 2*theta and divide by 2 theta2 = np.unwrap(2*theta)/2. theta_dif = np.diff(theta2) f_diff = np.diff(f) Tg = -np.diff(theta2)/np.diff(w) # For gain almost zero set groupdelay = 0 idx = np.nonzero(np.ravel(20*np.log10(H[:-1]) < -400))[0] Tg[idx] = np.zeros(len(idx)) max_Tg = np.max(Tg) #print(max_Tg) if mode.lower() == 'groupdelay_t': max_Tg /= fs plt.plot(f[:-1]*fs,Tg/fs) plt.ylim([0,1.2*max_Tg]) else: plt.plot(f[:-1]*fs,Tg) plt.ylim([0,1.2*max_Tg]) if n == N_filt-1: plt.xlabel('Frequency (Hz)') if mode.lower() == 'groupdelay_t': plt.ylabel('Group Delay (s)') else: plt.ylabel('Group Delay (samples)') plt.title('Frequency Response - Group Delay') else: s1 = 'Error, mode must be "dB", "phase, ' s2 = '"groupdelay_s", or "groupdelay_t"' log.info(s1 + s2) def unique_cpx_roots(rlist,tol = 0.001): """ The average of the root values is used when multiplicity is greater than one. Mark Wickert October 2016 """ uniq = [rlist[0]] mult = [1] for k in range(1,len(rlist)): N_uniq = len(uniq) for m in range(N_uniq): if abs(rlist[k]-uniq[m]) <= tol: mult[m] += 1 uniq[m] = (uniq[m]*(mult[m]-1) + rlist[k])/float(mult[m]) break uniq = np.hstack((uniq,rlist[k])) mult = np.hstack((mult,[1])) return np.array(uniq), np.array(mult) def sos_cascade(sos1,sos2): """ Mark Wickert October 2016 """ return np.vstack((sos1,sos2)) def sos_zplane(sos,auto_scale=True,size=2,tol = 0.001): """ Create an z-plane pole-zero plot. Create an z-plane pole-zero plot using the numerator and denominator z-domain system function coefficient ndarrays b and a respectively. Assume descending powers of z. Parameters ---------- sos : ndarray of the sos coefficients auto_scale : bool (default True) size : plot radius maximum when scale = False Returns ------- (M,N) : tuple of zero and pole counts + plot window Notes ----- This function tries to identify repeated poles and zeros and will place the multiplicity number above and to the right of the pole or zero. The difficulty is setting the tolerance for this detection. Currently it is set at 1e-3 via the function signal.unique_roots. Examples -------- >>> # Here the plot is generated using auto_scale >>> sos_zplane(sos) >>> # Here the plot is generated using manual scaling >>> sos_zplane(sos,False,1.5) """ Ns,Mcol = sos.shape # Extract roots from sos num and den removing z = 0 # roots due to first-order sections N_roots = [] for k in range(Ns): N_roots_tmp = np.roots(sos[k,:3]) if N_roots_tmp[1] == 0.: N_roots = np.hstack((N_roots,N_roots_tmp[0])) else: N_roots = np.hstack((N_roots,N_roots_tmp)) D_roots = [] for k in range(Ns): D_roots_tmp = np.roots(sos[k,3:]) if D_roots_tmp[1] == 0.: D_roots = np.hstack((D_roots,D_roots_tmp[0])) else: D_roots = np.hstack((D_roots,D_roots_tmp)) # Plot labels if multiplicity greater than 1 x_scale = 1.5*size y_scale = 1.5*size x_off = 0.02 y_off = 0.01 M = len(N_roots) N = len(D_roots) if auto_scale: if M > 0 and N > 0: size = max(np.max(np.abs(N_roots)),np.max(np.abs(D_roots)))+.1 elif M > 0: size = max(np.max(np.abs(N_roots)),1.0)+.1 elif N > 0: size = max(1.0,np.max(np.abs(D_roots)))+.1 else: size = 1.1 plt.figure(figsize=(5,5)) plt.axis('equal') r = np.linspace(0,2*np.pi,200) plt.plot(np.cos(r),np.sin(r),'r--') plt.plot([-size,size],[0,0],'k-.') plt.plot([0,0],[-size,size],'k-.') if M > 0: #N_roots = np.roots(b) N_uniq, N_mult=unique_cpx_roots(N_roots,tol=tol) plt.plot(np.real(N_uniq),np.imag(N_uniq),'ko',mfc='None',ms=8) idx_N_mult = np.nonzero(np.ravel(N_mult>1))[0] for k in range(len(idx_N_mult)): x_loc = np.real(N_uniq[idx_N_mult[k]]) + x_off*x_scale y_loc =np.imag(N_uniq[idx_N_mult[k]]) + y_off*y_scale plt.text(x_loc,y_loc,str(N_mult[idx_N_mult[k]]), ha='center',va='bottom',fontsize=10) if N > 0: #D_roots = np.roots(a) D_uniq, D_mult=unique_cpx_roots(D_roots,tol=tol) plt.plot(np.real(D_uniq),np.imag(D_uniq),'kx',ms=8) idx_D_mult = np.nonzero(np.ravel(D_mult>1))[0] for k in range(len(idx_D_mult)): x_loc = np.real(D_uniq[idx_D_mult[k]]) + x_off*x_scale y_loc =np.imag(D_uniq[idx_D_mult[k]]) + y_off*y_scale plt.text(x_loc,y_loc,str(D_mult[idx_D_mult[k]]), ha='center',va='bottom',fontsize=10) if M - N < 0: plt.plot(0.0,0.0,'bo',mfc='None',ms=8) elif M - N > 0: plt.plot(0.0,0.0,'kx',ms=8) if abs(M - N) > 1: plt.text(x_off*x_scale,y_off*y_scale,str(abs(M-N)), ha='center',va='bottom',fontsize=10) plt.xlabel('Real Part') plt.ylabel('Imaginary Part') plt.title('Pole-Zero Plot') #plt.grid() plt.axis([-size,size,-size,size]) return M,N
0.801431
0.4856
from matplotlib import pylab import matplotlib.pyplot as plt import numpy as np import scipy.signal as signal from . import sigsys as ssd from . import fir_design_helper as fir_d from . import iir_design_helper as iir_d from logging import getLogger log = getLogger(__name__) import warnings class rate_change(object): """ A simple class for encapsulating the upsample/filter and filter/downsample operations used in modeling a comm system. Objects of this class will hold the required filter coefficients once an object is instantiated. Mark Wickert February 2015 """ def __init__(self,M_change = 12,fcutoff=0.9,N_filt_order=8,ftype='butter'): """ Object constructor method """ self.M = M_change # Rate change factor M or L self.fc = fcutoff*.5 # must be fs/(2*M), but scale by fcutoff self.N_forder = N_filt_order if ftype.lower() == 'butter': self.b, self.a = signal.butter(self.N_forder,2/self.M*self.fc) elif ftype.lower() == 'cheby1': # Set the ripple to 0.05 dB self.b, self.a = signal.cheby1(self.N_forder,0.05,2/self.M*self.fc) else: warnings.warn('ftype must be "butter" or "cheby1"') def up(self,x): """ Upsample and filter the signal """ y = self.M*ssd.upsample(x,self.M) y = signal.lfilter(self.b,self.a,y) return y def dn(self,x): """ Downsample and filter the signal """ y = signal.lfilter(self.b,self.a,x) y = ssd.downsample(y,self.M) return y class multirate_FIR(object): """ A simple class for encapsulating FIR filtering, or FIR upsample/ filter, or FIR filter/downsample operations used in modeling a comm system. Objects of this class will hold the required filter coefficients once an object is instantiated. Frequency response and the pole zero plot can also be plotted using supplied class methods. Mark Wickert March 2017 """ def __init__(self,b): """ Object constructor method """ self.N_forder = len(b) self.b = b log.info('FIR filter taps = %d' % self.N_forder) def filter(self,x): """ Filter the signal """ y = signal.lfilter(self.b,[1],x) return y def up(self,x,L_change = 12): """ Upsample and filter the signal """ y = L_change*ssd.upsample(x,L_change) y = signal.lfilter(self.b,[1],y) return y def dn(self,x,M_change = 12): """ Downsample and filter the signal """ y = signal.lfilter(self.b,[1],x) y = ssd.downsample(y,M_change) return y def freq_resp(self, mode= 'dB', fs = 8000, ylim = [-100,2]): """ """ fir_d.freqz_resp_list([self.b], [1], mode, fs=fs, n_pts= 1024) pylab.grid() pylab.ylim(ylim) def zplane(self,auto_scale=True,size=2,detect_mult=True,tol=0.001): """ Plot the poles and zeros of the FIR filter in the z-plane """ ssd.zplane(self.b,[1],auto_scale,size,tol) class multirate_IIR(object): """ A simple class for encapsulating IIR filtering, or IIR upsample/ filter, or IIR filter/downsample operations used in modeling a comm system. Objects of this class will hold the required filter coefficients once an object is instantiated. Frequency response and the pole zero plot can also be plotted using supplied class methods. For added robustness to floating point quantization all filtering is done using the scipy.signal cascade of second-order sections filter method y = sosfilter(sos,x). Mark Wickert March 2017 """ def __init__(self,sos): """ Object constructor method """ self.N_forder = np.sum(np.sign(np.abs(sos[:,2]))) \ + np.sum(np.sign(np.abs(sos[:,1]))) self.sos = sos log.info('IIR filter order = %d' % self.N_forder) def filter(self,x): """ Filter the signal using second-order sections """ y = signal.sosfilt(self.sos,x) return y def up(self,x,L_change = 12): """ Upsample and filter the signal """ y = L_change*ssd.upsample(x,L_change) y = signal.sosfilt(self.sos,y) return y def dn(self,x,M_change = 12): """ Downsample and filter the signal """ y = signal.sosfilt(self.sos,x) y = ssd.downsample(y,M_change) return y def freq_resp(self, mode= 'dB', fs = 8000, ylim = [-100,2]): """ Frequency response plot """ iir_d.freqz_resp_cas_list([self.sos],mode,fs=fs) pylab.grid() pylab.ylim(ylim) def zplane(self,auto_scale=True,size=2,detect_mult=True,tol=0.001): """ Plot the poles and zeros of the FIR filter in the z-plane """ iir_d.sos_zplane(self.sos,auto_scale,size,tol) def freqz_resp(b,a=[1],mode = 'dB',fs=1.0,Npts = 1024,fsize=(6,4)): """ A method for displaying digital filter frequency response magnitude, phase, and group delay. A plot is produced using matplotlib freq_resp(self,mode = 'dB',Npts = 1024) A method for displaying the filter frequency response magnitude, phase, and group delay. A plot is produced using matplotlib freqz_resp(b,a=[1],mode = 'dB',Npts = 1024,fsize=(6,4)) b = ndarray of numerator coefficients a = ndarray of denominator coefficents mode = display mode: 'dB' magnitude, 'phase' in radians, or 'groupdelay_s' in samples and 'groupdelay_t' in sec, all versus frequency in Hz Npts = number of points to plot; defult is 1024 fsize = figure size; defult is (6,4) inches Mark Wickert, January 2015 """ f = np.arange(0,Npts)/(2.0*Npts) w,H = signal.freqz(b,a,2*np.pi*f) plt.figure(figsize=fsize) if mode.lower() == 'db': plt.plot(f*fs,20*np.log10(np.abs(H))) plt.xlabel('Frequency (Hz)') plt.ylabel('Gain (dB)') plt.title('Frequency Response - Magnitude') elif mode.lower() == 'phase': plt.plot(f*fs,np.angle(H)) plt.xlabel('Frequency (Hz)') plt.ylabel('Phase (rad)') plt.title('Frequency Response - Phase') elif (mode.lower() == 'groupdelay_s') or (mode.lower() == 'groupdelay_t'): """ Notes ----- Since this calculation involves finding the derivative of the phase response, care must be taken at phase wrapping points and when the phase jumps by +/-pi, which occurs when the amplitude response changes sign. Since the amplitude response is zero when the sign changes, the jumps do not alter the group delay results. """ theta = np.unwrap(np.angle(H)) # Since theta for an FIR filter is likely to have many pi phase # jumps too, we unwrap a second time 2*theta and divide by 2 theta2 = np.unwrap(2*theta)/2. theta_dif = np.diff(theta2) f_diff = np.diff(f) Tg = -np.diff(theta2)/np.diff(w) # For gain almost zero set groupdelay = 0 idx = pylab.find(20*np.log10(H[:-1]) < -400) Tg[idx] = np.zeros(len(idx)) max_Tg = np.max(Tg) #print(max_Tg) if mode.lower() == 'groupdelay_t': max_Tg /= fs plt.plot(f[:-1]*fs,Tg/fs) plt.ylim([0,1.2*max_Tg]) else: plt.plot(f[:-1]*fs,Tg) plt.ylim([0,1.2*max_Tg]) plt.xlabel('Frequency (Hz)') if mode.lower() == 'groupdelay_t': plt.ylabel('Group Delay (s)') else: plt.ylabel('Group Delay (samples)') plt.title('Frequency Response - Group Delay') else: s1 = 'Error, mode must be "dB", "phase, ' s2 = '"groupdelay_s", or "groupdelay_t"' warnings.warn(s1 + s2)
scikit-dsp-comm
/scikit-dsp-comm-2.0.3.tar.gz/scikit-dsp-comm-2.0.3/src/sk_dsp_comm/multirate_helper.py
multirate_helper.py
from matplotlib import pylab import matplotlib.pyplot as plt import numpy as np import scipy.signal as signal from . import sigsys as ssd from . import fir_design_helper as fir_d from . import iir_design_helper as iir_d from logging import getLogger log = getLogger(__name__) import warnings class rate_change(object): """ A simple class for encapsulating the upsample/filter and filter/downsample operations used in modeling a comm system. Objects of this class will hold the required filter coefficients once an object is instantiated. Mark Wickert February 2015 """ def __init__(self,M_change = 12,fcutoff=0.9,N_filt_order=8,ftype='butter'): """ Object constructor method """ self.M = M_change # Rate change factor M or L self.fc = fcutoff*.5 # must be fs/(2*M), but scale by fcutoff self.N_forder = N_filt_order if ftype.lower() == 'butter': self.b, self.a = signal.butter(self.N_forder,2/self.M*self.fc) elif ftype.lower() == 'cheby1': # Set the ripple to 0.05 dB self.b, self.a = signal.cheby1(self.N_forder,0.05,2/self.M*self.fc) else: warnings.warn('ftype must be "butter" or "cheby1"') def up(self,x): """ Upsample and filter the signal """ y = self.M*ssd.upsample(x,self.M) y = signal.lfilter(self.b,self.a,y) return y def dn(self,x): """ Downsample and filter the signal """ y = signal.lfilter(self.b,self.a,x) y = ssd.downsample(y,self.M) return y class multirate_FIR(object): """ A simple class for encapsulating FIR filtering, or FIR upsample/ filter, or FIR filter/downsample operations used in modeling a comm system. Objects of this class will hold the required filter coefficients once an object is instantiated. Frequency response and the pole zero plot can also be plotted using supplied class methods. Mark Wickert March 2017 """ def __init__(self,b): """ Object constructor method """ self.N_forder = len(b) self.b = b log.info('FIR filter taps = %d' % self.N_forder) def filter(self,x): """ Filter the signal """ y = signal.lfilter(self.b,[1],x) return y def up(self,x,L_change = 12): """ Upsample and filter the signal """ y = L_change*ssd.upsample(x,L_change) y = signal.lfilter(self.b,[1],y) return y def dn(self,x,M_change = 12): """ Downsample and filter the signal """ y = signal.lfilter(self.b,[1],x) y = ssd.downsample(y,M_change) return y def freq_resp(self, mode= 'dB', fs = 8000, ylim = [-100,2]): """ """ fir_d.freqz_resp_list([self.b], [1], mode, fs=fs, n_pts= 1024) pylab.grid() pylab.ylim(ylim) def zplane(self,auto_scale=True,size=2,detect_mult=True,tol=0.001): """ Plot the poles and zeros of the FIR filter in the z-plane """ ssd.zplane(self.b,[1],auto_scale,size,tol) class multirate_IIR(object): """ A simple class for encapsulating IIR filtering, or IIR upsample/ filter, or IIR filter/downsample operations used in modeling a comm system. Objects of this class will hold the required filter coefficients once an object is instantiated. Frequency response and the pole zero plot can also be plotted using supplied class methods. For added robustness to floating point quantization all filtering is done using the scipy.signal cascade of second-order sections filter method y = sosfilter(sos,x). Mark Wickert March 2017 """ def __init__(self,sos): """ Object constructor method """ self.N_forder = np.sum(np.sign(np.abs(sos[:,2]))) \ + np.sum(np.sign(np.abs(sos[:,1]))) self.sos = sos log.info('IIR filter order = %d' % self.N_forder) def filter(self,x): """ Filter the signal using second-order sections """ y = signal.sosfilt(self.sos,x) return y def up(self,x,L_change = 12): """ Upsample and filter the signal """ y = L_change*ssd.upsample(x,L_change) y = signal.sosfilt(self.sos,y) return y def dn(self,x,M_change = 12): """ Downsample and filter the signal """ y = signal.sosfilt(self.sos,x) y = ssd.downsample(y,M_change) return y def freq_resp(self, mode= 'dB', fs = 8000, ylim = [-100,2]): """ Frequency response plot """ iir_d.freqz_resp_cas_list([self.sos],mode,fs=fs) pylab.grid() pylab.ylim(ylim) def zplane(self,auto_scale=True,size=2,detect_mult=True,tol=0.001): """ Plot the poles and zeros of the FIR filter in the z-plane """ iir_d.sos_zplane(self.sos,auto_scale,size,tol) def freqz_resp(b,a=[1],mode = 'dB',fs=1.0,Npts = 1024,fsize=(6,4)): """ A method for displaying digital filter frequency response magnitude, phase, and group delay. A plot is produced using matplotlib freq_resp(self,mode = 'dB',Npts = 1024) A method for displaying the filter frequency response magnitude, phase, and group delay. A plot is produced using matplotlib freqz_resp(b,a=[1],mode = 'dB',Npts = 1024,fsize=(6,4)) b = ndarray of numerator coefficients a = ndarray of denominator coefficents mode = display mode: 'dB' magnitude, 'phase' in radians, or 'groupdelay_s' in samples and 'groupdelay_t' in sec, all versus frequency in Hz Npts = number of points to plot; defult is 1024 fsize = figure size; defult is (6,4) inches Mark Wickert, January 2015 """ f = np.arange(0,Npts)/(2.0*Npts) w,H = signal.freqz(b,a,2*np.pi*f) plt.figure(figsize=fsize) if mode.lower() == 'db': plt.plot(f*fs,20*np.log10(np.abs(H))) plt.xlabel('Frequency (Hz)') plt.ylabel('Gain (dB)') plt.title('Frequency Response - Magnitude') elif mode.lower() == 'phase': plt.plot(f*fs,np.angle(H)) plt.xlabel('Frequency (Hz)') plt.ylabel('Phase (rad)') plt.title('Frequency Response - Phase') elif (mode.lower() == 'groupdelay_s') or (mode.lower() == 'groupdelay_t'): """ Notes ----- Since this calculation involves finding the derivative of the phase response, care must be taken at phase wrapping points and when the phase jumps by +/-pi, which occurs when the amplitude response changes sign. Since the amplitude response is zero when the sign changes, the jumps do not alter the group delay results. """ theta = np.unwrap(np.angle(H)) # Since theta for an FIR filter is likely to have many pi phase # jumps too, we unwrap a second time 2*theta and divide by 2 theta2 = np.unwrap(2*theta)/2. theta_dif = np.diff(theta2) f_diff = np.diff(f) Tg = -np.diff(theta2)/np.diff(w) # For gain almost zero set groupdelay = 0 idx = pylab.find(20*np.log10(H[:-1]) < -400) Tg[idx] = np.zeros(len(idx)) max_Tg = np.max(Tg) #print(max_Tg) if mode.lower() == 'groupdelay_t': max_Tg /= fs plt.plot(f[:-1]*fs,Tg/fs) plt.ylim([0,1.2*max_Tg]) else: plt.plot(f[:-1]*fs,Tg) plt.ylim([0,1.2*max_Tg]) plt.xlabel('Frequency (Hz)') if mode.lower() == 'groupdelay_t': plt.ylabel('Group Delay (s)') else: plt.ylabel('Group Delay (samples)') plt.title('Frequency Response - Group Delay') else: s1 = 'Error, mode must be "dB", "phase, ' s2 = '"groupdelay_s", or "groupdelay_t"' warnings.warn(s1 + s2)
0.634317
0.493958
# scikit-duplo Very simple reusable blocks for scikit-learn pipelines (inspired by scikit-lego) [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) [![PyPI](https://img.shields.io/pypi/v/scikit-duplo.svg)](https://pypi.org/project/scikit-duplo) [![Documentation Status](https://readthedocs.org/projects/scikit-duplo/badge/?version=latest)](https://scikit-duplo.readthedocs.io/en/latest/?badge=latest) # Installation Installation from the source tree: ``` python setup.py install ``` Or via pip from PyPI: ``` pip install scikit-duplo ``` # Contents The sci-kit duplo package contains multiple classes that you can use in a sci-kit learn compatible pipeline. There are ensemble learning classes within the `meta` subdirectory. These classes expect you to pass in multiple other Sci-kit learn compatible machine learning classes. It will use these to build an ensemble of models to predict the target variable. There are feature engineering classes inside the `preprocessing` subdirectory. These are ColumnTransformer compatible classes that expect to receive a dataframe and set of column names that it will transform for the downstream pipeline processes.
scikit-duplo
/scikit-duplo-0.1.7.tar.gz/scikit-duplo-0.1.7/README.md
README.md
python setup.py install pip install scikit-duplo
0.499512
0.895933
import numpy as np from sklearn.base import BaseEstimator, RegressorMixin, clone, is_regressor, is_classifier from sklearn.utils.validation import check_is_fitted, check_X_y, check_array from sklearn.exceptions import NotFittedError from sklearn.model_selection import train_test_split class QuantileStackRegressor(BaseEstimator, RegressorMixin): """ A meta regressor for doing model stacking using underlying quantile propensity models. The model will first learn a series of quantile discriminator functions and then stack them with out of sample predictions into a final regressor. Particularly useful for zero-inflated or heavily skewed datasets, `QuantileStackRegressor` consists of a series of classifiers and a regressor. - The classifier's task is to build a series of propensity models that predict if the target is above a given threshold. These are built in a two fold CV, so that out of sample predictions can be added to the x vector for the final regression model - The regressor's task is to output the final prediction, aided by the probabilities added by the underlying quantile classifiers. At prediction time, the average of the two classifiers is used for all propensity models. Credits: This structure of this code is based off the zero inflated regressor from sklego: https://github.com/koaning/scikit-lego Parameters ---------- classifier : Any, scikit-learn classifier regressor : Any, scikit-learn regressor Examples -------- >>> import numpy as np >>> from sklearn.ensemble import ExtraTreesClassifier, ExtraTreesRegressor >>> np.random.seed(0) >>> X = np.random.randn(10000, 4) >>> y = ((X[:, 0]>0) & (X[:, 1]>0)) * np.abs(X[:, 2] * X[:, 3]**2) >>> z = QuantileStackRegressor( ... classifier=ExtraTreesClassifier(random_state=0), ... regressor=ExtraTreesRegressor(random_state=0) ... ) >>> z.fit(X, y) QuantileStackRegressor(classifier=ExtraTreesClassifier(random_state=0), regressor=ExtraTreesRegressor(random_state=0)) >>> z.predict(X)[:5] array([4.91483294, 0. , 0. , 0.04941909, 0. ]) """ def __init__(self, classifier, regressor, cuts=[0]) -> None: """Initialize.""" self.classifier = classifier self.regressor = regressor self.cuts = cuts def fit(self, X, y, sample_weight=None): """ Fit the model. Parameters ---------- X : np.ndarray of shape (n_samples, n_features) The training data. y : np.ndarray, 1-dimensional The target values. sample_weight : Optional[np.array], default=None Individual weights for each sample. Returns ------- QuantileStackRegressor Fitted regressor. Raises ------ ValueError If `classifier` is not a classifier or `regressor` is not a regressor. """ X, y = check_X_y(X, y) self._check_n_features(X, reset=True) if not is_classifier(self.classifier): raise ValueError( f"`classifier` has to be a classifier. Received instance of {type(self.classifier)} instead.") if not is_regressor(self.regressor): raise ValueError(f"`regressor` has to be a regressor. Received instance of {type(self.regressor)} instead.") """ Now we need to internally split the data and build two sets of the classifiers to prevent target leakage """ X_ = [0] * 2 y_ = [0] * 2 X_[0], X_[1], y_[0], y_[1] = train_test_split(X, y, test_size=0.5) """ Build two sets of classifiers for each of the required cuts """ self.classifiers_ = [0] * 2 for index in [0,1]: self.classifiers_[index] = [0] * len(self.cuts) for c, cut in enumerate(self.cuts): self.classifiers_[index][c] = clone(self.classifier) self.classifiers_[index][c].fit(X_[index], y_[index] > cut ) """ Apply those classifier to the out of sample data """ Xfinal_ = [0] * 2 for index in [0,1]: Xfinal_[index] = X_[index].copy() c_index = 1 - index for c, cut in enumerate(self.cuts): preds = self.classifiers_[c_index][c].predict_proba( X_[index] )[:,1] Xfinal_[index] = np.append(Xfinal_[index], preds.T[:, None], axis=1) """ Join the split data into a final dataset for the regression model """ Xfinale = np.concatenate((Xfinal_[0], Xfinal_[1] ), axis=0) Yfinale = np.concatenate((y_[0], y_[1] ), axis=0) self.regressor_ = clone(self.regressor) self.regressor_.fit( Xfinale, Yfinale, sample_weight=sample_weight) return self def predict(self, X): """ Get predictions. Parameters ---------- X : np.ndarray, shape (n_samples, n_features) Samples to get predictions of. Returns ------- y : np.ndarray, shape (n_samples,) The predicted values. """ check_is_fitted(self) X = check_array(X) self._check_n_features(X, reset=False) """ Apply classifiers to generate new colums """ Xfinale = X.copy() for c, cut in enumerate(self.cuts): temp = np.zeros(len(X)) for index in [0,1]: temp = temp + self.classifiers_[index][c].predict_proba(X)[:,1] temp = temp/2 Xfinale = np.append(Xfinale, temp[:, None], axis=1) return self.regressor_.predict(Xfinale)
scikit-duplo
/scikit-duplo-0.1.7.tar.gz/scikit-duplo-0.1.7/skduplo/meta/quantile_stack_regressor.py
quantile_stack_regressor.py
import numpy as np from sklearn.base import BaseEstimator, RegressorMixin, clone, is_regressor, is_classifier from sklearn.utils.validation import check_is_fitted, check_X_y, check_array from sklearn.exceptions import NotFittedError from sklearn.model_selection import train_test_split class QuantileStackRegressor(BaseEstimator, RegressorMixin): """ A meta regressor for doing model stacking using underlying quantile propensity models. The model will first learn a series of quantile discriminator functions and then stack them with out of sample predictions into a final regressor. Particularly useful for zero-inflated or heavily skewed datasets, `QuantileStackRegressor` consists of a series of classifiers and a regressor. - The classifier's task is to build a series of propensity models that predict if the target is above a given threshold. These are built in a two fold CV, so that out of sample predictions can be added to the x vector for the final regression model - The regressor's task is to output the final prediction, aided by the probabilities added by the underlying quantile classifiers. At prediction time, the average of the two classifiers is used for all propensity models. Credits: This structure of this code is based off the zero inflated regressor from sklego: https://github.com/koaning/scikit-lego Parameters ---------- classifier : Any, scikit-learn classifier regressor : Any, scikit-learn regressor Examples -------- >>> import numpy as np >>> from sklearn.ensemble import ExtraTreesClassifier, ExtraTreesRegressor >>> np.random.seed(0) >>> X = np.random.randn(10000, 4) >>> y = ((X[:, 0]>0) & (X[:, 1]>0)) * np.abs(X[:, 2] * X[:, 3]**2) >>> z = QuantileStackRegressor( ... classifier=ExtraTreesClassifier(random_state=0), ... regressor=ExtraTreesRegressor(random_state=0) ... ) >>> z.fit(X, y) QuantileStackRegressor(classifier=ExtraTreesClassifier(random_state=0), regressor=ExtraTreesRegressor(random_state=0)) >>> z.predict(X)[:5] array([4.91483294, 0. , 0. , 0.04941909, 0. ]) """ def __init__(self, classifier, regressor, cuts=[0]) -> None: """Initialize.""" self.classifier = classifier self.regressor = regressor self.cuts = cuts def fit(self, X, y, sample_weight=None): """ Fit the model. Parameters ---------- X : np.ndarray of shape (n_samples, n_features) The training data. y : np.ndarray, 1-dimensional The target values. sample_weight : Optional[np.array], default=None Individual weights for each sample. Returns ------- QuantileStackRegressor Fitted regressor. Raises ------ ValueError If `classifier` is not a classifier or `regressor` is not a regressor. """ X, y = check_X_y(X, y) self._check_n_features(X, reset=True) if not is_classifier(self.classifier): raise ValueError( f"`classifier` has to be a classifier. Received instance of {type(self.classifier)} instead.") if not is_regressor(self.regressor): raise ValueError(f"`regressor` has to be a regressor. Received instance of {type(self.regressor)} instead.") """ Now we need to internally split the data and build two sets of the classifiers to prevent target leakage """ X_ = [0] * 2 y_ = [0] * 2 X_[0], X_[1], y_[0], y_[1] = train_test_split(X, y, test_size=0.5) """ Build two sets of classifiers for each of the required cuts """ self.classifiers_ = [0] * 2 for index in [0,1]: self.classifiers_[index] = [0] * len(self.cuts) for c, cut in enumerate(self.cuts): self.classifiers_[index][c] = clone(self.classifier) self.classifiers_[index][c].fit(X_[index], y_[index] > cut ) """ Apply those classifier to the out of sample data """ Xfinal_ = [0] * 2 for index in [0,1]: Xfinal_[index] = X_[index].copy() c_index = 1 - index for c, cut in enumerate(self.cuts): preds = self.classifiers_[c_index][c].predict_proba( X_[index] )[:,1] Xfinal_[index] = np.append(Xfinal_[index], preds.T[:, None], axis=1) """ Join the split data into a final dataset for the regression model """ Xfinale = np.concatenate((Xfinal_[0], Xfinal_[1] ), axis=0) Yfinale = np.concatenate((y_[0], y_[1] ), axis=0) self.regressor_ = clone(self.regressor) self.regressor_.fit( Xfinale, Yfinale, sample_weight=sample_weight) return self def predict(self, X): """ Get predictions. Parameters ---------- X : np.ndarray, shape (n_samples, n_features) Samples to get predictions of. Returns ------- y : np.ndarray, shape (n_samples,) The predicted values. """ check_is_fitted(self) X = check_array(X) self._check_n_features(X, reset=False) """ Apply classifiers to generate new colums """ Xfinale = X.copy() for c, cut in enumerate(self.cuts): temp = np.zeros(len(X)) for index in [0,1]: temp = temp + self.classifiers_[index][c].predict_proba(X)[:,1] temp = temp/2 Xfinale = np.append(Xfinale, temp[:, None], axis=1) return self.regressor_.predict(Xfinale)
0.926183
0.812012
from sklearn.base import BaseEstimator, RegressorMixin, clone, is_regressor from sklearn.utils.validation import check_is_fitted, check_X_y, check_array from sklearn.exceptions import NotFittedError import pandas as pd import numpy as np class BaselineProportionalRegressor(BaseEstimator, RegressorMixin): """ A meta regressor for learning the target value as a proportional difference relative to a mean value for a subset of other features. Creates and maintains an internal lookup table for the baseline during the model fir process. Parameters ---------- regressor : Any, scikit-learn regressor that will be learned for the adjust target """ def __init__(self, baseline_cols, regressor) -> None: """Initialize.""" self.baseline_cols = baseline_cols self.regressor = regressor self.baseline_func = 'mean' def generate_baseline(self, df): self.lookup = df.groupby(self.baseline_cols).agg({'baseline':self.baseline_func}).reset_index() self.baseline_default = df['baseline'].agg(self.baseline_func) def get_baseline_predictions(self, df): new_df = pd.merge(df, self.lookup, how='left', on=self.baseline_cols) new_df['baseline'] = np.where(new_df['baseline'].isnull(), self.baseline_default, new_df['baseline']) return new_df['baseline'] def get_relative_target(self, baseline, y): return (y-baseline)/baseline def invert_relative_target(self, preds, baseline): return (preds*baseline)+baseline def get_params(self, deep=True): return self.regressor.get_params() def set_params(self, **parameters): for parameter, value in parameters.items(): if parameter == "baseline_cols": self.baseline_cols = value else: self.regressor.setattr(parameter, value) return self def fit(self, X, y, sample_weight=None): """ Fit the model. Note: this model diverges from the scikit-learn standard in that it needs a pandas dataframe. Parameters ---------- X : pandas.DataFrame of shape (n_samples, n_features) The training data. y : np.ndarray, 1-dimensional The target values. sample_weight : Optional[np.array], default=None Individual weights for each sample. Returns ------- BaselineProportionalRegressor Fitted regressor. Raises ------ ValueError If `regressor` is not a regressor. """ column_names = X.columns X, y = check_X_y(X, y) self._check_n_features(X, reset=True) X = pd.DataFrame(X, columns=column_names) if not is_regressor(self.regressor): raise ValueError(f"`regressor` has to be a regressor. Received instance of {type(self.regressor)} instead.") for col in self.baseline_cols: if col not in X.columns: raise ValueError(f"pandas.DataFrame required with baseline columns: `{col}` NOT FOUND.") df = X.copy() df['baseline'] = y self.generate_baseline(df) baseline = self.get_baseline_predictions(X) Yfinale = self.get_relative_target(baseline, y) self.regressor_ = clone(self.regressor) self.regressor_.fit( X, Yfinale, sample_weight=sample_weight) return self def predict(self, X): """ Get predictions. Parameters ---------- X : pd.DataFrame - shape (n_samples, n_features) DataFrame of samples to get predictions for. Note: DataFrame is required because the baseline uses column names. Returns ------- y : np.ndarray, shape (n_samples,) The predicted values. """ check_is_fitted(self) column_names = X.columns X = check_array(X) self._check_n_features(X, reset=False) X = pd.DataFrame(X, columns=column_names) for col in self.baseline_cols: if col not in X.columns: raise ValueError(f"pandas.DataFrame required with baseline columns: `{col}` NOT FOUND.") baseline = self.get_baseline_predictions(X) preds = self.regressor_.predict(X) return self.invert_relative_target(preds, baseline)
scikit-duplo
/scikit-duplo-0.1.7.tar.gz/scikit-duplo-0.1.7/skduplo/meta/baseline_proportional_regressor.py
baseline_proportional_regressor.py
from sklearn.base import BaseEstimator, RegressorMixin, clone, is_regressor from sklearn.utils.validation import check_is_fitted, check_X_y, check_array from sklearn.exceptions import NotFittedError import pandas as pd import numpy as np class BaselineProportionalRegressor(BaseEstimator, RegressorMixin): """ A meta regressor for learning the target value as a proportional difference relative to a mean value for a subset of other features. Creates and maintains an internal lookup table for the baseline during the model fir process. Parameters ---------- regressor : Any, scikit-learn regressor that will be learned for the adjust target """ def __init__(self, baseline_cols, regressor) -> None: """Initialize.""" self.baseline_cols = baseline_cols self.regressor = regressor self.baseline_func = 'mean' def generate_baseline(self, df): self.lookup = df.groupby(self.baseline_cols).agg({'baseline':self.baseline_func}).reset_index() self.baseline_default = df['baseline'].agg(self.baseline_func) def get_baseline_predictions(self, df): new_df = pd.merge(df, self.lookup, how='left', on=self.baseline_cols) new_df['baseline'] = np.where(new_df['baseline'].isnull(), self.baseline_default, new_df['baseline']) return new_df['baseline'] def get_relative_target(self, baseline, y): return (y-baseline)/baseline def invert_relative_target(self, preds, baseline): return (preds*baseline)+baseline def get_params(self, deep=True): return self.regressor.get_params() def set_params(self, **parameters): for parameter, value in parameters.items(): if parameter == "baseline_cols": self.baseline_cols = value else: self.regressor.setattr(parameter, value) return self def fit(self, X, y, sample_weight=None): """ Fit the model. Note: this model diverges from the scikit-learn standard in that it needs a pandas dataframe. Parameters ---------- X : pandas.DataFrame of shape (n_samples, n_features) The training data. y : np.ndarray, 1-dimensional The target values. sample_weight : Optional[np.array], default=None Individual weights for each sample. Returns ------- BaselineProportionalRegressor Fitted regressor. Raises ------ ValueError If `regressor` is not a regressor. """ column_names = X.columns X, y = check_X_y(X, y) self._check_n_features(X, reset=True) X = pd.DataFrame(X, columns=column_names) if not is_regressor(self.regressor): raise ValueError(f"`regressor` has to be a regressor. Received instance of {type(self.regressor)} instead.") for col in self.baseline_cols: if col not in X.columns: raise ValueError(f"pandas.DataFrame required with baseline columns: `{col}` NOT FOUND.") df = X.copy() df['baseline'] = y self.generate_baseline(df) baseline = self.get_baseline_predictions(X) Yfinale = self.get_relative_target(baseline, y) self.regressor_ = clone(self.regressor) self.regressor_.fit( X, Yfinale, sample_weight=sample_weight) return self def predict(self, X): """ Get predictions. Parameters ---------- X : pd.DataFrame - shape (n_samples, n_features) DataFrame of samples to get predictions for. Note: DataFrame is required because the baseline uses column names. Returns ------- y : np.ndarray, shape (n_samples,) The predicted values. """ check_is_fitted(self) column_names = X.columns X = check_array(X) self._check_n_features(X, reset=False) X = pd.DataFrame(X, columns=column_names) for col in self.baseline_cols: if col not in X.columns: raise ValueError(f"pandas.DataFrame required with baseline columns: `{col}` NOT FOUND.") baseline = self.get_baseline_predictions(X) preds = self.regressor_.predict(X) return self.invert_relative_target(preds, baseline)
0.942275
0.498901
import numpy as np from sklearn.base import BaseEstimator, RegressorMixin, clone, is_regressor, is_classifier from sklearn.utils.validation import check_is_fitted, check_X_y, check_array from sklearn.exceptions import NotFittedError from sklearn.model_selection import train_test_split class RegressorStack(BaseEstimator, RegressorMixin): """ A meta regressor for doing model stacking for regression using underlying quantile propensity models and internal regressors. Particularly designed for zero-inflated or heavily skewed datasets, `RegressorStack` consists of a series of internal regressors all of which are fitted in an internal cross validation and scored out-of-sample A final regressor is trained over the original features and the output of these stacked regression models. Parameters ---------- regressor : Any, scikit-learn regressor A regressor for predicting the target. Examples -------- >>> import numpy as np >>> from sklearn.ensemble import ExtraTreesClassifier, ExtraTreesRegressor >>> np.random.seed(0) >>> X = np.random.randn(10000, 4) >>> y = ((X[:, 0]>0) & (X[:, 1]>0)) * np.abs(X[:, 2] * X[:, 3]**2) >>> z = RegressorStack( ... [KNeighborsRegressor(), BayesianRidge()], ... regressor=ExtraTreesRegressor(random_state=0) ... ) >>> z.fit(X, y) RegressorStack([KNeighborsRegressor(), BayesianRidge()], regressor=ExtraTreesRegressor(random_state=0)) >>> z.predict(X)[:5] array([4.91483294, 0. , 0. , 0.04941909, 0. ]) """ def __init__(self, regressor_list, regressor) -> None: """Initialize.""" self.regressor_list = regressor_list self.regressor = regressor def fit(self, X, y, sample_weight=None): """ Fit the model. Parameters ---------- X : np.ndarray of shape (n_samples, n_features) The training data. y : np.ndarray, 1-dimensional The target values. sample_weight : Optional[np.array], default=None Individual weights for each sample. Returns ------- StackedRegressor Fitted regressor. Raises ------ ValueError If `regressor` is not a regressor. """ X, y = check_X_y(X, y) self._check_n_features(X, reset=True) if not is_regressor(self.regressor): raise ValueError(f"`regressor` has to be a regressor. Received instance of {type(self.regressor)} instead.") """ Now we need to internally split the data and build two sets of internal regressors to prevent leakage """ X_ = [0] * 2 y_ = [0] * 2 X_[0], X_[1], y_[0], y_[1] = train_test_split(X, y, test_size=0.5) """ Build the internal regressors """ self.regressors_ = [0] * 2 for index in [0,1]: self.regressors_[index] = [0] * len(self.regressor_list) for c, reg in enumerate(self.regressor_list): self.regressors_[index][c] = clone(reg) self.regressors_[index][c].fit(X_[index], y_[index] ) """ Apply those classifier to the out of sample data """ Xfinal_reg_ = [0] * 2 for index in [0,1]: Xfinal_reg_[index] = X_[index].copy() c_index = 1 - index for c, reg in enumerate(self.regressor_list): preds = self.regressors_[c_index][c].predict( X_[index] ) Xfinal_reg_[index] = np.append(Xfinal_reg_[index], preds.T[:, None], axis=1) """ Join the split data into a final dataset for the regression model """ Xfinale = np.concatenate((Xfinal_reg_[0], Xfinal_reg_[1] ), axis=0) Yfinale = np.concatenate((y_[0], y_[1] ), axis=0) self.regressor_ = clone(self.regressor) self.regressor_.fit( Xfinale, Yfinale, sample_weight=sample_weight) return self def predict(self, X): """ Get predictions. Parameters ---------- X : np.ndarray, shape (n_samples, n_features) Samples to get predictions of. Returns ------- y : np.ndarray, shape (n_samples,) The predicted values. """ check_is_fitted(self) X = check_array(X) self._check_n_features(X, reset=False) Xfinale = X.copy() for c, reg in enumerate(self.regressor_list): temp = np.zeros(len(X)) for index in [0,1]: temp = temp + self.regressors_[index][c].predict( X ) temp = temp/2 Xfinale = np.append(Xfinale, temp[:, None], axis=1) return self.regressor_.predict(Xfinale)
scikit-duplo
/scikit-duplo-0.1.7.tar.gz/scikit-duplo-0.1.7/skduplo/meta/regressor_stack.py
regressor_stack.py
import numpy as np from sklearn.base import BaseEstimator, RegressorMixin, clone, is_regressor, is_classifier from sklearn.utils.validation import check_is_fitted, check_X_y, check_array from sklearn.exceptions import NotFittedError from sklearn.model_selection import train_test_split class RegressorStack(BaseEstimator, RegressorMixin): """ A meta regressor for doing model stacking for regression using underlying quantile propensity models and internal regressors. Particularly designed for zero-inflated or heavily skewed datasets, `RegressorStack` consists of a series of internal regressors all of which are fitted in an internal cross validation and scored out-of-sample A final regressor is trained over the original features and the output of these stacked regression models. Parameters ---------- regressor : Any, scikit-learn regressor A regressor for predicting the target. Examples -------- >>> import numpy as np >>> from sklearn.ensemble import ExtraTreesClassifier, ExtraTreesRegressor >>> np.random.seed(0) >>> X = np.random.randn(10000, 4) >>> y = ((X[:, 0]>0) & (X[:, 1]>0)) * np.abs(X[:, 2] * X[:, 3]**2) >>> z = RegressorStack( ... [KNeighborsRegressor(), BayesianRidge()], ... regressor=ExtraTreesRegressor(random_state=0) ... ) >>> z.fit(X, y) RegressorStack([KNeighborsRegressor(), BayesianRidge()], regressor=ExtraTreesRegressor(random_state=0)) >>> z.predict(X)[:5] array([4.91483294, 0. , 0. , 0.04941909, 0. ]) """ def __init__(self, regressor_list, regressor) -> None: """Initialize.""" self.regressor_list = regressor_list self.regressor = regressor def fit(self, X, y, sample_weight=None): """ Fit the model. Parameters ---------- X : np.ndarray of shape (n_samples, n_features) The training data. y : np.ndarray, 1-dimensional The target values. sample_weight : Optional[np.array], default=None Individual weights for each sample. Returns ------- StackedRegressor Fitted regressor. Raises ------ ValueError If `regressor` is not a regressor. """ X, y = check_X_y(X, y) self._check_n_features(X, reset=True) if not is_regressor(self.regressor): raise ValueError(f"`regressor` has to be a regressor. Received instance of {type(self.regressor)} instead.") """ Now we need to internally split the data and build two sets of internal regressors to prevent leakage """ X_ = [0] * 2 y_ = [0] * 2 X_[0], X_[1], y_[0], y_[1] = train_test_split(X, y, test_size=0.5) """ Build the internal regressors """ self.regressors_ = [0] * 2 for index in [0,1]: self.regressors_[index] = [0] * len(self.regressor_list) for c, reg in enumerate(self.regressor_list): self.regressors_[index][c] = clone(reg) self.regressors_[index][c].fit(X_[index], y_[index] ) """ Apply those classifier to the out of sample data """ Xfinal_reg_ = [0] * 2 for index in [0,1]: Xfinal_reg_[index] = X_[index].copy() c_index = 1 - index for c, reg in enumerate(self.regressor_list): preds = self.regressors_[c_index][c].predict( X_[index] ) Xfinal_reg_[index] = np.append(Xfinal_reg_[index], preds.T[:, None], axis=1) """ Join the split data into a final dataset for the regression model """ Xfinale = np.concatenate((Xfinal_reg_[0], Xfinal_reg_[1] ), axis=0) Yfinale = np.concatenate((y_[0], y_[1] ), axis=0) self.regressor_ = clone(self.regressor) self.regressor_.fit( Xfinale, Yfinale, sample_weight=sample_weight) return self def predict(self, X): """ Get predictions. Parameters ---------- X : np.ndarray, shape (n_samples, n_features) Samples to get predictions of. Returns ------- y : np.ndarray, shape (n_samples,) The predicted values. """ check_is_fitted(self) X = check_array(X) self._check_n_features(X, reset=False) Xfinale = X.copy() for c, reg in enumerate(self.regressor_list): temp = np.zeros(len(X)) for index in [0,1]: temp = temp + self.regressors_[index][c].predict( X ) temp = temp/2 Xfinale = np.append(Xfinale, temp[:, None], axis=1) return self.regressor_.predict(Xfinale)
0.933073
0.737962
Master Status: [![Build Status](https://travis-ci.com/UrbsLab/scikit-eLCS.svg?branch=master)](https://travis-ci.com/UrbsLab/scikit-eLCS) # scikit-eLCS The scikit-eLCS package includes a sklearn-compatible Python implementation of eLCS, a supervised learning variant of the Learning Classifier System, based off of UCS. In general, Learning Classifier Systems (LCSs) are a classification of Rule Based Machine Learning Algorithms that have been shown to perform well on problems involving high amounts of heterogeneity and epistasis. Well designed LCSs are also highly human interpretable. LCS variants have been shown to adeptly handle supervised and reinforced, classification and regression, online and offline learning problems, as well as missing or unbalanced data. These characteristics of versatility and interpretability give LCSs a wide range of potential applications, notably those in biomedicine. This package is **still under active development** and we encourage you to check back on this repository for updates. eLCS, or Educational Learning Classifier System, implements the core components of a Michigan-Style Learning Classifier System (where the system's genetic algorithm operates on a rule level, evolving a population of rules with each their own parameters) in an easy to understand way, while still being highly functional in solving ML problems. While Learning Classifier Systems are commonly applied to genetic analyses, where epistatis (i.e. feature interactions) is common, the eLCS algorithm implemented in this package can be applied to almost any supervised classification data set and supports: * Feature sets that are discrete/categorical, continuous-valued or a mix of both * Data with missing values * Binary endpoints (i.e., classification) * Multi-class endpoints (i.e., classification) * eLCS does not currently support regression problems. We have built out the infrastructure for it do so, but have disabled its functionality for this version. Built into this code, is a strategy to 'automatically' detect from the loaded data, these relevant above characteristics so that they don't need to be parameterized at initialization. The core Scikit package only supports numeric data. However, an additional StringEnumerator Class is provided within the DataCleanup file that allows quick data conversion from any type of data into pure numeric data, making it possible for natively string/non-numeric data to be run by eLCS. In addition, powerful data tracking collection methods are built into the scikit package, that continuously tracks features every iteration such as: * Approximate Accuracy * Average Population Generality * Macropopulation Size * Micropopulation Size * Match Set, Correct Set Sizes * Number of classifiers subsumed/deleted/covered * Number of crossover/mutation operations performed * Times for matching, deletion, subsumption, selection, evaluation These values can then be exported as a csv after training is complete for analysis using the built in "export_iteration_tracking_data" method. In addition, the package includes functionality that allows the final rule population to be exported as a csv after training. ## Usage For more information on the eLCS algorithm and how to use it, please refer to the ["eLCS User Guide"](https://github.com/UrbsLab/scikit-eLCS/blob/master/eLCS%20User%20Guide.ipynb) Jupyter Notebook inside this repository. ## Usage TLDR ```python #Import Necessary Packages/Modules from skeLCS import eLCS import numpy as np import pandas as pd from sklearn.model_selection import cross_val_score #Load Data Using Pandas data = pd.read_csv('myDataFile.csv') #REPLACE with your own dataset .csv filename dataFeatures = data.drop(classLabel,axis=1).values #DEFINE classLabel variable as the Str at the top of your dataset's class column dataPhenotypes = data[classLabel].values #Shuffle Data Before CV formatted = np.insert(dataFeatures,dataFeatures.shape[1],dataPhenotypes,1) np.random.shuffle(formatted) dataFeatures = np.delete(formatted,-1,axis=1) dataPhenotypes = formatted[:,-1] #Initialize eLCS Model model = eLCS(learning_iterations = 5000) #3-fold CV print(np.mean(cross_val_score(model,dataFeatures,dataPhenotypes,cv=3))) ``` ## License Please see the repository [license](https://github.com/UrbsLab/scikit-eLCS/blob/master/LICENSE) for the licensing and usage information for scikit-eLCS. Generally, we have licensed scikit-eLCS to make it as widely usable as possible. ## Installation scikit-eLCS is built on top of the following Python packages: <ol> <li> numpy </li> <li> pandas </li> <li> scikit-learn </li> </ol> Once the prerequisites are installed, you can install scikit-eLCS with a pip command: ``` pip/pip3 install scikit-elcs ``` We strongly recommend you use Python 3. scikit-eLCS does not support Python 2, given its depreciation in Jan 1 2020. If something goes wrong during installation, make sure that your pip is up to date and try again. ``` pip/pip3 install --upgrade pip ``` ## Contributing to scikit-eLCS scikit-eLCS is an open source project and we'd love if you could suggest changes! <ol> <li> Fork the project repository to your personal account and clone this copy to your local disk</li> <li> Create a branch from master to hold your changes: (e.g. <b>git checkout -b my-contribution-branch</b>) </li> <li> Commit changes on your branch. Remember to never work on any other branch but your own! </li> <li> When you are done, push your changes to your forked GitHub repository with <b>git push -u origin my-contribution-branch</b> </li> <li> Create a pull request to send your changes to the scikit-eLCS maintainers for review. </li> </ol> **Before submitting your pull request** If your contribution changes eLCS in any way, make sure you update the Jupyter Notebook documentation and the README with relevant details. If your contribution involves any code changes, update the project unit tests to test your code changes, and make sure your code is properly commented to explain your rationale behind non-obvious coding practices. **After submitting your pull request** After submitting your pull request, Travis CI will run all of the project's unit tests. Check back shortly after submitting to make sure your code passes these checks. If any checks come back failed, do your best to address the errors.
scikit-eLCS
/scikit-eLCS-1.2.4.tar.gz/scikit-eLCS-1.2.4/README.md
README.md
#Import Necessary Packages/Modules from skeLCS import eLCS import numpy as np import pandas as pd from sklearn.model_selection import cross_val_score #Load Data Using Pandas data = pd.read_csv('myDataFile.csv') #REPLACE with your own dataset .csv filename dataFeatures = data.drop(classLabel,axis=1).values #DEFINE classLabel variable as the Str at the top of your dataset's class column dataPhenotypes = data[classLabel].values #Shuffle Data Before CV formatted = np.insert(dataFeatures,dataFeatures.shape[1],dataPhenotypes,1) np.random.shuffle(formatted) dataFeatures = np.delete(formatted,-1,axis=1) dataPhenotypes = formatted[:,-1] #Initialize eLCS Model model = eLCS(learning_iterations = 5000) #3-fold CV print(np.mean(cross_val_score(model,dataFeatures,dataPhenotypes,cv=3))) pip/pip3 install scikit-elcs pip/pip3 install --upgrade pip
0.334481
0.989013
import time # -------------------------------------- class Timer: def __init__(self): # Global Time objects self.globalStartRef = time.time() self.globalTime = 0.0 self.globalAdd = 0 # Match Time Variables self.startRefMatching = 0.0 self.globalMatching = 0.0 # Deletion Time Variables self.startRefDeletion = 0.0 self.globalDeletion = 0.0 # Subsumption Time Variables self.startRefSubsumption = 0.0 self.globalSubsumption = 0.0 # Selection Time Variables self.startRefSelection = 0.0 self.globalSelection = 0.0 # Evaluation Time Variables self.startRefEvaluation = 0.0 self.globalEvaluation = 0.0 # ************************************************************ def startTimeMatching(self): """ Tracks MatchSet Time """ self.startRefMatching = time.time() def stopTimeMatching(self): """ Tracks MatchSet Time """ diff = time.time() - self.startRefMatching self.globalMatching += diff # ************************************************************ def startTimeDeletion(self): """ Tracks Deletion Time """ self.startRefDeletion = time.time() def stopTimeDeletion(self): """ Tracks Deletion Time """ diff = time.time() - self.startRefDeletion self.globalDeletion += diff # ************************************************************ def startTimeSubsumption(self): """Tracks Subsumption Time """ self.startRefSubsumption = time.time() def stopTimeSubsumption(self): """Tracks Subsumption Time """ diff = time.time() - self.startRefSubsumption self.globalSubsumption += diff # ************************************************************ def startTimeSelection(self): """ Tracks Selection Time """ self.startRefSelection = time.time() def stopTimeSelection(self): """ Tracks Selection Time """ diff = time.time() - self.startRefSelection self.globalSelection += diff # ************************************************************ def startTimeEvaluation(self): """ Tracks Evaluation Time """ self.startRefEvaluation = time.time() def stopTimeEvaluation(self): """ Tracks Evaluation Time """ diff = time.time() - self.startRefEvaluation self.globalEvaluation += diff # ************************************************************ def updateGlobalTime(self): self.globalTime = (time.time() - self.globalStartRef)+self.globalAdd
scikit-eLCS
/scikit-eLCS-1.2.4.tar.gz/scikit-eLCS-1.2.4/skeLCS/Timer.py
Timer.py
import time # -------------------------------------- class Timer: def __init__(self): # Global Time objects self.globalStartRef = time.time() self.globalTime = 0.0 self.globalAdd = 0 # Match Time Variables self.startRefMatching = 0.0 self.globalMatching = 0.0 # Deletion Time Variables self.startRefDeletion = 0.0 self.globalDeletion = 0.0 # Subsumption Time Variables self.startRefSubsumption = 0.0 self.globalSubsumption = 0.0 # Selection Time Variables self.startRefSelection = 0.0 self.globalSelection = 0.0 # Evaluation Time Variables self.startRefEvaluation = 0.0 self.globalEvaluation = 0.0 # ************************************************************ def startTimeMatching(self): """ Tracks MatchSet Time """ self.startRefMatching = time.time() def stopTimeMatching(self): """ Tracks MatchSet Time """ diff = time.time() - self.startRefMatching self.globalMatching += diff # ************************************************************ def startTimeDeletion(self): """ Tracks Deletion Time """ self.startRefDeletion = time.time() def stopTimeDeletion(self): """ Tracks Deletion Time """ diff = time.time() - self.startRefDeletion self.globalDeletion += diff # ************************************************************ def startTimeSubsumption(self): """Tracks Subsumption Time """ self.startRefSubsumption = time.time() def stopTimeSubsumption(self): """Tracks Subsumption Time """ diff = time.time() - self.startRefSubsumption self.globalSubsumption += diff # ************************************************************ def startTimeSelection(self): """ Tracks Selection Time """ self.startRefSelection = time.time() def stopTimeSelection(self): """ Tracks Selection Time """ diff = time.time() - self.startRefSelection self.globalSelection += diff # ************************************************************ def startTimeEvaluation(self): """ Tracks Evaluation Time """ self.startRefEvaluation = time.time() def stopTimeEvaluation(self): """ Tracks Evaluation Time """ diff = time.time() - self.startRefEvaluation self.globalEvaluation += diff # ************************************************************ def updateGlobalTime(self): self.globalTime = (time.time() - self.globalStartRef)+self.globalAdd
0.520253
0.173743
import random import copy import math class Classifier: def __init__(self,elcs,a=None,b=None,c=None,d=None): #Major Parameters self.specifiedAttList = [] self.condition = [] self.phenotype = None #arbitrary self.fitness = elcs.init_fit self.accuracy = 0.0 self.numerosity = 1 self.aveMatchSetSize = None self.deletionProb = None # Experience Management self.timeStampGA = None self.initTimeStamp = None # Classifier Accuracy Tracking -------------------------------------- self.matchCount = 0 # Known in many LCS implementations as experience i.e. the total number of times this classifier was in a match set self.correctCount = 0 # The total number of times this classifier was in a correct set if isinstance(c, list): self.classifierCovering(elcs, a, b, c, d) elif isinstance(a, Classifier): self.classifierCopy(a, b) # Classifier Construction Methods def classifierCovering(self, elcs, setSize, exploreIter, state, phenotype): # Initialize new classifier parameters---------- self.timeStampGA = exploreIter self.initTimeStamp = exploreIter self.aveMatchSetSize = setSize dataInfo = elcs.env.formatData # ------------------------------------------------------- # DISCRETE PHENOTYPE # ------------------------------------------------------- if dataInfo.discretePhenotype: self.phenotype = phenotype # ------------------------------------------------------- # CONTINUOUS PHENOTYPE # ------------------------------------------------------- else: phenotypeRange = dataInfo.phenotypeList[1] - dataInfo.phenotypeList[0] rangeRadius = random.randint(25,75) * 0.01 * phenotypeRange / 2.0 # Continuous initialization domain radius. Low = float(phenotype) - rangeRadius High = float(phenotype) + rangeRadius self.phenotype = [Low, High] while len(self.specifiedAttList) < 1: for attRef in range(len(state)): if random.random() < elcs.p_spec and not(state[attRef] == None): self.specifiedAttList.append(attRef) self.buildMatch(elcs, attRef, state) # Add classifierConditionElement def classifierCopy(self, toCopy, exploreIter): self.specifiedAttList = copy.deepcopy(toCopy.specifiedAttList) self.condition = copy.deepcopy(toCopy.condition) self.phenotype = copy.deepcopy(toCopy.phenotype) self.timeStampGA = exploreIter self.initTimeStamp = exploreIter self.aveMatchSetSize = copy.deepcopy(toCopy.aveMatchSetSize) self.fitness = toCopy.fitness self.accuracy = toCopy.accuracy def buildMatch(self, elcs, attRef, state): attributeInfoType = elcs.env.formatData.attributeInfoType[attRef] if not(attributeInfoType): #Discrete attributeInfoValue = elcs.env.formatData.attributeInfoDiscrete[attRef] else: attributeInfoValue = elcs.env.formatData.attributeInfoContinuous[attRef] # Continuous attribute if attributeInfoType: attRange = attributeInfoValue[1] - attributeInfoValue[0] rangeRadius = random.randint(25, 75) * 0.01 * attRange / 2.0 # Continuous initialization domain radius. ar = state[attRef] Low = ar - rangeRadius High = ar + rangeRadius condList = [Low, High] self.condition.append(condList) # Discrete attribute else: condList = state[attRef] self.condition.append(condList) # Matching def match(self, state, elcs): for i in range(len(self.condition)): specifiedIndex = self.specifiedAttList[i] attributeInfoType = elcs.env.formatData.attributeInfoType[specifiedIndex] # Continuous if attributeInfoType: instanceValue = state[specifiedIndex] if elcs.match_for_missingness: if instanceValue == None: pass elif self.condition[i][0] < instanceValue < self.condition[i][1]: pass else: return False else: if instanceValue == None: return False elif self.condition[i][0] < instanceValue < self.condition[i][1]: pass else: return False # Discrete else: stateRep = state[specifiedIndex] if elcs.match_for_missingness: if stateRep == self.condition[i] or stateRep == None: pass else: return False else: if stateRep == self.condition[i]: pass elif stateRep == None: return False else: return False return True def equals(self, elcs, cl): if cl.phenotype == self.phenotype and len(cl.specifiedAttList) == len(self.specifiedAttList): clRefs = sorted(cl.specifiedAttList) selfRefs = sorted(self.specifiedAttList) if clRefs == selfRefs: for i in range(len(cl.specifiedAttList)): tempIndex = self.specifiedAttList.index(cl.specifiedAttList[i]) if not (cl.condition[i] == self.condition[tempIndex]): return False return True return False def updateNumerosity(self, num): """ Updates the numberosity of the classifier. Notice that 'num' can be negative! """ self.numerosity += num def updateExperience(self): """ Increases the experience of the classifier by one. Once an epoch has completed, rule accuracy can't change.""" self.matchCount += 1 def updateCorrect(self): """ Increases the correct phenotype tracking by one. Once an epoch has completed, rule accuracy can't change.""" self.correctCount += 1 def updateMatchSetSize(self, elcs, matchSetSize): """ Updates the average match set size. """ if self.matchCount < 1.0 / elcs.beta: self.aveMatchSetSize = (self.aveMatchSetSize * (self.matchCount - 1) + matchSetSize) / float( self.matchCount) else: self.aveMatchSetSize = self.aveMatchSetSize + elcs.beta * (matchSetSize - self.aveMatchSetSize) def updateAccuracy(self): """ Update the accuracy tracker """ self.accuracy = self.correctCount / float(self.matchCount) def updateFitness(self, elcs): """ Update the fitness parameter. """ if elcs.env.formatData.discretePhenotype or ( self.phenotype[1] - self.phenotype[0]) / elcs.env.formatData.phenotypeRange < 0.5: self.fitness = pow(self.accuracy, elcs.nu) else: if (self.phenotype[1] - self.phenotype[0]) >= elcs.env.formatData.phenotypeRange: self.fitness = 0.0 else: self.fitness = math.fabs(pow(self.accuracy, elcs.nu) - ( self.phenotype[1] - self.phenotype[0]) / elcs.env.formatData.phenotypeRange) def isSubsumer(self, elcs): if self.matchCount > elcs.theta_sub and self.accuracy > elcs.acc_sub: return True return False def isMoreGeneral(self, cl, elcs): if len(self.specifiedAttList) >= len(cl.specifiedAttList): return False for i in range(len(self.specifiedAttList)): attributeInfoType = elcs.env.formatData.attributeInfoType[self.specifiedAttList[i]] if self.specifiedAttList[i] not in cl.specifiedAttList: return False # Continuous if attributeInfoType: otherRef = cl.specifiedAttList.index(self.specifiedAttList[i]) if self.condition[i][0] < cl.condition[otherRef][0]: return False if self.condition[i][1] > cl.condition[otherRef][1]: return False return True def uniformCrossover(self, elcs, cl): if elcs.env.formatData.discretePhenotype or random.random() < 0.5: p_self_specifiedAttList = copy.deepcopy(self.specifiedAttList) p_cl_specifiedAttList = copy.deepcopy(cl.specifiedAttList) # Make list of attribute references appearing in at least one of the parents.----------------------------- comboAttList = [] for i in p_self_specifiedAttList: comboAttList.append(i) for i in p_cl_specifiedAttList: if i not in comboAttList: comboAttList.append(i) elif not elcs.env.formatData.attributeInfoType[i]: comboAttList.remove(i) comboAttList.sort() changed = False for attRef in comboAttList: attributeInfoType = elcs.env.formatData.attributeInfoType[attRef] probability = 0.5 ref = 0 if attRef in p_self_specifiedAttList: ref += 1 if attRef in p_cl_specifiedAttList: ref += 1 if ref == 0: pass elif ref == 1: if attRef in p_self_specifiedAttList and random.random() > probability: i = self.specifiedAttList.index(attRef) cl.condition.append(self.condition.pop(i)) cl.specifiedAttList.append(attRef) self.specifiedAttList.remove(attRef) changed = True if attRef in p_cl_specifiedAttList and random.random() < probability: i = cl.specifiedAttList.index(attRef) self.condition.append(cl.condition.pop(i)) self.specifiedAttList.append(attRef) cl.specifiedAttList.remove(attRef) changed = True else: # Continuous Attribute if attributeInfoType: i_cl1 = self.specifiedAttList.index(attRef) i_cl2 = cl.specifiedAttList.index(attRef) tempKey = random.randint(0, 3) if tempKey == 0: temp = self.condition[i_cl1][0] self.condition[i_cl1][0] = cl.condition[i_cl2][0] cl.condition[i_cl2][0] = temp elif tempKey == 1: temp = self.condition[i_cl1][1] self.condition[i_cl1][1] = cl.condition[i_cl2][1] cl.condition[i_cl2][1] = temp else: allList = self.condition[i_cl1] + cl.condition[i_cl2] newMin = min(allList) newMax = max(allList) if tempKey == 2: self.condition[i_cl1] = [newMin, newMax] cl.condition.pop(i_cl2) cl.specifiedAttList.remove(attRef) else: cl.condition[i_cl2] = [newMin, newMax] self.condition.pop(i_cl1) self.specifiedAttList.remove(attRef) # Discrete Attribute else: pass tempList1 = copy.deepcopy(p_self_specifiedAttList) tempList2 = copy.deepcopy(cl.specifiedAttList) tempList1.sort() tempList2.sort() if changed and len(set(tempList1) & set(tempList2)) == len(tempList2): changed = False return changed else: return self.phenotypeCrossover(cl) def phenotypeCrossover(self, cl): changed = False if self.phenotype == cl.phenotype: return changed else: tempKey = random.random() < 0.5 # Make random choice between 4 scenarios, Swap minimums, Swap maximums, Children preserve parent phenotypes. if tempKey: # Swap minimum temp = self.phenotype[0] self.phenotype[0] = cl.phenotype[0] cl.phenotype[0] = temp changed = True elif tempKey: # Swap maximum temp = self.phenotype[1] self.phenotype[1] = cl.phenotype[1] cl.phenotype[1] = temp changed = True return changed def Mutation(self, elcs, state, phenotype): changed = False # Mutate Condition for attRef in range(elcs.env.formatData.numAttributes): attributeInfoType = elcs.env.formatData.attributeInfoType[attRef] if not (attributeInfoType): # Discrete attributeInfoValue = elcs.env.formatData.attributeInfoDiscrete[attRef] else: attributeInfoValue = elcs.env.formatData.attributeInfoContinuous[attRef] if random.random() < elcs.mu and not(state[attRef] == None): # Mutation if attRef not in self.specifiedAttList: self.specifiedAttList.append(attRef) self.buildMatch(elcs, attRef, state) changed = True elif attRef in self.specifiedAttList: i = self.specifiedAttList.index(attRef) if not attributeInfoType or random.random() > 0.5: del self.specifiedAttList[i] del self.condition[i] changed = True else: attRange = float(attributeInfoValue[1]) - float(attributeInfoValue[0]) mutateRange = random.random() * 0.5 * attRange if random.random() > 0.5: if random.random() > 0.5: self.condition[i][0] += mutateRange else: self.condition[i][0] -= mutateRange else: if random.random() > 0.5: self.condition[i][1] += mutateRange else: self.condition[i][1] -= mutateRange self.condition[i] = sorted(self.condition[i]) changed = True else: pass # Mutate Phenotype if elcs.env.formatData.discretePhenotype: nowChanged = self.discretePhenotypeMutation(elcs) else: nowChanged = self.continuousPhenotypeMutation(elcs, phenotype) if changed or nowChanged: return True def discretePhenotypeMutation(self, elcs): changed = False if random.random() < elcs.mu: phenotypeList = copy.deepcopy(elcs.env.formatData.phenotypeList) phenotypeList.remove(self.phenotype) newPhenotype = random.choice(phenotypeList) self.phenotype = newPhenotype changed = True return changed def continuousPhenotypeMutation(self, elcs, phenotype): changed = False if random.random() < elcs.mu: phenRange = self.phenotype[1] - self.phenotype[0] mutateRange = random.random() * 0.5 * phenRange tempKey = random.randint(0,2) # Make random choice between 3 scenarios, mutate minimums, mutate maximums, mutate both if tempKey == 0: # Mutate minimum if random.random() > 0.5 or self.phenotype[0] + mutateRange <= phenotype: # Checks that mutated range still contains current phenotype self.phenotype[0] += mutateRange else: # Subtract self.phenotype[0] -= mutateRange changed = True elif tempKey == 1: # Mutate maximum if random.random() > 0.5 or self.phenotype[1] - mutateRange >= phenotype: # Checks that mutated range still contains current phenotype self.phenotype[1] -= mutateRange else: # Subtract self.phenotype[1] += mutateRange changed = True else: # mutate both if random.random() > 0.5 or self.phenotype[0] + mutateRange <= phenotype: # Checks that mutated range still contains current phenotype self.phenotype[0] += mutateRange else: # Subtract self.phenotype[0] -= mutateRange if random.random() > 0.5 or self.phenotype[1] - mutateRange >= phenotype: # Checks that mutated range still contains current phenotype self.phenotype[1] -= mutateRange else: # Subtract self.phenotype[1] += mutateRange changed = True self.phenotype.sort() return changed def updateTimeStamp(self, ts): """ Sets the time stamp of the classifier. """ self.timeStampGA = ts def setAccuracy(self, acc): """ Sets the accuracy of the classifier """ self.accuracy = acc def setFitness(self, fit): """ Sets the fitness of the classifier. """ self.fitness = fit def subsumes(self, elcs, cl): # Discrete Phenotype if elcs.env.formatData.discretePhenotype: if cl.phenotype == self.phenotype: if self.isSubsumer(elcs) and self.isMoreGeneral(cl, elcs): return True return False # Continuous Phenotype else: if self.phenotype[0] >= cl.phenotype[0] and self.phenotype[1] <= cl.phenotype[1]: if self.isSubsumer(elcs) and self.isMoreGeneral(cl, elcs): return True return False def getDelProp(self, elcs, meanFitness): """ Returns the vote for deletion of the classifier. """ if self.fitness / self.numerosity >= elcs.delta * meanFitness or self.matchCount < elcs.theta_del: deletionVote = self.aveMatchSetSize * self.numerosity elif self.fitness == 0.0: deletionVote = self.aveMatchSetSize * self.numerosity * meanFitness / (elcs.init_fit / self.numerosity) else: deletionVote = self.aveMatchSetSize * self.numerosity * meanFitness / (self.fitness / self.numerosity) return deletionVote
scikit-eLCS
/scikit-eLCS-1.2.4.tar.gz/scikit-eLCS-1.2.4/skeLCS/Classifier.py
Classifier.py
import random import copy import math class Classifier: def __init__(self,elcs,a=None,b=None,c=None,d=None): #Major Parameters self.specifiedAttList = [] self.condition = [] self.phenotype = None #arbitrary self.fitness = elcs.init_fit self.accuracy = 0.0 self.numerosity = 1 self.aveMatchSetSize = None self.deletionProb = None # Experience Management self.timeStampGA = None self.initTimeStamp = None # Classifier Accuracy Tracking -------------------------------------- self.matchCount = 0 # Known in many LCS implementations as experience i.e. the total number of times this classifier was in a match set self.correctCount = 0 # The total number of times this classifier was in a correct set if isinstance(c, list): self.classifierCovering(elcs, a, b, c, d) elif isinstance(a, Classifier): self.classifierCopy(a, b) # Classifier Construction Methods def classifierCovering(self, elcs, setSize, exploreIter, state, phenotype): # Initialize new classifier parameters---------- self.timeStampGA = exploreIter self.initTimeStamp = exploreIter self.aveMatchSetSize = setSize dataInfo = elcs.env.formatData # ------------------------------------------------------- # DISCRETE PHENOTYPE # ------------------------------------------------------- if dataInfo.discretePhenotype: self.phenotype = phenotype # ------------------------------------------------------- # CONTINUOUS PHENOTYPE # ------------------------------------------------------- else: phenotypeRange = dataInfo.phenotypeList[1] - dataInfo.phenotypeList[0] rangeRadius = random.randint(25,75) * 0.01 * phenotypeRange / 2.0 # Continuous initialization domain radius. Low = float(phenotype) - rangeRadius High = float(phenotype) + rangeRadius self.phenotype = [Low, High] while len(self.specifiedAttList) < 1: for attRef in range(len(state)): if random.random() < elcs.p_spec and not(state[attRef] == None): self.specifiedAttList.append(attRef) self.buildMatch(elcs, attRef, state) # Add classifierConditionElement def classifierCopy(self, toCopy, exploreIter): self.specifiedAttList = copy.deepcopy(toCopy.specifiedAttList) self.condition = copy.deepcopy(toCopy.condition) self.phenotype = copy.deepcopy(toCopy.phenotype) self.timeStampGA = exploreIter self.initTimeStamp = exploreIter self.aveMatchSetSize = copy.deepcopy(toCopy.aveMatchSetSize) self.fitness = toCopy.fitness self.accuracy = toCopy.accuracy def buildMatch(self, elcs, attRef, state): attributeInfoType = elcs.env.formatData.attributeInfoType[attRef] if not(attributeInfoType): #Discrete attributeInfoValue = elcs.env.formatData.attributeInfoDiscrete[attRef] else: attributeInfoValue = elcs.env.formatData.attributeInfoContinuous[attRef] # Continuous attribute if attributeInfoType: attRange = attributeInfoValue[1] - attributeInfoValue[0] rangeRadius = random.randint(25, 75) * 0.01 * attRange / 2.0 # Continuous initialization domain radius. ar = state[attRef] Low = ar - rangeRadius High = ar + rangeRadius condList = [Low, High] self.condition.append(condList) # Discrete attribute else: condList = state[attRef] self.condition.append(condList) # Matching def match(self, state, elcs): for i in range(len(self.condition)): specifiedIndex = self.specifiedAttList[i] attributeInfoType = elcs.env.formatData.attributeInfoType[specifiedIndex] # Continuous if attributeInfoType: instanceValue = state[specifiedIndex] if elcs.match_for_missingness: if instanceValue == None: pass elif self.condition[i][0] < instanceValue < self.condition[i][1]: pass else: return False else: if instanceValue == None: return False elif self.condition[i][0] < instanceValue < self.condition[i][1]: pass else: return False # Discrete else: stateRep = state[specifiedIndex] if elcs.match_for_missingness: if stateRep == self.condition[i] or stateRep == None: pass else: return False else: if stateRep == self.condition[i]: pass elif stateRep == None: return False else: return False return True def equals(self, elcs, cl): if cl.phenotype == self.phenotype and len(cl.specifiedAttList) == len(self.specifiedAttList): clRefs = sorted(cl.specifiedAttList) selfRefs = sorted(self.specifiedAttList) if clRefs == selfRefs: for i in range(len(cl.specifiedAttList)): tempIndex = self.specifiedAttList.index(cl.specifiedAttList[i]) if not (cl.condition[i] == self.condition[tempIndex]): return False return True return False def updateNumerosity(self, num): """ Updates the numberosity of the classifier. Notice that 'num' can be negative! """ self.numerosity += num def updateExperience(self): """ Increases the experience of the classifier by one. Once an epoch has completed, rule accuracy can't change.""" self.matchCount += 1 def updateCorrect(self): """ Increases the correct phenotype tracking by one. Once an epoch has completed, rule accuracy can't change.""" self.correctCount += 1 def updateMatchSetSize(self, elcs, matchSetSize): """ Updates the average match set size. """ if self.matchCount < 1.0 / elcs.beta: self.aveMatchSetSize = (self.aveMatchSetSize * (self.matchCount - 1) + matchSetSize) / float( self.matchCount) else: self.aveMatchSetSize = self.aveMatchSetSize + elcs.beta * (matchSetSize - self.aveMatchSetSize) def updateAccuracy(self): """ Update the accuracy tracker """ self.accuracy = self.correctCount / float(self.matchCount) def updateFitness(self, elcs): """ Update the fitness parameter. """ if elcs.env.formatData.discretePhenotype or ( self.phenotype[1] - self.phenotype[0]) / elcs.env.formatData.phenotypeRange < 0.5: self.fitness = pow(self.accuracy, elcs.nu) else: if (self.phenotype[1] - self.phenotype[0]) >= elcs.env.formatData.phenotypeRange: self.fitness = 0.0 else: self.fitness = math.fabs(pow(self.accuracy, elcs.nu) - ( self.phenotype[1] - self.phenotype[0]) / elcs.env.formatData.phenotypeRange) def isSubsumer(self, elcs): if self.matchCount > elcs.theta_sub and self.accuracy > elcs.acc_sub: return True return False def isMoreGeneral(self, cl, elcs): if len(self.specifiedAttList) >= len(cl.specifiedAttList): return False for i in range(len(self.specifiedAttList)): attributeInfoType = elcs.env.formatData.attributeInfoType[self.specifiedAttList[i]] if self.specifiedAttList[i] not in cl.specifiedAttList: return False # Continuous if attributeInfoType: otherRef = cl.specifiedAttList.index(self.specifiedAttList[i]) if self.condition[i][0] < cl.condition[otherRef][0]: return False if self.condition[i][1] > cl.condition[otherRef][1]: return False return True def uniformCrossover(self, elcs, cl): if elcs.env.formatData.discretePhenotype or random.random() < 0.5: p_self_specifiedAttList = copy.deepcopy(self.specifiedAttList) p_cl_specifiedAttList = copy.deepcopy(cl.specifiedAttList) # Make list of attribute references appearing in at least one of the parents.----------------------------- comboAttList = [] for i in p_self_specifiedAttList: comboAttList.append(i) for i in p_cl_specifiedAttList: if i not in comboAttList: comboAttList.append(i) elif not elcs.env.formatData.attributeInfoType[i]: comboAttList.remove(i) comboAttList.sort() changed = False for attRef in comboAttList: attributeInfoType = elcs.env.formatData.attributeInfoType[attRef] probability = 0.5 ref = 0 if attRef in p_self_specifiedAttList: ref += 1 if attRef in p_cl_specifiedAttList: ref += 1 if ref == 0: pass elif ref == 1: if attRef in p_self_specifiedAttList and random.random() > probability: i = self.specifiedAttList.index(attRef) cl.condition.append(self.condition.pop(i)) cl.specifiedAttList.append(attRef) self.specifiedAttList.remove(attRef) changed = True if attRef in p_cl_specifiedAttList and random.random() < probability: i = cl.specifiedAttList.index(attRef) self.condition.append(cl.condition.pop(i)) self.specifiedAttList.append(attRef) cl.specifiedAttList.remove(attRef) changed = True else: # Continuous Attribute if attributeInfoType: i_cl1 = self.specifiedAttList.index(attRef) i_cl2 = cl.specifiedAttList.index(attRef) tempKey = random.randint(0, 3) if tempKey == 0: temp = self.condition[i_cl1][0] self.condition[i_cl1][0] = cl.condition[i_cl2][0] cl.condition[i_cl2][0] = temp elif tempKey == 1: temp = self.condition[i_cl1][1] self.condition[i_cl1][1] = cl.condition[i_cl2][1] cl.condition[i_cl2][1] = temp else: allList = self.condition[i_cl1] + cl.condition[i_cl2] newMin = min(allList) newMax = max(allList) if tempKey == 2: self.condition[i_cl1] = [newMin, newMax] cl.condition.pop(i_cl2) cl.specifiedAttList.remove(attRef) else: cl.condition[i_cl2] = [newMin, newMax] self.condition.pop(i_cl1) self.specifiedAttList.remove(attRef) # Discrete Attribute else: pass tempList1 = copy.deepcopy(p_self_specifiedAttList) tempList2 = copy.deepcopy(cl.specifiedAttList) tempList1.sort() tempList2.sort() if changed and len(set(tempList1) & set(tempList2)) == len(tempList2): changed = False return changed else: return self.phenotypeCrossover(cl) def phenotypeCrossover(self, cl): changed = False if self.phenotype == cl.phenotype: return changed else: tempKey = random.random() < 0.5 # Make random choice between 4 scenarios, Swap minimums, Swap maximums, Children preserve parent phenotypes. if tempKey: # Swap minimum temp = self.phenotype[0] self.phenotype[0] = cl.phenotype[0] cl.phenotype[0] = temp changed = True elif tempKey: # Swap maximum temp = self.phenotype[1] self.phenotype[1] = cl.phenotype[1] cl.phenotype[1] = temp changed = True return changed def Mutation(self, elcs, state, phenotype): changed = False # Mutate Condition for attRef in range(elcs.env.formatData.numAttributes): attributeInfoType = elcs.env.formatData.attributeInfoType[attRef] if not (attributeInfoType): # Discrete attributeInfoValue = elcs.env.formatData.attributeInfoDiscrete[attRef] else: attributeInfoValue = elcs.env.formatData.attributeInfoContinuous[attRef] if random.random() < elcs.mu and not(state[attRef] == None): # Mutation if attRef not in self.specifiedAttList: self.specifiedAttList.append(attRef) self.buildMatch(elcs, attRef, state) changed = True elif attRef in self.specifiedAttList: i = self.specifiedAttList.index(attRef) if not attributeInfoType or random.random() > 0.5: del self.specifiedAttList[i] del self.condition[i] changed = True else: attRange = float(attributeInfoValue[1]) - float(attributeInfoValue[0]) mutateRange = random.random() * 0.5 * attRange if random.random() > 0.5: if random.random() > 0.5: self.condition[i][0] += mutateRange else: self.condition[i][0] -= mutateRange else: if random.random() > 0.5: self.condition[i][1] += mutateRange else: self.condition[i][1] -= mutateRange self.condition[i] = sorted(self.condition[i]) changed = True else: pass # Mutate Phenotype if elcs.env.formatData.discretePhenotype: nowChanged = self.discretePhenotypeMutation(elcs) else: nowChanged = self.continuousPhenotypeMutation(elcs, phenotype) if changed or nowChanged: return True def discretePhenotypeMutation(self, elcs): changed = False if random.random() < elcs.mu: phenotypeList = copy.deepcopy(elcs.env.formatData.phenotypeList) phenotypeList.remove(self.phenotype) newPhenotype = random.choice(phenotypeList) self.phenotype = newPhenotype changed = True return changed def continuousPhenotypeMutation(self, elcs, phenotype): changed = False if random.random() < elcs.mu: phenRange = self.phenotype[1] - self.phenotype[0] mutateRange = random.random() * 0.5 * phenRange tempKey = random.randint(0,2) # Make random choice between 3 scenarios, mutate minimums, mutate maximums, mutate both if tempKey == 0: # Mutate minimum if random.random() > 0.5 or self.phenotype[0] + mutateRange <= phenotype: # Checks that mutated range still contains current phenotype self.phenotype[0] += mutateRange else: # Subtract self.phenotype[0] -= mutateRange changed = True elif tempKey == 1: # Mutate maximum if random.random() > 0.5 or self.phenotype[1] - mutateRange >= phenotype: # Checks that mutated range still contains current phenotype self.phenotype[1] -= mutateRange else: # Subtract self.phenotype[1] += mutateRange changed = True else: # mutate both if random.random() > 0.5 or self.phenotype[0] + mutateRange <= phenotype: # Checks that mutated range still contains current phenotype self.phenotype[0] += mutateRange else: # Subtract self.phenotype[0] -= mutateRange if random.random() > 0.5 or self.phenotype[1] - mutateRange >= phenotype: # Checks that mutated range still contains current phenotype self.phenotype[1] -= mutateRange else: # Subtract self.phenotype[1] += mutateRange changed = True self.phenotype.sort() return changed def updateTimeStamp(self, ts): """ Sets the time stamp of the classifier. """ self.timeStampGA = ts def setAccuracy(self, acc): """ Sets the accuracy of the classifier """ self.accuracy = acc def setFitness(self, fit): """ Sets the fitness of the classifier. """ self.fitness = fit def subsumes(self, elcs, cl): # Discrete Phenotype if elcs.env.formatData.discretePhenotype: if cl.phenotype == self.phenotype: if self.isSubsumer(elcs) and self.isMoreGeneral(cl, elcs): return True return False # Continuous Phenotype else: if self.phenotype[0] >= cl.phenotype[0] and self.phenotype[1] <= cl.phenotype[1]: if self.isSubsumer(elcs) and self.isMoreGeneral(cl, elcs): return True return False def getDelProp(self, elcs, meanFitness): """ Returns the vote for deletion of the classifier. """ if self.fitness / self.numerosity >= elcs.delta * meanFitness or self.matchCount < elcs.theta_del: deletionVote = self.aveMatchSetSize * self.numerosity elif self.fitness == 0.0: deletionVote = self.aveMatchSetSize * self.numerosity * meanFitness / (elcs.init_fit / self.numerosity) else: deletionVote = self.aveMatchSetSize * self.numerosity * meanFitness / (self.fitness / self.numerosity) return deletionVote
0.615088
0.229018
import numpy as np import pandas as pd from warnings import simplefilter # ignore all future warnings simplefilter(action='ignore', category=FutureWarning) class StringEnumerator: def __init__(self, inputFile, classLabel): self.classLabel = classLabel self.map = {} #Dictionary of header names: Attribute dictionaries data = pd.read_csv(inputFile, sep=',') # Puts data from csv into indexable np arrays data = data.fillna("NA") self.dataFeatures = data.drop(classLabel, axis=1).values #splits into an array of instances self.dataPhenotypes = data[classLabel].values self.dataHeaders = data.drop(classLabel, axis=1).columns.values tempPhenoArray = np.empty(len(self.dataPhenotypes),dtype=object) for instanceIndex in range(len(self.dataPhenotypes)): tempPhenoArray[instanceIndex] = str(self.dataPhenotypes[instanceIndex]) self.dataPhenotypes = tempPhenoArray tempFeatureArray = np.empty((len(self.dataPhenotypes),len(self.dataHeaders)),dtype=object) for instanceIndex in range(len(self.dataFeatures)): for attrInst in range(len(self.dataHeaders)): tempFeatureArray[instanceIndex][attrInst] = str(self.dataFeatures[instanceIndex][attrInst]) self.dataFeatures = tempFeatureArray self.delete_all_instances_without_phenotype() def print_invalid_attributes(self): print("ALL INVALID ATTRIBUTES & THEIR DISTINCT VALUES") for attr in range(len(self.dataHeaders)): distinctValues = [] isInvalid = False for instIndex in range(len(self.dataFeatures)): val = self.dataFeatures[instIndex,attr] if not val in distinctValues and val != "NA": distinctValues.append(self.dataFeatures[instIndex,attr]) if val != "NA": try: float(val) except: isInvalid = True if isInvalid: print(str(self.dataHeaders[attr])+": ",end="") for i in distinctValues: print(str(i)+"\t",end="") print() distinctValues = [] isInvalid = False for instIndex in range(len(self.dataPhenotypes)): val = self.dataPhenotypes[instIndex] if not val in distinctValues and val != "NA": distinctValues.append(self.dataPhenotypes[instIndex]) if val != "NA": try: float(val) except: isInvalid = True if isInvalid: print(str(self.classLabel)+" (the phenotype): ",end="") for i in distinctValues: print(str(i)+"\t",end="") print() def change_class_name(self,newName): if newName in self.dataHeaders: raise Exception("New Class Name Cannot Be An Already Existing Data Header Name") if self.classLabel in self.map.keys(): self.map[self.newName] = self.map.pop(self.classLabel) self.classLabel = newName def change_header_name(self,currentName,newName): if newName in self.dataHeaders or newName == self.classLabel: raise Exception("New Class Name Cannot Be An Already Existing Data Header or Phenotype Name") if currentName in self.dataHeaders: headerIndex = np.where(self.dataHeaders == currentName)[0][0] self.dataHeaders[headerIndex] = newName if currentName in self.map.keys(): self.map[newName] = self.map.pop(currentName) else: raise Exception("Current Header Doesn't Exist") def add_attribute_converter(self,headerName,array):#map is an array of strings, ordered by how it is to be enumerated enumeration if headerName in self.dataHeaders and not (headerName in self.map): newAttributeConverter = {} for index in range(len(array)): if str(array[index]) != "NA" and str(array[index]) != "" and str(array[index]) != "NaN": newAttributeConverter[str(array[index])] = str(index) self.map[headerName] = newAttributeConverter def add_attribute_converter_map(self,headerName,map): if headerName in self.dataHeaders and not (headerName in self.map) and not("" in map) and not("NA" in map) and not("NaN" in map): self.map[headerName] = map else: raise Exception("Invalid Map") def add_attribute_converter_random(self,headerName): if headerName in self.dataHeaders and not (headerName in self.map): headerIndex = np.where(self.dataHeaders == headerName)[0][0] uniqueItems = [] for instance in self.dataFeatures: if not(instance[headerIndex] in uniqueItems) and instance[headerIndex] != "NA": uniqueItems.append(instance[headerIndex]) self.add_attribute_converter(headerName,np.array(uniqueItems)) def add_class_converter(self,array): if not (self.classLabel in self.map.keys()): newAttributeConverter = {} for index in range(len(array)): newAttributeConverter[str(array[index])] = str(index) self.map[self.classLabel] = newAttributeConverter def add_class_converter_random(self): if not (self.classLabel in self.map.keys()): uniqueItems = [] for instance in self.dataPhenotypes: if not (instance in uniqueItems) and instance != "NA": uniqueItems.append(instance) self.add_class_converter(np.array(uniqueItems)) def convert_all_attributes(self): for attribute in self.dataHeaders: if attribute in self.map.keys(): i = np.where(self.dataHeaders == attribute)[0][0] for state in self.dataFeatures:#goes through each instance's state if (state[i] in self.map[attribute].keys()): state[i] = self.map[attribute][state[i]] if self.classLabel in self.map.keys(): for state in self.dataPhenotypes: if (state in self.map[self.classLabel].keys()): i = np.where(self.dataPhenotypes == state) self.dataPhenotypes[i] = self.map[self.classLabel][state] def delete_attribute(self,headerName): if headerName in self.dataHeaders: i = np.where(headerName == self.dataHeaders)[0][0] self.dataHeaders = np.delete(self.dataHeaders,i) if headerName in self.map.keys(): del self.map[headerName] newFeatures = [] for instanceIndex in range(len(self.dataFeatures)): instance = np.delete(self.dataFeatures[instanceIndex],i) newFeatures.append(instance) self.dataFeatures = np.array(newFeatures) else: raise Exception("Header Doesn't Exist") def delete_all_instances_without_header_data(self,headerName): newFeatures = [] newPhenotypes = [] attributeIndex = np.where(self.dataHeaders == headerName)[0][0] for instanceIndex in range(len(self.dataFeatures)): instance = self.dataFeatures[instanceIndex] if instance[attributeIndex] != "NA": newFeatures.append(instance) newPhenotypes.append(self.dataPhenotypes[instanceIndex]) self.dataFeatures = np.array(newFeatures) self.dataPhenotypes = np.array(newPhenotypes) def delete_all_instances_without_phenotype(self): newFeatures = [] newPhenotypes = [] for instanceIndex in range(len(self.dataFeatures)): instance = self.dataPhenotypes[instanceIndex] if instance != "NA": newFeatures.append(self.dataFeatures[instanceIndex]) newPhenotypes.append(instance) self.dataFeatures = np.array(newFeatures) self.dataPhenotypes = np.array(newPhenotypes) def print(self): isFullNumber = self.check_is_full_numeric() print("Converted Data Features and Phenotypes") for header in self.dataHeaders: print(header,end="\t") print() for instanceIndex in range(len(self.dataFeatures)): for attribute in self.dataFeatures[instanceIndex]: if attribute != "NA": if (isFullNumber): print(float(attribute), end="\t") else: print(attribute, end="\t\t") else: print("NA", end = "\t") if self.dataPhenotypes[instanceIndex] != "NA": if (isFullNumber): print(float(self.dataPhenotypes[instanceIndex])) else: print(self.dataPhenotypes[instanceIndex]) else: print("NA") print() def print_attribute_conversions(self): print("Changed Attribute Conversions") for headerName,conversions in self.map: print(headerName + " conversions:") for original,numberVal in conversions: print("\tOriginal: "+original+" Converted: "+numberVal) print() print() def check_is_full_numeric(self): try: for instance in self.dataFeatures: for value in instance: if value != "NA": float(value) for value in self.dataPhenotypes: if value != "NA": float(value) except: return False return True def get_params(self): if not(self.check_is_full_numeric()): raise Exception("Features and Phenotypes must be fully numeric") newFeatures = [] newPhenotypes = [] for instanceIndex in range(len(self.dataFeatures)): newInstance = [] for attribute in self.dataFeatures[instanceIndex]: if attribute == "NA": newInstance.append(np.nan) else: newInstance.append(float(attribute)) newFeatures.append(np.array(newInstance,dtype=float)) if self.dataPhenotypes[instanceIndex] == "NA": #Should never happen. All NaN phenotypes should be removed automatically at init. Just a safety mechanism. newPhenotypes.append(np.nan) else: newPhenotypes.append(float(self.dataPhenotypes[instanceIndex])) return self.dataHeaders,self.classLabel,np.array(newFeatures,dtype=float),np.array(newPhenotypes,dtype=float)
scikit-eLCS
/scikit-eLCS-1.2.4.tar.gz/scikit-eLCS-1.2.4/skeLCS/DataCleanup.py
DataCleanup.py
import numpy as np import pandas as pd from warnings import simplefilter # ignore all future warnings simplefilter(action='ignore', category=FutureWarning) class StringEnumerator: def __init__(self, inputFile, classLabel): self.classLabel = classLabel self.map = {} #Dictionary of header names: Attribute dictionaries data = pd.read_csv(inputFile, sep=',') # Puts data from csv into indexable np arrays data = data.fillna("NA") self.dataFeatures = data.drop(classLabel, axis=1).values #splits into an array of instances self.dataPhenotypes = data[classLabel].values self.dataHeaders = data.drop(classLabel, axis=1).columns.values tempPhenoArray = np.empty(len(self.dataPhenotypes),dtype=object) for instanceIndex in range(len(self.dataPhenotypes)): tempPhenoArray[instanceIndex] = str(self.dataPhenotypes[instanceIndex]) self.dataPhenotypes = tempPhenoArray tempFeatureArray = np.empty((len(self.dataPhenotypes),len(self.dataHeaders)),dtype=object) for instanceIndex in range(len(self.dataFeatures)): for attrInst in range(len(self.dataHeaders)): tempFeatureArray[instanceIndex][attrInst] = str(self.dataFeatures[instanceIndex][attrInst]) self.dataFeatures = tempFeatureArray self.delete_all_instances_without_phenotype() def print_invalid_attributes(self): print("ALL INVALID ATTRIBUTES & THEIR DISTINCT VALUES") for attr in range(len(self.dataHeaders)): distinctValues = [] isInvalid = False for instIndex in range(len(self.dataFeatures)): val = self.dataFeatures[instIndex,attr] if not val in distinctValues and val != "NA": distinctValues.append(self.dataFeatures[instIndex,attr]) if val != "NA": try: float(val) except: isInvalid = True if isInvalid: print(str(self.dataHeaders[attr])+": ",end="") for i in distinctValues: print(str(i)+"\t",end="") print() distinctValues = [] isInvalid = False for instIndex in range(len(self.dataPhenotypes)): val = self.dataPhenotypes[instIndex] if not val in distinctValues and val != "NA": distinctValues.append(self.dataPhenotypes[instIndex]) if val != "NA": try: float(val) except: isInvalid = True if isInvalid: print(str(self.classLabel)+" (the phenotype): ",end="") for i in distinctValues: print(str(i)+"\t",end="") print() def change_class_name(self,newName): if newName in self.dataHeaders: raise Exception("New Class Name Cannot Be An Already Existing Data Header Name") if self.classLabel in self.map.keys(): self.map[self.newName] = self.map.pop(self.classLabel) self.classLabel = newName def change_header_name(self,currentName,newName): if newName in self.dataHeaders or newName == self.classLabel: raise Exception("New Class Name Cannot Be An Already Existing Data Header or Phenotype Name") if currentName in self.dataHeaders: headerIndex = np.where(self.dataHeaders == currentName)[0][0] self.dataHeaders[headerIndex] = newName if currentName in self.map.keys(): self.map[newName] = self.map.pop(currentName) else: raise Exception("Current Header Doesn't Exist") def add_attribute_converter(self,headerName,array):#map is an array of strings, ordered by how it is to be enumerated enumeration if headerName in self.dataHeaders and not (headerName in self.map): newAttributeConverter = {} for index in range(len(array)): if str(array[index]) != "NA" and str(array[index]) != "" and str(array[index]) != "NaN": newAttributeConverter[str(array[index])] = str(index) self.map[headerName] = newAttributeConverter def add_attribute_converter_map(self,headerName,map): if headerName in self.dataHeaders and not (headerName in self.map) and not("" in map) and not("NA" in map) and not("NaN" in map): self.map[headerName] = map else: raise Exception("Invalid Map") def add_attribute_converter_random(self,headerName): if headerName in self.dataHeaders and not (headerName in self.map): headerIndex = np.where(self.dataHeaders == headerName)[0][0] uniqueItems = [] for instance in self.dataFeatures: if not(instance[headerIndex] in uniqueItems) and instance[headerIndex] != "NA": uniqueItems.append(instance[headerIndex]) self.add_attribute_converter(headerName,np.array(uniqueItems)) def add_class_converter(self,array): if not (self.classLabel in self.map.keys()): newAttributeConverter = {} for index in range(len(array)): newAttributeConverter[str(array[index])] = str(index) self.map[self.classLabel] = newAttributeConverter def add_class_converter_random(self): if not (self.classLabel in self.map.keys()): uniqueItems = [] for instance in self.dataPhenotypes: if not (instance in uniqueItems) and instance != "NA": uniqueItems.append(instance) self.add_class_converter(np.array(uniqueItems)) def convert_all_attributes(self): for attribute in self.dataHeaders: if attribute in self.map.keys(): i = np.where(self.dataHeaders == attribute)[0][0] for state in self.dataFeatures:#goes through each instance's state if (state[i] in self.map[attribute].keys()): state[i] = self.map[attribute][state[i]] if self.classLabel in self.map.keys(): for state in self.dataPhenotypes: if (state in self.map[self.classLabel].keys()): i = np.where(self.dataPhenotypes == state) self.dataPhenotypes[i] = self.map[self.classLabel][state] def delete_attribute(self,headerName): if headerName in self.dataHeaders: i = np.where(headerName == self.dataHeaders)[0][0] self.dataHeaders = np.delete(self.dataHeaders,i) if headerName in self.map.keys(): del self.map[headerName] newFeatures = [] for instanceIndex in range(len(self.dataFeatures)): instance = np.delete(self.dataFeatures[instanceIndex],i) newFeatures.append(instance) self.dataFeatures = np.array(newFeatures) else: raise Exception("Header Doesn't Exist") def delete_all_instances_without_header_data(self,headerName): newFeatures = [] newPhenotypes = [] attributeIndex = np.where(self.dataHeaders == headerName)[0][0] for instanceIndex in range(len(self.dataFeatures)): instance = self.dataFeatures[instanceIndex] if instance[attributeIndex] != "NA": newFeatures.append(instance) newPhenotypes.append(self.dataPhenotypes[instanceIndex]) self.dataFeatures = np.array(newFeatures) self.dataPhenotypes = np.array(newPhenotypes) def delete_all_instances_without_phenotype(self): newFeatures = [] newPhenotypes = [] for instanceIndex in range(len(self.dataFeatures)): instance = self.dataPhenotypes[instanceIndex] if instance != "NA": newFeatures.append(self.dataFeatures[instanceIndex]) newPhenotypes.append(instance) self.dataFeatures = np.array(newFeatures) self.dataPhenotypes = np.array(newPhenotypes) def print(self): isFullNumber = self.check_is_full_numeric() print("Converted Data Features and Phenotypes") for header in self.dataHeaders: print(header,end="\t") print() for instanceIndex in range(len(self.dataFeatures)): for attribute in self.dataFeatures[instanceIndex]: if attribute != "NA": if (isFullNumber): print(float(attribute), end="\t") else: print(attribute, end="\t\t") else: print("NA", end = "\t") if self.dataPhenotypes[instanceIndex] != "NA": if (isFullNumber): print(float(self.dataPhenotypes[instanceIndex])) else: print(self.dataPhenotypes[instanceIndex]) else: print("NA") print() def print_attribute_conversions(self): print("Changed Attribute Conversions") for headerName,conversions in self.map: print(headerName + " conversions:") for original,numberVal in conversions: print("\tOriginal: "+original+" Converted: "+numberVal) print() print() def check_is_full_numeric(self): try: for instance in self.dataFeatures: for value in instance: if value != "NA": float(value) for value in self.dataPhenotypes: if value != "NA": float(value) except: return False return True def get_params(self): if not(self.check_is_full_numeric()): raise Exception("Features and Phenotypes must be fully numeric") newFeatures = [] newPhenotypes = [] for instanceIndex in range(len(self.dataFeatures)): newInstance = [] for attribute in self.dataFeatures[instanceIndex]: if attribute == "NA": newInstance.append(np.nan) else: newInstance.append(float(attribute)) newFeatures.append(np.array(newInstance,dtype=float)) if self.dataPhenotypes[instanceIndex] == "NA": #Should never happen. All NaN phenotypes should be removed automatically at init. Just a safety mechanism. newPhenotypes.append(np.nan) else: newPhenotypes.append(float(self.dataPhenotypes[instanceIndex])) return self.dataHeaders,self.classLabel,np.array(newFeatures,dtype=float),np.array(newPhenotypes,dtype=float)
0.140602
0.305335
from skeLCS.Classifier import Classifier import random import copy class ClassifierSet: def __init__(self): #Major Parameters self.popSet = [] self.matchSet = [] self.correctSet = [] self.microPopSize = 0 def makeMatchSet(self,state_phenotype,exploreIter,elcs): state = state_phenotype[0] phenotype = state_phenotype[1] doCovering = True setNumerositySum = 0 #Matching elcs.timer.startTimeMatching() for i in range(len(self.popSet)): cl = self.popSet[i] if cl.match(state,elcs): self.matchSet.append(i) setNumerositySum += cl.numerosity #Covering Check if elcs.env.formatData.discretePhenotype: if cl.phenotype == phenotype: doCovering = False else: if float(cl.phenotype[0]) <= float(phenotype) <= float(cl.phenotype[1]): doCovering = False elcs.timer.stopTimeMatching() #Covering while doCovering: newCl = Classifier(elcs,setNumerositySum+1,exploreIter,state,phenotype) self.addClassifierToPopulation(elcs,newCl,True) self.matchSet.append(len(self.popSet) - 1) elcs.trackingObj.coveringCount+=1 doCovering = False def getIdenticalClassifier(self,elcs,newCl): for cl in self.popSet: if newCl.equals(elcs,cl): return cl return None def addClassifierToPopulation(self,elcs,cl,covering): oldCl = None if not covering: oldCl = self.getIdenticalClassifier(elcs,cl) if oldCl != None: oldCl.updateNumerosity(1) self.microPopSize += 1 else: self.popSet.append(cl) self.microPopSize += 1 def makeCorrectSet(self,elcs,phenotype): for i in range(len(self.matchSet)): ref = self.matchSet[i] #Discrete Phenotype if elcs.env.formatData.discretePhenotype: if self.popSet[ref].phenotype == phenotype: self.correctSet.append(ref) #Continuous Phenotype else: if float(phenotype) <= float(self.popSet[ref].phenotype[1]) and float(phenotype) >= float(self.popSet[ref].phenotype[0]): self.correctSet.append(ref) def updateSets(self,elcs,exploreIter): matchSetNumerosity = 0 for ref in self.matchSet: matchSetNumerosity += self.popSet[ref].numerosity for ref in self.matchSet: self.popSet[ref].updateExperience() self.popSet[ref].updateMatchSetSize(elcs,matchSetNumerosity) if ref in self.correctSet: self.popSet[ref].updateCorrect() self.popSet[ref].updateAccuracy() self.popSet[ref].updateFitness(elcs) def do_correct_set_subsumption(self,elcs): subsumer = None for ref in self.correctSet: cl = self.popSet[ref] if cl.isSubsumer(elcs): if subsumer == None or cl.isMoreGeneral(subsumer,elcs): subsumer = cl if subsumer != None: i = 0 while i < len(self.correctSet): ref = self.correctSet[i] if subsumer.isMoreGeneral(self.popSet[ref],elcs): elcs.trackingObj.subsumptionCount += 1 subsumer.updateNumerosity(self.popSet[ref].numerosity) self.removeMacroClassifier(ref) self.deleteFromMatchSet(ref) self.deleteFromCorrectSet(ref) i -= 1 i+=1 def removeMacroClassifier(self,ref): del self.popSet[ref] def deleteFromMatchSet(self,deleteRef): if deleteRef in self.matchSet: self.matchSet.remove(deleteRef) for j in range(len(self.matchSet)): ref = self.matchSet[j] if ref > deleteRef: self.matchSet[j] -=1 def deleteFromCorrectSet(self,deleteRef): if deleteRef in self.correctSet: self.correctSet.remove(deleteRef) for j in range(len(self.correctSet)): ref = self.correctSet[j] if ref > deleteRef: self.correctSet[j] -= 1 def runGA(self,elcs,exploreIter,state,phenotype): #GA Run Requirement if (exploreIter - self.getIterStampAverage()) < elcs.theta_GA: return elcs.timer.startTimeSelection() self.setIterStamps(exploreIter) changed = False #Select Parents if elcs.selection_method == "roulette": selectList = self.selectClassifierRW() clP1 = selectList[0] clP2 = selectList[1] elif elcs.selection_method == "tournament": selectList = self.selectClassifierT(elcs) clP1 = selectList[0] clP2 = selectList[1] elcs.timer.stopTimeSelection() #Initialize Offspring cl1 = Classifier(elcs,clP1,exploreIter) if clP2 == None: cl2 = Classifier(elcs,clP1, exploreIter) else: cl2 = Classifier(elcs,clP2, exploreIter) #Crossover Operator (uniform crossover) if not cl1.equals(elcs,cl2) and random.random() < elcs.chi: changed = cl1.uniformCrossover(elcs,cl2) #Initialize Key Offspring Parameters if changed: cl1.setAccuracy((cl1.accuracy + cl2.accuracy) / 2.0) cl1.setFitness(elcs.fitness_reduction * (cl1.fitness + cl2.fitness) / 2.0) cl2.setAccuracy(cl1.accuracy) cl2.setFitness(cl1.fitness) else: cl1.setFitness(elcs.fitness_reduction * cl1.fitness) cl2.setFitness(elcs.fitness_reduction * cl2.fitness) #Mutation Operator nowchanged = cl1.Mutation(elcs,state,phenotype) howaboutnow = cl2.Mutation(elcs,state,phenotype) #Add offspring to population if changed or nowchanged or howaboutnow: if nowchanged: elcs.trackingObj.mutationCount += 1 if howaboutnow: elcs.trackingObj.mutationCount += 1 if changed: elcs.trackingObj.crossOverCount += 1 self.insertDiscoveredClassifiers(elcs,cl1, cl2, clP1, clP2, exploreIter) # Subsumption def getIterStampAverage(self): sumCl = 0.0 numSum = 0.0 for i in range(len(self.correctSet)): ref = self.correctSet[i] sumCl += self.popSet[ref].timeStampGA * self.popSet[ref].numerosity numSum += self.popSet[ref].numerosity if numSum != 0: return sumCl/float(numSum) else: return 0 def getInitStampAverage(self): sumCl = 0.0 numSum = 0.0 for i in range(len(self.correctSet)): ref = self.correctSet[i] sumCl += self.popSet[ref].initTimeStamp * self.popSet[ref].numerosity numSum += self.popSet[ref].numerosity if numSum != 0: return sumCl / float(numSum) else: return 0 def setIterStamps(self,exploreIter): for i in range(len(self.correctSet)): ref = self.correctSet[i] self.popSet[ref].updateTimeStamp(exploreIter) def selectClassifierRW(self): setList = copy.deepcopy(self.correctSet) if len(setList) > 2: selectList = [None,None] currentCount = 0 while currentCount < 2: fitSum = self.getFitnessSum(setList) choiceP = random.random() * fitSum i = 0 sumCl = self.popSet[setList[i]].fitness while choiceP > sumCl: i = i + 1 sumCl += self.popSet[setList[i]].fitness selectList[currentCount] = self.popSet[setList[i]] setList.remove(setList[i]) currentCount += 1 elif len(setList) == 2: selectList = [self.popSet[setList[0]], self.popSet[setList[1]]] elif len(setList) == 1: selectList = [self.popSet[setList[0]], self.popSet[setList[0]]] return selectList def getFitnessSum(self, setList): """ Returns the sum of the fitnesses of all classifiers in the set. """ sumCl = 0.0 for i in range(len(setList)): ref = setList[i] sumCl += self.popSet[ref].fitness return sumCl def selectClassifierT(self,elcs): selectList = [None, None] currentCount = 0 setList = self.correctSet while currentCount < 2: tSize = int(len(setList) * elcs.theta_sel) #Select tSize elements from correctSet posList = random.sample(setList,tSize) bestF = 0 bestC = self.correctSet[0] for j in posList: if self.popSet[j].fitness > bestF: bestF = self.popSet[j].fitness bestC = j selectList[currentCount] = self.popSet[bestC] currentCount += 1 return selectList def insertDiscoveredClassifiers(self,elcs,cl1,cl2,clP1,clP2,exploreIter): if elcs.do_GA_subsumption: elcs.timer.startTimeSubsumption() if len(cl1.specifiedAttList) > 0: self.subsumeClassifier(elcs,cl1,clP1,clP2) if len(cl2.specifiedAttList) > 0: self.subsumeClassifier(elcs,cl2, clP1, clP2) elcs.timer.stopTimeSubsumption() else: if len(cl1.specifiedAttList) > 0: self.addClassifierToPopulation(elcs,cl1,False) if len(cl2.specifiedAttList) > 0: self.addClassifierToPopulation(elcs,cl2, False) def subsumeClassifier(self,elcs,cl=None,cl1P=None,cl2P=None): if cl1P != None and cl1P.subsumes(elcs,cl): self.microPopSize += 1 cl1P.updateNumerosity(1) elcs.trackingObj.subsumptionCount+=1 elif cl2P != None and cl2P.subsumes(elcs,cl): self.microPopSize += 1 cl2P.updateNumerosity(1) elcs.trackingObj.subsumptionCount += 1 else: if len(cl.specifiedAttList) > 0: self.addClassifierToPopulation(elcs, cl, False) def deletion(self,elcs,exploreIter): while (self.microPopSize > elcs.N): self.deleteFromPopulation(elcs) def deleteFromPopulation(self,elcs): meanFitness = self.getPopFitnessSum() / float(self.microPopSize) sumCl = 0.0 voteList = [] for cl in self.popSet: vote = cl.getDelProp(elcs,meanFitness) sumCl += vote voteList.append(vote) i = 0 for cl in self.popSet: cl.deletionProb = voteList[i]/sumCl i+=1 choicePoint = sumCl * random.random() # Determine the choice point newSum = 0.0 for i in range(len(voteList)): cl = self.popSet[i] newSum = newSum + voteList[i] if newSum > choicePoint: # Select classifier for deletion # Delete classifier---------------------------------- cl.updateNumerosity(-1) self.microPopSize -= 1 if cl.numerosity < 1: # When all micro-classifiers for a given classifier have been depleted. self.removeMacroClassifier(i) self.deleteFromMatchSet(i) self.deleteFromCorrectSet(i) elcs.trackingObj.deletionCount += 1 return return def getPopFitnessSum(self): """ Returns the sum of the fitnesses of all classifiers in the set. """ sumCl = 0.0 for cl in self.popSet: sumCl += cl.fitness * cl.numerosity return sumCl def clearSets(self): """ Clears out references in the match and correct sets for the next learning iteration. """ self.matchSet = [] self.correctSet = [] def getAveGenerality(self,elcs): genSum = 0 for cl in self.popSet: genSum += ((elcs.env.formatData.numAttributes - len(cl.condition))/float(elcs.env.formatData.numAttributes))*cl.numerosity if self.microPopSize == 0: aveGenerality = 0 else: aveGenerality = genSum/float(self.microPopSize) return aveGenerality def getAttributeSpecificityList(self,elcs): attributeSpecList = [] for i in range(elcs.env.formatData.numAttributes): attributeSpecList.append(0) for cl in self.popSet: for ref in cl.specifiedAttList: attributeSpecList[ref] += cl.numerosity return attributeSpecList def getAttributeAccuracyList(self,elcs): attributeAccList = [] for i in range(elcs.env.formatData.numAttributes): attributeAccList.append(0.0) for cl in self.popSet: for ref in cl.specifiedAttList: attributeAccList[ref] += cl.numerosity * cl.accuracy return attributeAccList def makeEvalMatchSet(self,state,elcs): for i in range(len(self.popSet)): cl = self.popSet[i] if cl.match(state,elcs): self.matchSet.append(i)
scikit-eLCS
/scikit-eLCS-1.2.4.tar.gz/scikit-eLCS-1.2.4/skeLCS/ClassifierSet.py
ClassifierSet.py
from skeLCS.Classifier import Classifier import random import copy class ClassifierSet: def __init__(self): #Major Parameters self.popSet = [] self.matchSet = [] self.correctSet = [] self.microPopSize = 0 def makeMatchSet(self,state_phenotype,exploreIter,elcs): state = state_phenotype[0] phenotype = state_phenotype[1] doCovering = True setNumerositySum = 0 #Matching elcs.timer.startTimeMatching() for i in range(len(self.popSet)): cl = self.popSet[i] if cl.match(state,elcs): self.matchSet.append(i) setNumerositySum += cl.numerosity #Covering Check if elcs.env.formatData.discretePhenotype: if cl.phenotype == phenotype: doCovering = False else: if float(cl.phenotype[0]) <= float(phenotype) <= float(cl.phenotype[1]): doCovering = False elcs.timer.stopTimeMatching() #Covering while doCovering: newCl = Classifier(elcs,setNumerositySum+1,exploreIter,state,phenotype) self.addClassifierToPopulation(elcs,newCl,True) self.matchSet.append(len(self.popSet) - 1) elcs.trackingObj.coveringCount+=1 doCovering = False def getIdenticalClassifier(self,elcs,newCl): for cl in self.popSet: if newCl.equals(elcs,cl): return cl return None def addClassifierToPopulation(self,elcs,cl,covering): oldCl = None if not covering: oldCl = self.getIdenticalClassifier(elcs,cl) if oldCl != None: oldCl.updateNumerosity(1) self.microPopSize += 1 else: self.popSet.append(cl) self.microPopSize += 1 def makeCorrectSet(self,elcs,phenotype): for i in range(len(self.matchSet)): ref = self.matchSet[i] #Discrete Phenotype if elcs.env.formatData.discretePhenotype: if self.popSet[ref].phenotype == phenotype: self.correctSet.append(ref) #Continuous Phenotype else: if float(phenotype) <= float(self.popSet[ref].phenotype[1]) and float(phenotype) >= float(self.popSet[ref].phenotype[0]): self.correctSet.append(ref) def updateSets(self,elcs,exploreIter): matchSetNumerosity = 0 for ref in self.matchSet: matchSetNumerosity += self.popSet[ref].numerosity for ref in self.matchSet: self.popSet[ref].updateExperience() self.popSet[ref].updateMatchSetSize(elcs,matchSetNumerosity) if ref in self.correctSet: self.popSet[ref].updateCorrect() self.popSet[ref].updateAccuracy() self.popSet[ref].updateFitness(elcs) def do_correct_set_subsumption(self,elcs): subsumer = None for ref in self.correctSet: cl = self.popSet[ref] if cl.isSubsumer(elcs): if subsumer == None or cl.isMoreGeneral(subsumer,elcs): subsumer = cl if subsumer != None: i = 0 while i < len(self.correctSet): ref = self.correctSet[i] if subsumer.isMoreGeneral(self.popSet[ref],elcs): elcs.trackingObj.subsumptionCount += 1 subsumer.updateNumerosity(self.popSet[ref].numerosity) self.removeMacroClassifier(ref) self.deleteFromMatchSet(ref) self.deleteFromCorrectSet(ref) i -= 1 i+=1 def removeMacroClassifier(self,ref): del self.popSet[ref] def deleteFromMatchSet(self,deleteRef): if deleteRef in self.matchSet: self.matchSet.remove(deleteRef) for j in range(len(self.matchSet)): ref = self.matchSet[j] if ref > deleteRef: self.matchSet[j] -=1 def deleteFromCorrectSet(self,deleteRef): if deleteRef in self.correctSet: self.correctSet.remove(deleteRef) for j in range(len(self.correctSet)): ref = self.correctSet[j] if ref > deleteRef: self.correctSet[j] -= 1 def runGA(self,elcs,exploreIter,state,phenotype): #GA Run Requirement if (exploreIter - self.getIterStampAverage()) < elcs.theta_GA: return elcs.timer.startTimeSelection() self.setIterStamps(exploreIter) changed = False #Select Parents if elcs.selection_method == "roulette": selectList = self.selectClassifierRW() clP1 = selectList[0] clP2 = selectList[1] elif elcs.selection_method == "tournament": selectList = self.selectClassifierT(elcs) clP1 = selectList[0] clP2 = selectList[1] elcs.timer.stopTimeSelection() #Initialize Offspring cl1 = Classifier(elcs,clP1,exploreIter) if clP2 == None: cl2 = Classifier(elcs,clP1, exploreIter) else: cl2 = Classifier(elcs,clP2, exploreIter) #Crossover Operator (uniform crossover) if not cl1.equals(elcs,cl2) and random.random() < elcs.chi: changed = cl1.uniformCrossover(elcs,cl2) #Initialize Key Offspring Parameters if changed: cl1.setAccuracy((cl1.accuracy + cl2.accuracy) / 2.0) cl1.setFitness(elcs.fitness_reduction * (cl1.fitness + cl2.fitness) / 2.0) cl2.setAccuracy(cl1.accuracy) cl2.setFitness(cl1.fitness) else: cl1.setFitness(elcs.fitness_reduction * cl1.fitness) cl2.setFitness(elcs.fitness_reduction * cl2.fitness) #Mutation Operator nowchanged = cl1.Mutation(elcs,state,phenotype) howaboutnow = cl2.Mutation(elcs,state,phenotype) #Add offspring to population if changed or nowchanged or howaboutnow: if nowchanged: elcs.trackingObj.mutationCount += 1 if howaboutnow: elcs.trackingObj.mutationCount += 1 if changed: elcs.trackingObj.crossOverCount += 1 self.insertDiscoveredClassifiers(elcs,cl1, cl2, clP1, clP2, exploreIter) # Subsumption def getIterStampAverage(self): sumCl = 0.0 numSum = 0.0 for i in range(len(self.correctSet)): ref = self.correctSet[i] sumCl += self.popSet[ref].timeStampGA * self.popSet[ref].numerosity numSum += self.popSet[ref].numerosity if numSum != 0: return sumCl/float(numSum) else: return 0 def getInitStampAverage(self): sumCl = 0.0 numSum = 0.0 for i in range(len(self.correctSet)): ref = self.correctSet[i] sumCl += self.popSet[ref].initTimeStamp * self.popSet[ref].numerosity numSum += self.popSet[ref].numerosity if numSum != 0: return sumCl / float(numSum) else: return 0 def setIterStamps(self,exploreIter): for i in range(len(self.correctSet)): ref = self.correctSet[i] self.popSet[ref].updateTimeStamp(exploreIter) def selectClassifierRW(self): setList = copy.deepcopy(self.correctSet) if len(setList) > 2: selectList = [None,None] currentCount = 0 while currentCount < 2: fitSum = self.getFitnessSum(setList) choiceP = random.random() * fitSum i = 0 sumCl = self.popSet[setList[i]].fitness while choiceP > sumCl: i = i + 1 sumCl += self.popSet[setList[i]].fitness selectList[currentCount] = self.popSet[setList[i]] setList.remove(setList[i]) currentCount += 1 elif len(setList) == 2: selectList = [self.popSet[setList[0]], self.popSet[setList[1]]] elif len(setList) == 1: selectList = [self.popSet[setList[0]], self.popSet[setList[0]]] return selectList def getFitnessSum(self, setList): """ Returns the sum of the fitnesses of all classifiers in the set. """ sumCl = 0.0 for i in range(len(setList)): ref = setList[i] sumCl += self.popSet[ref].fitness return sumCl def selectClassifierT(self,elcs): selectList = [None, None] currentCount = 0 setList = self.correctSet while currentCount < 2: tSize = int(len(setList) * elcs.theta_sel) #Select tSize elements from correctSet posList = random.sample(setList,tSize) bestF = 0 bestC = self.correctSet[0] for j in posList: if self.popSet[j].fitness > bestF: bestF = self.popSet[j].fitness bestC = j selectList[currentCount] = self.popSet[bestC] currentCount += 1 return selectList def insertDiscoveredClassifiers(self,elcs,cl1,cl2,clP1,clP2,exploreIter): if elcs.do_GA_subsumption: elcs.timer.startTimeSubsumption() if len(cl1.specifiedAttList) > 0: self.subsumeClassifier(elcs,cl1,clP1,clP2) if len(cl2.specifiedAttList) > 0: self.subsumeClassifier(elcs,cl2, clP1, clP2) elcs.timer.stopTimeSubsumption() else: if len(cl1.specifiedAttList) > 0: self.addClassifierToPopulation(elcs,cl1,False) if len(cl2.specifiedAttList) > 0: self.addClassifierToPopulation(elcs,cl2, False) def subsumeClassifier(self,elcs,cl=None,cl1P=None,cl2P=None): if cl1P != None and cl1P.subsumes(elcs,cl): self.microPopSize += 1 cl1P.updateNumerosity(1) elcs.trackingObj.subsumptionCount+=1 elif cl2P != None and cl2P.subsumes(elcs,cl): self.microPopSize += 1 cl2P.updateNumerosity(1) elcs.trackingObj.subsumptionCount += 1 else: if len(cl.specifiedAttList) > 0: self.addClassifierToPopulation(elcs, cl, False) def deletion(self,elcs,exploreIter): while (self.microPopSize > elcs.N): self.deleteFromPopulation(elcs) def deleteFromPopulation(self,elcs): meanFitness = self.getPopFitnessSum() / float(self.microPopSize) sumCl = 0.0 voteList = [] for cl in self.popSet: vote = cl.getDelProp(elcs,meanFitness) sumCl += vote voteList.append(vote) i = 0 for cl in self.popSet: cl.deletionProb = voteList[i]/sumCl i+=1 choicePoint = sumCl * random.random() # Determine the choice point newSum = 0.0 for i in range(len(voteList)): cl = self.popSet[i] newSum = newSum + voteList[i] if newSum > choicePoint: # Select classifier for deletion # Delete classifier---------------------------------- cl.updateNumerosity(-1) self.microPopSize -= 1 if cl.numerosity < 1: # When all micro-classifiers for a given classifier have been depleted. self.removeMacroClassifier(i) self.deleteFromMatchSet(i) self.deleteFromCorrectSet(i) elcs.trackingObj.deletionCount += 1 return return def getPopFitnessSum(self): """ Returns the sum of the fitnesses of all classifiers in the set. """ sumCl = 0.0 for cl in self.popSet: sumCl += cl.fitness * cl.numerosity return sumCl def clearSets(self): """ Clears out references in the match and correct sets for the next learning iteration. """ self.matchSet = [] self.correctSet = [] def getAveGenerality(self,elcs): genSum = 0 for cl in self.popSet: genSum += ((elcs.env.formatData.numAttributes - len(cl.condition))/float(elcs.env.formatData.numAttributes))*cl.numerosity if self.microPopSize == 0: aveGenerality = 0 else: aveGenerality = genSum/float(self.microPopSize) return aveGenerality def getAttributeSpecificityList(self,elcs): attributeSpecList = [] for i in range(elcs.env.formatData.numAttributes): attributeSpecList.append(0) for cl in self.popSet: for ref in cl.specifiedAttList: attributeSpecList[ref] += cl.numerosity return attributeSpecList def getAttributeAccuracyList(self,elcs): attributeAccList = [] for i in range(elcs.env.formatData.numAttributes): attributeAccList.append(0.0) for cl in self.popSet: for ref in cl.specifiedAttList: attributeAccList[ref] += cl.numerosity * cl.accuracy return attributeAccList def makeEvalMatchSet(self,state,elcs): for i in range(len(self.popSet)): cl = self.popSet[i] if cl.match(state,elcs): self.matchSet.append(i)
0.314682
0.145025
import numpy as np import scipy as sp import warnings from scipy.linalg import LinAlgWarning from sklearn.exceptions import DataConversionWarning from sklearn.base import BaseEstimator, RegressorMixin from sklearn.utils.validation import check_is_fitted from sklearn.utils.extmath import safe_sparse_dot from sklearn.utils import check_X_y, check_array warnings.simplefilter("ignore", LinAlgWarning) class BatchCholeskySolver(BaseEstimator, RegressorMixin): def __init__(self, alpha=1e-7): self.alpha = alpha def _init_XY(self, X, y): """Initialize covariance matrices, including a separate bias term. """ d_in = X.shape[1] self._XtX = np.eye(d_in + 1) * self.alpha self._XtX[0, 0] = 0 if len(y.shape) == 1: self._XtY = np.zeros((d_in + 1,)) else: self._XtY = np.zeros((d_in + 1, y.shape[1])) @property def XtY_(self): return self._XtY @property def XtX_(self): return self._XtX @XtY_.setter def XtY_(self, value): self._XtY = value @XtX_.setter def XtX_(self, value): self._XtX = value def _solve(self): """Second stage of solution (X'X)B = X'Y using Cholesky decomposition. Sets `is_fitted_` to True. """ B = sp.linalg.solve(self._XtX, self._XtY, assume_a='sym', overwrite_a=False, overwrite_b=False) self.coef_ = B[1:] self.intercept_ = B[0] self.is_fitted_ = True def _reset(self): """Erase solution and data matrices. """ [delattr(self, attr) for attr in ('_XtX', '_XtY', 'coef_', 'intercept_', 'is_fitted_') if hasattr(self, attr)] def fit(self, X, y): """Solves an L2-regularized linear system like Ridge regression, overwrites any previous solutions. """ self._reset() # remove old solution self.partial_fit(X, y, compute_output_weights=True) return self def partial_fit(self, X, y, forget=False, compute_output_weights=True): """Update model with a new batch of data. Output weight computation can be temporary turned off for faster processing. This will mark model as not fit. Enable `compute_output_weights` in the final call to `partial_fit`. Parameters ---------- X : {array-like, sparse matrix}, shape=[n_samples, n_features] Training input samples y : array-like, shape=[n_samples, n_targets] Training targets forget : boolean, default False Performs a negative update, effectively removing the information given by training samples from the model. Output weights need to be re-computed after forgetting data. compute_output_weights : boolean, optional, default True Whether to compute new output weights (coef_, intercept_). Disable this in intermediate `partial_fit` steps to run computations faster, then enable in the last call to compute the new solution. .. Note:: Solution can be updated without extra data by setting `X=None` and `y=None`. """ if self.alpha < 0: raise ValueError("Regularization parameter alpha must be non-negative.") # solution only if X is None and y is None and compute_output_weights: self._solve() return self # validate parameters X, y = check_X_y(X, y, accept_sparse=True, multi_output=True, y_numeric=True, ensure_2d=True) if len(y.shape) > 1 and y.shape[1] == 1: msg = "A column-vector y was passed when a 1d array was expected.\ Please change the shape of y to (n_samples, ), for example using ravel()." warnings.warn(msg, DataConversionWarning) # init temporary data storage if not hasattr(self, '_XtX'): self._init_XY(X, y) else: if X.shape[1] + 1 != self._XtX.shape[0]: n_new, n_old = X.shape[1], self._XtX.shape[0] - 1 raise ValueError("Number of features %d does not match previous data %d." % (n_new, n_old)) # compute temporary data X_sum = safe_sparse_dot(X.T, np.ones((X.shape[0],))) y_sum = safe_sparse_dot(y.T, np.ones((y.shape[0],))) if not forget: self._XtX[0, 0] += X.shape[0] self._XtX[1:, 0] += X_sum self._XtX[0, 1:] += X_sum self._XtX[1:, 1:] += X.T @ X self._XtY[0] += y_sum self._XtY[1:] += X.T @ y else: print("!!! forgetting") self._XtX[0, 0] -= X.shape[0] self._XtX[1:, 0] -= X_sum self._XtX[0, 1:] -= X_sum self._XtX[1:, 1:] -= X.T @ X self._XtY[0] -= y_sum self._XtY[1:] -= X.T @ y # solve if not compute_output_weights: # mark as not fitted [delattr(self, attr) for attr in ('coef_', 'intercept_', 'is_fitted_') if hasattr(self, attr)] else: self._solve() return self def predict(self, X): check_is_fitted(self, 'is_fitted_') X = check_array(X, accept_sparse=True) return safe_sparse_dot(X, self.coef_, dense_output=True) + self.intercept_
scikit-elm
/scikit_elm-0.21a0-py3-none-any.whl/skelm/solver_batch.py
solver_batch.py
import numpy as np import scipy as sp import warnings from scipy.linalg import LinAlgWarning from sklearn.exceptions import DataConversionWarning from sklearn.base import BaseEstimator, RegressorMixin from sklearn.utils.validation import check_is_fitted from sklearn.utils.extmath import safe_sparse_dot from sklearn.utils import check_X_y, check_array warnings.simplefilter("ignore", LinAlgWarning) class BatchCholeskySolver(BaseEstimator, RegressorMixin): def __init__(self, alpha=1e-7): self.alpha = alpha def _init_XY(self, X, y): """Initialize covariance matrices, including a separate bias term. """ d_in = X.shape[1] self._XtX = np.eye(d_in + 1) * self.alpha self._XtX[0, 0] = 0 if len(y.shape) == 1: self._XtY = np.zeros((d_in + 1,)) else: self._XtY = np.zeros((d_in + 1, y.shape[1])) @property def XtY_(self): return self._XtY @property def XtX_(self): return self._XtX @XtY_.setter def XtY_(self, value): self._XtY = value @XtX_.setter def XtX_(self, value): self._XtX = value def _solve(self): """Second stage of solution (X'X)B = X'Y using Cholesky decomposition. Sets `is_fitted_` to True. """ B = sp.linalg.solve(self._XtX, self._XtY, assume_a='sym', overwrite_a=False, overwrite_b=False) self.coef_ = B[1:] self.intercept_ = B[0] self.is_fitted_ = True def _reset(self): """Erase solution and data matrices. """ [delattr(self, attr) for attr in ('_XtX', '_XtY', 'coef_', 'intercept_', 'is_fitted_') if hasattr(self, attr)] def fit(self, X, y): """Solves an L2-regularized linear system like Ridge regression, overwrites any previous solutions. """ self._reset() # remove old solution self.partial_fit(X, y, compute_output_weights=True) return self def partial_fit(self, X, y, forget=False, compute_output_weights=True): """Update model with a new batch of data. Output weight computation can be temporary turned off for faster processing. This will mark model as not fit. Enable `compute_output_weights` in the final call to `partial_fit`. Parameters ---------- X : {array-like, sparse matrix}, shape=[n_samples, n_features] Training input samples y : array-like, shape=[n_samples, n_targets] Training targets forget : boolean, default False Performs a negative update, effectively removing the information given by training samples from the model. Output weights need to be re-computed after forgetting data. compute_output_weights : boolean, optional, default True Whether to compute new output weights (coef_, intercept_). Disable this in intermediate `partial_fit` steps to run computations faster, then enable in the last call to compute the new solution. .. Note:: Solution can be updated without extra data by setting `X=None` and `y=None`. """ if self.alpha < 0: raise ValueError("Regularization parameter alpha must be non-negative.") # solution only if X is None and y is None and compute_output_weights: self._solve() return self # validate parameters X, y = check_X_y(X, y, accept_sparse=True, multi_output=True, y_numeric=True, ensure_2d=True) if len(y.shape) > 1 and y.shape[1] == 1: msg = "A column-vector y was passed when a 1d array was expected.\ Please change the shape of y to (n_samples, ), for example using ravel()." warnings.warn(msg, DataConversionWarning) # init temporary data storage if not hasattr(self, '_XtX'): self._init_XY(X, y) else: if X.shape[1] + 1 != self._XtX.shape[0]: n_new, n_old = X.shape[1], self._XtX.shape[0] - 1 raise ValueError("Number of features %d does not match previous data %d." % (n_new, n_old)) # compute temporary data X_sum = safe_sparse_dot(X.T, np.ones((X.shape[0],))) y_sum = safe_sparse_dot(y.T, np.ones((y.shape[0],))) if not forget: self._XtX[0, 0] += X.shape[0] self._XtX[1:, 0] += X_sum self._XtX[0, 1:] += X_sum self._XtX[1:, 1:] += X.T @ X self._XtY[0] += y_sum self._XtY[1:] += X.T @ y else: print("!!! forgetting") self._XtX[0, 0] -= X.shape[0] self._XtX[1:, 0] -= X_sum self._XtX[0, 1:] -= X_sum self._XtX[1:, 1:] -= X.T @ X self._XtY[0] -= y_sum self._XtY[1:] -= X.T @ y # solve if not compute_output_weights: # mark as not fitted [delattr(self, attr) for attr in ('coef_', 'intercept_', 'is_fitted_') if hasattr(self, attr)] else: self._solve() return self def predict(self, X): check_is_fitted(self, 'is_fitted_') X = check_array(X, accept_sparse=True) return safe_sparse_dot(X, self.coef_, dense_output=True) + self.intercept_
0.89875
0.61086
import numpy as np import warnings from scipy.special import expit from sklearn.base import BaseEstimator, ClassifierMixin, RegressorMixin, clone from sklearn.utils.validation import check_X_y, check_array, check_is_fitted from sklearn.utils.multiclass import unique_labels, type_of_target from sklearn.preprocessing import LabelBinarizer, MultiLabelBinarizer from sklearn.exceptions import DataConversionWarning, DataDimensionalityWarning from .hidden_layer import HiddenLayer from .solver_batch import BatchCholeskySolver from .utils import _dense warnings.simplefilter("ignore", DataDimensionalityWarning) class _BaseELM(BaseEstimator): def __init__(self, alpha=1e-7, batch_size=None, include_original_features=False, n_neurons=None, ufunc="tanh", density=None, pairwise_metric=None, random_state=None): self.alpha = alpha self.n_neurons = n_neurons self.batch_size = batch_size self.ufunc = ufunc self.include_original_features = include_original_features self.density = density self.pairwise_metric = pairwise_metric self.random_state = random_state def _init_hidden_layers(self, X): """Init an empty model, creating objects for hidden layers and solver. Also validates inputs for several hidden layers. """ # only one type of neurons if not hasattr(self.n_neurons, '__iter__'): hl = HiddenLayer(n_neurons=self.n_neurons, density=self.density, ufunc=self.ufunc, pairwise_metric=self.pairwise_metric, random_state=self.random_state) hl.fit(X) self.hidden_layers_ = (hl, ) # several different types of neurons else: k = len(self.n_neurons) # fix default values ufuncs = self.ufunc if isinstance(ufuncs, str) or not hasattr(ufuncs, "__iter__"): ufuncs = [ufuncs] * k densities = self.density if densities is None or not hasattr(densities, "__iter__"): densities = [densities] * k pw_metrics = self.pairwise_metric if pw_metrics is None or isinstance(pw_metrics, str): pw_metrics = [pw_metrics] * k if not k == len(ufuncs) == len(densities) == len(pw_metrics): raise ValueError("Inconsistent parameter lengths for model with {} different types of neurons.\n" "Set 'ufunc', 'density' and 'pairwise_distances' by lists " "with {} elements, or leave the default values.".format(k, k)) self.hidden_layers_ = [] for n_neurons, ufunc, density, metric in zip(self.n_neurons, ufuncs, densities, pw_metrics): hl = HiddenLayer(n_neurons=n_neurons, density=density, ufunc=ufunc, pairwise_metric=metric, random_state=self.random_state) hl.fit(X) self.hidden_layers_.append(hl) def _reset(self): [delattr(self, attr) for attr in ('n_features_', 'solver_', 'hidden_layers_', 'is_fitted_', 'label_binarizer_') if hasattr(self, attr)] @property def n_neurons_(self): if not hasattr(self, 'hidden_layers_'): return None neurons_count = sum([hl.n_neurons_ for hl in self.hidden_layers_]) if self.include_original_features: neurons_count += self.n_features_ return neurons_count @property def coef_(self): return self.solver_.coef_ @property def intercept_(self): return self.solver_.intercept_ def partial_fit(self, X, y=None, forget=False, compute_output_weights=True): """Update model with a new batch of data. |method_partial_fit| .. |method_partial_fit| replace:: Output weight computation can be temporary turned off for faster processing. This will mark model as not fit. Enable `compute_output_weights` in the final call to `partial_fit`. .. |param_forget| replace:: Performs a negative update, effectively removing the information given by training samples from the model. Output weights need to be re-computed after forgetting data. Forgetting data that have not been learned before leads to unpredictable results. .. |param_compute_output_weights| replace:: Whether to compute new output weights (coef_, intercept_). Disable this in intermediate `partial_fit` steps to run computations faster, then enable in the last call to compute the new solution. Parameters ---------- X : {array-like, sparse matrix}, shape=[n_samples, n_features] Training input samples y : array-like, shape=[n_samples, n_targets] Training targets forget : boolean, default False |param_forget| compute_output_weights : boolean, optional, default True |param_compute_output_weights| .. Note:: Solution can be updated without extra data by setting `X=None` and `y=None`. Example: >>> model.partial_fit(X_1, y_1) ... model.partial_fit(X_2, y_2) ... model.partial_fit(X_3, y_3) # doctest: +SKIP Faster, option 1: >>> model.partial_fit(X_1, y_1, compute_output_weights=False) ... model.partial_fit(X_2, y_2, compute_output_weights=False) ... model.partial_fit(X_3, y_3) # doctest: +SKIP Faster, option 2: >>> model.partial_fit(X_1, y_1, compute_output_weights=False) ... model.partial_fit(X_2, y_2, compute_output_weights=False) ... model.partial_fit(X_3, y_3, compute_output_weights=False) ... model.partial_fit(X=None, y=None) # doctest: +SKIP """ # compute output weights only if X is None and y is None and compute_output_weights: self.solver_.partial_fit(None, None, compute_output_weights=True) self.is_fitted_ = True return self X, y = check_X_y(X, y, accept_sparse=True, multi_output=True) if len(y.shape) > 1 and y.shape[1] == 1: msg = ("A column-vector y was passed when a 1d array was expected. " "Please change the shape of y to (n_samples, ), for example using ravel().") warnings.warn(msg, DataConversionWarning) n_samples, n_features = X.shape if hasattr(self, 'n_features_') and self.n_features_ != n_features: raise ValueError('Shape of input is different from what was seen in `fit`') # set batch size, default is bsize=2000 or all-at-once with less than 10_000 samples self.bsize_ = self.batch_size if self.bsize_ is None: self.bsize_ = n_samples if n_samples < 10 * 1000 else 2000 # init model if not fit yet if not hasattr(self, 'hidden_layers_'): self.n_features_ = n_features self.solver_ = BatchCholeskySolver(alpha=self.alpha) self._init_hidden_layers(X) # special case of one-shot processing if self.bsize_ >= n_samples: H = [hl.transform(X) for hl in self.hidden_layers_] H = np.hstack(H if not self.include_original_features else [_dense(X)] + H) self.solver_.partial_fit(H, y, forget=forget, compute_output_weights=False) else: # batch processing for b_start in range(0, n_samples, self.bsize_): b_end = min(b_start + self.bsize_, n_samples) b_X = X[b_start:b_end] b_y = y[b_start:b_end] b_H = [hl.transform(b_X) for hl in self.hidden_layers_] b_H = np.hstack(b_H if not self.include_original_features else [_dense(b_X)] + b_H) self.solver_.partial_fit(b_H, b_y, forget=forget, compute_output_weights=False) # output weights if needed if compute_output_weights: self.solver_.partial_fit(None, None, compute_output_weights=True) self.is_fitted_ = True # mark as needing a solution elif hasattr(self, 'is_fitted_'): del self.is_fitted_ return self def fit(self, X, y=None): """Reset model and fit on the given data. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data samples. y : array-like, shape (n_samples,) or (n_samples, n_outputs) Target values used as real numbers. Returns ------- self : object Returns self. """ #todo: add X as bunch of files support self._reset() self.partial_fit(X, y) return self def predict(self, X): """Predict real valued outputs for new inputs X. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Input data samples. Returns ------- y : ndarray, shape (n_samples,) or (n_samples, n_outputs) Predicted outputs for inputs X. .. attention:: :mod:`predict` always returns a dense matrix of predicted outputs -- unlike in :meth:`fit`, this may cause memory issues at high number of outputs and very high number of samples. Feed data by smaller batches in such case. """ X = check_array(X, accept_sparse=True) check_is_fitted(self, "is_fitted_") H = [hl.transform(X) for hl in self.hidden_layers_] if self.include_original_features: H = [_dense(X)] + H H = np.hstack(H) return self.solver_.predict(H) class ELMRegressor(_BaseELM, RegressorMixin): """Extreme Learning Machine for regression problems. This model solves a regression problem, that is a problem of predicting continuous outputs. It supports multi-variate regression (when ``y`` is a 2d array of shape [n_samples, n_targets].) ELM uses ``L2`` regularization, and optionally includes the original data features to capture linear dependencies in the data natively. Parameters ---------- alpha : float Regularization strength; must be a positive float. Larger values specify stronger effect. Regularization improves model stability and reduces over-fitting at the cost of some learning capacity. The same value is used for all targets in multi-variate regression. The optimal regularization strength is suggested to select from a large range of logarithmically distributed values, e.g. :math:`[10^{-5}, 10^{-4}, 10^{-3}, ..., 10^4, 10^5]`. A small default regularization value of :math:`10^{-7}` should always be present to counter numerical instabilities in the solution; it does not affect overall model performance. .. attention:: The model may automatically increase the regularization value if the solution becomes unfeasible otherwise. The actual used value contains in ``alpha_`` attribute. batch_size : int, optional Actual computations will proceed in batches of this size, except the last batch that may be smaller. Default behavior is to process all data at once with <10,000 samples, otherwise use batches of size 2000. include_original_features : boolean, default=False Adds extra hidden layer neurons that simpy copy the input data features, adding a linear part to the final model solution that can directly capture linear relations between data and outputs. Effectively increases `n_neurons` by `n_inputs` leading to a larger model. Including original features is generally a good thing if the number of data features is low. n_neurons : int or [int], optional Number of hidden layer neurons in ELM model, controls model size and learning capacity. Generally number of neurons should be less than the number of training data samples, as otherwise the model will learn the training set perfectly resulting in overfitting. Several different kinds of neurons can be used in the same model by specifying a list of neuron counts. ELM will create a separate neuron type for each element in the list. In that case, the following attributes ``ufunc``, ``density`` and ``pairwise_metric`` should be lists of the same length; default values will be automatically expanded into a list. .. note:: Models with <1,000 neurons are very fast to compute, while GPU acceleration is efficient starting from 1,000-2,000 neurons. A standard computer should handle up to 10,000 neurons. Very large models will not fit in memory but can still be trained by an out-of-core solver. ufunc : {'tanh', 'sigm', 'relu', 'lin' or callable}, or a list of those (see n_neurons) Transformation function of hidden layer neurons. Includes the following options: - 'tanh' for hyperbolic tangent - 'sigm' for sigmoid - 'relu' for rectified linear unit (clamps negative values to zero) - 'lin' for linear neurons, transformation function does nothing - any custom callable function like members of ``Numpu.ufunc`` density : float in range (0, 1], or a list of those (see n_neurons), optional Specifying density replaces dense projection layer by a sparse one with the specified density of the connections. For instance, ``density=0.1`` means each hidden neuron will be connected to a random 10% of input features. Useful for working on very high-dimensional data, or for large numbers of neurons. pairwise_metric : {'euclidean', 'cityblock', 'cosine' or other}, or a list of those (see n_neurons), optional Specifying pairwise metric replaces multiplicative hidden neurons by distance-based hidden neurons. This ELM model is known as Radial Basis Function ELM (RBF-ELM). .. note:: Pairwise function neurons ignore ufunc and density. Typical metrics are `euclidean`, `cityblock` and `cosine`. For a full list of metrics check the `webpage <https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise_distances.html>`_ of :mod:`sklearn.metrics.pairwise_distances`. random_state : int, RandomState instance or None, optional, default None The seed of the pseudo random number generator to use when generating random numbers e.g. for hidden neuron parameters. Random state instance is passed to lower level objects and routines. Use it for repeatable experiments. Attributes ---------- n_neurons_ : int Number of automatically generated neurons. ufunc_ : function Tranformation function of hidden neurons. projection_ : object Hidden layer projection function. solver_ : object Solver instance, read solution from there. Examples -------- Combining ten sigmoid and twenty RBF neurons in one model: >>> model = ELMRegressor(n_neurons=(10, 20), ... ufunc=('sigm', None), ... density=(None, None), ... pairwise_metric=(None, 'euclidean')) # doctest: +SKIP Default values in multi-neuron ELM are automatically expanded to a list >>> model = ELMRegressor(n_neurons=(10, 20), ... ufunc=('sigm', None), ... pairwise_metric=(None, 'euclidean')) # doctest: +SKIP >>> model = ELMRegressor(n_neurons=(30, 30), ... pairwise_metric=('cityblock', 'cosine')) # doctest: +SKIP """ pass class ELMClassifier(_BaseELM, ClassifierMixin): """ELM classifier, modified for multi-label classification support. :param classes: Set of classes to consider in the model; can be expanded at runtime. Samples of other classes will have their output set to zero. :param solver: Solver to use, "default" for build-in Least Squares or "ridge" for Ridge regression Example descr... Attributes ---------- X_ : ndarray, shape (n_samples, n_features) The input passed during :meth:`fit`. y_ : ndarray, shape (n_samples,) The labels passed during :meth:`fit`. classes_ : ndarray, shape (n_classes,) The classes seen at :meth:`fit`. """ def __init__(self, classes=None, alpha=1e-7, batch_size=None, include_original_features=False, n_neurons=None, ufunc="tanh", density=None, pairwise_metric=None, random_state=None): super().__init__(alpha, batch_size, include_original_features, n_neurons, ufunc, density, pairwise_metric, random_state) self.classes = classes @property def classes_(self): return self.label_binarizer_.classes_ def _get_tags(self): return {"multioutput": True, "multilabel": True} def _update_classes(self, y): if not isinstance(self.solver_, BatchCholeskySolver): raise ValueError("Only iterative solver supports dynamic class update") old_classes = self.label_binarizer_.classes_ partial_classes = clone(self.label_binarizer_).fit(y).classes_ # no new classes detected if set(partial_classes) <= set(old_classes): return if len(old_classes) < 3: raise ValueError("Dynamic class update has to start with at least 3 classes to function correctly; " "provide 3 or more 'classes=[...]' during initialization.") # get new classes sorted by LabelBinarizer self.label_binarizer_.fit(np.hstack((old_classes, partial_classes))) new_classes = self.label_binarizer_.classes_ # convert existing XtY matrix to new classes if hasattr(self.solver_, 'XtY_'): XtY_old = self.solver_.XtY_ XtY_new = np.zeros((XtY_old.shape[0], new_classes.shape[0])) for i, c in enumerate(old_classes): j = np.where(new_classes == c)[0][0] XtY_new[:, j] = XtY_old[:, i] self.solver_.XtY_ = XtY_new # reset the solution if hasattr(self.solver_, 'is_fitted_'): del self.solver_.is_fitted_ def partial_fit(self, X, y=None, forget=False, update_classes=False, compute_output_weights=True): """Update classifier with a new batch of data. |method_partial_fit| Parameters ---------- X : {array-like, sparse matrix}, shape=[n_samples, n_features] Training input samples y : array-like, shape=[n_samples, n_targets] Training targets forget : boolean, default False |param_forget| update_classes : boolean, default False Include new classes from `y` into the model, assuming they were 0 in all previous samples. compute_output_weights : boolean, optional, default True |param_compute_output_weights| """ #todo: Warning on strongly non-normalized data X, y = check_X_y(X, y, accept_sparse=True, multi_output=True) # init label binarizer if needed if not hasattr(self, 'label_binarizer_'): self.label_binarizer_ = LabelBinarizer() if type_of_target(y).endswith("-multioutput"): self.label_binarizer_ = MultiLabelBinarizer() self.label_binarizer_.fit(self.classes if self.classes is not None else y) if update_classes: self._update_classes(y) y_numeric = self.label_binarizer_.transform(y) if len(y_numeric.shape) > 1 and y_numeric.shape[1] == 1: y_numeric = y_numeric[:, 0] super().partial_fit(X, y_numeric, forget=forget, compute_output_weights=compute_output_weights) return self def fit(self, X, y=None): """Fit a classifier erasing any previously trained model. Returns ------- self : object Returns self. """ self._reset() self.partial_fit(X, y, compute_output_weights=True) return self def predict(self, X): """Predict classes of new inputs X. Parameters ---------- X : array-like, shape (n_samples, n_features) The input samples. Returns ------- y : ndarray, shape (n_samples,) or (n_samples, n_outputs) Returns one most probable class for multi-class problem, or a binary vector of all relevant classes for multi-label problem. """ check_is_fitted(self, "is_fitted_") scores = super().predict(X) return self.label_binarizer_.inverse_transform(scores) def predict_proba(self, X): """Probability estimation for all classes. Positive class probabilities are computed as 1. / (1. + np.exp(-self.decision_function(X))); multiclass is handled by normalizing that over all classes. """ check_is_fitted(self, "is_fitted_") prob = super().predict(X) expit(prob, out=prob) if prob.ndim == 1: return np.vstack([1 - prob, prob]).T else: # OvR normalization, like LibLinear's predict_probability prob /= prob.sum(axis=1).reshape((prob.shape[0], -1)) return prob
scikit-elm
/scikit_elm-0.21a0-py3-none-any.whl/skelm/elm.py
elm.py
import numpy as np import warnings from scipy.special import expit from sklearn.base import BaseEstimator, ClassifierMixin, RegressorMixin, clone from sklearn.utils.validation import check_X_y, check_array, check_is_fitted from sklearn.utils.multiclass import unique_labels, type_of_target from sklearn.preprocessing import LabelBinarizer, MultiLabelBinarizer from sklearn.exceptions import DataConversionWarning, DataDimensionalityWarning from .hidden_layer import HiddenLayer from .solver_batch import BatchCholeskySolver from .utils import _dense warnings.simplefilter("ignore", DataDimensionalityWarning) class _BaseELM(BaseEstimator): def __init__(self, alpha=1e-7, batch_size=None, include_original_features=False, n_neurons=None, ufunc="tanh", density=None, pairwise_metric=None, random_state=None): self.alpha = alpha self.n_neurons = n_neurons self.batch_size = batch_size self.ufunc = ufunc self.include_original_features = include_original_features self.density = density self.pairwise_metric = pairwise_metric self.random_state = random_state def _init_hidden_layers(self, X): """Init an empty model, creating objects for hidden layers and solver. Also validates inputs for several hidden layers. """ # only one type of neurons if not hasattr(self.n_neurons, '__iter__'): hl = HiddenLayer(n_neurons=self.n_neurons, density=self.density, ufunc=self.ufunc, pairwise_metric=self.pairwise_metric, random_state=self.random_state) hl.fit(X) self.hidden_layers_ = (hl, ) # several different types of neurons else: k = len(self.n_neurons) # fix default values ufuncs = self.ufunc if isinstance(ufuncs, str) or not hasattr(ufuncs, "__iter__"): ufuncs = [ufuncs] * k densities = self.density if densities is None or not hasattr(densities, "__iter__"): densities = [densities] * k pw_metrics = self.pairwise_metric if pw_metrics is None or isinstance(pw_metrics, str): pw_metrics = [pw_metrics] * k if not k == len(ufuncs) == len(densities) == len(pw_metrics): raise ValueError("Inconsistent parameter lengths for model with {} different types of neurons.\n" "Set 'ufunc', 'density' and 'pairwise_distances' by lists " "with {} elements, or leave the default values.".format(k, k)) self.hidden_layers_ = [] for n_neurons, ufunc, density, metric in zip(self.n_neurons, ufuncs, densities, pw_metrics): hl = HiddenLayer(n_neurons=n_neurons, density=density, ufunc=ufunc, pairwise_metric=metric, random_state=self.random_state) hl.fit(X) self.hidden_layers_.append(hl) def _reset(self): [delattr(self, attr) for attr in ('n_features_', 'solver_', 'hidden_layers_', 'is_fitted_', 'label_binarizer_') if hasattr(self, attr)] @property def n_neurons_(self): if not hasattr(self, 'hidden_layers_'): return None neurons_count = sum([hl.n_neurons_ for hl in self.hidden_layers_]) if self.include_original_features: neurons_count += self.n_features_ return neurons_count @property def coef_(self): return self.solver_.coef_ @property def intercept_(self): return self.solver_.intercept_ def partial_fit(self, X, y=None, forget=False, compute_output_weights=True): """Update model with a new batch of data. |method_partial_fit| .. |method_partial_fit| replace:: Output weight computation can be temporary turned off for faster processing. This will mark model as not fit. Enable `compute_output_weights` in the final call to `partial_fit`. .. |param_forget| replace:: Performs a negative update, effectively removing the information given by training samples from the model. Output weights need to be re-computed after forgetting data. Forgetting data that have not been learned before leads to unpredictable results. .. |param_compute_output_weights| replace:: Whether to compute new output weights (coef_, intercept_). Disable this in intermediate `partial_fit` steps to run computations faster, then enable in the last call to compute the new solution. Parameters ---------- X : {array-like, sparse matrix}, shape=[n_samples, n_features] Training input samples y : array-like, shape=[n_samples, n_targets] Training targets forget : boolean, default False |param_forget| compute_output_weights : boolean, optional, default True |param_compute_output_weights| .. Note:: Solution can be updated without extra data by setting `X=None` and `y=None`. Example: >>> model.partial_fit(X_1, y_1) ... model.partial_fit(X_2, y_2) ... model.partial_fit(X_3, y_3) # doctest: +SKIP Faster, option 1: >>> model.partial_fit(X_1, y_1, compute_output_weights=False) ... model.partial_fit(X_2, y_2, compute_output_weights=False) ... model.partial_fit(X_3, y_3) # doctest: +SKIP Faster, option 2: >>> model.partial_fit(X_1, y_1, compute_output_weights=False) ... model.partial_fit(X_2, y_2, compute_output_weights=False) ... model.partial_fit(X_3, y_3, compute_output_weights=False) ... model.partial_fit(X=None, y=None) # doctest: +SKIP """ # compute output weights only if X is None and y is None and compute_output_weights: self.solver_.partial_fit(None, None, compute_output_weights=True) self.is_fitted_ = True return self X, y = check_X_y(X, y, accept_sparse=True, multi_output=True) if len(y.shape) > 1 and y.shape[1] == 1: msg = ("A column-vector y was passed when a 1d array was expected. " "Please change the shape of y to (n_samples, ), for example using ravel().") warnings.warn(msg, DataConversionWarning) n_samples, n_features = X.shape if hasattr(self, 'n_features_') and self.n_features_ != n_features: raise ValueError('Shape of input is different from what was seen in `fit`') # set batch size, default is bsize=2000 or all-at-once with less than 10_000 samples self.bsize_ = self.batch_size if self.bsize_ is None: self.bsize_ = n_samples if n_samples < 10 * 1000 else 2000 # init model if not fit yet if not hasattr(self, 'hidden_layers_'): self.n_features_ = n_features self.solver_ = BatchCholeskySolver(alpha=self.alpha) self._init_hidden_layers(X) # special case of one-shot processing if self.bsize_ >= n_samples: H = [hl.transform(X) for hl in self.hidden_layers_] H = np.hstack(H if not self.include_original_features else [_dense(X)] + H) self.solver_.partial_fit(H, y, forget=forget, compute_output_weights=False) else: # batch processing for b_start in range(0, n_samples, self.bsize_): b_end = min(b_start + self.bsize_, n_samples) b_X = X[b_start:b_end] b_y = y[b_start:b_end] b_H = [hl.transform(b_X) for hl in self.hidden_layers_] b_H = np.hstack(b_H if not self.include_original_features else [_dense(b_X)] + b_H) self.solver_.partial_fit(b_H, b_y, forget=forget, compute_output_weights=False) # output weights if needed if compute_output_weights: self.solver_.partial_fit(None, None, compute_output_weights=True) self.is_fitted_ = True # mark as needing a solution elif hasattr(self, 'is_fitted_'): del self.is_fitted_ return self def fit(self, X, y=None): """Reset model and fit on the given data. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data samples. y : array-like, shape (n_samples,) or (n_samples, n_outputs) Target values used as real numbers. Returns ------- self : object Returns self. """ #todo: add X as bunch of files support self._reset() self.partial_fit(X, y) return self def predict(self, X): """Predict real valued outputs for new inputs X. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Input data samples. Returns ------- y : ndarray, shape (n_samples,) or (n_samples, n_outputs) Predicted outputs for inputs X. .. attention:: :mod:`predict` always returns a dense matrix of predicted outputs -- unlike in :meth:`fit`, this may cause memory issues at high number of outputs and very high number of samples. Feed data by smaller batches in such case. """ X = check_array(X, accept_sparse=True) check_is_fitted(self, "is_fitted_") H = [hl.transform(X) for hl in self.hidden_layers_] if self.include_original_features: H = [_dense(X)] + H H = np.hstack(H) return self.solver_.predict(H) class ELMRegressor(_BaseELM, RegressorMixin): """Extreme Learning Machine for regression problems. This model solves a regression problem, that is a problem of predicting continuous outputs. It supports multi-variate regression (when ``y`` is a 2d array of shape [n_samples, n_targets].) ELM uses ``L2`` regularization, and optionally includes the original data features to capture linear dependencies in the data natively. Parameters ---------- alpha : float Regularization strength; must be a positive float. Larger values specify stronger effect. Regularization improves model stability and reduces over-fitting at the cost of some learning capacity. The same value is used for all targets in multi-variate regression. The optimal regularization strength is suggested to select from a large range of logarithmically distributed values, e.g. :math:`[10^{-5}, 10^{-4}, 10^{-3}, ..., 10^4, 10^5]`. A small default regularization value of :math:`10^{-7}` should always be present to counter numerical instabilities in the solution; it does not affect overall model performance. .. attention:: The model may automatically increase the regularization value if the solution becomes unfeasible otherwise. The actual used value contains in ``alpha_`` attribute. batch_size : int, optional Actual computations will proceed in batches of this size, except the last batch that may be smaller. Default behavior is to process all data at once with <10,000 samples, otherwise use batches of size 2000. include_original_features : boolean, default=False Adds extra hidden layer neurons that simpy copy the input data features, adding a linear part to the final model solution that can directly capture linear relations between data and outputs. Effectively increases `n_neurons` by `n_inputs` leading to a larger model. Including original features is generally a good thing if the number of data features is low. n_neurons : int or [int], optional Number of hidden layer neurons in ELM model, controls model size and learning capacity. Generally number of neurons should be less than the number of training data samples, as otherwise the model will learn the training set perfectly resulting in overfitting. Several different kinds of neurons can be used in the same model by specifying a list of neuron counts. ELM will create a separate neuron type for each element in the list. In that case, the following attributes ``ufunc``, ``density`` and ``pairwise_metric`` should be lists of the same length; default values will be automatically expanded into a list. .. note:: Models with <1,000 neurons are very fast to compute, while GPU acceleration is efficient starting from 1,000-2,000 neurons. A standard computer should handle up to 10,000 neurons. Very large models will not fit in memory but can still be trained by an out-of-core solver. ufunc : {'tanh', 'sigm', 'relu', 'lin' or callable}, or a list of those (see n_neurons) Transformation function of hidden layer neurons. Includes the following options: - 'tanh' for hyperbolic tangent - 'sigm' for sigmoid - 'relu' for rectified linear unit (clamps negative values to zero) - 'lin' for linear neurons, transformation function does nothing - any custom callable function like members of ``Numpu.ufunc`` density : float in range (0, 1], or a list of those (see n_neurons), optional Specifying density replaces dense projection layer by a sparse one with the specified density of the connections. For instance, ``density=0.1`` means each hidden neuron will be connected to a random 10% of input features. Useful for working on very high-dimensional data, or for large numbers of neurons. pairwise_metric : {'euclidean', 'cityblock', 'cosine' or other}, or a list of those (see n_neurons), optional Specifying pairwise metric replaces multiplicative hidden neurons by distance-based hidden neurons. This ELM model is known as Radial Basis Function ELM (RBF-ELM). .. note:: Pairwise function neurons ignore ufunc and density. Typical metrics are `euclidean`, `cityblock` and `cosine`. For a full list of metrics check the `webpage <https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise_distances.html>`_ of :mod:`sklearn.metrics.pairwise_distances`. random_state : int, RandomState instance or None, optional, default None The seed of the pseudo random number generator to use when generating random numbers e.g. for hidden neuron parameters. Random state instance is passed to lower level objects and routines. Use it for repeatable experiments. Attributes ---------- n_neurons_ : int Number of automatically generated neurons. ufunc_ : function Tranformation function of hidden neurons. projection_ : object Hidden layer projection function. solver_ : object Solver instance, read solution from there. Examples -------- Combining ten sigmoid and twenty RBF neurons in one model: >>> model = ELMRegressor(n_neurons=(10, 20), ... ufunc=('sigm', None), ... density=(None, None), ... pairwise_metric=(None, 'euclidean')) # doctest: +SKIP Default values in multi-neuron ELM are automatically expanded to a list >>> model = ELMRegressor(n_neurons=(10, 20), ... ufunc=('sigm', None), ... pairwise_metric=(None, 'euclidean')) # doctest: +SKIP >>> model = ELMRegressor(n_neurons=(30, 30), ... pairwise_metric=('cityblock', 'cosine')) # doctest: +SKIP """ pass class ELMClassifier(_BaseELM, ClassifierMixin): """ELM classifier, modified for multi-label classification support. :param classes: Set of classes to consider in the model; can be expanded at runtime. Samples of other classes will have their output set to zero. :param solver: Solver to use, "default" for build-in Least Squares or "ridge" for Ridge regression Example descr... Attributes ---------- X_ : ndarray, shape (n_samples, n_features) The input passed during :meth:`fit`. y_ : ndarray, shape (n_samples,) The labels passed during :meth:`fit`. classes_ : ndarray, shape (n_classes,) The classes seen at :meth:`fit`. """ def __init__(self, classes=None, alpha=1e-7, batch_size=None, include_original_features=False, n_neurons=None, ufunc="tanh", density=None, pairwise_metric=None, random_state=None): super().__init__(alpha, batch_size, include_original_features, n_neurons, ufunc, density, pairwise_metric, random_state) self.classes = classes @property def classes_(self): return self.label_binarizer_.classes_ def _get_tags(self): return {"multioutput": True, "multilabel": True} def _update_classes(self, y): if not isinstance(self.solver_, BatchCholeskySolver): raise ValueError("Only iterative solver supports dynamic class update") old_classes = self.label_binarizer_.classes_ partial_classes = clone(self.label_binarizer_).fit(y).classes_ # no new classes detected if set(partial_classes) <= set(old_classes): return if len(old_classes) < 3: raise ValueError("Dynamic class update has to start with at least 3 classes to function correctly; " "provide 3 or more 'classes=[...]' during initialization.") # get new classes sorted by LabelBinarizer self.label_binarizer_.fit(np.hstack((old_classes, partial_classes))) new_classes = self.label_binarizer_.classes_ # convert existing XtY matrix to new classes if hasattr(self.solver_, 'XtY_'): XtY_old = self.solver_.XtY_ XtY_new = np.zeros((XtY_old.shape[0], new_classes.shape[0])) for i, c in enumerate(old_classes): j = np.where(new_classes == c)[0][0] XtY_new[:, j] = XtY_old[:, i] self.solver_.XtY_ = XtY_new # reset the solution if hasattr(self.solver_, 'is_fitted_'): del self.solver_.is_fitted_ def partial_fit(self, X, y=None, forget=False, update_classes=False, compute_output_weights=True): """Update classifier with a new batch of data. |method_partial_fit| Parameters ---------- X : {array-like, sparse matrix}, shape=[n_samples, n_features] Training input samples y : array-like, shape=[n_samples, n_targets] Training targets forget : boolean, default False |param_forget| update_classes : boolean, default False Include new classes from `y` into the model, assuming they were 0 in all previous samples. compute_output_weights : boolean, optional, default True |param_compute_output_weights| """ #todo: Warning on strongly non-normalized data X, y = check_X_y(X, y, accept_sparse=True, multi_output=True) # init label binarizer if needed if not hasattr(self, 'label_binarizer_'): self.label_binarizer_ = LabelBinarizer() if type_of_target(y).endswith("-multioutput"): self.label_binarizer_ = MultiLabelBinarizer() self.label_binarizer_.fit(self.classes if self.classes is not None else y) if update_classes: self._update_classes(y) y_numeric = self.label_binarizer_.transform(y) if len(y_numeric.shape) > 1 and y_numeric.shape[1] == 1: y_numeric = y_numeric[:, 0] super().partial_fit(X, y_numeric, forget=forget, compute_output_weights=compute_output_weights) return self def fit(self, X, y=None): """Fit a classifier erasing any previously trained model. Returns ------- self : object Returns self. """ self._reset() self.partial_fit(X, y, compute_output_weights=True) return self def predict(self, X): """Predict classes of new inputs X. Parameters ---------- X : array-like, shape (n_samples, n_features) The input samples. Returns ------- y : ndarray, shape (n_samples,) or (n_samples, n_outputs) Returns one most probable class for multi-class problem, or a binary vector of all relevant classes for multi-label problem. """ check_is_fitted(self, "is_fitted_") scores = super().predict(X) return self.label_binarizer_.inverse_transform(scores) def predict_proba(self, X): """Probability estimation for all classes. Positive class probabilities are computed as 1. / (1. + np.exp(-self.decision_function(X))); multiclass is handled by normalizing that over all classes. """ check_is_fitted(self, "is_fitted_") prob = super().predict(X) expit(prob, out=prob) if prob.ndim == 1: return np.vstack([1 - prob, prob]).T else: # OvR normalization, like LibLinear's predict_probability prob /= prob.sum(axis=1).reshape((prob.shape[0], -1)) return prob
0.877844
0.352425
import scipy as sp from enum import Enum from sklearn.metrics import pairwise_distances from sklearn.base import BaseEstimator, TransformerMixin from sklearn.utils.validation import check_array, check_is_fitted, check_random_state class HiddenLayerType(Enum): RANDOM = 1 # Gaussian random projection SPARSE = 2 # Sparse Random Projection PAIRWISE = 3 # Pairwise kernel with a number of centroids def dummy(x): return x def flatten(items): """Yield items from any nested iterable.""" for x in items: # don't break strings into characters if hasattr(x, '__iter__') and not isinstance(x, (str, bytes)): yield from flatten(x) else: yield x def _is_list_of_strings(obj): return obj is not None and all(isinstance(elem, str) for elem in obj) def _dense(X): if sp.sparse.issparse(X): return X.todense() else: return X class PairwiseRandomProjection(BaseEstimator, TransformerMixin): def __init__(self, n_components=100, pairwise_metric='l2', n_jobs=None, random_state=None): """Pairwise distances projection with random centroids. Parameters ---------- n_components : int Number of components (centroids) in the projection. Creates the same number of output features. pairwise_metric : str A valid pairwise distance metric, see pairwise-distances_. .. _pairwise-distances: https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise_distances.html#sklearn.metrics.pairwise_distances n_jobs : int or None, optional, default=None Number of jobs to use in distance computations, or `None` for no parallelism. Passed to _pairwise-distances function. random_state Used for random generation of centroids. """ self.n_components = n_components self.pairwise_metric = pairwise_metric self.n_jobs = n_jobs self.random_state = random_state def fit(self, X, y=None): """Generate artificial centroids. Centroids are sampled from a normal distribution. They work best if the data is normalized. Parameters ---------- X : {array-like, sparse matrix}, shape=[n_samples, n_features] Input data """ X = check_array(X, accept_sparse=True) self.random_state_ = check_random_state(self.random_state) if self.n_components <= 0: raise ValueError("n_components must be greater than 0, got %s" % self.n_components) self.components_ = self.random_state_.randn(self.n_components, X.shape[1]) self.n_jobs_ = 1 if self.n_jobs is None else self.n_jobs return self def transform(self, X): """Compute distance matrix between input data and the centroids. Parameters ---------- X : {array-like, sparse matrix}, shape [n_samples, n_features] Input data samples. Returns ------- X_dist : numpy array Distance matrix between input data samples and centroids. """ X = check_array(X, accept_sparse=True) check_is_fitted(self, 'components_') if X.shape[1] != self.components_.shape[1]: raise ValueError( 'Impossible to perform projection: X at fit stage had a different number of features. ' '(%s != %s)' % (X.shape[1], self.components_.shape[1])) try: X_dist = pairwise_distances(X, self.components_, n_jobs=self.n_jobs_, metric=self.pairwise_metric) except TypeError: # scipy distances that don't support sparse matrices X_dist = pairwise_distances(_dense(X), _dense(self.components_), n_jobs=self.n_jobs_, metric=self.pairwise_metric) return X_dist
scikit-elm
/scikit_elm-0.21a0-py3-none-any.whl/skelm/utils.py
utils.py
import scipy as sp from enum import Enum from sklearn.metrics import pairwise_distances from sklearn.base import BaseEstimator, TransformerMixin from sklearn.utils.validation import check_array, check_is_fitted, check_random_state class HiddenLayerType(Enum): RANDOM = 1 # Gaussian random projection SPARSE = 2 # Sparse Random Projection PAIRWISE = 3 # Pairwise kernel with a number of centroids def dummy(x): return x def flatten(items): """Yield items from any nested iterable.""" for x in items: # don't break strings into characters if hasattr(x, '__iter__') and not isinstance(x, (str, bytes)): yield from flatten(x) else: yield x def _is_list_of_strings(obj): return obj is not None and all(isinstance(elem, str) for elem in obj) def _dense(X): if sp.sparse.issparse(X): return X.todense() else: return X class PairwiseRandomProjection(BaseEstimator, TransformerMixin): def __init__(self, n_components=100, pairwise_metric='l2', n_jobs=None, random_state=None): """Pairwise distances projection with random centroids. Parameters ---------- n_components : int Number of components (centroids) in the projection. Creates the same number of output features. pairwise_metric : str A valid pairwise distance metric, see pairwise-distances_. .. _pairwise-distances: https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise_distances.html#sklearn.metrics.pairwise_distances n_jobs : int or None, optional, default=None Number of jobs to use in distance computations, or `None` for no parallelism. Passed to _pairwise-distances function. random_state Used for random generation of centroids. """ self.n_components = n_components self.pairwise_metric = pairwise_metric self.n_jobs = n_jobs self.random_state = random_state def fit(self, X, y=None): """Generate artificial centroids. Centroids are sampled from a normal distribution. They work best if the data is normalized. Parameters ---------- X : {array-like, sparse matrix}, shape=[n_samples, n_features] Input data """ X = check_array(X, accept_sparse=True) self.random_state_ = check_random_state(self.random_state) if self.n_components <= 0: raise ValueError("n_components must be greater than 0, got %s" % self.n_components) self.components_ = self.random_state_.randn(self.n_components, X.shape[1]) self.n_jobs_ = 1 if self.n_jobs is None else self.n_jobs return self def transform(self, X): """Compute distance matrix between input data and the centroids. Parameters ---------- X : {array-like, sparse matrix}, shape [n_samples, n_features] Input data samples. Returns ------- X_dist : numpy array Distance matrix between input data samples and centroids. """ X = check_array(X, accept_sparse=True) check_is_fitted(self, 'components_') if X.shape[1] != self.components_.shape[1]: raise ValueError( 'Impossible to perform projection: X at fit stage had a different number of features. ' '(%s != %s)' % (X.shape[1], self.components_.shape[1])) try: X_dist = pairwise_distances(X, self.components_, n_jobs=self.n_jobs_, metric=self.pairwise_metric) except TypeError: # scipy distances that don't support sparse matrices X_dist = pairwise_distances(_dense(X), _dense(self.components_), n_jobs=self.n_jobs_, metric=self.pairwise_metric) return X_dist
0.932522
0.450359
import numpy as np import scipy as sp from sklearn.base import BaseEstimator, TransformerMixin from sklearn.utils import check_random_state from sklearn.utils.validation import check_array, check_is_fitted from sklearn.random_projection import GaussianRandomProjection, SparseRandomProjection from .utils import PairwiseRandomProjection, HiddenLayerType, dummy # suppress annoying warning of random projection into a higher-dimensional space import warnings warnings.filterwarnings("ignore", message="DataDimensionalityWarning") def auto_neuron_count(n, d): # computes default number of neurons for `n` data samples with `d` features return min(int(250 * np.log(1 + d/10) - 15), n//3 + 1) ufuncs = {"tanh": np.tanh, "sigm": sp.special.expit, "relu": lambda x: np.maximum(x, 0), "lin": dummy, None: dummy} class HiddenLayer(BaseEstimator, TransformerMixin): def __init__(self, n_neurons=None, density=None, ufunc="tanh", pairwise_metric=None, random_state=None): self.n_neurons = n_neurons self.density = density self.ufunc = ufunc self.pairwise_metric = pairwise_metric self.random_state = random_state def _fit_random_projection(self, X): self.hidden_layer_ = HiddenLayerType.RANDOM self.projection_ = GaussianRandomProjection(n_components=self.n_neurons_, random_state=self.random_state_) self.projection_.fit(X) def _fit_sparse_projection(self, X): self.hidden_layer_ = HiddenLayerType.SPARSE self.projection_ = SparseRandomProjection(n_components=self.n_neurons_, density=self.density, dense_output=True, random_state=self.random_state_) self.projection_.fit(X) def _fit_pairwise_projection(self, X): self.hidden_layer_ = HiddenLayerType.PAIRWISE self.projection_ = PairwiseRandomProjection(n_components=self.n_neurons_, pairwise_metric=self.pairwise_metric, random_state=self.random_state_) self.projection_.fit(X) def fit(self, X, y=None): # basic checks X = check_array(X, accept_sparse=True) # handle random state self.random_state_ = check_random_state(self.random_state) # get number of neurons n, d = X.shape self.n_neurons_ = int(self.n_neurons) if self.n_neurons is not None else auto_neuron_count(n, d) # fit a projection if self.pairwise_metric is not None: self._fit_pairwise_projection(X) elif self.density is not None: self._fit_sparse_projection(X) else: self._fit_random_projection(X) if self.ufunc in ufuncs.keys(): self.ufunc_ = ufuncs[self.ufunc] elif callable(self.ufunc): self.ufunc_ = self.ufunc else: raise ValueError("Ufunc transformation function not understood: ", self.ufunc) self.is_fitted_ = True return self def transform(self, X): check_is_fitted(self, "is_fitted_") X = check_array(X, accept_sparse=True) n_features = self.projection_.components_.shape[1] if X.shape[1] != n_features: raise ValueError("X has %d features per sample; expecting %d" % (X.shape[1], n_features)) if self.hidden_layer_ == HiddenLayerType.PAIRWISE: return self.projection_.transform(X) # pairwise projection ignores ufunc return self.ufunc_(self.projection_.transform(X))
scikit-elm
/scikit_elm-0.21a0-py3-none-any.whl/skelm/hidden_layer.py
hidden_layer.py
import numpy as np import scipy as sp from sklearn.base import BaseEstimator, TransformerMixin from sklearn.utils import check_random_state from sklearn.utils.validation import check_array, check_is_fitted from sklearn.random_projection import GaussianRandomProjection, SparseRandomProjection from .utils import PairwiseRandomProjection, HiddenLayerType, dummy # suppress annoying warning of random projection into a higher-dimensional space import warnings warnings.filterwarnings("ignore", message="DataDimensionalityWarning") def auto_neuron_count(n, d): # computes default number of neurons for `n` data samples with `d` features return min(int(250 * np.log(1 + d/10) - 15), n//3 + 1) ufuncs = {"tanh": np.tanh, "sigm": sp.special.expit, "relu": lambda x: np.maximum(x, 0), "lin": dummy, None: dummy} class HiddenLayer(BaseEstimator, TransformerMixin): def __init__(self, n_neurons=None, density=None, ufunc="tanh", pairwise_metric=None, random_state=None): self.n_neurons = n_neurons self.density = density self.ufunc = ufunc self.pairwise_metric = pairwise_metric self.random_state = random_state def _fit_random_projection(self, X): self.hidden_layer_ = HiddenLayerType.RANDOM self.projection_ = GaussianRandomProjection(n_components=self.n_neurons_, random_state=self.random_state_) self.projection_.fit(X) def _fit_sparse_projection(self, X): self.hidden_layer_ = HiddenLayerType.SPARSE self.projection_ = SparseRandomProjection(n_components=self.n_neurons_, density=self.density, dense_output=True, random_state=self.random_state_) self.projection_.fit(X) def _fit_pairwise_projection(self, X): self.hidden_layer_ = HiddenLayerType.PAIRWISE self.projection_ = PairwiseRandomProjection(n_components=self.n_neurons_, pairwise_metric=self.pairwise_metric, random_state=self.random_state_) self.projection_.fit(X) def fit(self, X, y=None): # basic checks X = check_array(X, accept_sparse=True) # handle random state self.random_state_ = check_random_state(self.random_state) # get number of neurons n, d = X.shape self.n_neurons_ = int(self.n_neurons) if self.n_neurons is not None else auto_neuron_count(n, d) # fit a projection if self.pairwise_metric is not None: self._fit_pairwise_projection(X) elif self.density is not None: self._fit_sparse_projection(X) else: self._fit_random_projection(X) if self.ufunc in ufuncs.keys(): self.ufunc_ = ufuncs[self.ufunc] elif callable(self.ufunc): self.ufunc_ = self.ufunc else: raise ValueError("Ufunc transformation function not understood: ", self.ufunc) self.is_fitted_ = True return self def transform(self, X): check_is_fitted(self, "is_fitted_") X = check_array(X, accept_sparse=True) n_features = self.projection_.components_.shape[1] if X.shape[1] != n_features: raise ValueError("X has %d features per sample; expecting %d" % (X.shape[1], n_features)) if self.hidden_layer_ == HiddenLayerType.PAIRWISE: return self.projection_.transform(X) # pairwise projection ignores ufunc return self.ufunc_(self.projection_.transform(X))
0.875282
0.437343
import numpy as np import scipy as sp import warnings from sklearn.exceptions import DataConversionWarning from sklearn.base import BaseEstimator, RegressorMixin from sklearn.utils.validation import check_is_fitted from sklearn.utils.extmath import safe_sparse_dot from sklearn.utils import check_X_y, check_array from dask import distributed from dask.distributed import Client, LocalCluster import dask.dataframe as dd import dask.array as da class DaskCholeskySolver(BaseEstimator, RegressorMixin): """Out-of-core linear system solver with Dask back-end. Parameters ---------- alpha : float, non-negative L2 regularization parameter, larger value means stronger effect. The value may be increased if the system fails to converge; actual used value stored in `alpha_` parameter. batch_size : int Batch size for **samples and features**. Computations proceed on square blocks of data. For optimal performance, use a number of features that is equal or a bit less than multiple of a batch size; e.g. 8912 features with 3000 batch size. swap_dir : str Directory for temporary storage of Dask data that does not fit in memory. A large and fast storage is advised, like a local SSD. Attributes ---------- cluster_ : object An instance of `dask.distributed.LocalCluster`. client_ : object Dask client for running computations. """ def __init__(self, alpha=1e-7, batch_size=2000, swap_dir=None): self.alpha = alpha self.batch_size = batch_size self.swap_dir = swap_dir def _init_dask(self): self.cluster_ = LocalCluster( n_workers=2, local_dir=self.swap_dir) self.client_ = Client(self.cluster_) print("Running on:") print(self.client_) def fit(self, X, y): self.W_ = da.random.normal return self def predict(self, X): return None class BBvdsnjvlsdnjhbgfndjvksdjkvlndsf(BaseEstimator, RegressorMixin): def __init__(self, alpha=1e-7): self.alpha = alpha def _init_XY(self, X, y): """Initialize covariance matrices, including a separate bias term. """ d_in = X.shape[1] self._XtX = np.eye(d_in + 1) * self.alpha self._XtX[0, 0] = 0 if len(y.shape) == 1: self._XtY = np.zeros((d_in + 1,)) else: self._XtY = np.zeros((d_in + 1, y.shape[1])) @property def XtY_(self): return self._XtY @property def XtX_(self): return self._XtX @XtY_.setter def XtY_(self, value): self._XtY = value @XtX_.setter def XtX_(self, value): self._XtX = value def _solve(self): """Second stage of solution (X'X)B = X'Y using Cholesky decomposition. Sets `is_fitted_` to True. """ B = sp.linalg.solve(self._XtX, self._XtY, assume_a='pos', overwrite_a=False, overwrite_b=False) self.coef_ = B[1:] self.intercept_ = B[0] self.is_fitted_ = True def _reset(self): """Erase solution and data matrices. """ [delattr(self, attr) for attr in ('_XtX', '_XtY', 'coef_', 'intercept_', 'is_fitted_') if hasattr(self, attr)] def fit(self, X, y): """Solves an L2-regularized linear system like Ridge regression, overwrites any previous solutions. """ self._reset() # remove old solution self.partial_fit(X, y, compute_output_weights=True) return self def partial_fit(self, X, y, compute_output_weights=True): """Update model with a new batch of data. Output weight computation can be temporary turned off for faster processing. This will mark model as not fit. Enable `compute_output_weights` in the final call to `partial_fit`. Parameters ---------- X : {array-like, sparse matrix}, shape=[n_samples, n_features] Training input samples y : array-like, shape=[n_samples, n_targets] Training targets compute_output_weights : boolean, optional, default True Whether to compute new output weights (coef_, intercept_). Disable this in intermediate `partial_fit` steps to run computations faster, then enable in the last call to compute the new solution. .. Note:: Solution can be updated without extra data by setting `X=None` and `y=None`. """ if self.alpha < 0: raise ValueError("Regularization parameter alpha must be non-negative.") # solution only if X is None and y is None and compute_output_weights: self._solve() return self # validate parameters X, y = check_X_y(X, y, accept_sparse=True, multi_output=True, y_numeric=True, ensure_2d=True) if len(y.shape) > 1 and y.shape[1] == 1: msg = "A column-vector y was passed when a 1d array was expected.\ Please change the shape of y to (n_samples, ), for example using ravel()." warnings.warn(msg, DataConversionWarning) # init temporary data storage if not hasattr(self, '_XtX'): self._init_XY(X, y) else: if X.shape[1] + 1 != self._XtX.shape[0]: n_new, n_old = X.shape[1], self._XtX.shape[0] - 1 raise ValueError("Number of features %d does not match previous data %d." % (n_new, n_old)) # compute temporary data X_sum = safe_sparse_dot(X.T, np.ones((X.shape[0],))) y_sum = safe_sparse_dot(y.T, np.ones((y.shape[0],))) self._XtX[0, 0] += X.shape[0] self._XtX[1:, 0] += X_sum self._XtX[0, 1:] += X_sum self._XtX[1:, 1:] += X.T @ X self._XtY[0] += y_sum self._XtY[1:] += X.T @ y # solve if not compute_output_weights: # mark as not fitted [delattr(self, attr) for attr in ('coef_', 'intercept_', 'is_fitted_') if hasattr(self, attr)] else: self._solve() return self def predict(self, X): check_is_fitted(self, 'is_fitted_') X = check_array(X, accept_sparse=True) return safe_sparse_dot(X, self.coef_, dense_output=True) + self.intercept_
scikit-elm
/scikit_elm-0.21a0-py3-none-any.whl/skelm/solver_dask.py
solver_dask.py
import numpy as np import scipy as sp import warnings from sklearn.exceptions import DataConversionWarning from sklearn.base import BaseEstimator, RegressorMixin from sklearn.utils.validation import check_is_fitted from sklearn.utils.extmath import safe_sparse_dot from sklearn.utils import check_X_y, check_array from dask import distributed from dask.distributed import Client, LocalCluster import dask.dataframe as dd import dask.array as da class DaskCholeskySolver(BaseEstimator, RegressorMixin): """Out-of-core linear system solver with Dask back-end. Parameters ---------- alpha : float, non-negative L2 regularization parameter, larger value means stronger effect. The value may be increased if the system fails to converge; actual used value stored in `alpha_` parameter. batch_size : int Batch size for **samples and features**. Computations proceed on square blocks of data. For optimal performance, use a number of features that is equal or a bit less than multiple of a batch size; e.g. 8912 features with 3000 batch size. swap_dir : str Directory for temporary storage of Dask data that does not fit in memory. A large and fast storage is advised, like a local SSD. Attributes ---------- cluster_ : object An instance of `dask.distributed.LocalCluster`. client_ : object Dask client for running computations. """ def __init__(self, alpha=1e-7, batch_size=2000, swap_dir=None): self.alpha = alpha self.batch_size = batch_size self.swap_dir = swap_dir def _init_dask(self): self.cluster_ = LocalCluster( n_workers=2, local_dir=self.swap_dir) self.client_ = Client(self.cluster_) print("Running on:") print(self.client_) def fit(self, X, y): self.W_ = da.random.normal return self def predict(self, X): return None class BBvdsnjvlsdnjhbgfndjvksdjkvlndsf(BaseEstimator, RegressorMixin): def __init__(self, alpha=1e-7): self.alpha = alpha def _init_XY(self, X, y): """Initialize covariance matrices, including a separate bias term. """ d_in = X.shape[1] self._XtX = np.eye(d_in + 1) * self.alpha self._XtX[0, 0] = 0 if len(y.shape) == 1: self._XtY = np.zeros((d_in + 1,)) else: self._XtY = np.zeros((d_in + 1, y.shape[1])) @property def XtY_(self): return self._XtY @property def XtX_(self): return self._XtX @XtY_.setter def XtY_(self, value): self._XtY = value @XtX_.setter def XtX_(self, value): self._XtX = value def _solve(self): """Second stage of solution (X'X)B = X'Y using Cholesky decomposition. Sets `is_fitted_` to True. """ B = sp.linalg.solve(self._XtX, self._XtY, assume_a='pos', overwrite_a=False, overwrite_b=False) self.coef_ = B[1:] self.intercept_ = B[0] self.is_fitted_ = True def _reset(self): """Erase solution and data matrices. """ [delattr(self, attr) for attr in ('_XtX', '_XtY', 'coef_', 'intercept_', 'is_fitted_') if hasattr(self, attr)] def fit(self, X, y): """Solves an L2-regularized linear system like Ridge regression, overwrites any previous solutions. """ self._reset() # remove old solution self.partial_fit(X, y, compute_output_weights=True) return self def partial_fit(self, X, y, compute_output_weights=True): """Update model with a new batch of data. Output weight computation can be temporary turned off for faster processing. This will mark model as not fit. Enable `compute_output_weights` in the final call to `partial_fit`. Parameters ---------- X : {array-like, sparse matrix}, shape=[n_samples, n_features] Training input samples y : array-like, shape=[n_samples, n_targets] Training targets compute_output_weights : boolean, optional, default True Whether to compute new output weights (coef_, intercept_). Disable this in intermediate `partial_fit` steps to run computations faster, then enable in the last call to compute the new solution. .. Note:: Solution can be updated without extra data by setting `X=None` and `y=None`. """ if self.alpha < 0: raise ValueError("Regularization parameter alpha must be non-negative.") # solution only if X is None and y is None and compute_output_weights: self._solve() return self # validate parameters X, y = check_X_y(X, y, accept_sparse=True, multi_output=True, y_numeric=True, ensure_2d=True) if len(y.shape) > 1 and y.shape[1] == 1: msg = "A column-vector y was passed when a 1d array was expected.\ Please change the shape of y to (n_samples, ), for example using ravel()." warnings.warn(msg, DataConversionWarning) # init temporary data storage if not hasattr(self, '_XtX'): self._init_XY(X, y) else: if X.shape[1] + 1 != self._XtX.shape[0]: n_new, n_old = X.shape[1], self._XtX.shape[0] - 1 raise ValueError("Number of features %d does not match previous data %d." % (n_new, n_old)) # compute temporary data X_sum = safe_sparse_dot(X.T, np.ones((X.shape[0],))) y_sum = safe_sparse_dot(y.T, np.ones((y.shape[0],))) self._XtX[0, 0] += X.shape[0] self._XtX[1:, 0] += X_sum self._XtX[0, 1:] += X_sum self._XtX[1:, 1:] += X.T @ X self._XtY[0] += y_sum self._XtY[1:] += X.T @ y # solve if not compute_output_weights: # mark as not fitted [delattr(self, attr) for attr in ('coef_', 'intercept_', 'is_fitted_') if hasattr(self, attr)] else: self._solve() return self def predict(self, X): check_is_fitted(self, 'is_fitted_') X = check_array(X, accept_sparse=True) return safe_sparse_dot(X, self.coef_, dense_output=True) + self.intercept_
0.84075
0.609292
# scikit-embeddings Utilites for training word, document and sentence embeddings in scikit-learn pipelines. ## Features - Train Word, Paragraph or Sentence embeddings in scikit-learn compatible pipelines. - Stream texts easily from disk and chunk them so you can use large datasets for training embeddings. - spaCy tokenizers with lemmatization, stop word removal and augmentation with POS-tags/Morphological information etc. for highest quality embeddings for literary analysis. - Fast and performant trainable tokenizer components from `tokenizers`. - Easy to integrate components and pipelines in your scikit-learn workflows and machine learning pipelines. - Easy serialization and integration with HugginFace Hub for quickly publishing your embedding pipelines. ### What scikit-embeddings is not for: - Using pretrained embeddings in scikit-learn pipelines (for these purposes I recommend [embetter](https://github.com/koaning/embetter/tree/main)) - Training transformer models and deep neural language models (if you want to do this, do it with [transformers](https://huggingface.co/docs/transformers/index)) ## Examples ### Streams scikit-embeddings comes with a handful of utilities for streaming data from disk or other sources, chunking and filtering. Here's an example of how you would go about obtaining chunks of text from jsonl files with a "content field". ```python from skembedding.streams import Stream # let's say you have a list of file paths files: list[str] = [...] # Stream text chunks from jsonl files with a 'content' field. text_chunks = ( Stream(files) .read_files(lines=True) .json() .grab("content") .chunk(10_000) ) ``` ### Word Embeddings You can train classic vanilla word embeddings by building a pipeline that contains a `WordLevel` tokenizer and an embedding model: ```python from skembedding.tokenizers import WordLevelTokenizer from skembedding.models import Word2VecEmbedding from skembeddings.pipeline import EmbeddingPipeline embedding_pipe = EmbeddingPipeline( WordLevelTokenizer(), Word2VecEmbedding(n_components=100, algorithm="cbow") ) embedding_pipe.fit(texts) ``` ### Fasttext-like You can train an embedding pipeline that uses subword information by using a tokenizer that does that. You may want to use `Unigram`, `BPE` or `WordPiece` for these purposes. Fasttext also uses skip-gram by default so let's change to that. ```python from skembedding.tokenizers import UnigramTokenizer from skembedding.models import Word2VecEmbedding from skembeddings.pipeline import EmbeddingPipeline embedding_pipe = EmbeddingPipeline( UnigramTokenizer(), Word2VecEmbedding(n_components=250, algorithm="sg") ) embedding_pipe.fit(texts) ``` ### Sense2Vec We provide a spaCy tokenizer that can lemmatize tokens and append morphological information so you can get fine-grained semantic information even on relatively small corpora. I recommend using this for literary analysis. ```python from skembeddings.models import Word2VecEmbedding from skembeddings.tokenizers import SpacyTokenizer from skembeddings.pipeline import EmbeddingPipeline # Single token pattern that lets alphabetical tokens pass, but not stopwords pattern = [[{"IS_ALPHA": True, "IS_STOP": False}]] # Build tokenizer that lemmatizes and appends POS-tags to the lemmas tokenizer = SpacyTokenizer( "en_core_web_sm", out_attrs=("LEMMA", "UPOS"), patterns=pattern, ) # Build a pipeline embedding_pipeline = EmbeddingPipeline( tokenizer, Word2VecEmbedding(50, algorithm="cbow") ) # Fitting pipeline on corpus embedding_pipeline.fit(corpus) ``` ### Paragraph Embeddings You can train Doc2Vec paragpraph embeddings with the chosen choice of tokenization. ```python from skembedding.tokenizers import WordPieceTokenizer from skembedding.models import ParagraphEmbedding from skembeddings.pipeline import EmbeddingPipeline embedding_pipe = EmbeddingPipeline( WordPieceTokenizer(), ParagraphEmbedding(n_components=250, algorithm="dm") ) embedding_pipe.fit(texts) ``` ### Iterative training In the case of large datasets you can train on individual chunks with `partial_fit()`. ```python for chunk in text_chunks: embedding_pipe.partial_fit(chunk) ``` ### Serialization Pipelines can be safely serialized to disk: ```python embedding_pipe.to_disk("output_folder/") embedding_pipe = EmbeddingPipeline.from_disk("output_folder/") ``` Or published to HugginFace Hub: ```python from huggingface_hub import login login() embedding_pipe.to_hub("username/name_of_pipeline") embedding_pipe = EmbeddingPipeline.from_hub("username/name_of_pipeline") ``` ### Text Classification You can include an embedding model in your classification pipelines by adding some classification head. ```python from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report X_train, X_test, y_train, y_test = train_test_split(X, y) cls_pipe = make_pipeline(embedding_pipe, LogisticRegression()) cls_pipe.fit(X_train, y_train) y_pred = cls_pipe.predict(X_test) print(classification_report(y_test, y_pred)) ``` ### Feature Extraction If you intend to use the features produced by tokenizers in other text pipelines, such as topic models, you can use `ListCountVectorizer` or `Joiner`. Here's an example of an NMF topic model that use lemmata enriched with POS tags. ```python from sklearn.decomposition import NMF from sklearn.pipelines import make_pipeline from sklearn.feature_extraction.text import TfidfTransformer, TfidfVectorizer from skembedding.tokenizers import SpacyTokenizer from skembedding.feature_extraction import ListCountVectorizer from skembedding.preprocessing import Joiner # Single token pattern that lets alphabetical tokens pass, but not stopwords pattern = [[{"IS_ALPHA": True, "IS_STOP": False}]] # Build tokenizer that lemmatizes and appends POS-tags to the lemmas tokenizer = SpacyTokenizer( "en_core_web_sm", out_attrs=("LEMMA", "UPOS"), patterns=pattern, ) # Example with ListCountVectorizer topic_pipeline = make_pipeline( tokenizer, ListCountVectorizer(), TfidfTransformer(), # tf-idf weighting (optional) NMF(15), # 15 topics in the model ) # Alternatively you can just join the tokens together with whitespace topic_pipeline = make_pipeline( tokenizer, Joiner(), TfidfVectorizer(), NMF(15), ) ```
scikit-embeddings
/scikit_embeddings-0.2.0.tar.gz/scikit_embeddings-0.2.0/README.md
README.md
from skembedding.streams import Stream # let's say you have a list of file paths files: list[str] = [...] # Stream text chunks from jsonl files with a 'content' field. text_chunks = ( Stream(files) .read_files(lines=True) .json() .grab("content") .chunk(10_000) ) from skembedding.tokenizers import WordLevelTokenizer from skembedding.models import Word2VecEmbedding from skembeddings.pipeline import EmbeddingPipeline embedding_pipe = EmbeddingPipeline( WordLevelTokenizer(), Word2VecEmbedding(n_components=100, algorithm="cbow") ) embedding_pipe.fit(texts) from skembedding.tokenizers import UnigramTokenizer from skembedding.models import Word2VecEmbedding from skembeddings.pipeline import EmbeddingPipeline embedding_pipe = EmbeddingPipeline( UnigramTokenizer(), Word2VecEmbedding(n_components=250, algorithm="sg") ) embedding_pipe.fit(texts) from skembeddings.models import Word2VecEmbedding from skembeddings.tokenizers import SpacyTokenizer from skembeddings.pipeline import EmbeddingPipeline # Single token pattern that lets alphabetical tokens pass, but not stopwords pattern = [[{"IS_ALPHA": True, "IS_STOP": False}]] # Build tokenizer that lemmatizes and appends POS-tags to the lemmas tokenizer = SpacyTokenizer( "en_core_web_sm", out_attrs=("LEMMA", "UPOS"), patterns=pattern, ) # Build a pipeline embedding_pipeline = EmbeddingPipeline( tokenizer, Word2VecEmbedding(50, algorithm="cbow") ) # Fitting pipeline on corpus embedding_pipeline.fit(corpus) from skembedding.tokenizers import WordPieceTokenizer from skembedding.models import ParagraphEmbedding from skembeddings.pipeline import EmbeddingPipeline embedding_pipe = EmbeddingPipeline( WordPieceTokenizer(), ParagraphEmbedding(n_components=250, algorithm="dm") ) embedding_pipe.fit(texts) for chunk in text_chunks: embedding_pipe.partial_fit(chunk) embedding_pipe.to_disk("output_folder/") embedding_pipe = EmbeddingPipeline.from_disk("output_folder/") from huggingface_hub import login login() embedding_pipe.to_hub("username/name_of_pipeline") embedding_pipe = EmbeddingPipeline.from_hub("username/name_of_pipeline") from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report X_train, X_test, y_train, y_test = train_test_split(X, y) cls_pipe = make_pipeline(embedding_pipe, LogisticRegression()) cls_pipe.fit(X_train, y_train) y_pred = cls_pipe.predict(X_test) print(classification_report(y_test, y_pred)) from sklearn.decomposition import NMF from sklearn.pipelines import make_pipeline from sklearn.feature_extraction.text import TfidfTransformer, TfidfVectorizer from skembedding.tokenizers import SpacyTokenizer from skembedding.feature_extraction import ListCountVectorizer from skembedding.preprocessing import Joiner # Single token pattern that lets alphabetical tokens pass, but not stopwords pattern = [[{"IS_ALPHA": True, "IS_STOP": False}]] # Build tokenizer that lemmatizes and appends POS-tags to the lemmas tokenizer = SpacyTokenizer( "en_core_web_sm", out_attrs=("LEMMA", "UPOS"), patterns=pattern, ) # Example with ListCountVectorizer topic_pipeline = make_pipeline( tokenizer, ListCountVectorizer(), TfidfTransformer(), # tf-idf weighting (optional) NMF(15), # 15 topics in the model ) # Alternatively you can just join the tokens together with whitespace topic_pipeline = make_pipeline( tokenizer, Joiner(), TfidfVectorizer(), NMF(15), )
0.762954
0.936576
import tempfile from pathlib import Path from typing import Union from confection import Config, registry from huggingface_hub import HfApi, snapshot_download from sklearn.pipeline import Pipeline # THIS IS IMPORTANT DO NOT REMOVE from skembeddings import models, tokenizers from skembeddings._hub import DEFAULT_README from skembeddings.base import Serializable class EmbeddingPipeline(Pipeline): def __init__( self, tokenizer: Serializable, model: Serializable, frozen: bool = False, ): self.tokenizer = tokenizer self.model = model self.frozen = frozen steps = [("tokenizer_model", tokenizer), ("embedding_model", model)] super().__init__(steps=steps) def freeze(self): self.frozen = True return self def unfreeze(self): self.frozen = False return self def fit(self, X, y=None, **kwargs): if self.frozen: return self super().fit(X, y=y, **kwargs) def partial_fit(self, X, y=None, classes=None, **kwargs): """ Fits the components, but allow for batches. """ if self.frozen: return self for name, step in self.steps: if not hasattr(step, "partial_fit"): raise ValueError( f"Step {name} is a {step} which does" "not have `.partial_fit` implemented." ) for name, step in self.steps: if hasattr(step, "predict"): step.partial_fit(X, y, classes=classes, **kwargs) else: step.partial_fit(X, y) if hasattr(step, "transform"): X = step.transform(X) return self @property def config(self) -> Config: embedding: Serializable = self["embedding_model"] # type: ignore tokenizer: Serializable = self["tokenizer_model"] # type: ignore return tokenizer.config.merge(embedding.config) def to_disk(self, path: Union[str, Path]) -> None: embedding: Serializable = self["embedding_model"] # type: ignore tokenizer: Serializable = self["tokenizer_model"] # type: ignore path = Path(path) path.mkdir(exist_ok=True) config_path = path.joinpath("config.cfg") tokenizer_path = path.joinpath("tokenizer.bin") embedding_path = path.joinpath("embedding.bin") with open(embedding_path, "wb") as embedding_file: embedding_file.write(embedding.to_bytes()) with open(tokenizer_path, "wb") as tokenizer_file: tokenizer_file.write(tokenizer.to_bytes()) self.config.to_disk(config_path) @classmethod def from_disk(cls, path: Union[str, Path]) -> "EmbeddingPipeline": path = Path(path) config_path = path.joinpath("config.cfg") tokenizer_path = path.joinpath("tokenizer.bin") embedding_path = path.joinpath("embedding.bin") config = Config().from_disk(config_path) resolved = registry.resolve(config) with open(tokenizer_path, "rb") as tokenizer_file: tokenizer = resolved["tokenizer"].from_bytes(tokenizer_file.read()) with open(embedding_path, "rb") as embedding_file: embedding = resolved["embedding"].from_bytes(embedding_file.read()) return cls(tokenizer, embedding) def to_hub(self, repo_id: str, add_readme: bool = True) -> None: api = HfApi() api.create_repo(repo_id, exist_ok=True) with tempfile.TemporaryDirectory() as tmp_dir: self.to_disk(tmp_dir) if add_readme: with open( Path(tmp_dir).joinpath("README.md"), "w" ) as readme_f: readme_f.write(DEFAULT_README.format(repo=repo_id)) api.upload_folder( folder_path=tmp_dir, repo_id=repo_id, repo_type="model" ) @classmethod def from_hub(cls, repo_id: str) -> "EmbeddingPipeline": in_dir = snapshot_download(repo_id=repo_id) res = cls.from_disk(in_dir) return res.freeze()
scikit-embeddings
/scikit_embeddings-0.2.0.tar.gz/scikit_embeddings-0.2.0/skembeddings/pipeline.py
pipeline.py
import tempfile from pathlib import Path from typing import Union from confection import Config, registry from huggingface_hub import HfApi, snapshot_download from sklearn.pipeline import Pipeline # THIS IS IMPORTANT DO NOT REMOVE from skembeddings import models, tokenizers from skembeddings._hub import DEFAULT_README from skembeddings.base import Serializable class EmbeddingPipeline(Pipeline): def __init__( self, tokenizer: Serializable, model: Serializable, frozen: bool = False, ): self.tokenizer = tokenizer self.model = model self.frozen = frozen steps = [("tokenizer_model", tokenizer), ("embedding_model", model)] super().__init__(steps=steps) def freeze(self): self.frozen = True return self def unfreeze(self): self.frozen = False return self def fit(self, X, y=None, **kwargs): if self.frozen: return self super().fit(X, y=y, **kwargs) def partial_fit(self, X, y=None, classes=None, **kwargs): """ Fits the components, but allow for batches. """ if self.frozen: return self for name, step in self.steps: if not hasattr(step, "partial_fit"): raise ValueError( f"Step {name} is a {step} which does" "not have `.partial_fit` implemented." ) for name, step in self.steps: if hasattr(step, "predict"): step.partial_fit(X, y, classes=classes, **kwargs) else: step.partial_fit(X, y) if hasattr(step, "transform"): X = step.transform(X) return self @property def config(self) -> Config: embedding: Serializable = self["embedding_model"] # type: ignore tokenizer: Serializable = self["tokenizer_model"] # type: ignore return tokenizer.config.merge(embedding.config) def to_disk(self, path: Union[str, Path]) -> None: embedding: Serializable = self["embedding_model"] # type: ignore tokenizer: Serializable = self["tokenizer_model"] # type: ignore path = Path(path) path.mkdir(exist_ok=True) config_path = path.joinpath("config.cfg") tokenizer_path = path.joinpath("tokenizer.bin") embedding_path = path.joinpath("embedding.bin") with open(embedding_path, "wb") as embedding_file: embedding_file.write(embedding.to_bytes()) with open(tokenizer_path, "wb") as tokenizer_file: tokenizer_file.write(tokenizer.to_bytes()) self.config.to_disk(config_path) @classmethod def from_disk(cls, path: Union[str, Path]) -> "EmbeddingPipeline": path = Path(path) config_path = path.joinpath("config.cfg") tokenizer_path = path.joinpath("tokenizer.bin") embedding_path = path.joinpath("embedding.bin") config = Config().from_disk(config_path) resolved = registry.resolve(config) with open(tokenizer_path, "rb") as tokenizer_file: tokenizer = resolved["tokenizer"].from_bytes(tokenizer_file.read()) with open(embedding_path, "rb") as embedding_file: embedding = resolved["embedding"].from_bytes(embedding_file.read()) return cls(tokenizer, embedding) def to_hub(self, repo_id: str, add_readme: bool = True) -> None: api = HfApi() api.create_repo(repo_id, exist_ok=True) with tempfile.TemporaryDirectory() as tmp_dir: self.to_disk(tmp_dir) if add_readme: with open( Path(tmp_dir).joinpath("README.md"), "w" ) as readme_f: readme_f.write(DEFAULT_README.format(repo=repo_id)) api.upload_folder( folder_path=tmp_dir, repo_id=repo_id, repo_type="model" ) @classmethod def from_hub(cls, repo_id: str) -> "EmbeddingPipeline": in_dir = snapshot_download(repo_id=repo_id) res = cls.from_disk(in_dir) return res.freeze()
0.817829
0.197212
from abc import ABC, abstractmethod from typing import Iterable from confection import Config, registry from sklearn.base import BaseEstimator, TransformerMixin from sklearn.exceptions import NotFittedError from tokenizers import Tokenizer from tokenizers.models import BPE, Unigram, WordLevel, WordPiece from tokenizers.normalizers import BertNormalizer, Normalizer from tokenizers.pre_tokenizers import ByteLevel, Whitespace from tokenizers.trainers import ( BpeTrainer, Trainer, UnigramTrainer, WordLevelTrainer, WordPieceTrainer, ) from skembeddings.base import Serializable class HuggingFaceTokenizerBase( BaseEstimator, TransformerMixin, Serializable, ABC ): def __init__(self, normalizer: Normalizer = BertNormalizer()): self.tokenizer = None self.trainer = None self.normalizer = normalizer @abstractmethod def _init_tokenizer(self) -> Tokenizer: pass @abstractmethod def _init_trainer(self) -> Trainer: pass def fit(self, X: Iterable[str], y=None): self.tokenizer = self._init_tokenizer() self.trainer = self._init_trainer() self.tokenizer.train_from_iterator(X, self.trainer) return self def partial_fit(self, X: Iterable[str], y=None): if (self.tokenizer is None) or (self.trainer is None): self.fit(X) else: new_tokenizer = self._init_tokenizer() new_tokenizer.train_from_iterator(X, self.trainer) new_vocab = new_tokenizer.get_vocab() self.tokenizer.add_tokens(new_vocab) return self def transform(self, X: Iterable[str]) -> list[list[str]]: if self.tokenizer is None: raise NotFittedError("Tokenizer has not been trained yet.") if isinstance(X, str): raise TypeError( "str passed instead of iterable, did you mean to pass [X]?" ) res = [] for text in X: encoding = self.tokenizer.encode(text) res.append(encoding.tokens) return res def get_feature_names_out(self, input_features=None): return None def to_bytes(self) -> bytes: if self.tokenizer is None: raise NotFittedError( "Tokenizer has not been fitted, cannot serialize." ) return self.tokenizer.to_str().encode("utf-8") def from_bytes(self, data: bytes): tokenizer = Tokenizer.from_str(data.decode("utf-8")) self.tokenizer = tokenizer return self class WordPieceTokenizer(HuggingFaceTokenizerBase): def _init_tokenizer(self) -> Tokenizer: tokenizer = Tokenizer(WordPiece(unk_token="[UNK]")) tokenizer.pre_tokenizer = Whitespace() tokenizer.normalizer = self.normalizer return tokenizer def _init_trainer(self) -> Trainer: return WordPieceTrainer(special_tokens=["[UNK]"]) @property def config(self) -> Config: return Config( { "tokenizer": { "@tokenizers": "wordpiece_tokenizer.v1", } } ) @classmethod def from_config(cls, config: Config) -> "WordPieceTokenizer": resolved = registry.resolve(config) return resolved["tokenizer"] class WordLevelTokenizer(HuggingFaceTokenizerBase): def _init_tokenizer(self) -> Tokenizer: tokenizer = Tokenizer(WordLevel(unk_token="[UNK]")) tokenizer.pre_tokenizer = Whitespace() tokenizer.normalizer = self.normalizer return tokenizer def _init_trainer(self) -> Trainer: return WordLevelTrainer(special_tokens=["[UNK]"]) @property def config(self) -> Config: return Config( { "tokenizer": { "@tokenizers": "word_level_tokenizer.v1", } } ) @classmethod def from_config(cls, config: Config) -> "WordLevelTokenizer": resolved = registry.resolve(config) return resolved["tokenizer"] class UnigramTokenizer(HuggingFaceTokenizerBase): def _init_tokenizer(self) -> Tokenizer: tokenizer = Tokenizer(Unigram()) tokenizer.pre_tokenizer = ByteLevel() tokenizer.normalizer = self.normalizer return tokenizer def _init_trainer(self) -> Trainer: return UnigramTrainer(unk_token="[UNK]", special_tokens=["[UNK]"]) @property def config(self) -> Config: return Config( { "tokenizer": { "@tokenizers": "unigram_tokenizer.v1", } } ) @classmethod def from_config(cls, config: Config) -> "UnigramTokenizer": resolved = registry.resolve(config) return resolved["tokenizer"] class BPETokenizer(HuggingFaceTokenizerBase): def _init_tokenizer(self) -> Tokenizer: tokenizer = Tokenizer(BPE(unk_token="[UNK]")) tokenizer.pre_tokenizer = ByteLevel() tokenizer.normalizer = self.normalizer return tokenizer def _init_trainer(self) -> Trainer: return BpeTrainer(special_tokens=["[UNK]"]) @property def config(self) -> Config: return Config( { "tokenizer": { "@tokenizers": "bpe_tokenizer.v1", } } ) @classmethod def from_config(cls, config: Config) -> "BPETokenizer": resolved = registry.resolve(config) return resolved["tokenizer"]
scikit-embeddings
/scikit_embeddings-0.2.0.tar.gz/scikit_embeddings-0.2.0/skembeddings/tokenizers/_huggingface.py
_huggingface.py
from abc import ABC, abstractmethod from typing import Iterable from confection import Config, registry from sklearn.base import BaseEstimator, TransformerMixin from sklearn.exceptions import NotFittedError from tokenizers import Tokenizer from tokenizers.models import BPE, Unigram, WordLevel, WordPiece from tokenizers.normalizers import BertNormalizer, Normalizer from tokenizers.pre_tokenizers import ByteLevel, Whitespace from tokenizers.trainers import ( BpeTrainer, Trainer, UnigramTrainer, WordLevelTrainer, WordPieceTrainer, ) from skembeddings.base import Serializable class HuggingFaceTokenizerBase( BaseEstimator, TransformerMixin, Serializable, ABC ): def __init__(self, normalizer: Normalizer = BertNormalizer()): self.tokenizer = None self.trainer = None self.normalizer = normalizer @abstractmethod def _init_tokenizer(self) -> Tokenizer: pass @abstractmethod def _init_trainer(self) -> Trainer: pass def fit(self, X: Iterable[str], y=None): self.tokenizer = self._init_tokenizer() self.trainer = self._init_trainer() self.tokenizer.train_from_iterator(X, self.trainer) return self def partial_fit(self, X: Iterable[str], y=None): if (self.tokenizer is None) or (self.trainer is None): self.fit(X) else: new_tokenizer = self._init_tokenizer() new_tokenizer.train_from_iterator(X, self.trainer) new_vocab = new_tokenizer.get_vocab() self.tokenizer.add_tokens(new_vocab) return self def transform(self, X: Iterable[str]) -> list[list[str]]: if self.tokenizer is None: raise NotFittedError("Tokenizer has not been trained yet.") if isinstance(X, str): raise TypeError( "str passed instead of iterable, did you mean to pass [X]?" ) res = [] for text in X: encoding = self.tokenizer.encode(text) res.append(encoding.tokens) return res def get_feature_names_out(self, input_features=None): return None def to_bytes(self) -> bytes: if self.tokenizer is None: raise NotFittedError( "Tokenizer has not been fitted, cannot serialize." ) return self.tokenizer.to_str().encode("utf-8") def from_bytes(self, data: bytes): tokenizer = Tokenizer.from_str(data.decode("utf-8")) self.tokenizer = tokenizer return self class WordPieceTokenizer(HuggingFaceTokenizerBase): def _init_tokenizer(self) -> Tokenizer: tokenizer = Tokenizer(WordPiece(unk_token="[UNK]")) tokenizer.pre_tokenizer = Whitespace() tokenizer.normalizer = self.normalizer return tokenizer def _init_trainer(self) -> Trainer: return WordPieceTrainer(special_tokens=["[UNK]"]) @property def config(self) -> Config: return Config( { "tokenizer": { "@tokenizers": "wordpiece_tokenizer.v1", } } ) @classmethod def from_config(cls, config: Config) -> "WordPieceTokenizer": resolved = registry.resolve(config) return resolved["tokenizer"] class WordLevelTokenizer(HuggingFaceTokenizerBase): def _init_tokenizer(self) -> Tokenizer: tokenizer = Tokenizer(WordLevel(unk_token="[UNK]")) tokenizer.pre_tokenizer = Whitespace() tokenizer.normalizer = self.normalizer return tokenizer def _init_trainer(self) -> Trainer: return WordLevelTrainer(special_tokens=["[UNK]"]) @property def config(self) -> Config: return Config( { "tokenizer": { "@tokenizers": "word_level_tokenizer.v1", } } ) @classmethod def from_config(cls, config: Config) -> "WordLevelTokenizer": resolved = registry.resolve(config) return resolved["tokenizer"] class UnigramTokenizer(HuggingFaceTokenizerBase): def _init_tokenizer(self) -> Tokenizer: tokenizer = Tokenizer(Unigram()) tokenizer.pre_tokenizer = ByteLevel() tokenizer.normalizer = self.normalizer return tokenizer def _init_trainer(self) -> Trainer: return UnigramTrainer(unk_token="[UNK]", special_tokens=["[UNK]"]) @property def config(self) -> Config: return Config( { "tokenizer": { "@tokenizers": "unigram_tokenizer.v1", } } ) @classmethod def from_config(cls, config: Config) -> "UnigramTokenizer": resolved = registry.resolve(config) return resolved["tokenizer"] class BPETokenizer(HuggingFaceTokenizerBase): def _init_tokenizer(self) -> Tokenizer: tokenizer = Tokenizer(BPE(unk_token="[UNK]")) tokenizer.pre_tokenizer = ByteLevel() tokenizer.normalizer = self.normalizer return tokenizer def _init_trainer(self) -> Trainer: return BpeTrainer(special_tokens=["[UNK]"]) @property def config(self) -> Config: return Config( { "tokenizer": { "@tokenizers": "bpe_tokenizer.v1", } } ) @classmethod def from_config(cls, config: Config) -> "BPETokenizer": resolved = registry.resolve(config) return resolved["tokenizer"]
0.893655
0.183832
from typing import Any, Iterable, Optional, Union import spacy from sklearn.base import BaseEstimator, TransformerMixin from spacy.language import Language from spacy.matcher import Matcher from spacy.tokens import Doc, Token from skembeddings.base import Serializable # We create a new extension on tokens. if not Token.has_extension("filter_pass"): Token.set_extension("filter_pass", default=False) ATTRIBUTES = { "ORTH": "orth_", "NORM": "norm_", "LEMMA": "lemma_", "UPOS": "pos_", "TAG": "tag_", "DEP": "dep_", "LOWER": "lower_", "SHAPE": "shape_", "ENT_TYPE": "ent_type_", } class SpacyTokenizer(BaseEstimator, TransformerMixin, Serializable): tokenizer_type_ = "spacy_tokenizer" def __init__( self, model: Union[str, Language] = "en_core_web_sm", patterns: Optional[list[list[dict[str, Any]]]] = None, out_attrs: Iterable[str] = ("NORM",), ): self.model = model if isinstance(model, Language): self.nlp = model elif isinstance(model, str): self.nlp = spacy.load(model) else: raise TypeError( "'model' either has to be a spaCy" "nlp object or the name of a model." ) self.patterns = patterns self.out_attrs = tuple(out_attrs) for attr in self.out_attrs: if attr not in ATTRIBUTES: raise ValueError(f"{attr} is not a valid out attribute.") self.matcher = Matcher(self.nlp.vocab) self.matcher.add( "FILTER_PASS", patterns=[] if self.patterns is None else self.patterns, ) def fit(self, X, y=None): """Exists for compatiblity, doesn't do anything.""" return self def partial_fit(self, X, y=None): """Exists for compatiblity, doesn't do anything.""" return self def label_matching_tokens(self, docs: list[Doc]): """Labels tokens that match one of the given patterns.""" for doc in docs: if self.patterns is not None: matches = self.matcher(doc) else: matches = [(None, 0, len(doc))] for _, start, end in matches: for token in doc[start:end]: token._.set("filter_pass", True) def token_to_str(self, token: Token) -> str: """Returns textual representation of token.""" attributes = [ getattr(token, ATTRIBUTES[attr]) for attr in self.out_attrs ] return "|".join(attributes) def transform(self, X: Iterable[str]) -> list[list[str]]: if isinstance(X, str): raise TypeError( "str passed instead of iterable, did you mean to pass [X]?" ) docs = list(self.nlp.pipe(X)) # Label all tokens according to the patterns. self.label_matching_tokens(docs) res: list[list[str]] = [] for doc in docs: tokens = [ self.token_to_str(token) for token in doc if token._.filter_pass ] res.append(tokens) return res def get_feature_names_out(self, input_features=None): return None
scikit-embeddings
/scikit_embeddings-0.2.0.tar.gz/scikit_embeddings-0.2.0/skembeddings/tokenizers/spacy.py
spacy.py
from typing import Any, Iterable, Optional, Union import spacy from sklearn.base import BaseEstimator, TransformerMixin from spacy.language import Language from spacy.matcher import Matcher from spacy.tokens import Doc, Token from skembeddings.base import Serializable # We create a new extension on tokens. if not Token.has_extension("filter_pass"): Token.set_extension("filter_pass", default=False) ATTRIBUTES = { "ORTH": "orth_", "NORM": "norm_", "LEMMA": "lemma_", "UPOS": "pos_", "TAG": "tag_", "DEP": "dep_", "LOWER": "lower_", "SHAPE": "shape_", "ENT_TYPE": "ent_type_", } class SpacyTokenizer(BaseEstimator, TransformerMixin, Serializable): tokenizer_type_ = "spacy_tokenizer" def __init__( self, model: Union[str, Language] = "en_core_web_sm", patterns: Optional[list[list[dict[str, Any]]]] = None, out_attrs: Iterable[str] = ("NORM",), ): self.model = model if isinstance(model, Language): self.nlp = model elif isinstance(model, str): self.nlp = spacy.load(model) else: raise TypeError( "'model' either has to be a spaCy" "nlp object or the name of a model." ) self.patterns = patterns self.out_attrs = tuple(out_attrs) for attr in self.out_attrs: if attr not in ATTRIBUTES: raise ValueError(f"{attr} is not a valid out attribute.") self.matcher = Matcher(self.nlp.vocab) self.matcher.add( "FILTER_PASS", patterns=[] if self.patterns is None else self.patterns, ) def fit(self, X, y=None): """Exists for compatiblity, doesn't do anything.""" return self def partial_fit(self, X, y=None): """Exists for compatiblity, doesn't do anything.""" return self def label_matching_tokens(self, docs: list[Doc]): """Labels tokens that match one of the given patterns.""" for doc in docs: if self.patterns is not None: matches = self.matcher(doc) else: matches = [(None, 0, len(doc))] for _, start, end in matches: for token in doc[start:end]: token._.set("filter_pass", True) def token_to_str(self, token: Token) -> str: """Returns textual representation of token.""" attributes = [ getattr(token, ATTRIBUTES[attr]) for attr in self.out_attrs ] return "|".join(attributes) def transform(self, X: Iterable[str]) -> list[list[str]]: if isinstance(X, str): raise TypeError( "str passed instead of iterable, did you mean to pass [X]?" ) docs = list(self.nlp.pipe(X)) # Label all tokens according to the patterns. self.label_matching_tokens(docs) res: list[list[str]] = [] for doc in docs: tokens = [ self.token_to_str(token) for token in doc if token._.filter_pass ] res.append(tokens) return res def get_feature_names_out(self, input_features=None): return None
0.905659
0.204025
import tempfile from typing import Iterable, Literal import numpy as np from confection import Config, registry from gensim.models.doc2vec import Doc2Vec, TaggedDocument from sklearn.base import BaseEstimator, TransformerMixin from sklearn.exceptions import NotFittedError from sklearn.utils import murmurhash3_32 from skembeddings.base import Serializable from skembeddings.streams.utils import deeplist def _tag_enumerate(docs: Iterable[list[str]]) -> list[TaggedDocument]: """Tags documents with their integer positions.""" return [TaggedDocument(doc, [i]) for i, doc in enumerate(docs)] class ParagraphEmbedding(BaseEstimator, TransformerMixin, Serializable): """Scikit-learn compatible Doc2Vec model.""" def __init__( self, n_components: int = 100, window: int = 5, algorithm: Literal["dm", "dbow"] = "dm", tagging_scheme: Literal["hash", "closest"] = "hash", max_docs: int = 100_000, epochs: int = 10, random_state: int = 0, negative: int = 5, ns_exponent: float = 0.75, dm_agg: Literal["mean", "sum", "concat"] = "mean", dm_tag_count: int = 1, dbow_words: bool = False, sample: float = 0.001, hs: bool = False, batch_words: int = 10000, shrink_windows: bool = True, learning_rate: float = 0.025, min_learning_rate: float = 0.0001, n_jobs: int = 1, ): self.model_ = None self.loss_: list[float] = [] self.seen_docs_ = 0 if tagging_scheme not in ["hash", "closest"]: raise ValueError( "Tagging scheme should either be 'hash' or 'closest'" ) self.algorithm = algorithm self.max_docs = max_docs self.n_components = n_components self.n_jobs = n_jobs self.window = window self.tagging_scheme = tagging_scheme self.epochs = epochs self.random_state = random_state self.negative = negative self.ns_exponent = ns_exponent self.dm_agg = dm_agg self.dm_tag_count = dm_tag_count self.dbow_words = dbow_words self.sample = sample self.hs = hs self.batch_words = batch_words self.shrink_windows = shrink_windows self.learning_rate = learning_rate self.min_learning_rate = min_learning_rate def _tag_documents( self, documents: list[list[str]] ) -> list[TaggedDocument]: if self.model_ is None: raise TypeError( "You should not call _tag_documents" "before model is initialised." ) res = [] for document in documents: # While we have available slots we just add new documents to those if self.seen_docs_ < self.max_docs: res.append(TaggedDocument(document, [self.seen_docs_])) else: # If we run out, we choose a tag based on a scheme if self.tagging_scheme == "hash": # Here we use murmur hash hash = murmurhash3_32("".join(document)) id = hash % self.max_docs res.append(TaggedDocument(document, [id])) elif self.tagging_scheme == "closest": # We obtain the key of the most semantically # similar document and use that. doc_vector = self.model_.infer_vector(document) key, _ = self.model_.dv.similar_by_key(doc_vector, topn=1)[ 0 ] res.append(TaggedDocument(document, [key])) else: raise ValueError( "Tagging scheme should either be 'hash' or 'closest'" f" but {self.tagging_scheme} was provided." ) self.seen_docs_ += 1 return res def _init_model(self, docs=None) -> Doc2Vec: return Doc2Vec( documents=docs, vector_size=self.n_components, min_count=0, alpha=self.learning_rate, window=self.window, sample=self.sample, seed=self.random_state, workers=self.n_jobs, min_alpha=self.min_learning_rate, dm=int(self.algorithm == "dm"), dm_mean=int(self.dm_agg == "mean"), dm_concat=int(self.dm_agg == "concat"), dbow_words=int(self.dbow_words), dm_tag_count=self.dm_tag_count, hs=int(self.hs), negative=self.negative, ns_exponent=self.ns_exponent, epochs=self.epochs, trim_rule=None, batch_words=self.batch_words, compute_loss=True, shrink_windows=self.shrink_windows, ) def _append_loss(self): self.loss_.append(self.model_.get_latest_training_loss()) # type: ignore def fit(self, X: Iterable[Iterable[str]], y=None): """Fits a new doc2vec model to the given documents.""" self.seen_docs_ = 0 # Forcing evaluation X_eval: list[list[str]] = deeplist(X) n_docs = len(X_eval) if self.max_docs < n_docs: init_batch = _tag_enumerate(X_eval[: self.max_docs]) self.model_ = self._init_model(init_batch) self._append_loss() self.partial_fit(X_eval[self.max_docs :]) return self docs = _tag_enumerate(X_eval) self.model_ = self._init_model(docs) self._append_loss() return self def partial_fit(self, X: Iterable[Iterable[str]], y=None): """Partially fits doc2vec model (online fitting).""" # Force evaluation on iterable X_eval: list[list[str]] = deeplist(X) if self.model_ is None: self.fit(X_eval) return self # We obtained tagged documents tagged_docs = self._tag_documents(X_eval) # Then build vocabulary self.model_.build_vocab(tagged_docs, update=True) self.model_.train( tagged_docs, total_examples=self.model_.corpus_count, epochs=1, compute_loss=True, ) self._append_loss() return self def transform(self, X: Iterable[Iterable[str]]) -> np.ndarray: """Infers vectors for all of the given documents.""" if self.model_ is None: raise NotFittedError( "Model ha been not fitted, please fit before inference." ) vectors = [self.model_.infer_vector(list(doc)) for doc in X] return np.stack(vectors) @property def components_(self) -> np.ndarray: if self.model_ is None: raise NotFittedError("Model has not been fitted yet.") return np.array(self.model_.dv.vectors).T def to_bytes(self) -> bytes: if self.model_ is None: raise NotFittedError( "Can't save model if it hasn't been fitted yet." ) with tempfile.NamedTemporaryFile(prefix="gensim-model-") as tmp: temporary_filepath = tmp.name self.model_.save(temporary_filepath) with open(temporary_filepath, "rb") as temp_buffer: return temp_buffer.read() def from_bytes(self, data: bytes) -> "ParagraphEmbedding": with tempfile.NamedTemporaryFile(prefix="gensim-model-") as tmp: tmp.write(data) model = Doc2Vec.load(tmp.name) self.model_ = model return self @property def config(self) -> Config: return Config( { "embedding": { "@models": "paragraph_embedding.v1", **self.get_params(), } } ) @classmethod def from_config(cls, config: Config) -> "ParagraphEmbedding": resolved = registry.resolve(config) return resolved["embedding"]
scikit-embeddings
/scikit_embeddings-0.2.0.tar.gz/scikit_embeddings-0.2.0/skembeddings/models/doc2vec.py
doc2vec.py
import tempfile from typing import Iterable, Literal import numpy as np from confection import Config, registry from gensim.models.doc2vec import Doc2Vec, TaggedDocument from sklearn.base import BaseEstimator, TransformerMixin from sklearn.exceptions import NotFittedError from sklearn.utils import murmurhash3_32 from skembeddings.base import Serializable from skembeddings.streams.utils import deeplist def _tag_enumerate(docs: Iterable[list[str]]) -> list[TaggedDocument]: """Tags documents with their integer positions.""" return [TaggedDocument(doc, [i]) for i, doc in enumerate(docs)] class ParagraphEmbedding(BaseEstimator, TransformerMixin, Serializable): """Scikit-learn compatible Doc2Vec model.""" def __init__( self, n_components: int = 100, window: int = 5, algorithm: Literal["dm", "dbow"] = "dm", tagging_scheme: Literal["hash", "closest"] = "hash", max_docs: int = 100_000, epochs: int = 10, random_state: int = 0, negative: int = 5, ns_exponent: float = 0.75, dm_agg: Literal["mean", "sum", "concat"] = "mean", dm_tag_count: int = 1, dbow_words: bool = False, sample: float = 0.001, hs: bool = False, batch_words: int = 10000, shrink_windows: bool = True, learning_rate: float = 0.025, min_learning_rate: float = 0.0001, n_jobs: int = 1, ): self.model_ = None self.loss_: list[float] = [] self.seen_docs_ = 0 if tagging_scheme not in ["hash", "closest"]: raise ValueError( "Tagging scheme should either be 'hash' or 'closest'" ) self.algorithm = algorithm self.max_docs = max_docs self.n_components = n_components self.n_jobs = n_jobs self.window = window self.tagging_scheme = tagging_scheme self.epochs = epochs self.random_state = random_state self.negative = negative self.ns_exponent = ns_exponent self.dm_agg = dm_agg self.dm_tag_count = dm_tag_count self.dbow_words = dbow_words self.sample = sample self.hs = hs self.batch_words = batch_words self.shrink_windows = shrink_windows self.learning_rate = learning_rate self.min_learning_rate = min_learning_rate def _tag_documents( self, documents: list[list[str]] ) -> list[TaggedDocument]: if self.model_ is None: raise TypeError( "You should not call _tag_documents" "before model is initialised." ) res = [] for document in documents: # While we have available slots we just add new documents to those if self.seen_docs_ < self.max_docs: res.append(TaggedDocument(document, [self.seen_docs_])) else: # If we run out, we choose a tag based on a scheme if self.tagging_scheme == "hash": # Here we use murmur hash hash = murmurhash3_32("".join(document)) id = hash % self.max_docs res.append(TaggedDocument(document, [id])) elif self.tagging_scheme == "closest": # We obtain the key of the most semantically # similar document and use that. doc_vector = self.model_.infer_vector(document) key, _ = self.model_.dv.similar_by_key(doc_vector, topn=1)[ 0 ] res.append(TaggedDocument(document, [key])) else: raise ValueError( "Tagging scheme should either be 'hash' or 'closest'" f" but {self.tagging_scheme} was provided." ) self.seen_docs_ += 1 return res def _init_model(self, docs=None) -> Doc2Vec: return Doc2Vec( documents=docs, vector_size=self.n_components, min_count=0, alpha=self.learning_rate, window=self.window, sample=self.sample, seed=self.random_state, workers=self.n_jobs, min_alpha=self.min_learning_rate, dm=int(self.algorithm == "dm"), dm_mean=int(self.dm_agg == "mean"), dm_concat=int(self.dm_agg == "concat"), dbow_words=int(self.dbow_words), dm_tag_count=self.dm_tag_count, hs=int(self.hs), negative=self.negative, ns_exponent=self.ns_exponent, epochs=self.epochs, trim_rule=None, batch_words=self.batch_words, compute_loss=True, shrink_windows=self.shrink_windows, ) def _append_loss(self): self.loss_.append(self.model_.get_latest_training_loss()) # type: ignore def fit(self, X: Iterable[Iterable[str]], y=None): """Fits a new doc2vec model to the given documents.""" self.seen_docs_ = 0 # Forcing evaluation X_eval: list[list[str]] = deeplist(X) n_docs = len(X_eval) if self.max_docs < n_docs: init_batch = _tag_enumerate(X_eval[: self.max_docs]) self.model_ = self._init_model(init_batch) self._append_loss() self.partial_fit(X_eval[self.max_docs :]) return self docs = _tag_enumerate(X_eval) self.model_ = self._init_model(docs) self._append_loss() return self def partial_fit(self, X: Iterable[Iterable[str]], y=None): """Partially fits doc2vec model (online fitting).""" # Force evaluation on iterable X_eval: list[list[str]] = deeplist(X) if self.model_ is None: self.fit(X_eval) return self # We obtained tagged documents tagged_docs = self._tag_documents(X_eval) # Then build vocabulary self.model_.build_vocab(tagged_docs, update=True) self.model_.train( tagged_docs, total_examples=self.model_.corpus_count, epochs=1, compute_loss=True, ) self._append_loss() return self def transform(self, X: Iterable[Iterable[str]]) -> np.ndarray: """Infers vectors for all of the given documents.""" if self.model_ is None: raise NotFittedError( "Model ha been not fitted, please fit before inference." ) vectors = [self.model_.infer_vector(list(doc)) for doc in X] return np.stack(vectors) @property def components_(self) -> np.ndarray: if self.model_ is None: raise NotFittedError("Model has not been fitted yet.") return np.array(self.model_.dv.vectors).T def to_bytes(self) -> bytes: if self.model_ is None: raise NotFittedError( "Can't save model if it hasn't been fitted yet." ) with tempfile.NamedTemporaryFile(prefix="gensim-model-") as tmp: temporary_filepath = tmp.name self.model_.save(temporary_filepath) with open(temporary_filepath, "rb") as temp_buffer: return temp_buffer.read() def from_bytes(self, data: bytes) -> "ParagraphEmbedding": with tempfile.NamedTemporaryFile(prefix="gensim-model-") as tmp: tmp.write(data) model = Doc2Vec.load(tmp.name) self.model_ = model return self @property def config(self) -> Config: return Config( { "embedding": { "@models": "paragraph_embedding.v1", **self.get_params(), } } ) @classmethod def from_config(cls, config: Config) -> "ParagraphEmbedding": resolved = registry.resolve(config) return resolved["embedding"]
0.863147
0.212784
import tempfile from typing import Iterable, Literal import numpy as np from confection import Config, registry from gensim.models import KeyedVectors, Word2Vec from sklearn.base import BaseEstimator, TransformerMixin from sklearn.exceptions import NotFittedError from skembeddings.base import Serializable from skembeddings.streams.utils import deeplist class Word2VecEmbedding(BaseEstimator, TransformerMixin, Serializable): def __init__( self, n_components: int = 100, window: int = 5, algorithm: Literal["cbow", "sg"] = "cbow", agg: Literal["mean", "max", "both"] = "mean", epochs: int = 5, random_state: int = 0, negative: int = 5, ns_exponent: float = 0.75, cbow_agg: Literal["mean", "sum"] = "mean", sample: float = 0.001, hs: bool = False, batch_words: int = 10000, shrink_windows: bool = True, learning_rate: float = 0.025, min_learning_rate: float = 0.0001, n_jobs: int = 1, ): self.agg = agg self.n_components = n_components self.n_jobs = n_jobs self.window = window self.algorithm = algorithm self.random_state = random_state self.learning_rate = learning_rate self.min_learning_rate = min_learning_rate self.negative = negative self.ns_exponent = ns_exponent self.cbow_agg = cbow_agg self.sample = sample self.hs = hs self.batch_words = batch_words self.shrink_windows = shrink_windows self.epochs = epochs self.model_ = None self.loss_: list[float] = [] self.n_features_out = ( self.n_components if agg != "both" else self.n_components * 2 ) def _init_model(self, sentences=None) -> Word2Vec: return Word2Vec( sentences=sentences, vector_size=self.n_components, min_count=0, alpha=self.learning_rate, window=self.window, sample=self.sample, seed=self.random_state, workers=self.n_jobs, min_alpha=self.min_learning_rate, sg=int(self.algorithm == "sg"), hs=int(self.hs), negative=self.negative, ns_exponent=self.ns_exponent, cbow_mean=int(self.cbow_agg == "mean"), epochs=self.epochs, trim_rule=None, batch_words=self.batch_words, compute_loss=True, shrink_windows=self.shrink_windows, ) def fit(self, X: Iterable[Iterable[str]], y=None): self._check_inputs(X) X = deeplist(X) self.loss_ = [] self.model_ = self._init_model(sentences=X) self.loss_.append(self.model_.get_latest_training_loss()) return self def partial_fit(self, X: Iterable[Iterable[str]], y=None): self._check_inputs(X) X = deeplist(X) if self.model_ is None: self.fit(X, y) else: self.model_.build_vocab(X, update=True) self.model_.train( X, total_examples=self.model_.corpus_count, epochs=self.model_.epochs, comput_loss=True, ) self.loss_.append(self.model_.get_latest_training_loss()) return self def _check_inputs(self, X): options = ["mean", "max", "both"] if self.agg not in options: raise ValueError( f"The `agg` value must be in {options}. Got {self.agg}." ) def _collect_vectors_single(self, tokens: list[str]) -> np.ndarray: embeddings = [] for token in tokens: try: embeddings.append(self.model_.wv[token]) # type: ignore except KeyError: continue if not embeddings: return np.full((1, self.n_features_out), np.nan) return np.stack(embeddings) def transform(self, X: Iterable[Iterable[str]], y=None): """Transforms the phrase text into a numeric representation using word embeddings.""" self._check_inputs(X) X: list[list[str]] = deeplist(X) embeddings = np.empty((len(X), self.n_features_out)) for i_doc, doc in enumerate(X): if not len(doc): embeddings[i_doc, :] = np.nan doc_vectors = self._collect_vectors_single(doc) if self.agg == "mean": embeddings[i_doc, :] = np.mean(doc_vectors, axis=0) elif self.agg == "max": embeddings[i_doc, :] = np.max(doc_vectors, axis=0) elif self.agg == "both": mean_vector = np.mean(doc_vectors, axis=0) max_vector = np.max(doc_vectors, axis=0) embeddings[i_doc, :] = np.concatenate( (mean_vector, max_vector) ) return embeddings @property def keyed_vectors(self) -> KeyedVectors: if self.model_ is None: raise NotFittedError( "Can't access keyed vectors, model has not been fitted yet." ) return self.model_.wv def to_bytes(self) -> bytes: if self.model_ is None: raise NotFittedError( "Can't save model if it hasn't been fitted yet." ) with tempfile.NamedTemporaryFile(prefix="gensim-model-") as tmp: temporary_filepath = tmp.name self.model_.save(temporary_filepath) with open(temporary_filepath, "rb") as temp_buffer: return temp_buffer.read() def from_bytes(self, data: bytes) -> "Word2VecEmbedding": with tempfile.NamedTemporaryFile(prefix="gensim-model-") as tmp: tmp.write(data) model = Word2Vec.load(tmp.name) self.model_ = model return self @property def config(self) -> Config: return Config( { "embedding": { "@models": "word2vec_embedding.v1", **self.get_params(), } } ) @classmethod def from_config(cls, config: Config) -> "Word2VecEmbedding": resolved = registry.resolve(config) return resolved["embedding"]
scikit-embeddings
/scikit_embeddings-0.2.0.tar.gz/scikit_embeddings-0.2.0/skembeddings/models/word2vec.py
word2vec.py
import tempfile from typing import Iterable, Literal import numpy as np from confection import Config, registry from gensim.models import KeyedVectors, Word2Vec from sklearn.base import BaseEstimator, TransformerMixin from sklearn.exceptions import NotFittedError from skembeddings.base import Serializable from skembeddings.streams.utils import deeplist class Word2VecEmbedding(BaseEstimator, TransformerMixin, Serializable): def __init__( self, n_components: int = 100, window: int = 5, algorithm: Literal["cbow", "sg"] = "cbow", agg: Literal["mean", "max", "both"] = "mean", epochs: int = 5, random_state: int = 0, negative: int = 5, ns_exponent: float = 0.75, cbow_agg: Literal["mean", "sum"] = "mean", sample: float = 0.001, hs: bool = False, batch_words: int = 10000, shrink_windows: bool = True, learning_rate: float = 0.025, min_learning_rate: float = 0.0001, n_jobs: int = 1, ): self.agg = agg self.n_components = n_components self.n_jobs = n_jobs self.window = window self.algorithm = algorithm self.random_state = random_state self.learning_rate = learning_rate self.min_learning_rate = min_learning_rate self.negative = negative self.ns_exponent = ns_exponent self.cbow_agg = cbow_agg self.sample = sample self.hs = hs self.batch_words = batch_words self.shrink_windows = shrink_windows self.epochs = epochs self.model_ = None self.loss_: list[float] = [] self.n_features_out = ( self.n_components if agg != "both" else self.n_components * 2 ) def _init_model(self, sentences=None) -> Word2Vec: return Word2Vec( sentences=sentences, vector_size=self.n_components, min_count=0, alpha=self.learning_rate, window=self.window, sample=self.sample, seed=self.random_state, workers=self.n_jobs, min_alpha=self.min_learning_rate, sg=int(self.algorithm == "sg"), hs=int(self.hs), negative=self.negative, ns_exponent=self.ns_exponent, cbow_mean=int(self.cbow_agg == "mean"), epochs=self.epochs, trim_rule=None, batch_words=self.batch_words, compute_loss=True, shrink_windows=self.shrink_windows, ) def fit(self, X: Iterable[Iterable[str]], y=None): self._check_inputs(X) X = deeplist(X) self.loss_ = [] self.model_ = self._init_model(sentences=X) self.loss_.append(self.model_.get_latest_training_loss()) return self def partial_fit(self, X: Iterable[Iterable[str]], y=None): self._check_inputs(X) X = deeplist(X) if self.model_ is None: self.fit(X, y) else: self.model_.build_vocab(X, update=True) self.model_.train( X, total_examples=self.model_.corpus_count, epochs=self.model_.epochs, comput_loss=True, ) self.loss_.append(self.model_.get_latest_training_loss()) return self def _check_inputs(self, X): options = ["mean", "max", "both"] if self.agg not in options: raise ValueError( f"The `agg` value must be in {options}. Got {self.agg}." ) def _collect_vectors_single(self, tokens: list[str]) -> np.ndarray: embeddings = [] for token in tokens: try: embeddings.append(self.model_.wv[token]) # type: ignore except KeyError: continue if not embeddings: return np.full((1, self.n_features_out), np.nan) return np.stack(embeddings) def transform(self, X: Iterable[Iterable[str]], y=None): """Transforms the phrase text into a numeric representation using word embeddings.""" self._check_inputs(X) X: list[list[str]] = deeplist(X) embeddings = np.empty((len(X), self.n_features_out)) for i_doc, doc in enumerate(X): if not len(doc): embeddings[i_doc, :] = np.nan doc_vectors = self._collect_vectors_single(doc) if self.agg == "mean": embeddings[i_doc, :] = np.mean(doc_vectors, axis=0) elif self.agg == "max": embeddings[i_doc, :] = np.max(doc_vectors, axis=0) elif self.agg == "both": mean_vector = np.mean(doc_vectors, axis=0) max_vector = np.max(doc_vectors, axis=0) embeddings[i_doc, :] = np.concatenate( (mean_vector, max_vector) ) return embeddings @property def keyed_vectors(self) -> KeyedVectors: if self.model_ is None: raise NotFittedError( "Can't access keyed vectors, model has not been fitted yet." ) return self.model_.wv def to_bytes(self) -> bytes: if self.model_ is None: raise NotFittedError( "Can't save model if it hasn't been fitted yet." ) with tempfile.NamedTemporaryFile(prefix="gensim-model-") as tmp: temporary_filepath = tmp.name self.model_.save(temporary_filepath) with open(temporary_filepath, "rb") as temp_buffer: return temp_buffer.read() def from_bytes(self, data: bytes) -> "Word2VecEmbedding": with tempfile.NamedTemporaryFile(prefix="gensim-model-") as tmp: tmp.write(data) model = Word2Vec.load(tmp.name) self.model_ = model return self @property def config(self) -> Config: return Config( { "embedding": { "@models": "word2vec_embedding.v1", **self.get_params(), } } ) @classmethod def from_config(cls, config: Config) -> "Word2VecEmbedding": resolved = registry.resolve(config) return resolved["embedding"]
0.828973
0.182753
import collections from itertools import islice from typing import Iterable import mmh3 import numpy as np from sklearn.base import BaseEstimator, TransformerMixin from sklearn.exceptions import NotFittedError from thinc.api import Adam, CategoricalCrossentropy, Relu, Softmax, chain from thinc.types import Floats2d from tqdm import tqdm from skembeddings.streams.utils import deeplist def sliding_window(iterable, n): # sliding_window('ABCDEFG', 4) --> ABCD BCDE CDEF DEFG it = iter(iterable) window = collections.deque(islice(it, n), maxlen=n) if len(window) == n: yield tuple(window) for x in it: window.append(x) yield tuple(window) def hash_embed( tokens: list[str], n_buckets: int, seeds: tuple[int] ) -> np.ndarray: """Embeds ids with the bloom hashing trick.""" embedding = np.zeros((len(tokens), n_buckets), dtype=np.float16) n_seeds = len(seeds) prob = 1 / n_seeds for i_token, token in enumerate(tokens): for seed in seeds: i_bucket = mmh3.hash(token, seed=seed) % n_buckets embedding[i_token, i_bucket] = prob return embedding class BloomWordEmbedding(BaseEstimator, TransformerMixin): def __init__( self, vector_size: int = 100, window_size: int = 5, n_buckets: int = 1000, n_seeds: int = 4, epochs: int = 5, ): self.vector_size = vector_size self.n_buckets = n_buckets self.window_size = window_size self.epochs = epochs self.encoder = None self.seeds = tuple(range(n_seeds)) self.n_seeds = n_seeds def _extract_target_context( self, docs: list[list[str]] ) -> tuple[list[str], list[str]]: target: list[str] = [] context: list[str] = [] for doc in docs: for window in sliding_window(doc, n=self.window_size * 2 + 1): middle_index = (len(window) - 1) // 2 _target = window[middle_index] _context = [ token for i, token in enumerate(window) if i != middle_index ] target.extend([_target] * len(_context)) context.extend(_context) return target, context def _init_model(self): self.encoder = Relu(self.vector_size) self.context_predictor = chain(self.encoder, Softmax(self.n_buckets)) self.loss_calc = CategoricalCrossentropy() self.optimizer = Adam( learn_rate=0.001, beta1=0.9, beta2=0.999, eps=1e-08, L2=1e-6, grad_clip=1.0, use_averages=True, L2_is_weight_decay=True, ) def _hash_embed(self, tokens: list[str]) -> Floats2d: ops = self.context_predictor.ops emb = hash_embed(tokens, self.n_buckets, self.seeds) return ops.asarray2f(emb) def _train_batch(self, batch: tuple[list[str], list[str]]): targets, contexts = batch _targets = self._hash_embed(targets) _contexts = self._hash_embed(contexts) try: Yh, backprop = self.context_predictor.begin_update(_targets) except KeyError: self.context_predictor.initialize(_targets, _contexts) Yh, backprop = self.context_predictor.begin_update(_targets) dYh = self.loss_calc.get_grad(Yh, _contexts) backprop(dYh) self.context_predictor.finish_update(self.optimizer) def fit(self, X: Iterable[Iterable[str]], y=None): X_eval = deeplist(X) self._init_model() ops = self.context_predictor.ops targets, contexts = self._extract_target_context(X_eval) batches = ops.multibatch(128, targets, contexts, shuffle=True) for batch in tqdm(batches): self._train_batch(batch) return self def partial_fit(self, X: Iterable[Iterable[str]], y=None): if self.encoder is None: return self.fit(X) X_eval = deeplist(X) targets, contexts = self._extract_target_context(X_eval) ops = self.context_predictor.ops batches = ops.multibatch(128, targets, contexts, shuffle=True) for batch in batches: self._train_batch(batch) return self def transform(self, X: Iterable[Iterable[str]], y=None) -> np.ndarray: """Transforms the phrase text into a numeric representation using word embeddings.""" if self.encoder is None: raise NotFittedError( "Model has not been trained yet, can't transform." ) ops = self.encoder.ops X_eval = deeplist(X) X_new = [] for doc in X_eval: doc_emb = hash_embed(doc, self.n_buckets, self.seeds) doc_emb = ops.asarray2f(doc_emb) # type: ignore doc_vecs = ops.to_numpy(self.encoder.predict(doc_emb)) X_new.append(np.nanmean(doc_vecs, axis=0)) return np.stack(X_new)
scikit-embeddings
/scikit_embeddings-0.2.0.tar.gz/scikit_embeddings-0.2.0/skembeddings/models/bloom.py
bloom.py
import collections from itertools import islice from typing import Iterable import mmh3 import numpy as np from sklearn.base import BaseEstimator, TransformerMixin from sklearn.exceptions import NotFittedError from thinc.api import Adam, CategoricalCrossentropy, Relu, Softmax, chain from thinc.types import Floats2d from tqdm import tqdm from skembeddings.streams.utils import deeplist def sliding_window(iterable, n): # sliding_window('ABCDEFG', 4) --> ABCD BCDE CDEF DEFG it = iter(iterable) window = collections.deque(islice(it, n), maxlen=n) if len(window) == n: yield tuple(window) for x in it: window.append(x) yield tuple(window) def hash_embed( tokens: list[str], n_buckets: int, seeds: tuple[int] ) -> np.ndarray: """Embeds ids with the bloom hashing trick.""" embedding = np.zeros((len(tokens), n_buckets), dtype=np.float16) n_seeds = len(seeds) prob = 1 / n_seeds for i_token, token in enumerate(tokens): for seed in seeds: i_bucket = mmh3.hash(token, seed=seed) % n_buckets embedding[i_token, i_bucket] = prob return embedding class BloomWordEmbedding(BaseEstimator, TransformerMixin): def __init__( self, vector_size: int = 100, window_size: int = 5, n_buckets: int = 1000, n_seeds: int = 4, epochs: int = 5, ): self.vector_size = vector_size self.n_buckets = n_buckets self.window_size = window_size self.epochs = epochs self.encoder = None self.seeds = tuple(range(n_seeds)) self.n_seeds = n_seeds def _extract_target_context( self, docs: list[list[str]] ) -> tuple[list[str], list[str]]: target: list[str] = [] context: list[str] = [] for doc in docs: for window in sliding_window(doc, n=self.window_size * 2 + 1): middle_index = (len(window) - 1) // 2 _target = window[middle_index] _context = [ token for i, token in enumerate(window) if i != middle_index ] target.extend([_target] * len(_context)) context.extend(_context) return target, context def _init_model(self): self.encoder = Relu(self.vector_size) self.context_predictor = chain(self.encoder, Softmax(self.n_buckets)) self.loss_calc = CategoricalCrossentropy() self.optimizer = Adam( learn_rate=0.001, beta1=0.9, beta2=0.999, eps=1e-08, L2=1e-6, grad_clip=1.0, use_averages=True, L2_is_weight_decay=True, ) def _hash_embed(self, tokens: list[str]) -> Floats2d: ops = self.context_predictor.ops emb = hash_embed(tokens, self.n_buckets, self.seeds) return ops.asarray2f(emb) def _train_batch(self, batch: tuple[list[str], list[str]]): targets, contexts = batch _targets = self._hash_embed(targets) _contexts = self._hash_embed(contexts) try: Yh, backprop = self.context_predictor.begin_update(_targets) except KeyError: self.context_predictor.initialize(_targets, _contexts) Yh, backprop = self.context_predictor.begin_update(_targets) dYh = self.loss_calc.get_grad(Yh, _contexts) backprop(dYh) self.context_predictor.finish_update(self.optimizer) def fit(self, X: Iterable[Iterable[str]], y=None): X_eval = deeplist(X) self._init_model() ops = self.context_predictor.ops targets, contexts = self._extract_target_context(X_eval) batches = ops.multibatch(128, targets, contexts, shuffle=True) for batch in tqdm(batches): self._train_batch(batch) return self def partial_fit(self, X: Iterable[Iterable[str]], y=None): if self.encoder is None: return self.fit(X) X_eval = deeplist(X) targets, contexts = self._extract_target_context(X_eval) ops = self.context_predictor.ops batches = ops.multibatch(128, targets, contexts, shuffle=True) for batch in batches: self._train_batch(batch) return self def transform(self, X: Iterable[Iterable[str]], y=None) -> np.ndarray: """Transforms the phrase text into a numeric representation using word embeddings.""" if self.encoder is None: raise NotFittedError( "Model has not been trained yet, can't transform." ) ops = self.encoder.ops X_eval = deeplist(X) X_new = [] for doc in X_eval: doc_emb = hash_embed(doc, self.n_buckets, self.seeds) doc_emb = ops.asarray2f(doc_emb) # type: ignore doc_vecs = ops.to_numpy(self.encoder.predict(doc_emb)) X_new.append(np.nanmean(doc_vecs, axis=0)) return np.stack(X_new)
0.855791
0.228028
from typing import Literal from confection import registry from skembeddings.error import NotInstalled try: from skembeddings.models.word2vec import Word2VecEmbedding except ModuleNotFoundError: Word2VecEmbedding = NotInstalled("Word2VecEmbedding", "gensim") try: from skembeddings.models.doc2vec import ParagraphEmbedding except ModuleNotFoundError: ParagraphEmbedding = NotInstalled("ParagraphEmbedding", "gensim") @registry.models.register("word2vec_embedding.v1") def make_word2vec_embedding( n_components: int = 100, window: int = 5, algorithm: Literal["cbow", "sg"] = "cbow", agg: Literal["mean", "max", "both"] = "mean", epochs: int = 5, random_state: int = 0, negative: int = 5, ns_exponent: float = 0.75, cbow_agg: Literal["mean", "sum"] = "mean", sample: float = 0.001, hs: bool = False, batch_words: int = 10000, shrink_windows: bool = True, learning_rate: float = 0.025, min_learning_rate: float = 0.0001, n_jobs: int = 1, ): return Word2VecEmbedding( n_components=n_components, window=window, algorithm=algorithm, agg=agg, epochs=epochs, random_state=random_state, negative=negative, ns_exponent=ns_exponent, cbow_agg=cbow_agg, sample=sample, hs=hs, batch_words=batch_words, shrink_windows=shrink_windows, learning_rate=learning_rate, min_learning_rate=min_learning_rate, n_jobs=n_jobs, ) @registry.models.register("paragraph_embedding.v1") def make_paragraph_embedding( n_components: int = 100, window: int = 5, algorithm: Literal["dm", "dbow"] = "dm", tagging_scheme: Literal["hash", "closest"] = "hash", max_docs: int = 100_000, epochs: int = 10, random_state: int = 0, negative: int = 5, ns_exponent: float = 0.75, dm_agg: Literal["mean", "sum", "concat"] = "mean", dm_tag_count: int = 1, dbow_words: bool = False, sample: float = 0.001, hs: bool = False, batch_words: int = 10000, shrink_windows: bool = True, learning_rate: float = 0.025, min_learning_rate: float = 0.0001, n_jobs: int = 1, ): return ParagraphEmbedding( n_components=n_components, window=window, algorithm=algorithm, tagging_scheme=tagging_scheme, max_docs=max_docs, epochs=epochs, random_state=random_state, negative=negative, ns_exponent=ns_exponent, dm_agg=dm_agg, dm_tag_count=dm_tag_count, dbow_words=dbow_words, sample=sample, hs=hs, batch_words=batch_words, shrink_windows=shrink_windows, learning_rate=learning_rate, min_learning_rate=min_learning_rate, n_jobs=n_jobs, ) __all__ = ["Word2VecEmbedding", "ParagraphEmbedding"]
scikit-embeddings
/scikit_embeddings-0.2.0.tar.gz/scikit_embeddings-0.2.0/skembeddings/models/__init__.py
__init__.py
from typing import Literal from confection import registry from skembeddings.error import NotInstalled try: from skembeddings.models.word2vec import Word2VecEmbedding except ModuleNotFoundError: Word2VecEmbedding = NotInstalled("Word2VecEmbedding", "gensim") try: from skembeddings.models.doc2vec import ParagraphEmbedding except ModuleNotFoundError: ParagraphEmbedding = NotInstalled("ParagraphEmbedding", "gensim") @registry.models.register("word2vec_embedding.v1") def make_word2vec_embedding( n_components: int = 100, window: int = 5, algorithm: Literal["cbow", "sg"] = "cbow", agg: Literal["mean", "max", "both"] = "mean", epochs: int = 5, random_state: int = 0, negative: int = 5, ns_exponent: float = 0.75, cbow_agg: Literal["mean", "sum"] = "mean", sample: float = 0.001, hs: bool = False, batch_words: int = 10000, shrink_windows: bool = True, learning_rate: float = 0.025, min_learning_rate: float = 0.0001, n_jobs: int = 1, ): return Word2VecEmbedding( n_components=n_components, window=window, algorithm=algorithm, agg=agg, epochs=epochs, random_state=random_state, negative=negative, ns_exponent=ns_exponent, cbow_agg=cbow_agg, sample=sample, hs=hs, batch_words=batch_words, shrink_windows=shrink_windows, learning_rate=learning_rate, min_learning_rate=min_learning_rate, n_jobs=n_jobs, ) @registry.models.register("paragraph_embedding.v1") def make_paragraph_embedding( n_components: int = 100, window: int = 5, algorithm: Literal["dm", "dbow"] = "dm", tagging_scheme: Literal["hash", "closest"] = "hash", max_docs: int = 100_000, epochs: int = 10, random_state: int = 0, negative: int = 5, ns_exponent: float = 0.75, dm_agg: Literal["mean", "sum", "concat"] = "mean", dm_tag_count: int = 1, dbow_words: bool = False, sample: float = 0.001, hs: bool = False, batch_words: int = 10000, shrink_windows: bool = True, learning_rate: float = 0.025, min_learning_rate: float = 0.0001, n_jobs: int = 1, ): return ParagraphEmbedding( n_components=n_components, window=window, algorithm=algorithm, tagging_scheme=tagging_scheme, max_docs=max_docs, epochs=epochs, random_state=random_state, negative=negative, ns_exponent=ns_exponent, dm_agg=dm_agg, dm_tag_count=dm_tag_count, dbow_words=dbow_words, sample=sample, hs=hs, batch_words=batch_words, shrink_windows=shrink_windows, learning_rate=learning_rate, min_learning_rate=min_learning_rate, n_jobs=n_jobs, ) __all__ = ["Word2VecEmbedding", "ParagraphEmbedding"]
0.791781
0.164315
from typing import Iterable, Literal, Union import numpy as np from gensim.models import KeyedVectors from sklearn.base import BaseEstimator, TransformerMixin from sklearn.cluster import MiniBatchKMeans from sklearn.exceptions import NotFittedError from tqdm import tqdm from skembeddings.streams.utils import deeplist class VlaweEmbedding(BaseEstimator, TransformerMixin): """Scikit-learn compatible VLAWE model.""" def __init__( self, word_embeddings: Union[TransformerMixin, KeyedVectors], prefit: bool = False, n_clusters: int = 10, ): self.word_embeddings = word_embeddings self.prefit = prefit self.kmeans = None self.n_clusters = n_clusters def _collect_vectors_single(self, tokens: list[str]) -> np.ndarray: if isinstance(self.word_embeddings, KeyedVectors): kv = self.word_embeddings embeddings = [] for token in tokens: try: embeddings.append(kv[token]) # type: ignore except KeyError: continue if not embeddings: return np.full((1, kv.vector_size), np.nan) return np.stack(embeddings) else: return self.word_embeddings.transform(tokens) def _infer_single(self, doc: list[str]) -> np.ndarray: if self.kmeans is None: raise NotFittedError( "Embeddings have not been fitted yet, can't infer." ) vectors = self._collect_vectors_single(doc) residuals = [] for centroid in self.kmeans.cluster_centers_: residual = np.sum(vectors - centroid, axis=0) residuals.append(residual) return np.concatenate(residuals) def fit(self, X: Iterable[Iterable[str]], y=None): """Fits a model to the given documents.""" X_eval = deeplist(X) if ( not isinstance(self.word_embeddings, KeyedVectors) and not self.prefit ): print("Fitting word embeddings") self.word_embeddings.fit(X_eval) print("Collecting vectors") all_vecs = np.concatenate( [self._collect_vectors_single(doc) for doc in X_eval] ) print("Fitting Kmeans") self.kmeans = MiniBatchKMeans(n_clusters=self.n_clusters) self.kmeans.fit(all_vecs) return self def partial_fit(self, X: Iterable[Iterable[str]], y=None): """Partially fits model (online fitting).""" if self.kmeans is None: return self.fit(X) X_eval = deeplist(X) if ( not isinstance(self.word_embeddings, KeyedVectors) and not self.prefit ): self.word_embeddings.partial_fit(X_eval) all_vecs = np.concatenate( [self._collect_vectors_single(doc) for doc in X_eval] ) self.kmeans.partial_fit(all_vecs) return self def transform(self, X: Iterable[Iterable[str]]) -> np.ndarray: """Infers vectors for all of the given documents.""" vectors = [self._infer_single(doc) for doc in tqdm(deeplist(X))] return np.stack(vectors)
scikit-embeddings
/scikit_embeddings-0.2.0.tar.gz/scikit_embeddings-0.2.0/skembeddings/models/vlawe.py
vlawe.py
from typing import Iterable, Literal, Union import numpy as np from gensim.models import KeyedVectors from sklearn.base import BaseEstimator, TransformerMixin from sklearn.cluster import MiniBatchKMeans from sklearn.exceptions import NotFittedError from tqdm import tqdm from skembeddings.streams.utils import deeplist class VlaweEmbedding(BaseEstimator, TransformerMixin): """Scikit-learn compatible VLAWE model.""" def __init__( self, word_embeddings: Union[TransformerMixin, KeyedVectors], prefit: bool = False, n_clusters: int = 10, ): self.word_embeddings = word_embeddings self.prefit = prefit self.kmeans = None self.n_clusters = n_clusters def _collect_vectors_single(self, tokens: list[str]) -> np.ndarray: if isinstance(self.word_embeddings, KeyedVectors): kv = self.word_embeddings embeddings = [] for token in tokens: try: embeddings.append(kv[token]) # type: ignore except KeyError: continue if not embeddings: return np.full((1, kv.vector_size), np.nan) return np.stack(embeddings) else: return self.word_embeddings.transform(tokens) def _infer_single(self, doc: list[str]) -> np.ndarray: if self.kmeans is None: raise NotFittedError( "Embeddings have not been fitted yet, can't infer." ) vectors = self._collect_vectors_single(doc) residuals = [] for centroid in self.kmeans.cluster_centers_: residual = np.sum(vectors - centroid, axis=0) residuals.append(residual) return np.concatenate(residuals) def fit(self, X: Iterable[Iterable[str]], y=None): """Fits a model to the given documents.""" X_eval = deeplist(X) if ( not isinstance(self.word_embeddings, KeyedVectors) and not self.prefit ): print("Fitting word embeddings") self.word_embeddings.fit(X_eval) print("Collecting vectors") all_vecs = np.concatenate( [self._collect_vectors_single(doc) for doc in X_eval] ) print("Fitting Kmeans") self.kmeans = MiniBatchKMeans(n_clusters=self.n_clusters) self.kmeans.fit(all_vecs) return self def partial_fit(self, X: Iterable[Iterable[str]], y=None): """Partially fits model (online fitting).""" if self.kmeans is None: return self.fit(X) X_eval = deeplist(X) if ( not isinstance(self.word_embeddings, KeyedVectors) and not self.prefit ): self.word_embeddings.partial_fit(X_eval) all_vecs = np.concatenate( [self._collect_vectors_single(doc) for doc in X_eval] ) self.kmeans.partial_fit(all_vecs) return self def transform(self, X: Iterable[Iterable[str]]) -> np.ndarray: """Infers vectors for all of the given documents.""" vectors = [self._infer_single(doc) for doc in tqdm(deeplist(X))] return np.stack(vectors)
0.883808
0.287893
import functools import random from itertools import islice from typing import Callable, Iterable, List, Literal, Optional, TypeVar from sklearn.base import BaseEstimator def filter_batches( chunks: Iterable[list], estimator: BaseEstimator, prefit: bool ) -> Iterable[list]: for chunk in chunks: if prefit: predictions = estimator.predict(chunk) # type: ignore else: predictions = estimator.fit_predict(chunk) # type: ignore passes = predictions != -1 filtered_chunk = [elem for elem, _pass in zip(chunk, passes) if _pass] yield filtered_chunk def pipe_streams(*transforms: Callable) -> Callable: """Pipes iterator transformations together. Parameters ---------- *transforms: Callable Generator funcitons that transform an iterable into another iterable. Returns ------- Callable Generator function composing all of the other ones. """ def _pipe(x: Iterable) -> Iterable: for f in transforms: x = f(x) return x return _pipe def reusable(gen_func: Callable) -> Callable: """ Function decorator that turns your generator function into an iterator, thereby making it reusable. Parameters ---------- gen_func: Callable Generator function, that you want to be reusable Returns ---------- _multigen: Callable Sneakily created iterator class wrapping the generator function """ @functools.wraps(gen_func, updated=()) class _multigen: def __init__(self, *args, limit=None, **kwargs): self.__args = args self.__kwargs = kwargs self.limit = limit # functools.update_wrapper(self, gen_func) def __iter__(self): if self.limit is not None: return islice( gen_func(*self.__args, **self.__kwargs), self.limit ) return gen_func(*self.__args, **self.__kwargs) return _multigen U = TypeVar("U") def chunk( iterable: Iterable[U], chunk_size: int, sample_size: Optional[int] = None ) -> Iterable[List[U]]: """ Generator function that chunks an iterable for you. Parameters ---------- iterable: Iterable of T The iterable you'd like to chunk. chunk_size: int The size of chunks you would like to get back sample_size: int or None, default None If specified the yielded lists will be randomly sampled with the buffer with replacement. Sample size determines how big you want those lists to be. Yields ------ buffer: list of T sample_size or chunk_size sized lists chunked from the original iterable. """ buffer = [] for index, elem in enumerate(iterable): buffer.append(elem) if (index % chunk_size == (chunk_size - 1)) and (index != 0): if sample_size is None: yield buffer else: yield random.choices(buffer, k=sample_size) buffer = [] def stream_files( paths: Iterable[str], lines: bool = False, not_found_action: Literal["exception", "none", "drop"] = "exception", ) -> Iterable[Optional[str]]: """Streams text contents from files on disk. Parameters ---------- paths: iterable of str Iterable of file paths on disk. lines: bool, default False Indicates whether you want to get a stream over lines or file contents. not_found_action: {'exception', 'none', 'drop'}, default 'exception' Indicates what should happen if a file was not found. 'exception' propagates the exception to top level, 'none' yields None for each file that fails, 'drop' ignores them completely. Yields ------ str or None File contents or lines in files if lines is True. Can only yield None if not_found_action is 'none'. """ for path in paths: try: with open(path) as in_file: if lines: for line in in_file: yield line else: yield in_file.read() except FileNotFoundError as e: if not_found_action == "exception": raise FileNotFoundError( f"Streaming failed as file {path} could not be found" ) from e elif not_found_action == "none": yield None elif not_found_action == "drop": continue else: raise ValueError( """Unrecognized `not_found_action`. Please chose one of `"exception", "none", "drop"`""" ) def flatten_stream(nested: Iterable, axis: int = 1) -> Iterable: """Turns nested stream into a flat stream. If multiple levels are nested, the iterable will be flattenned along the given axis. To match the behaviour of Awkward Array flattening, axis=0 only removes None elements from the array along the outermost axis. Negative axis values are not yet supported. Parameters ---------- nested: iterable Iterable of iterables of unknown depth. axis: int, default 1 Axis/level of depth at which the iterable should be flattened. Returns ------- iterable Iterable with one lower level of nesting. """ if not isinstance(nested, Iterable): raise ValueError( f"Nesting is too deep, values at level {axis} are not iterables" ) if axis == 0: return (elem for elem in nested if elem is not None and (elem != [])) if axis == 1: for sub in nested: for elem in sub: yield elem elif axis > 1: for sub in nested: yield flatten_stream(sub, axis=axis - 1) else: raise ValueError("Flattening axis needs to be greater than 0.") def deeplist(nested) -> list: """Recursively turns nested iterable to list. Parameters ---------- nested: iterable Nested iterable. Returns ------- list Nested list. """ if not isinstance(nested, Iterable) or isinstance(nested, str): return nested # type: ignore else: return [deeplist(sub) for sub in nested]
scikit-embeddings
/scikit_embeddings-0.2.0.tar.gz/scikit_embeddings-0.2.0/skembeddings/streams/utils.py
utils.py
import functools import random from itertools import islice from typing import Callable, Iterable, List, Literal, Optional, TypeVar from sklearn.base import BaseEstimator def filter_batches( chunks: Iterable[list], estimator: BaseEstimator, prefit: bool ) -> Iterable[list]: for chunk in chunks: if prefit: predictions = estimator.predict(chunk) # type: ignore else: predictions = estimator.fit_predict(chunk) # type: ignore passes = predictions != -1 filtered_chunk = [elem for elem, _pass in zip(chunk, passes) if _pass] yield filtered_chunk def pipe_streams(*transforms: Callable) -> Callable: """Pipes iterator transformations together. Parameters ---------- *transforms: Callable Generator funcitons that transform an iterable into another iterable. Returns ------- Callable Generator function composing all of the other ones. """ def _pipe(x: Iterable) -> Iterable: for f in transforms: x = f(x) return x return _pipe def reusable(gen_func: Callable) -> Callable: """ Function decorator that turns your generator function into an iterator, thereby making it reusable. Parameters ---------- gen_func: Callable Generator function, that you want to be reusable Returns ---------- _multigen: Callable Sneakily created iterator class wrapping the generator function """ @functools.wraps(gen_func, updated=()) class _multigen: def __init__(self, *args, limit=None, **kwargs): self.__args = args self.__kwargs = kwargs self.limit = limit # functools.update_wrapper(self, gen_func) def __iter__(self): if self.limit is not None: return islice( gen_func(*self.__args, **self.__kwargs), self.limit ) return gen_func(*self.__args, **self.__kwargs) return _multigen U = TypeVar("U") def chunk( iterable: Iterable[U], chunk_size: int, sample_size: Optional[int] = None ) -> Iterable[List[U]]: """ Generator function that chunks an iterable for you. Parameters ---------- iterable: Iterable of T The iterable you'd like to chunk. chunk_size: int The size of chunks you would like to get back sample_size: int or None, default None If specified the yielded lists will be randomly sampled with the buffer with replacement. Sample size determines how big you want those lists to be. Yields ------ buffer: list of T sample_size or chunk_size sized lists chunked from the original iterable. """ buffer = [] for index, elem in enumerate(iterable): buffer.append(elem) if (index % chunk_size == (chunk_size - 1)) and (index != 0): if sample_size is None: yield buffer else: yield random.choices(buffer, k=sample_size) buffer = [] def stream_files( paths: Iterable[str], lines: bool = False, not_found_action: Literal["exception", "none", "drop"] = "exception", ) -> Iterable[Optional[str]]: """Streams text contents from files on disk. Parameters ---------- paths: iterable of str Iterable of file paths on disk. lines: bool, default False Indicates whether you want to get a stream over lines or file contents. not_found_action: {'exception', 'none', 'drop'}, default 'exception' Indicates what should happen if a file was not found. 'exception' propagates the exception to top level, 'none' yields None for each file that fails, 'drop' ignores them completely. Yields ------ str or None File contents or lines in files if lines is True. Can only yield None if not_found_action is 'none'. """ for path in paths: try: with open(path) as in_file: if lines: for line in in_file: yield line else: yield in_file.read() except FileNotFoundError as e: if not_found_action == "exception": raise FileNotFoundError( f"Streaming failed as file {path} could not be found" ) from e elif not_found_action == "none": yield None elif not_found_action == "drop": continue else: raise ValueError( """Unrecognized `not_found_action`. Please chose one of `"exception", "none", "drop"`""" ) def flatten_stream(nested: Iterable, axis: int = 1) -> Iterable: """Turns nested stream into a flat stream. If multiple levels are nested, the iterable will be flattenned along the given axis. To match the behaviour of Awkward Array flattening, axis=0 only removes None elements from the array along the outermost axis. Negative axis values are not yet supported. Parameters ---------- nested: iterable Iterable of iterables of unknown depth. axis: int, default 1 Axis/level of depth at which the iterable should be flattened. Returns ------- iterable Iterable with one lower level of nesting. """ if not isinstance(nested, Iterable): raise ValueError( f"Nesting is too deep, values at level {axis} are not iterables" ) if axis == 0: return (elem for elem in nested if elem is not None and (elem != [])) if axis == 1: for sub in nested: for elem in sub: yield elem elif axis > 1: for sub in nested: yield flatten_stream(sub, axis=axis - 1) else: raise ValueError("Flattening axis needs to be greater than 0.") def deeplist(nested) -> list: """Recursively turns nested iterable to list. Parameters ---------- nested: iterable Nested iterable. Returns ------- list Nested list. """ if not isinstance(nested, Iterable) or isinstance(nested, str): return nested # type: ignore else: return [deeplist(sub) for sub in nested]
0.868381
0.326352
import functools import json from dataclasses import dataclass from itertools import islice from typing import Callable, Iterable, Literal from sklearn.base import BaseEstimator from skembeddings.streams.utils import (chunk, deeplist, filter_batches, flatten_stream, reusable, stream_files) @dataclass class Stream: """Utility class for streaming, batching and filtering texts from an external source. Parameters ---------- iterable: Iterable Core iterable object in the stream. """ iterable: Iterable def __iter__(self): return iter(self.iterable) def filter(self, func: Callable, *args, **kwargs): """Filters the stream given a function that returns a bool.""" @functools.wraps(func) def _func(elem): return func(elem, *args, **kwargs) _iterable = reusable(filter)(_func, self.iterable) return Stream(_iterable) def map(self, func: Callable, *args, **kwargs): """Maps a function over the stream.""" @functools.wraps(func) def _func(elem): return func(elem, *args, **kwargs) _iterable = reusable(map)(_func, self.iterable) return Stream(_iterable) def pipe(self, func: Callable, *args, **kwargs): """Pipes the stream into a function that takes the whole stream and returns a new one.""" @functools.wraps(func) def _func(iterable): return func(iterable, *args, **kwargs) _iterable = reusable(_func)(self.iterable) return Stream(_iterable) def islice(self, *args): """Equivalent to itertools.islice().""" return self.pipe(islice, *args) def evaluate(self, deep: bool = False): """Evaluates the entire iterable and collects it into a list. Parameters ---------- deep: bool, default False Indicates whether nested iterables should be deeply evaluated. Uses deeplist() internally. """ if deep: _iterable = deeplist(self.iterable) else: _iterable = list(self.iterable) return Stream(_iterable) def read_files( self, lines: bool = True, not_found_action: Literal["exception", "none", "drop"] = "exception", ): """Reads a stream of file paths from disk. Parameters ---------- lines: bool, default True Indicates whether lines should be streamed or not. not_found_action: str, default 'exception' Indicates what should be done if a given file is not found. 'exception' raises an exception, 'drop' ignores it, 'none' returns a None for each nonexistent file. """ return self.pipe( stream_files, lines=lines, not_found_action=not_found_action, ) def json(self): """Parses a stream of texts into JSON objects.""" return self.map(json.loads) def grab(self, field: str): """Grabs one field from a stream of records.""" return self.map(lambda record: record[field]) def flatten(self, axis=1): """Flattens a nested stream along a given axis.""" return self.pipe(flatten_stream, axis=axis) def chunk(self, size: int): """Chunks stream with the given batch size.""" return self.pipe(chunk, chunk_size=size) def filter_batches(self, estimator: BaseEstimator, prefit: bool = True): """Filters batches with a scikit-learn compatible estimator. Parameters ---------- estimator: BaseEstimator Scikit-learn estimator to use for filtering the batches. Either needs a .predict() or .fit_predict() method. Every sample that gets labeled -1 will be removed from the batch. prefit: bool, default True Indicates whether the estimator is prefit. If it is .predict() will be used (novelty detection), else .fit_predict() will be used (outlier detection). """ return self.pipe(filter_batches, estimator=estimator, prefit=prefit) def collect(self, deep: bool = False): """Does the same as evaluate().""" return self.evaluate(deep)
scikit-embeddings
/scikit_embeddings-0.2.0.tar.gz/scikit_embeddings-0.2.0/skembeddings/streams/_stream.py
_stream.py
import functools import json from dataclasses import dataclass from itertools import islice from typing import Callable, Iterable, Literal from sklearn.base import BaseEstimator from skembeddings.streams.utils import (chunk, deeplist, filter_batches, flatten_stream, reusable, stream_files) @dataclass class Stream: """Utility class for streaming, batching and filtering texts from an external source. Parameters ---------- iterable: Iterable Core iterable object in the stream. """ iterable: Iterable def __iter__(self): return iter(self.iterable) def filter(self, func: Callable, *args, **kwargs): """Filters the stream given a function that returns a bool.""" @functools.wraps(func) def _func(elem): return func(elem, *args, **kwargs) _iterable = reusable(filter)(_func, self.iterable) return Stream(_iterable) def map(self, func: Callable, *args, **kwargs): """Maps a function over the stream.""" @functools.wraps(func) def _func(elem): return func(elem, *args, **kwargs) _iterable = reusable(map)(_func, self.iterable) return Stream(_iterable) def pipe(self, func: Callable, *args, **kwargs): """Pipes the stream into a function that takes the whole stream and returns a new one.""" @functools.wraps(func) def _func(iterable): return func(iterable, *args, **kwargs) _iterable = reusable(_func)(self.iterable) return Stream(_iterable) def islice(self, *args): """Equivalent to itertools.islice().""" return self.pipe(islice, *args) def evaluate(self, deep: bool = False): """Evaluates the entire iterable and collects it into a list. Parameters ---------- deep: bool, default False Indicates whether nested iterables should be deeply evaluated. Uses deeplist() internally. """ if deep: _iterable = deeplist(self.iterable) else: _iterable = list(self.iterable) return Stream(_iterable) def read_files( self, lines: bool = True, not_found_action: Literal["exception", "none", "drop"] = "exception", ): """Reads a stream of file paths from disk. Parameters ---------- lines: bool, default True Indicates whether lines should be streamed or not. not_found_action: str, default 'exception' Indicates what should be done if a given file is not found. 'exception' raises an exception, 'drop' ignores it, 'none' returns a None for each nonexistent file. """ return self.pipe( stream_files, lines=lines, not_found_action=not_found_action, ) def json(self): """Parses a stream of texts into JSON objects.""" return self.map(json.loads) def grab(self, field: str): """Grabs one field from a stream of records.""" return self.map(lambda record: record[field]) def flatten(self, axis=1): """Flattens a nested stream along a given axis.""" return self.pipe(flatten_stream, axis=axis) def chunk(self, size: int): """Chunks stream with the given batch size.""" return self.pipe(chunk, chunk_size=size) def filter_batches(self, estimator: BaseEstimator, prefit: bool = True): """Filters batches with a scikit-learn compatible estimator. Parameters ---------- estimator: BaseEstimator Scikit-learn estimator to use for filtering the batches. Either needs a .predict() or .fit_predict() method. Every sample that gets labeled -1 will be removed from the batch. prefit: bool, default True Indicates whether the estimator is prefit. If it is .predict() will be used (novelty detection), else .fit_predict() will be used (outlier detection). """ return self.pipe(filter_batches, estimator=estimator, prefit=prefit) def collect(self, deep: bool = False): """Does the same as evaluate().""" return self.evaluate(deep)
0.906366
0.326258
.. figure:: https://github.com/Ibotta/pure-predict/blob/master/doc/images/pure-predict.png :alt: pure-predict pure-predict: Machine learning prediction in pure Python ======================================================== |License| |Build Status| |PyPI Package| |Downloads| |Python Versions| ``pure-predict`` speeds up and slims down machine learning prediction applications. It is a foundational tool for serverless inference or small batch prediction with popular machine learning frameworks like `scikit-learn <https://scikit-learn.org/stable/>`__ and `fasttext <https://fasttext.cc/>`__. It implements the predict methods of these frameworks in pure Python. Primary Use Cases ----------------- The primary use case for ``pure-predict`` is the following scenario: #. A model is trained in an environment without strong container footprint constraints. Perhaps a long running "offline" job on one or many machines where installing a number of python packages from PyPI is not at all problematic. #. At prediction time the model needs to be served behind an API. Typical access patterns are to request a prediction for one "record" (one "row" in a ``numpy`` array or one string of text to classify) per request or a mini-batch of records per request. #. Preferred infrastructure for the prediction service is either serverless (`AWS Lambda <https://aws.amazon.com/lambda/>`__) or a container service where the memory footprint of the container is constrained. #. The fitted model object's artifacts needed for prediction (coefficients, weights, vocabulary, decision tree artifacts, etc.) are relatively small (10s to 100s of MBs). .. figure:: https://github.com/Ibotta/pure-predict/blob/master/doc/images/diagram.png :alt: diagram In this scenario, a container service with a large dependency footprint can be overkill for a microservice, particularly if the access patterns favor the pricing model of a serverless application. Additionally, for smaller models and single record predictions per request, the ``numpy`` and ``scipy`` functionality in the prediction methods of popular machine learning frameworks work against the application in terms of latency, `underperforming pure python <https://github.com/Ibotta/pure-predict/blob/master/examples/performance_rf.py>`__ in some cases. Check out the `blog post <https://medium.com/building-ibotta/predict-with-sklearn-20x-faster-9f2803944446>`__ for more information on the motivation and use cases of ``pure-predict``. Package Details --------------- It is a Python package for machine learning prediction distributed under the `Apache 2.0 software license <https://github.com/Ibotta/sk-dist/blob/master/LICENSE>`__. It contains multiple subpackages which mirror their open source counterpart (``scikit-learn``, ``fasttext``, etc.). Each subpackage has utilities to convert a fitted machine learning model into a custom object containing prediction methods that mirror their native counterparts, but converted to pure python. Additionally, all relevant model artifacts needed for prediction are converted to pure python. A ``pure-predict`` model object can then be pickled and later unpickled without any 3rd party dependencies other than ``pure-predict``. This eliminates the need to have large dependency packages installed in order to make predictions with fitted machine learning models using popular open source packages for training models. These dependencies (``numpy``, ``scipy``, ``scikit-learn``, ``fasttext``, etc.) are large in size and `not always necessary to make fast and accurate predictions <https://github.com/Ibotta/pure-predict/blob/master/examples/performance_rf.py>`__. Additionally, they rely on C extensions that may not be ideal for serverless applications with a python runtime. Quick Start Example ------------------- In a python enviornment with ``scikit-learn`` and its dependencies installed: .. code-block:: python import pickle from sklearn.ensemble import RandomForestClassifier from sklearn.datasets import load_iris from pure_sklearn.map import convert_estimator # fit sklearn estimator X, y = load_iris(return_X_y=True) clf = RandomForestClassifier() clf.fit(X, y) # convert to pure python estimator clf_pure_predict = convert_estimator(clf) with open("model.pkl", "wb") as f: pickle.dump(clf_pure_predict, f) # make prediction with sklearn estimator y_pred = clf.predict([[0.25, 2.0, 8.3, 1.0]]) print(y_pred) [2] In a python enviornment with only ``pure-predict`` installed: .. code-block:: python import pickle # load pickled model with open("model.pkl", "rb") as f: clf = pickle.load(f) # make prediction with pure-predict object y_pred = clf.predict([[0.25, 2.0, 8.3, 1.0]]) print(y_pred) [2] Subpackages ----------- `pure_sklearn <https://github.com/Ibotta/pure-predict/tree/master/pure_sklearn>`__ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Prediction in pure python for a subset of ``scikit-learn`` estimators and transformers. - **estimators** - **linear models** - supports the majority of linear models for classification - **trees** - decision trees, random forests, gradient boosting and xgboost - **naive bayes** - a number of popular naive bayes classifiers - **svm** - linear SVC - **transformers** - **preprocessing** - normalization and onehot/ordinal encoders - **impute** - simple imputation - **feature extraction** - text (tfidf, count vectorizer, hashing vectorizer) and dictionary vectorization - **pipeline** - pipelines and feature unions Sparse data - supports a custom pure python sparse data object - sparse data is handled as would be expected by the relevent transformers and estimators `pure_fasttext <https://github.com/Ibotta/pure-predict/tree/master/pure_fasttext>`__ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Prediction in pure python for ``fasttext``. - **supervised** - predicts labels for supervised models; no support for quantized models (blocked by `this issue <https://github.com/facebookresearch/fastText/issues/984>`__) - **unsupervised** - lookup of word or sentence embeddings given input text Installation ------------ Dependencies ~~~~~~~~~~~~ ``pure-predict`` requires: - `Python <https://www.python.org/>`__ (>= 3.6) Dependency Notes ~~~~~~~~~~~~~~~~ - ``pure_sklearn`` has been tested with ``scikit-learn`` versions >= 0.20 -- certain functionality may work with lower versions but are not guaranteed. Some functionality is explicitly not supported for certain ``scikit-learn`` versions and exceptions will be raised as appropriate. - ``xgboost`` requires version >= 0.82 for support with ``pure_sklearn``. - ``pure-predict`` is not supported with Python 2. - ``fasttext`` versions <= 0.9.1 have been tested. User Installation ~~~~~~~~~~~~~~~~~ The easiest way to install ``pure-predict`` is with ``pip``: :: pip install --upgrade pure-predict You can also download the source code: :: git clone https://github.com/Ibotta/pure-predict.git Testing ~~~~~~~ With ``pytest`` installed, you can run tests locally: :: pytest pure-predict Examples -------- The package contains `examples <https://github.com/Ibotta/pure-predict/tree/master/examples>`__ on how to use ``pure-predict`` in practice. Calls for Contributors ---------------------- Contributing to ``pure-predict`` is `welcomed by any contributors <https://github.com/Ibotta/pure-predict/blob/master/CONTRIBUTING.md>`__. Specific calls for contribution are as follows: #. Examples, tests and documentation -- particularly more detailed examples with performance testing of various estimators under various constraints. #. Adding more ``pure_sklearn`` estimators. The ``scikit-learn`` package is extensive and only partially covered by ``pure_sklearn``. `Regression <https://scikit-learn.org/stable/supervised_learning.html#supervised-learning>`__ tasks in particular missing from ``pure_sklearn``. `Clustering <https://scikit-learn.org/stable/modules/clustering.html#clustering>`__, `dimensionality reduction <https://scikit-learn.org/stable/modules/decomposition.html#decompositions>`__, `nearest neighbors <https://scikit-learn.org/stable/modules/neighbors.html>`__, `feature selection <https://scikit-learn.org/stable/modules/feature_selection.html>`__, non-linear `SVM <https://scikit-learn.org/stable/modules/svm.html>`__, and more are also omitted and would be good candidates for extending ``pure_sklearn``. #. General efficiency. There is likely low hanging fruit for improving the efficiency of the ``numpy`` and ``scipy`` functionality that has been ported to ``pure-predict``. #. `Threading <https://docs.python.org/3/library/threading.html>`__ could be considered to improve performance -- particularly for making predictions with multiple records. #. A public `AWS lambda layer <https://docs.aws.amazon.com/lambda/latest/dg/configuration-layers.html>`__ containing ``pure-predict``. Background ---------- The project was started at `Ibotta Inc. <https://medium.com/building-ibotta>`__ on the machine learning team and open sourced in 2020. It is currently maintained by the machine learning team at Ibotta. Acknowledgements ~~~~~~~~~~~~~~~~ Thanks to `David Mitchell <https://github.com/dlmitchell>`__ and `Andrew Tilley <https://github.com/tilleyand>`__ for internal review before open source. Thanks to `James Foley <https://github.com/chadfoley36>`__ for logo artwork. .. figure:: https://github.com/Ibotta/pure-predict/blob/master/doc/images/ibottaml.png :alt: IbottaML .. |License| image:: https://img.shields.io/badge/License-Apache%202.0-blue.svg :target: https://opensource.org/licenses/Apache-2.0 .. |Build Status| image:: https://travis-ci.com/Ibotta/pure-predict.png?branch=master :target: https://travis-ci.com/Ibotta/pure-predict .. |PyPI Package| image:: https://badge.fury.io/py/pure-predict.svg :target: https://pypi.org/project/pure-predict/ .. |Downloads| image:: https://pepy.tech/badge/pure-predict :target: https://pepy.tech/project/pure-predict .. |Python Versions| image:: https://img.shields.io/pypi/pyversions/pure-predict :target: https://pypi.org/project/pure-predict/
scikit-endpoint
/scikit-endpoint-0.0.3.tar.gz/scikit-endpoint-0.0.3/README.rst
README.rst
.. figure:: https://github.com/Ibotta/pure-predict/blob/master/doc/images/pure-predict.png :alt: pure-predict pure-predict: Machine learning prediction in pure Python ======================================================== |License| |Build Status| |PyPI Package| |Downloads| |Python Versions| ``pure-predict`` speeds up and slims down machine learning prediction applications. It is a foundational tool for serverless inference or small batch prediction with popular machine learning frameworks like `scikit-learn <https://scikit-learn.org/stable/>`__ and `fasttext <https://fasttext.cc/>`__. It implements the predict methods of these frameworks in pure Python. Primary Use Cases ----------------- The primary use case for ``pure-predict`` is the following scenario: #. A model is trained in an environment without strong container footprint constraints. Perhaps a long running "offline" job on one or many machines where installing a number of python packages from PyPI is not at all problematic. #. At prediction time the model needs to be served behind an API. Typical access patterns are to request a prediction for one "record" (one "row" in a ``numpy`` array or one string of text to classify) per request or a mini-batch of records per request. #. Preferred infrastructure for the prediction service is either serverless (`AWS Lambda <https://aws.amazon.com/lambda/>`__) or a container service where the memory footprint of the container is constrained. #. The fitted model object's artifacts needed for prediction (coefficients, weights, vocabulary, decision tree artifacts, etc.) are relatively small (10s to 100s of MBs). .. figure:: https://github.com/Ibotta/pure-predict/blob/master/doc/images/diagram.png :alt: diagram In this scenario, a container service with a large dependency footprint can be overkill for a microservice, particularly if the access patterns favor the pricing model of a serverless application. Additionally, for smaller models and single record predictions per request, the ``numpy`` and ``scipy`` functionality in the prediction methods of popular machine learning frameworks work against the application in terms of latency, `underperforming pure python <https://github.com/Ibotta/pure-predict/blob/master/examples/performance_rf.py>`__ in some cases. Check out the `blog post <https://medium.com/building-ibotta/predict-with-sklearn-20x-faster-9f2803944446>`__ for more information on the motivation and use cases of ``pure-predict``. Package Details --------------- It is a Python package for machine learning prediction distributed under the `Apache 2.0 software license <https://github.com/Ibotta/sk-dist/blob/master/LICENSE>`__. It contains multiple subpackages which mirror their open source counterpart (``scikit-learn``, ``fasttext``, etc.). Each subpackage has utilities to convert a fitted machine learning model into a custom object containing prediction methods that mirror their native counterparts, but converted to pure python. Additionally, all relevant model artifacts needed for prediction are converted to pure python. A ``pure-predict`` model object can then be pickled and later unpickled without any 3rd party dependencies other than ``pure-predict``. This eliminates the need to have large dependency packages installed in order to make predictions with fitted machine learning models using popular open source packages for training models. These dependencies (``numpy``, ``scipy``, ``scikit-learn``, ``fasttext``, etc.) are large in size and `not always necessary to make fast and accurate predictions <https://github.com/Ibotta/pure-predict/blob/master/examples/performance_rf.py>`__. Additionally, they rely on C extensions that may not be ideal for serverless applications with a python runtime. Quick Start Example ------------------- In a python enviornment with ``scikit-learn`` and its dependencies installed: .. code-block:: python import pickle from sklearn.ensemble import RandomForestClassifier from sklearn.datasets import load_iris from pure_sklearn.map import convert_estimator # fit sklearn estimator X, y = load_iris(return_X_y=True) clf = RandomForestClassifier() clf.fit(X, y) # convert to pure python estimator clf_pure_predict = convert_estimator(clf) with open("model.pkl", "wb") as f: pickle.dump(clf_pure_predict, f) # make prediction with sklearn estimator y_pred = clf.predict([[0.25, 2.0, 8.3, 1.0]]) print(y_pred) [2] In a python enviornment with only ``pure-predict`` installed: .. code-block:: python import pickle # load pickled model with open("model.pkl", "rb") as f: clf = pickle.load(f) # make prediction with pure-predict object y_pred = clf.predict([[0.25, 2.0, 8.3, 1.0]]) print(y_pred) [2] Subpackages ----------- `pure_sklearn <https://github.com/Ibotta/pure-predict/tree/master/pure_sklearn>`__ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Prediction in pure python for a subset of ``scikit-learn`` estimators and transformers. - **estimators** - **linear models** - supports the majority of linear models for classification - **trees** - decision trees, random forests, gradient boosting and xgboost - **naive bayes** - a number of popular naive bayes classifiers - **svm** - linear SVC - **transformers** - **preprocessing** - normalization and onehot/ordinal encoders - **impute** - simple imputation - **feature extraction** - text (tfidf, count vectorizer, hashing vectorizer) and dictionary vectorization - **pipeline** - pipelines and feature unions Sparse data - supports a custom pure python sparse data object - sparse data is handled as would be expected by the relevent transformers and estimators `pure_fasttext <https://github.com/Ibotta/pure-predict/tree/master/pure_fasttext>`__ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Prediction in pure python for ``fasttext``. - **supervised** - predicts labels for supervised models; no support for quantized models (blocked by `this issue <https://github.com/facebookresearch/fastText/issues/984>`__) - **unsupervised** - lookup of word or sentence embeddings given input text Installation ------------ Dependencies ~~~~~~~~~~~~ ``pure-predict`` requires: - `Python <https://www.python.org/>`__ (>= 3.6) Dependency Notes ~~~~~~~~~~~~~~~~ - ``pure_sklearn`` has been tested with ``scikit-learn`` versions >= 0.20 -- certain functionality may work with lower versions but are not guaranteed. Some functionality is explicitly not supported for certain ``scikit-learn`` versions and exceptions will be raised as appropriate. - ``xgboost`` requires version >= 0.82 for support with ``pure_sklearn``. - ``pure-predict`` is not supported with Python 2. - ``fasttext`` versions <= 0.9.1 have been tested. User Installation ~~~~~~~~~~~~~~~~~ The easiest way to install ``pure-predict`` is with ``pip``: :: pip install --upgrade pure-predict You can also download the source code: :: git clone https://github.com/Ibotta/pure-predict.git Testing ~~~~~~~ With ``pytest`` installed, you can run tests locally: :: pytest pure-predict Examples -------- The package contains `examples <https://github.com/Ibotta/pure-predict/tree/master/examples>`__ on how to use ``pure-predict`` in practice. Calls for Contributors ---------------------- Contributing to ``pure-predict`` is `welcomed by any contributors <https://github.com/Ibotta/pure-predict/blob/master/CONTRIBUTING.md>`__. Specific calls for contribution are as follows: #. Examples, tests and documentation -- particularly more detailed examples with performance testing of various estimators under various constraints. #. Adding more ``pure_sklearn`` estimators. The ``scikit-learn`` package is extensive and only partially covered by ``pure_sklearn``. `Regression <https://scikit-learn.org/stable/supervised_learning.html#supervised-learning>`__ tasks in particular missing from ``pure_sklearn``. `Clustering <https://scikit-learn.org/stable/modules/clustering.html#clustering>`__, `dimensionality reduction <https://scikit-learn.org/stable/modules/decomposition.html#decompositions>`__, `nearest neighbors <https://scikit-learn.org/stable/modules/neighbors.html>`__, `feature selection <https://scikit-learn.org/stable/modules/feature_selection.html>`__, non-linear `SVM <https://scikit-learn.org/stable/modules/svm.html>`__, and more are also omitted and would be good candidates for extending ``pure_sklearn``. #. General efficiency. There is likely low hanging fruit for improving the efficiency of the ``numpy`` and ``scipy`` functionality that has been ported to ``pure-predict``. #. `Threading <https://docs.python.org/3/library/threading.html>`__ could be considered to improve performance -- particularly for making predictions with multiple records. #. A public `AWS lambda layer <https://docs.aws.amazon.com/lambda/latest/dg/configuration-layers.html>`__ containing ``pure-predict``. Background ---------- The project was started at `Ibotta Inc. <https://medium.com/building-ibotta>`__ on the machine learning team and open sourced in 2020. It is currently maintained by the machine learning team at Ibotta. Acknowledgements ~~~~~~~~~~~~~~~~ Thanks to `David Mitchell <https://github.com/dlmitchell>`__ and `Andrew Tilley <https://github.com/tilleyand>`__ for internal review before open source. Thanks to `James Foley <https://github.com/chadfoley36>`__ for logo artwork. .. figure:: https://github.com/Ibotta/pure-predict/blob/master/doc/images/ibottaml.png :alt: IbottaML .. |License| image:: https://img.shields.io/badge/License-Apache%202.0-blue.svg :target: https://opensource.org/licenses/Apache-2.0 .. |Build Status| image:: https://travis-ci.com/Ibotta/pure-predict.png?branch=master :target: https://travis-ci.com/Ibotta/pure-predict .. |PyPI Package| image:: https://badge.fury.io/py/pure-predict.svg :target: https://pypi.org/project/pure-predict/ .. |Downloads| image:: https://pepy.tech/badge/pure-predict :target: https://pepy.tech/project/pure-predict .. |Python Versions| image:: https://img.shields.io/pypi/pyversions/pure-predict :target: https://pypi.org/project/pure-predict/
0.968738
0.825027
MAPPING = { "LogisticRegression": "scikit_endpoint.linear_model.LogisticRegressionPure", "RidgeClassifier": "scikit_endpoint.linear_model.RidgeClassifierPure", "SGDClassifier": "scikit_endpoint.linear_model.SGDClassifierPure", "Perceptron": "scikit_endpoint.linear_model.PerceptronPure", "PassiveAggressiveClassifier": "scikit_endpoint.linear_model.PassiveAggressiveClassifierPure", "LinearSVC": "scikit_endpoint.svm.LinearSVCPure", "DecisionTreeClassifier": "scikit_endpoint.tree.DecisionTreeClassifierPure", "DecisionTreeRegressor": "scikit_endpoint.tree.DecisionTreeRegressorPure", "ExtraTreeClassifier": "scikit_endpoint.tree.ExtraTreeClassifierPure", "ExtraTreeRegressor": "scikit_endpoint.tree.ExtraTreeRegressorPure", "RandomForestClassifier": "scikit_endpoint.ensemble.RandomForestClassifierPure", "BaggingClassifier": "scikit_endpoint.ensemble.BaggingClassifierPure", "GradientBoostingClassifier": "scikit_endpoint.ensemble.GradientBoostingClassifierPure", "XGBClassifier": "scikit_endpoint.xgboost.XGBClassifierPure", "ExtraTreesClassifier": "scikit_endpoint.ensemble.ExtraTreesClassifierPure", "GaussianNB": "scikit_endpoint.naive_bayes.GaussianNBPure", "MultinomialNB": "scikit_endpoint.naive_bayes.MultinomialNBPure", "ComplementNB": "scikit_endpoint.naive_bayes.ComplementNBPure", "SimpleImputer": "scikit_endpoint.impute.SimpleImputerPure", "MissingIndicator": "scikit_endpoint.impute.MissingIndicatorPure", "DummyClassifier": "scikit_endpoint.dummy.DummyClassifierPure", "Pipeline": "scikit_endpoint.pipeline.PipelinePure", "FeatureUnion": "scikit_endpoint.pipeline.FeatureUnionPure", "OneHotEncoder": "scikit_endpoint.preprocessing.OneHotEncoderPure", "OrdinalEncoder": "scikit_endpoint.preprocessing.OrdinalEncoderPure", "StandardScaler": "scikit_endpoint.preprocessing.StandardScalerPure", "MinMaxScaler": "scikit_endpoint.preprocessing.MinMaxScalerPure", "MaxAbsScaler": "scikit_endpoint.preprocessing.MaxAbsScalerPure", "Normalizer": "scikit_endpoint.preprocessing.NormalizerPure", "DictVectorizer": "scikit_endpoint.feature_extraction.DictVectorizerPure", "TfidfVectorizer": "scikit_endpoint.feature_extraction.text.TfidfVectorizerPure", "CountVectorizer": "scikit_endpoint.feature_extraction.text.CountVectorizerPure", "TfidfTransformer": "scikit_endpoint.feature_extraction.text.TfidfTransformerPure", "HashingVectorizer": "scikit_endpoint.feature_extraction.text.HashingVectorizerPure", "VarianceThreshold": "scikit_endpoint.feature_selection.VarianceThresholdPure", } def _instantiate_class(module, name): module = __import__(module, fromlist=[name]) return getattr(module, name) def convert_estimator(est, min_version=None): """Convert scikit-learn estimator to its scikit_endpoint counterpart""" est_name = est.__class__.__name__ pure_est_name = MAPPING.get(est_name) if pure_est_name is None: raise ValueError( "Cannot find 'scikit_endpoint' counterpart for {}".format(est_name) ) module = ".".join(pure_est_name.split(".")[:-1]) name = pure_est_name.split(".")[-1] return _instantiate_class(module, name)(est)
scikit-endpoint
/scikit-endpoint-0.0.3.tar.gz/scikit-endpoint-0.0.3/scikit_endpoint/map.py
map.py
MAPPING = { "LogisticRegression": "scikit_endpoint.linear_model.LogisticRegressionPure", "RidgeClassifier": "scikit_endpoint.linear_model.RidgeClassifierPure", "SGDClassifier": "scikit_endpoint.linear_model.SGDClassifierPure", "Perceptron": "scikit_endpoint.linear_model.PerceptronPure", "PassiveAggressiveClassifier": "scikit_endpoint.linear_model.PassiveAggressiveClassifierPure", "LinearSVC": "scikit_endpoint.svm.LinearSVCPure", "DecisionTreeClassifier": "scikit_endpoint.tree.DecisionTreeClassifierPure", "DecisionTreeRegressor": "scikit_endpoint.tree.DecisionTreeRegressorPure", "ExtraTreeClassifier": "scikit_endpoint.tree.ExtraTreeClassifierPure", "ExtraTreeRegressor": "scikit_endpoint.tree.ExtraTreeRegressorPure", "RandomForestClassifier": "scikit_endpoint.ensemble.RandomForestClassifierPure", "BaggingClassifier": "scikit_endpoint.ensemble.BaggingClassifierPure", "GradientBoostingClassifier": "scikit_endpoint.ensemble.GradientBoostingClassifierPure", "XGBClassifier": "scikit_endpoint.xgboost.XGBClassifierPure", "ExtraTreesClassifier": "scikit_endpoint.ensemble.ExtraTreesClassifierPure", "GaussianNB": "scikit_endpoint.naive_bayes.GaussianNBPure", "MultinomialNB": "scikit_endpoint.naive_bayes.MultinomialNBPure", "ComplementNB": "scikit_endpoint.naive_bayes.ComplementNBPure", "SimpleImputer": "scikit_endpoint.impute.SimpleImputerPure", "MissingIndicator": "scikit_endpoint.impute.MissingIndicatorPure", "DummyClassifier": "scikit_endpoint.dummy.DummyClassifierPure", "Pipeline": "scikit_endpoint.pipeline.PipelinePure", "FeatureUnion": "scikit_endpoint.pipeline.FeatureUnionPure", "OneHotEncoder": "scikit_endpoint.preprocessing.OneHotEncoderPure", "OrdinalEncoder": "scikit_endpoint.preprocessing.OrdinalEncoderPure", "StandardScaler": "scikit_endpoint.preprocessing.StandardScalerPure", "MinMaxScaler": "scikit_endpoint.preprocessing.MinMaxScalerPure", "MaxAbsScaler": "scikit_endpoint.preprocessing.MaxAbsScalerPure", "Normalizer": "scikit_endpoint.preprocessing.NormalizerPure", "DictVectorizer": "scikit_endpoint.feature_extraction.DictVectorizerPure", "TfidfVectorizer": "scikit_endpoint.feature_extraction.text.TfidfVectorizerPure", "CountVectorizer": "scikit_endpoint.feature_extraction.text.CountVectorizerPure", "TfidfTransformer": "scikit_endpoint.feature_extraction.text.TfidfTransformerPure", "HashingVectorizer": "scikit_endpoint.feature_extraction.text.HashingVectorizerPure", "VarianceThreshold": "scikit_endpoint.feature_selection.VarianceThresholdPure", } def _instantiate_class(module, name): module = __import__(module, fromlist=[name]) return getattr(module, name) def convert_estimator(est, min_version=None): """Convert scikit-learn estimator to its scikit_endpoint counterpart""" est_name = est.__class__.__name__ pure_est_name = MAPPING.get(est_name) if pure_est_name is None: raise ValueError( "Cannot find 'scikit_endpoint' counterpart for {}".format(est_name) ) module = ".".join(pure_est_name.split(".")[:-1]) name = pure_est_name.split(".")[-1] return _instantiate_class(module, name)(est)
0.580828
0.511717
from math import exp, log from operator import mul from .utils import shape, sparse_list, issparse def dot(A, B): """ Dot product between two arrays. A -> n_dim = 1 B -> n_dim = 2 """ arr = [] for i in range(len(B)): if isinstance(A, dict): val = sum([v * B[i][k] for k, v in A.items()]) else: val = sum(map(mul, A, B[i])) arr.append(val) return arr def dot_2d(A, B): """ Dot product between two arrays. A -> n_dim = 2 B -> n_dim = 2 """ return [dot(a, B) for a in A] def matmult_same_dim(A, B): """Multiply two matrices of the same dimension""" shape_A = shape(A) issparse_A = issparse(A) issparse_B = issparse(B) if shape_A != shape(B): raise ValueError("Shape A must equal shape B.") if not (issparse_A == issparse_B): raise ValueError("Both A and B must be sparse or dense.") X = [] if not issparse_A: for i in range(shape_A[0]): X.append([(A[i][j] * B[i][j]) for j in range(shape_A[1])]) else: for i in range(shape_A[0]): nested_res = [ [(k_b, v_a * v_b) for k_b, v_b in B[i].items() if k_b == k_a] for k_a, v_a in A[i].items() ] X.append(dict([item for sublist in nested_res for item in sublist])) X = sparse_list(X, size=A.size, dtype=A.dtype) return X def transpose(A): """Transpose 2-D list""" if issparse(A): raise ValueError("Sparse input not supported.") return list(map(list, [*zip(*A)])) def expit(x): """Expit function for scaler input""" return 1.0 / (1.0 + safe_exp(-x)) def sfmax(arr): """Softmax function for 1-D list or a single sparse_list element""" if isinstance(arr, dict): expons = {k: safe_exp(v) for k, v in arr.items()} denom = sum(expons.values()) out = {k: (v / float(denom)) for k, v in expons.items()} else: expons = list(map(safe_exp, arr)) out = list(map(lambda x: x / float(sum(expons)), expons)) return out def safe_log(x): """Equivalent to numpy log with scalar input""" if x == 0: return -float("Inf") elif x < 0: return float("Nan") else: return log(x) def safe_exp(x): """Equivalent to numpy exp with scalar input""" try: return exp(x) except OverflowError: return float("Inf") def operate_2d(A, B, func): """Apply elementwise function to 2-D lists""" if issparse(A) or issparse(B): raise ValueError("Sparse input not supported.") if shape(A) != shape(B): raise ValueError("'A' and 'B' must have the same shape") return [list(map(func, A[index], B[index])) for index in range(len(A))] def apply_2d(A, func): """Apply function to every element of 2-D list""" if issparse(A): raise ValueError("Sparse input not supported.") return [list(map(func, a)) for a in A] def apply_2d_sparse(A, func): """Apply function to every non-zero element of sparse_list""" if not issparse(A): raise ValueError("Dense input not supported.") A_ = [{k: func(v) for k, v in a.items()} for a in A] return sparse_list(A_, size=A.size, dtype=A.dtype) def apply_axis_2d(A, func, axis=1): """ Apply function along axis of 2-D list or non-zero elements of sparse_list. """ if issparse(A) and (axis == 0): raise ValueError("Sparse input not supported when axis=0.") if axis == 1: if issparse(A): return [func(a.values()) for a in A] else: return [func(a) for a in A] elif axis == 0: return [func(a) for a in transpose(A)] else: raise ValueError("Input 'axis' must be 0 or 1") def ravel(A): """Equivalent of numpy ravel on 2-D list""" if issparse(A): raise ValueError("Sparse input not supported.") return list(transpose(A)[0]) def slice_column(A, idx): """Slice columns from 2-D list A. Handles sparse data""" if isinstance(idx, int): if issparse(A): return [a.get(idx, A.dtype(0)) for a in A] else: return [a[idx] for a in A] if isinstance(idx, (list, tuple)): if issparse(A): A_ = [{k: v for k, v in a.items() if k in idx} for a in A] return sparse_list(A_, size=A.size, dtype=A.dtype) else: return [[a[i] for i in idx] for a in A] def accumu(lis): """Cumulative sum of list""" total = 0 for x in lis: total += x yield total
scikit-endpoint
/scikit-endpoint-0.0.3.tar.gz/scikit-endpoint-0.0.3/scikit_endpoint/base.py
base.py
from math import exp, log from operator import mul from .utils import shape, sparse_list, issparse def dot(A, B): """ Dot product between two arrays. A -> n_dim = 1 B -> n_dim = 2 """ arr = [] for i in range(len(B)): if isinstance(A, dict): val = sum([v * B[i][k] for k, v in A.items()]) else: val = sum(map(mul, A, B[i])) arr.append(val) return arr def dot_2d(A, B): """ Dot product between two arrays. A -> n_dim = 2 B -> n_dim = 2 """ return [dot(a, B) for a in A] def matmult_same_dim(A, B): """Multiply two matrices of the same dimension""" shape_A = shape(A) issparse_A = issparse(A) issparse_B = issparse(B) if shape_A != shape(B): raise ValueError("Shape A must equal shape B.") if not (issparse_A == issparse_B): raise ValueError("Both A and B must be sparse or dense.") X = [] if not issparse_A: for i in range(shape_A[0]): X.append([(A[i][j] * B[i][j]) for j in range(shape_A[1])]) else: for i in range(shape_A[0]): nested_res = [ [(k_b, v_a * v_b) for k_b, v_b in B[i].items() if k_b == k_a] for k_a, v_a in A[i].items() ] X.append(dict([item for sublist in nested_res for item in sublist])) X = sparse_list(X, size=A.size, dtype=A.dtype) return X def transpose(A): """Transpose 2-D list""" if issparse(A): raise ValueError("Sparse input not supported.") return list(map(list, [*zip(*A)])) def expit(x): """Expit function for scaler input""" return 1.0 / (1.0 + safe_exp(-x)) def sfmax(arr): """Softmax function for 1-D list or a single sparse_list element""" if isinstance(arr, dict): expons = {k: safe_exp(v) for k, v in arr.items()} denom = sum(expons.values()) out = {k: (v / float(denom)) for k, v in expons.items()} else: expons = list(map(safe_exp, arr)) out = list(map(lambda x: x / float(sum(expons)), expons)) return out def safe_log(x): """Equivalent to numpy log with scalar input""" if x == 0: return -float("Inf") elif x < 0: return float("Nan") else: return log(x) def safe_exp(x): """Equivalent to numpy exp with scalar input""" try: return exp(x) except OverflowError: return float("Inf") def operate_2d(A, B, func): """Apply elementwise function to 2-D lists""" if issparse(A) or issparse(B): raise ValueError("Sparse input not supported.") if shape(A) != shape(B): raise ValueError("'A' and 'B' must have the same shape") return [list(map(func, A[index], B[index])) for index in range(len(A))] def apply_2d(A, func): """Apply function to every element of 2-D list""" if issparse(A): raise ValueError("Sparse input not supported.") return [list(map(func, a)) for a in A] def apply_2d_sparse(A, func): """Apply function to every non-zero element of sparse_list""" if not issparse(A): raise ValueError("Dense input not supported.") A_ = [{k: func(v) for k, v in a.items()} for a in A] return sparse_list(A_, size=A.size, dtype=A.dtype) def apply_axis_2d(A, func, axis=1): """ Apply function along axis of 2-D list or non-zero elements of sparse_list. """ if issparse(A) and (axis == 0): raise ValueError("Sparse input not supported when axis=0.") if axis == 1: if issparse(A): return [func(a.values()) for a in A] else: return [func(a) for a in A] elif axis == 0: return [func(a) for a in transpose(A)] else: raise ValueError("Input 'axis' must be 0 or 1") def ravel(A): """Equivalent of numpy ravel on 2-D list""" if issparse(A): raise ValueError("Sparse input not supported.") return list(transpose(A)[0]) def slice_column(A, idx): """Slice columns from 2-D list A. Handles sparse data""" if isinstance(idx, int): if issparse(A): return [a.get(idx, A.dtype(0)) for a in A] else: return [a[idx] for a in A] if isinstance(idx, (list, tuple)): if issparse(A): A_ = [{k: v for k, v in a.items() if k in idx} for a in A] return sparse_list(A_, size=A.size, dtype=A.dtype) else: return [[a[i] for i in idx] for a in A] def accumu(lis): """Cumulative sum of list""" total = 0 for x in lis: total += x yield total
0.723798
0.71867
import pickle import time from warnings import warn from distutils.version import LooseVersion CONTAINERS = (list, dict, tuple) TYPES = (int, float, str, bool, type) MIN_VERSION = "0.20" def check_types(obj, containers=CONTAINERS, types=TYPES): """ Checks if input object is an allowed type. Objects can be acceptable containers or acceptable types themselves. Containers are checked recursively to ensure all contained types are valid. If object is a `scikit_endpoint` type, its attributes are all recursively checked. """ if isinstance(obj, containers): if isinstance(obj, (list, tuple)): for ob in obj: check_types(ob) else: for k, v in obj.items(): check_types(k) check_types(v) elif isinstance(obj, types): pass elif "scikit_endpoint" in str(type(obj)): for attr in vars(obj): check_types(getattr(obj, attr)) elif obj is None: pass else: raise ValueError("Object contains invalid type: {}".format(type(obj))) def check_version(estimator, min_version=None): """Checks the version of the scikit-learn estimator""" warning_str = ( "Estimators fitted with sklearn version < {} are not guaranteed to work".format( MIN_VERSION ) ) try: version_ = estimator.__getstate__()["_sklearn_version"] except: # noqa E722 warn(warning_str) return if (min_version is not None) and ( LooseVersion(version_) < LooseVersion(min_version) ): raise Exception( "The sklearn version is too low for this estimator; must be >= {}".format( min_version ) ) elif LooseVersion(version_) < LooseVersion(MIN_VERSION): warn(warning_str) def convert_type(dtype): """Converts a datatype to its pure python equivalent""" val = dtype(0) if hasattr(val, "item"): return type(val.item()) else: return dtype def check_array(X, handle_sparse="error"): """ Checks if array is compatible for prediction with `scikit_endpoint` classes. Input 'X' should be a non-empty `list` or `sparse_list`. If 'X' is sparse, flexible sparse handling is applied, allowing sparse by default, or optionally erroring on sparse input. """ if issparse(X): if handle_sparse == "allow": return X elif handle_sparse == "error": raise ValueError("Sparse input is not supported " "for this estimator") else: raise ValueError( "Invalid value for 'handle_sparse' " "input. Acceptable values are 'allow' or 'error'" ) if not isinstance(X, list): raise TypeError("Input 'X' must be a list") if len(X) == 0: return ValueError("Input 'X' must not be empty") return X def shape(X): """ Checks the shape of input list. Similar to numpy `ndarray.shape()`. Handles `list` or `sparse_list` input. """ if ndim(X) == 1: return (len(X),) elif ndim(X) == 2: if issparse(X): return (len(X), X.size) else: return (len(X), len(X[0])) def ndim(X): """Computes the dimension of input list""" if isinstance(X[0], (list, dict)): return 2 else: return 1 def tosparse(A): """Converts input dense list to a `sparse_list`""" return sparse_list(A) def todense(A): """Converts input `sparse_list` to a dense list""" return A.todense() def issparse(A): """Checks if input list is a `sparse_list`""" return isinstance(A, sparse_list) class sparse_list(list): """ Pure python implementation of a 2-D sparse data structure. The data structure is a list of dictionaries. Each dictionary represents a 'row' of data. The dictionary keys correspond to the indices of 'columns' and the dictionary values correspond to the data value associated with that index. Missing keys are assumed to have values of 0. Args: A (list): 2-D list of lists or list of dicts size (int): Number of 'columns' of the data structure dtype (type): Data type of data values Examples: >>> A = [[0,1,0], [0,1,1]] >>> print(sparse_list(A)) ... [{1:1}, {2:1, 3:1}] >>> >>> B = [{3:0.5}, {1:0.9, 10:0.2}] >>> print(sparse_list(B, size=11, dtype=float)) ... [{3:0.5}, {1:0.9, 10:0.2}] """ def __init__(self, A, size=None, dtype=None): if isinstance(A[0], dict): self.dtype = float if dtype is None else dtype self.size = size for row in A: self.append(row) else: A = check_array(A) self.size = shape(A)[1] self.dtype = type(A[0][0]) for row in A: self.append( dict([(i, row[i]) for i in range(self.size) if row[i] != 0]) ) def todense(self): """Converts `sparse_list` instance to a dense list""" A_dense = [] zero_val = self.dtype(0) for row in self: A_dense.append([row.get(i, zero_val) for i in range(self.size)]) return A_dense def performance_comparison(sklearn_estimator, pure_sklearn_estimator, X): """ Profile performance characteristics between sklearn estimator and corresponding pure-predict estimator. Args: sklearn_estimator (object) pure_sklearn_estimator (object) X (numpy ndarray): features for prediction """ # -- profile pickled object size: sklearn vs pure-predict pickled = pickle.dumps(sklearn_estimator) pickled_ = pickle.dumps(pure_sklearn_estimator) print("Pickle Size sklearn: {}".format(len(pickled))) print("Pickle Size pure-predict: {}".format(len(pickled_))) print("Difference: {}".format(len(pickled_) / float(len(pickled)))) # -- profile unpickle time: sklearn vs pure-predict start = time.time() _ = pickle.loads(pickled) pickle_t = time.time() - start print("Unpickle time sklearn: {}".format(pickle_t)) start = time.time() _ = pickle.loads(pickled_) pickle_t_ = time.time() - start print("Unpickle time pure-predict: {}".format(pickle_t_)) print("Difference: {}".format(pickle_t_ / pickle_t)) # -- profile single record predict latency: sklearn vs pure-predict X_pred = X[:1] X_pred_ = X_pred if isinstance(X_pred, list) else X_pred.tolist() start = time.time() _ = sklearn_estimator.predict(X_pred) pred_t = time.time() - start print("Predict 1 record sklearn: {}".format(pred_t)) start = time.time() _ = pure_sklearn_estimator.predict(X_pred_) pred_t_ = time.time() - start print("Predict 1 record pure-predict: {}".format(pred_t_)) print("Difference: {}".format(pred_t_ / pred_t))
scikit-endpoint
/scikit-endpoint-0.0.3.tar.gz/scikit-endpoint-0.0.3/scikit_endpoint/utils.py
utils.py
import pickle import time from warnings import warn from distutils.version import LooseVersion CONTAINERS = (list, dict, tuple) TYPES = (int, float, str, bool, type) MIN_VERSION = "0.20" def check_types(obj, containers=CONTAINERS, types=TYPES): """ Checks if input object is an allowed type. Objects can be acceptable containers or acceptable types themselves. Containers are checked recursively to ensure all contained types are valid. If object is a `scikit_endpoint` type, its attributes are all recursively checked. """ if isinstance(obj, containers): if isinstance(obj, (list, tuple)): for ob in obj: check_types(ob) else: for k, v in obj.items(): check_types(k) check_types(v) elif isinstance(obj, types): pass elif "scikit_endpoint" in str(type(obj)): for attr in vars(obj): check_types(getattr(obj, attr)) elif obj is None: pass else: raise ValueError("Object contains invalid type: {}".format(type(obj))) def check_version(estimator, min_version=None): """Checks the version of the scikit-learn estimator""" warning_str = ( "Estimators fitted with sklearn version < {} are not guaranteed to work".format( MIN_VERSION ) ) try: version_ = estimator.__getstate__()["_sklearn_version"] except: # noqa E722 warn(warning_str) return if (min_version is not None) and ( LooseVersion(version_) < LooseVersion(min_version) ): raise Exception( "The sklearn version is too low for this estimator; must be >= {}".format( min_version ) ) elif LooseVersion(version_) < LooseVersion(MIN_VERSION): warn(warning_str) def convert_type(dtype): """Converts a datatype to its pure python equivalent""" val = dtype(0) if hasattr(val, "item"): return type(val.item()) else: return dtype def check_array(X, handle_sparse="error"): """ Checks if array is compatible for prediction with `scikit_endpoint` classes. Input 'X' should be a non-empty `list` or `sparse_list`. If 'X' is sparse, flexible sparse handling is applied, allowing sparse by default, or optionally erroring on sparse input. """ if issparse(X): if handle_sparse == "allow": return X elif handle_sparse == "error": raise ValueError("Sparse input is not supported " "for this estimator") else: raise ValueError( "Invalid value for 'handle_sparse' " "input. Acceptable values are 'allow' or 'error'" ) if not isinstance(X, list): raise TypeError("Input 'X' must be a list") if len(X) == 0: return ValueError("Input 'X' must not be empty") return X def shape(X): """ Checks the shape of input list. Similar to numpy `ndarray.shape()`. Handles `list` or `sparse_list` input. """ if ndim(X) == 1: return (len(X),) elif ndim(X) == 2: if issparse(X): return (len(X), X.size) else: return (len(X), len(X[0])) def ndim(X): """Computes the dimension of input list""" if isinstance(X[0], (list, dict)): return 2 else: return 1 def tosparse(A): """Converts input dense list to a `sparse_list`""" return sparse_list(A) def todense(A): """Converts input `sparse_list` to a dense list""" return A.todense() def issparse(A): """Checks if input list is a `sparse_list`""" return isinstance(A, sparse_list) class sparse_list(list): """ Pure python implementation of a 2-D sparse data structure. The data structure is a list of dictionaries. Each dictionary represents a 'row' of data. The dictionary keys correspond to the indices of 'columns' and the dictionary values correspond to the data value associated with that index. Missing keys are assumed to have values of 0. Args: A (list): 2-D list of lists or list of dicts size (int): Number of 'columns' of the data structure dtype (type): Data type of data values Examples: >>> A = [[0,1,0], [0,1,1]] >>> print(sparse_list(A)) ... [{1:1}, {2:1, 3:1}] >>> >>> B = [{3:0.5}, {1:0.9, 10:0.2}] >>> print(sparse_list(B, size=11, dtype=float)) ... [{3:0.5}, {1:0.9, 10:0.2}] """ def __init__(self, A, size=None, dtype=None): if isinstance(A[0], dict): self.dtype = float if dtype is None else dtype self.size = size for row in A: self.append(row) else: A = check_array(A) self.size = shape(A)[1] self.dtype = type(A[0][0]) for row in A: self.append( dict([(i, row[i]) for i in range(self.size) if row[i] != 0]) ) def todense(self): """Converts `sparse_list` instance to a dense list""" A_dense = [] zero_val = self.dtype(0) for row in self: A_dense.append([row.get(i, zero_val) for i in range(self.size)]) return A_dense def performance_comparison(sklearn_estimator, pure_sklearn_estimator, X): """ Profile performance characteristics between sklearn estimator and corresponding pure-predict estimator. Args: sklearn_estimator (object) pure_sklearn_estimator (object) X (numpy ndarray): features for prediction """ # -- profile pickled object size: sklearn vs pure-predict pickled = pickle.dumps(sklearn_estimator) pickled_ = pickle.dumps(pure_sklearn_estimator) print("Pickle Size sklearn: {}".format(len(pickled))) print("Pickle Size pure-predict: {}".format(len(pickled_))) print("Difference: {}".format(len(pickled_) / float(len(pickled)))) # -- profile unpickle time: sklearn vs pure-predict start = time.time() _ = pickle.loads(pickled) pickle_t = time.time() - start print("Unpickle time sklearn: {}".format(pickle_t)) start = time.time() _ = pickle.loads(pickled_) pickle_t_ = time.time() - start print("Unpickle time pure-predict: {}".format(pickle_t_)) print("Difference: {}".format(pickle_t_ / pickle_t)) # -- profile single record predict latency: sklearn vs pure-predict X_pred = X[:1] X_pred_ = X_pred if isinstance(X_pred, list) else X_pred.tolist() start = time.time() _ = sklearn_estimator.predict(X_pred) pred_t = time.time() - start print("Predict 1 record sklearn: {}".format(pred_t)) start = time.time() _ = pure_sklearn_estimator.predict(X_pred_) pred_t_ = time.time() - start print("Predict 1 record pure-predict: {}".format(pred_t_)) print("Difference: {}".format(pred_t_ / pred_t))
0.785267
0.296508
from abc import abstractmethod from math import pi from .base import dot, transpose, safe_log, safe_exp from .utils import check_array, check_types, check_version __all__ = ["GaussianNBPure", "MultinomialNBPure", "ComplementNBPure"] class _BaseNBPure: """Base class for naive Bayes classifiers""" @abstractmethod def _joint_log_likelihood(self, X): """Compute the unnormalized posterior log probability of X""" def predict(self, X): """ Perform classification on an array of test vectors X. """ X = check_array(X, handle_sparse="error") jll = self._joint_log_likelihood(X) indices = map(lambda a: a.index(max(a)), jll) return [self.classes_[i] for i in indices] def predict_log_proba(self, X): """ Return log-probability estimates for the test vector X. """ X = check_array(X, handle_sparse="error") jll = self._joint_log_likelihood(X) log_prob_x = list(map(lambda a: safe_log(sum(map(safe_exp, a))), jll)) return [ list(map(lambda a: a - log_prob_x[index], jll[index])) for index in range(len(jll)) ] def predict_proba(self, X): """ Return probability estimates for the test vector X. """ return [list(map(safe_exp, a)) for a in self.predict_log_proba(X)] class GaussianNBPure(_BaseNBPure): """ Pure python implementation of `GaussianNB`. Args: estimator (sklearn estimator): fitted `GaussianNB` object """ def __init__(self, estimator): check_version(estimator) self.class_prior_ = estimator.class_prior_.tolist() self.classes_ = estimator.classes_.tolist() self.var_ = estimator.var_.tolist() self.theta_ = estimator.theta_.tolist() check_types(self) def _joint_log_likelihood(self, X): """Calculate the posterior log probability of the samples X""" joint_log_likelihood = [] for i in range(len(self.classes_)): jointi = safe_log(self.class_prior_[i]) n_ij = -0.5 * sum(list(map(lambda x: safe_log(2.0 * pi * x), self.var_[i]))) jll = [ list( map( lambda b: ((a[b] - self.theta_[i][b]) ** 2) / self.var_[i][b], range(len(a)), ) ) for a in X ] jll = list(map(lambda a: 0.5 * sum(a), jll)) jll = [(n_ij - a) + jointi for a in jll] joint_log_likelihood.append(jll) return transpose(joint_log_likelihood) class MultinomialNBPure(_BaseNBPure): """ Pure python implementation of `MultinomialNB`. Args: estimator (sklearn estimator): fitted `MultinomialNB` object """ def __init__(self, estimator): check_version(estimator) self.class_log_prior_ = estimator.class_log_prior_.tolist() self.classes_ = estimator.classes_.tolist() self.feature_log_prob_ = estimator.feature_log_prob_.tolist() check_types(self) def _joint_log_likelihood(self, X): """Calculate the posterior log probability of the samples X""" return [self._jll(a) for a in X] def _jll(self, x): """Calculate the joint log likelihood for one sample""" dot_prod = dot(x, self.feature_log_prob_) return [ (dot_prod[index] + self.class_log_prior_[index]) for index in range(len(self.classes_)) ] class ComplementNBPure(_BaseNBPure): """ Pure python implementation of `ComplementNB`. Args: estimator (sklearn estimator): fitted `ComplementNB` object """ def __init__(self, estimator): check_version(estimator) self.class_log_prior_ = estimator.class_log_prior_.tolist() self.classes_ = estimator.classes_.tolist() self.feature_log_prob_ = estimator.feature_log_prob_.tolist() check_types(self) def _joint_log_likelihood(self, X): """Calculate the class scores for the samples in X""" jll = [dot(x, self.feature_log_prob_) for x in X] if len(self.classes_) == 1: jll = [[x[0] + self.class_log_prior_[0]] for x in jll] return jll
scikit-endpoint
/scikit-endpoint-0.0.3.tar.gz/scikit-endpoint-0.0.3/scikit_endpoint/naive_bayes.py
naive_bayes.py
from abc import abstractmethod from math import pi from .base import dot, transpose, safe_log, safe_exp from .utils import check_array, check_types, check_version __all__ = ["GaussianNBPure", "MultinomialNBPure", "ComplementNBPure"] class _BaseNBPure: """Base class for naive Bayes classifiers""" @abstractmethod def _joint_log_likelihood(self, X): """Compute the unnormalized posterior log probability of X""" def predict(self, X): """ Perform classification on an array of test vectors X. """ X = check_array(X, handle_sparse="error") jll = self._joint_log_likelihood(X) indices = map(lambda a: a.index(max(a)), jll) return [self.classes_[i] for i in indices] def predict_log_proba(self, X): """ Return log-probability estimates for the test vector X. """ X = check_array(X, handle_sparse="error") jll = self._joint_log_likelihood(X) log_prob_x = list(map(lambda a: safe_log(sum(map(safe_exp, a))), jll)) return [ list(map(lambda a: a - log_prob_x[index], jll[index])) for index in range(len(jll)) ] def predict_proba(self, X): """ Return probability estimates for the test vector X. """ return [list(map(safe_exp, a)) for a in self.predict_log_proba(X)] class GaussianNBPure(_BaseNBPure): """ Pure python implementation of `GaussianNB`. Args: estimator (sklearn estimator): fitted `GaussianNB` object """ def __init__(self, estimator): check_version(estimator) self.class_prior_ = estimator.class_prior_.tolist() self.classes_ = estimator.classes_.tolist() self.var_ = estimator.var_.tolist() self.theta_ = estimator.theta_.tolist() check_types(self) def _joint_log_likelihood(self, X): """Calculate the posterior log probability of the samples X""" joint_log_likelihood = [] for i in range(len(self.classes_)): jointi = safe_log(self.class_prior_[i]) n_ij = -0.5 * sum(list(map(lambda x: safe_log(2.0 * pi * x), self.var_[i]))) jll = [ list( map( lambda b: ((a[b] - self.theta_[i][b]) ** 2) / self.var_[i][b], range(len(a)), ) ) for a in X ] jll = list(map(lambda a: 0.5 * sum(a), jll)) jll = [(n_ij - a) + jointi for a in jll] joint_log_likelihood.append(jll) return transpose(joint_log_likelihood) class MultinomialNBPure(_BaseNBPure): """ Pure python implementation of `MultinomialNB`. Args: estimator (sklearn estimator): fitted `MultinomialNB` object """ def __init__(self, estimator): check_version(estimator) self.class_log_prior_ = estimator.class_log_prior_.tolist() self.classes_ = estimator.classes_.tolist() self.feature_log_prob_ = estimator.feature_log_prob_.tolist() check_types(self) def _joint_log_likelihood(self, X): """Calculate the posterior log probability of the samples X""" return [self._jll(a) for a in X] def _jll(self, x): """Calculate the joint log likelihood for one sample""" dot_prod = dot(x, self.feature_log_prob_) return [ (dot_prod[index] + self.class_log_prior_[index]) for index in range(len(self.classes_)) ] class ComplementNBPure(_BaseNBPure): """ Pure python implementation of `ComplementNB`. Args: estimator (sklearn estimator): fitted `ComplementNB` object """ def __init__(self, estimator): check_version(estimator) self.class_log_prior_ = estimator.class_log_prior_.tolist() self.classes_ = estimator.classes_.tolist() self.feature_log_prob_ = estimator.feature_log_prob_.tolist() check_types(self) def _joint_log_likelihood(self, X): """Calculate the class scores for the samples in X""" jll = [dot(x, self.feature_log_prob_) for x in X] if len(self.classes_) == 1: jll = [[x[0] + self.class_log_prior_[0]] for x in jll] return jll
0.931952
0.583856
from operator import add from ..utils import check_array, ndim, shape, check_types from ..base import dot, expit, ravel class LinearClassifierMixinPure: """Mixin for linear classifiers""" def __init__(self, estimator): self.coef_ = estimator.coef_.tolist() self.classes_ = estimator.classes_.tolist() if hasattr(estimator, "intercept_"): if isinstance(estimator.intercept_, float): self.intercept_ = [estimator.intercept_] * len(self.classes_) else: self.intercept_ = estimator.intercept_.tolist() if hasattr(estimator, "multi_class"): self.multi_class = estimator.multi_class if hasattr(estimator, "solver"): self.solver = estimator.solver if hasattr(estimator, "loss"): self.loss = estimator.loss check_types(self) def decision_function(self, X): """ Predict confidence scores for samples. The confidence score for a sample is the signed distance of that sample to the hyperplane. """ X = check_array(X, handle_sparse="allow") n_features = shape(self.coef_)[1] if shape(X)[1] != n_features: raise ValueError( "X has %d features per sample; expecting %d" % (shape(X)[1], n_features) ) scores = [ list(map(add, dot(X[i], self.coef_), self.intercept_)) for i in range(len(X)) ] return ravel(scores) if shape(scores)[1] == 1 else scores def predict(self, X): """Predict class labels for samples in X""" scores = self.decision_function(X) if len(shape(scores)) == 1: indices = map(lambda x: int(x > 0), scores) else: indices = map(lambda a: a.index(max(a)), scores) return [self.classes_[i] for i in indices] def _predict_proba_lr(self, X): """ Probability estimation for OvR logistic regression. Positive class probabilities are computed as 1. / (1. + np.exp(-self.decision_function(X))); multiclass is handled by normalizing that over all classes. """ prob = self.decision_function(X) if ndim(prob) == 1: return [[1 - a, a] for a in map(expit, prob)] else: prob = [list(map(expit, a)) for a in prob] return [ list(map(lambda b: (b / sum(a)) if sum(a) != 0 else float("NaN"), a)) for a in prob ]
scikit-endpoint
/scikit-endpoint-0.0.3.tar.gz/scikit-endpoint-0.0.3/scikit_endpoint/linear_model/_base.py
_base.py
from operator import add from ..utils import check_array, ndim, shape, check_types from ..base import dot, expit, ravel class LinearClassifierMixinPure: """Mixin for linear classifiers""" def __init__(self, estimator): self.coef_ = estimator.coef_.tolist() self.classes_ = estimator.classes_.tolist() if hasattr(estimator, "intercept_"): if isinstance(estimator.intercept_, float): self.intercept_ = [estimator.intercept_] * len(self.classes_) else: self.intercept_ = estimator.intercept_.tolist() if hasattr(estimator, "multi_class"): self.multi_class = estimator.multi_class if hasattr(estimator, "solver"): self.solver = estimator.solver if hasattr(estimator, "loss"): self.loss = estimator.loss check_types(self) def decision_function(self, X): """ Predict confidence scores for samples. The confidence score for a sample is the signed distance of that sample to the hyperplane. """ X = check_array(X, handle_sparse="allow") n_features = shape(self.coef_)[1] if shape(X)[1] != n_features: raise ValueError( "X has %d features per sample; expecting %d" % (shape(X)[1], n_features) ) scores = [ list(map(add, dot(X[i], self.coef_), self.intercept_)) for i in range(len(X)) ] return ravel(scores) if shape(scores)[1] == 1 else scores def predict(self, X): """Predict class labels for samples in X""" scores = self.decision_function(X) if len(shape(scores)) == 1: indices = map(lambda x: int(x > 0), scores) else: indices = map(lambda a: a.index(max(a)), scores) return [self.classes_[i] for i in indices] def _predict_proba_lr(self, X): """ Probability estimation for OvR logistic regression. Positive class probabilities are computed as 1. / (1. + np.exp(-self.decision_function(X))); multiclass is handled by normalizing that over all classes. """ prob = self.decision_function(X) if ndim(prob) == 1: return [[1 - a, a] for a in map(expit, prob)] else: prob = [list(map(expit, a)) for a in prob] return [ list(map(lambda b: (b / sum(a)) if sum(a) != 0 else float("NaN"), a)) for a in prob ]
0.772702
0.315413
import re import unicodedata from functools import partial from math import isnan import warnings from ._hash import _FeatureHasherPure from ..map import convert_estimator from ..preprocessing import normalize_pure from ..utils import ( convert_type, sparse_list, shape, check_array, check_types, check_version, ) from ..base import safe_log __all__ = [ "CountVectorizerPure", "TfidfTransformerPure", "TfidfVectorizerPure", "HashingVectorizerPure", ] def _preprocess(doc, accent_function=None, lower=False): """ Chain together an optional series of text preprocessing steps to apply to a document. """ if lower: doc = doc.lower() if accent_function is not None: doc = accent_function(doc) return doc def _analyze( doc, analyzer=None, tokenizer=None, ngrams=None, preprocessor=None, decoder=None, stop_words=None, ): """ Chain together an optional series of text processing steps to go from a single document to ngrams, with or without tokenizing or preprocessing. """ if decoder is not None: doc = decoder(doc) if analyzer is not None: doc = analyzer(doc) else: if preprocessor is not None: doc = preprocessor(doc) if tokenizer is not None: doc = tokenizer(doc) if ngrams is not None: if stop_words is not None: doc = ngrams(doc, stop_words) else: doc = ngrams(doc) return doc def strip_accents_unicode(s): """Transform accentuated unicode symbols into their simple counterpart""" try: # If `s` is ASCII-compatible, then it does not contain any accented # characters and we can avoid an expensive list comprehension s.encode("ASCII", errors="strict") return s except UnicodeEncodeError: normalized = unicodedata.normalize("NFKD", s) return "".join([c for c in normalized if not unicodedata.combining(c)]) def strip_accents_ascii(s): """Transform accentuated unicode symbols into ascii or nothing""" nkfd_form = unicodedata.normalize("NFKD", s) return nkfd_form.encode("ASCII", "ignore").decode("ASCII") def strip_tags(s): """Basic regexp based HTML / XML tag stripper function""" return re.compile(r"<([^>]+)>", flags=re.UNICODE).sub(" ", s) def _check_stop_list(stop): if stop == "english": raise ValueError( "English stopwords not supported. Pass explicitly as a custom stopwords list." ) elif isinstance(stop, str): raise ValueError("not a built-in stop list: %s" % stop) elif stop is None: return None else: # assume it's a collection return frozenset(stop) class _VectorizerMixinPure: """Provides common code for text vectorizers (tokenization logic)""" _white_spaces = re.compile(r"\s\s+") def decode(self, doc): """Decode the input into a string of unicode symbols""" if self.input == "filename": with open(doc, "rb") as fh: doc = fh.read() elif self.input == "file": doc = doc.read() if isinstance(doc, bytes): doc = doc.decode(self.encoding, self.decode_error) if not isinstance(doc, str) and isnan(doc): raise ValueError( "np.nan is an invalid document, expected byte or unicode string." ) return doc def _word_ngrams(self, tokens, stop_words=None): """Turn tokens into a sequence of n-grams after stop words filtering""" # handle stop words if stop_words is not None: tokens = [w for w in tokens if w not in stop_words] # handle token n-grams min_n, max_n = self.ngram_range if max_n != 1: original_tokens = tokens if min_n == 1: # no need to do any slicing for unigrams # just iterate through the original tokens tokens = list(original_tokens) min_n += 1 else: tokens = [] n_original_tokens = len(original_tokens) # bind method outside of loop to reduce overhead tokens_append = tokens.append space_join = " ".join for n in range(min_n, min(max_n + 1, n_original_tokens + 1)): for i in range(n_original_tokens - n + 1): tokens_append(space_join(original_tokens[i : i + n])) return tokens def _char_ngrams(self, text_document): """Tokenize text_document into a sequence of character n-grams""" # normalize white spaces text_document = self._white_spaces.sub(" ", text_document) text_len = len(text_document) min_n, max_n = self.ngram_range if min_n == 1: # no need to do any slicing for unigrams # iterate through the string ngrams = list(text_document) min_n += 1 else: ngrams = [] # bind method outside of loop to reduce overhead ngrams_append = ngrams.append for n in range(min_n, min(max_n + 1, text_len + 1)): for i in range(text_len - n + 1): ngrams_append(text_document[i : i + n]) return ngrams def _char_wb_ngrams(self, text_document): """Whitespace sensitive char-n-gram tokenization""" # normalize white spaces text_document = self._white_spaces.sub(" ", text_document) min_n, max_n = self.ngram_range ngrams = [] # bind method outside of loop to reduce overhead ngrams_append = ngrams.append for w in text_document.split(): w = " " + w + " " w_len = len(w) for n in range(min_n, max_n + 1): offset = 0 ngrams_append(w[offset : offset + n]) while offset + n < w_len: offset += 1 ngrams_append(w[offset : offset + n]) if offset == 0: # count a short word (w_len < n) only once break return ngrams def build_preprocessor(self): """Return a function to preprocess the text before tokenization""" if self.preprocessor is not None: return self.preprocessor # accent stripping if not self.strip_accents: strip_accents = None elif callable(self.strip_accents): strip_accents = self.strip_accents elif self.strip_accents == "ascii": strip_accents = strip_accents_ascii elif self.strip_accents == "unicode": strip_accents = strip_accents_unicode else: raise ValueError( 'Invalid value for "strip_accents": %s' % self.strip_accents ) return partial(_preprocess, accent_function=strip_accents, lower=self.lowercase) def build_tokenizer(self): """Return a function that splits a string into a sequence of tokens""" if self.tokenizer is not None: return self.tokenizer token_pattern = re.compile(self.token_pattern) return token_pattern.findall def get_stop_words(self): """Build or fetch the effective stop words list""" return _check_stop_list(self.stop_words) def _check_stop_words_consistency(self, stop_words, preprocess, tokenize): """Check if stop words are consistent""" if id(self.stop_words) == getattr(self, "_stop_words_id", None): # Stop words are were previously validated return None # NB: stop_words is validated, unlike self.stop_words try: inconsistent = set() for w in stop_words or (): tokens = list(tokenize(preprocess(w))) for token in tokens: if token not in stop_words: inconsistent.add(token) self._stop_words_id = id(self.stop_words) if inconsistent: warnings.warn( "Your stop_words may be inconsistent with " "your preprocessing. Tokenizing the stop " "words generated tokens %r not in " "stop_words." % sorted(inconsistent) ) return not inconsistent except Exception: # Failed to check stop words consistency (e.g. because a custom # preprocessor or tokenizer was used) self._stop_words_id = id(self.stop_words) return "error" def build_analyzer(self): """ Return a callable that handles preprocessing, tokenization and n-grams generation. """ if callable(self.analyzer): if self.input in ["file", "filename"]: self._validate_custom_analyzer() return partial(_analyze, analyzer=self.analyzer, decoder=self.decode) preprocess = self.build_preprocessor() if self.analyzer == "char": return partial( _analyze, ngrams=self._char_ngrams, preprocessor=preprocess, decoder=self.decode, ) elif self.analyzer == "char_wb": return partial( _analyze, ngrams=self._char_wb_ngrams, preprocessor=preprocess, decoder=self.decode, ) elif self.analyzer == "word": stop_words = self.get_stop_words() tokenize = self.build_tokenizer() self._check_stop_words_consistency(stop_words, preprocess, tokenize) return partial( _analyze, ngrams=self._word_ngrams, tokenizer=tokenize, preprocessor=preprocess, decoder=self.decode, stop_words=stop_words, ) else: raise ValueError( "%s is not a valid tokenization scheme/analyzer" % self.analyzer ) class CountVectorizerPure(_VectorizerMixinPure): """ Pure python implementation of `CountVectorizer`. Args: estimator (sklearn estimator): fitted `CountVectorizer` object """ def __init__(self, estimator): check_version(estimator) self.dtype = convert_type(estimator.dtype) self.binary = estimator.binary self.vocabulary_ = {k: int(v) for k, v in estimator.vocabulary_.items()} self.analyzer = estimator.analyzer self.preprocessor = estimator.preprocessor self.tokenizer = estimator.tokenizer self.stop_words = estimator.stop_words self.token_pattern = estimator.token_pattern self.ngram_range = estimator.ngram_range self.strip_accents = estimator.strip_accents self.decode_error = estimator.decode_error self.encoding = estimator.encoding self.lowercase = estimator.lowercase self.input = estimator.input check_types(self) def _count_vocab(self, raw_documents): """Create sparse feature matrix, and vocabulary where fixed_vocab=False""" vocabulary = self.vocabulary_ analyze = self.build_analyzer() data = [] for doc in raw_documents: feature_counter = {} for feature in analyze(doc): try: feature_idx = vocabulary[feature] if feature_idx not in feature_counter: feature_counter[feature_idx] = 1 else: feature_counter[feature_idx] += 1 except KeyError: continue data.append(feature_counter) X = sparse_list(data, size=len(vocabulary), dtype=self.dtype) return vocabulary, X def transform(self, raw_documents): """Transform documents to document-term matrix""" if isinstance(raw_documents, str): raise ValueError( "Iterable over raw text documents expected, string object received." ) _, X = self._count_vocab(raw_documents) if self.binary: X = [dict.fromkeys(x, 1) for x in X] return X class TfidfVectorizerPure(CountVectorizerPure): """ Pure python implementation of `TfidfVectorizer`. Args: estimator (sklearn estimator): fitted `TfidfVectorizer` object """ def __init__(self, estimator): check_version(estimator) self._tfidf = convert_estimator(estimator._tfidf) super().__init__(estimator) def transform(self, raw_documents): """Transform documents to document-term matrix.""" X = super().transform(raw_documents) return self._tfidf.transform(X, copy=False) class TfidfTransformerPure: """ Pure python implementation of `TfidfTransformer`. Args: estimator (sklearn estimator): fitted `TfidfTransformer` object """ def __init__(self, estimator): check_version(estimator) self.norm = estimator.norm self.use_idf = estimator.use_idf self.smooth_idf = estimator.smooth_idf self.sublinear_tf = estimator.sublinear_tf self.idf_ = estimator.idf_.tolist() self.expected_n_features_ = estimator._idf_diag.shape[0] check_types(self) def transform(self, X, copy=True): X = check_array(X, handle_sparse="allow") n_samples, n_features = shape(X) if self.sublinear_tf: for index in range(len(X)): X[index] = safe_log(X[index]) + 1 if self.use_idf: if n_features != self.expected_n_features_: raise ValueError( "Input has n_features=%d while the model" " has been trained with n_features=%d" % (n_features, self.expected_n_features_) ) for index in range(len(X)): for k, v in X[index].items(): X[index][k] = v * self.idf_[k] if self.norm: X = normalize_pure(X, norm=self.norm, copy=False) return X class HashingVectorizerPure(_VectorizerMixinPure): """ Pure python implementation of `HashingVectorizer`. Args: estimator (sklearn estimator): fitted `HashingVectorizer` object """ def __init__(self, estimator): check_version(estimator) self.dtype = convert_type(estimator.dtype) self.norm = estimator.norm self.binary = estimator.binary self.analyzer = estimator.analyzer self.preprocessor = estimator.preprocessor self.tokenizer = estimator.tokenizer self.stop_words = estimator.stop_words self.token_pattern = estimator.token_pattern self.ngram_range = estimator.ngram_range self.strip_accents = estimator.strip_accents self.decode_error = estimator.decode_error self.encoding = estimator.encoding self.lowercase = estimator.lowercase self.input = estimator.input self.n_features = estimator.n_features self.alternate_sign = estimator.alternate_sign check_types(self) def transform(self, X): """Transform a sequence of documents to a document-term matrix""" if isinstance(X, str): raise ValueError( "Iterable over raw text documents expected, string object received." ) analyzer = self.build_analyzer() X = self._get_hasher().transform(analyzer(doc) for doc in X) if self.binary: X = [dict.fromkeys(x, 1) for x in X] if self.norm is not None: X = normalize_pure(X, norm=self.norm, copy=False) return X def _get_hasher(self): return _FeatureHasherPure( n_features=self.n_features, input_type="string", dtype=self.dtype, alternate_sign=self.alternate_sign, )
scikit-endpoint
/scikit-endpoint-0.0.3.tar.gz/scikit-endpoint-0.0.3/scikit_endpoint/feature_extraction/text.py
text.py
import re import unicodedata from functools import partial from math import isnan import warnings from ._hash import _FeatureHasherPure from ..map import convert_estimator from ..preprocessing import normalize_pure from ..utils import ( convert_type, sparse_list, shape, check_array, check_types, check_version, ) from ..base import safe_log __all__ = [ "CountVectorizerPure", "TfidfTransformerPure", "TfidfVectorizerPure", "HashingVectorizerPure", ] def _preprocess(doc, accent_function=None, lower=False): """ Chain together an optional series of text preprocessing steps to apply to a document. """ if lower: doc = doc.lower() if accent_function is not None: doc = accent_function(doc) return doc def _analyze( doc, analyzer=None, tokenizer=None, ngrams=None, preprocessor=None, decoder=None, stop_words=None, ): """ Chain together an optional series of text processing steps to go from a single document to ngrams, with or without tokenizing or preprocessing. """ if decoder is not None: doc = decoder(doc) if analyzer is not None: doc = analyzer(doc) else: if preprocessor is not None: doc = preprocessor(doc) if tokenizer is not None: doc = tokenizer(doc) if ngrams is not None: if stop_words is not None: doc = ngrams(doc, stop_words) else: doc = ngrams(doc) return doc def strip_accents_unicode(s): """Transform accentuated unicode symbols into their simple counterpart""" try: # If `s` is ASCII-compatible, then it does not contain any accented # characters and we can avoid an expensive list comprehension s.encode("ASCII", errors="strict") return s except UnicodeEncodeError: normalized = unicodedata.normalize("NFKD", s) return "".join([c for c in normalized if not unicodedata.combining(c)]) def strip_accents_ascii(s): """Transform accentuated unicode symbols into ascii or nothing""" nkfd_form = unicodedata.normalize("NFKD", s) return nkfd_form.encode("ASCII", "ignore").decode("ASCII") def strip_tags(s): """Basic regexp based HTML / XML tag stripper function""" return re.compile(r"<([^>]+)>", flags=re.UNICODE).sub(" ", s) def _check_stop_list(stop): if stop == "english": raise ValueError( "English stopwords not supported. Pass explicitly as a custom stopwords list." ) elif isinstance(stop, str): raise ValueError("not a built-in stop list: %s" % stop) elif stop is None: return None else: # assume it's a collection return frozenset(stop) class _VectorizerMixinPure: """Provides common code for text vectorizers (tokenization logic)""" _white_spaces = re.compile(r"\s\s+") def decode(self, doc): """Decode the input into a string of unicode symbols""" if self.input == "filename": with open(doc, "rb") as fh: doc = fh.read() elif self.input == "file": doc = doc.read() if isinstance(doc, bytes): doc = doc.decode(self.encoding, self.decode_error) if not isinstance(doc, str) and isnan(doc): raise ValueError( "np.nan is an invalid document, expected byte or unicode string." ) return doc def _word_ngrams(self, tokens, stop_words=None): """Turn tokens into a sequence of n-grams after stop words filtering""" # handle stop words if stop_words is not None: tokens = [w for w in tokens if w not in stop_words] # handle token n-grams min_n, max_n = self.ngram_range if max_n != 1: original_tokens = tokens if min_n == 1: # no need to do any slicing for unigrams # just iterate through the original tokens tokens = list(original_tokens) min_n += 1 else: tokens = [] n_original_tokens = len(original_tokens) # bind method outside of loop to reduce overhead tokens_append = tokens.append space_join = " ".join for n in range(min_n, min(max_n + 1, n_original_tokens + 1)): for i in range(n_original_tokens - n + 1): tokens_append(space_join(original_tokens[i : i + n])) return tokens def _char_ngrams(self, text_document): """Tokenize text_document into a sequence of character n-grams""" # normalize white spaces text_document = self._white_spaces.sub(" ", text_document) text_len = len(text_document) min_n, max_n = self.ngram_range if min_n == 1: # no need to do any slicing for unigrams # iterate through the string ngrams = list(text_document) min_n += 1 else: ngrams = [] # bind method outside of loop to reduce overhead ngrams_append = ngrams.append for n in range(min_n, min(max_n + 1, text_len + 1)): for i in range(text_len - n + 1): ngrams_append(text_document[i : i + n]) return ngrams def _char_wb_ngrams(self, text_document): """Whitespace sensitive char-n-gram tokenization""" # normalize white spaces text_document = self._white_spaces.sub(" ", text_document) min_n, max_n = self.ngram_range ngrams = [] # bind method outside of loop to reduce overhead ngrams_append = ngrams.append for w in text_document.split(): w = " " + w + " " w_len = len(w) for n in range(min_n, max_n + 1): offset = 0 ngrams_append(w[offset : offset + n]) while offset + n < w_len: offset += 1 ngrams_append(w[offset : offset + n]) if offset == 0: # count a short word (w_len < n) only once break return ngrams def build_preprocessor(self): """Return a function to preprocess the text before tokenization""" if self.preprocessor is not None: return self.preprocessor # accent stripping if not self.strip_accents: strip_accents = None elif callable(self.strip_accents): strip_accents = self.strip_accents elif self.strip_accents == "ascii": strip_accents = strip_accents_ascii elif self.strip_accents == "unicode": strip_accents = strip_accents_unicode else: raise ValueError( 'Invalid value for "strip_accents": %s' % self.strip_accents ) return partial(_preprocess, accent_function=strip_accents, lower=self.lowercase) def build_tokenizer(self): """Return a function that splits a string into a sequence of tokens""" if self.tokenizer is not None: return self.tokenizer token_pattern = re.compile(self.token_pattern) return token_pattern.findall def get_stop_words(self): """Build or fetch the effective stop words list""" return _check_stop_list(self.stop_words) def _check_stop_words_consistency(self, stop_words, preprocess, tokenize): """Check if stop words are consistent""" if id(self.stop_words) == getattr(self, "_stop_words_id", None): # Stop words are were previously validated return None # NB: stop_words is validated, unlike self.stop_words try: inconsistent = set() for w in stop_words or (): tokens = list(tokenize(preprocess(w))) for token in tokens: if token not in stop_words: inconsistent.add(token) self._stop_words_id = id(self.stop_words) if inconsistent: warnings.warn( "Your stop_words may be inconsistent with " "your preprocessing. Tokenizing the stop " "words generated tokens %r not in " "stop_words." % sorted(inconsistent) ) return not inconsistent except Exception: # Failed to check stop words consistency (e.g. because a custom # preprocessor or tokenizer was used) self._stop_words_id = id(self.stop_words) return "error" def build_analyzer(self): """ Return a callable that handles preprocessing, tokenization and n-grams generation. """ if callable(self.analyzer): if self.input in ["file", "filename"]: self._validate_custom_analyzer() return partial(_analyze, analyzer=self.analyzer, decoder=self.decode) preprocess = self.build_preprocessor() if self.analyzer == "char": return partial( _analyze, ngrams=self._char_ngrams, preprocessor=preprocess, decoder=self.decode, ) elif self.analyzer == "char_wb": return partial( _analyze, ngrams=self._char_wb_ngrams, preprocessor=preprocess, decoder=self.decode, ) elif self.analyzer == "word": stop_words = self.get_stop_words() tokenize = self.build_tokenizer() self._check_stop_words_consistency(stop_words, preprocess, tokenize) return partial( _analyze, ngrams=self._word_ngrams, tokenizer=tokenize, preprocessor=preprocess, decoder=self.decode, stop_words=stop_words, ) else: raise ValueError( "%s is not a valid tokenization scheme/analyzer" % self.analyzer ) class CountVectorizerPure(_VectorizerMixinPure): """ Pure python implementation of `CountVectorizer`. Args: estimator (sklearn estimator): fitted `CountVectorizer` object """ def __init__(self, estimator): check_version(estimator) self.dtype = convert_type(estimator.dtype) self.binary = estimator.binary self.vocabulary_ = {k: int(v) for k, v in estimator.vocabulary_.items()} self.analyzer = estimator.analyzer self.preprocessor = estimator.preprocessor self.tokenizer = estimator.tokenizer self.stop_words = estimator.stop_words self.token_pattern = estimator.token_pattern self.ngram_range = estimator.ngram_range self.strip_accents = estimator.strip_accents self.decode_error = estimator.decode_error self.encoding = estimator.encoding self.lowercase = estimator.lowercase self.input = estimator.input check_types(self) def _count_vocab(self, raw_documents): """Create sparse feature matrix, and vocabulary where fixed_vocab=False""" vocabulary = self.vocabulary_ analyze = self.build_analyzer() data = [] for doc in raw_documents: feature_counter = {} for feature in analyze(doc): try: feature_idx = vocabulary[feature] if feature_idx not in feature_counter: feature_counter[feature_idx] = 1 else: feature_counter[feature_idx] += 1 except KeyError: continue data.append(feature_counter) X = sparse_list(data, size=len(vocabulary), dtype=self.dtype) return vocabulary, X def transform(self, raw_documents): """Transform documents to document-term matrix""" if isinstance(raw_documents, str): raise ValueError( "Iterable over raw text documents expected, string object received." ) _, X = self._count_vocab(raw_documents) if self.binary: X = [dict.fromkeys(x, 1) for x in X] return X class TfidfVectorizerPure(CountVectorizerPure): """ Pure python implementation of `TfidfVectorizer`. Args: estimator (sklearn estimator): fitted `TfidfVectorizer` object """ def __init__(self, estimator): check_version(estimator) self._tfidf = convert_estimator(estimator._tfidf) super().__init__(estimator) def transform(self, raw_documents): """Transform documents to document-term matrix.""" X = super().transform(raw_documents) return self._tfidf.transform(X, copy=False) class TfidfTransformerPure: """ Pure python implementation of `TfidfTransformer`. Args: estimator (sklearn estimator): fitted `TfidfTransformer` object """ def __init__(self, estimator): check_version(estimator) self.norm = estimator.norm self.use_idf = estimator.use_idf self.smooth_idf = estimator.smooth_idf self.sublinear_tf = estimator.sublinear_tf self.idf_ = estimator.idf_.tolist() self.expected_n_features_ = estimator._idf_diag.shape[0] check_types(self) def transform(self, X, copy=True): X = check_array(X, handle_sparse="allow") n_samples, n_features = shape(X) if self.sublinear_tf: for index in range(len(X)): X[index] = safe_log(X[index]) + 1 if self.use_idf: if n_features != self.expected_n_features_: raise ValueError( "Input has n_features=%d while the model" " has been trained with n_features=%d" % (n_features, self.expected_n_features_) ) for index in range(len(X)): for k, v in X[index].items(): X[index][k] = v * self.idf_[k] if self.norm: X = normalize_pure(X, norm=self.norm, copy=False) return X class HashingVectorizerPure(_VectorizerMixinPure): """ Pure python implementation of `HashingVectorizer`. Args: estimator (sklearn estimator): fitted `HashingVectorizer` object """ def __init__(self, estimator): check_version(estimator) self.dtype = convert_type(estimator.dtype) self.norm = estimator.norm self.binary = estimator.binary self.analyzer = estimator.analyzer self.preprocessor = estimator.preprocessor self.tokenizer = estimator.tokenizer self.stop_words = estimator.stop_words self.token_pattern = estimator.token_pattern self.ngram_range = estimator.ngram_range self.strip_accents = estimator.strip_accents self.decode_error = estimator.decode_error self.encoding = estimator.encoding self.lowercase = estimator.lowercase self.input = estimator.input self.n_features = estimator.n_features self.alternate_sign = estimator.alternate_sign check_types(self) def transform(self, X): """Transform a sequence of documents to a document-term matrix""" if isinstance(X, str): raise ValueError( "Iterable over raw text documents expected, string object received." ) analyzer = self.build_analyzer() X = self._get_hasher().transform(analyzer(doc) for doc in X) if self.binary: X = [dict.fromkeys(x, 1) for x in X] if self.norm is not None: X = normalize_pure(X, norm=self.norm, copy=False) return X def _get_hasher(self): return _FeatureHasherPure( n_features=self.n_features, input_type="string", dtype=self.dtype, alternate_sign=self.alternate_sign, )
0.586641
0.316316
import numbers from ..utils import check_types, sparse_list MAX_INT = 2147483647 def _xrange(a, b, c): return range(a, b, c) def _xencode(x): if isinstance(x, (bytes, bytearray)): return x else: return x.encode() def _iteritems(d): """Like d.iteritems, but accepts any collections.Mapping.""" return d.iteritems() if hasattr(d, "iteritems") else d.items() def _hash(key, seed=0x0): """Implements 32bit murmur3 hash""" key = bytearray(_xencode(key)) def fmix(h): h ^= h >> 16 h = (h * 0x85EBCA6B) & 0xFFFFFFFF h ^= h >> 13 h = (h * 0xC2B2AE35) & 0xFFFFFFFF h ^= h >> 16 return h length = len(key) nblocks = int(length / 4) h1 = seed c1 = 0xCC9E2D51 c2 = 0x1B873593 # body for block_start in _xrange(0, nblocks * 4, 4): # ??? big endian? k1 = ( key[block_start + 3] << 24 | key[block_start + 2] << 16 | key[block_start + 1] << 8 | key[block_start + 0] ) k1 = (c1 * k1) & 0xFFFFFFFF k1 = (k1 << 15 | k1 >> 17) & 0xFFFFFFFF # inlined ROTL32 k1 = (c2 * k1) & 0xFFFFFFFF h1 ^= k1 h1 = (h1 << 13 | h1 >> 19) & 0xFFFFFFFF # inlined ROTL32 h1 = (h1 * 5 + 0xE6546B64) & 0xFFFFFFFF # tail tail_index = nblocks * 4 k1 = 0 tail_size = length & 3 if tail_size >= 3: k1 ^= key[tail_index + 2] << 16 if tail_size >= 2: k1 ^= key[tail_index + 1] << 8 if tail_size >= 1: k1 ^= key[tail_index + 0] if tail_size > 0: k1 = (k1 * c1) & 0xFFFFFFFF k1 = (k1 << 15 | k1 >> 17) & 0xFFFFFFFF # inlined ROTL32 k1 = (k1 * c2) & 0xFFFFFFFF h1 ^= k1 # finalization unsigned_val = fmix(h1 ^ length) if unsigned_val & 0x80000000 == 0: return unsigned_val else: return -((unsigned_val ^ 0xFFFFFFFF) + 1) def _hashing_transform(raw_X, n_features, dtype, alternate_sign=1, seed=0): """Guts of FeatureHasher.transform""" assert n_features > 0 X = [] for x in raw_X: row = {} for f, v in x: if isinstance(v, str): f = "%s%s%s" % (f, "=", v) value = 1 else: value = v if value == 0: continue h = _hash(f, seed) index = abs(h) % n_features if alternate_sign: value *= (h >= 0) * 2 - 1 row[index] = value X.append(row) return sparse_list(X, size=n_features, dtype=dtype) class _FeatureHasherPure: """Pure python implementation of `FeatureHasher`""" def __init__( self, n_features=(2**20), input_type="dict", dtype=float, alternate_sign=True ): self._validate_params(n_features, input_type) self.dtype = dtype self.input_type = input_type self.n_features = n_features self.alternate_sign = alternate_sign check_types(self) @staticmethod def _validate_params(n_features, input_type): if not isinstance(n_features, numbers.Integral): raise TypeError( "n_features must be integral, got %r (%s)." % (n_features, type(n_features)) ) elif n_features < 1 or n_features >= MAX_INT + 1: raise ValueError("Invalid number of features (%d)." % n_features) if input_type not in ("dict", "pair", "string"): raise ValueError( "input_type must be 'dict', 'pair' or 'string', got %r." % input_type ) def transform(self, raw_X): """Transform a sequence of instances to a `sparse_list`""" raw_X = iter(raw_X) if self.input_type == "dict": raw_X = (_iteritems(d) for d in raw_X) elif self.input_type == "string": raw_X = (((f, 1) for f in x) for x in raw_X) return _hashing_transform( raw_X, self.n_features, self.dtype, self.alternate_sign, seed=0 )
scikit-endpoint
/scikit-endpoint-0.0.3.tar.gz/scikit-endpoint-0.0.3/scikit_endpoint/feature_extraction/_hash.py
_hash.py
import numbers from ..utils import check_types, sparse_list MAX_INT = 2147483647 def _xrange(a, b, c): return range(a, b, c) def _xencode(x): if isinstance(x, (bytes, bytearray)): return x else: return x.encode() def _iteritems(d): """Like d.iteritems, but accepts any collections.Mapping.""" return d.iteritems() if hasattr(d, "iteritems") else d.items() def _hash(key, seed=0x0): """Implements 32bit murmur3 hash""" key = bytearray(_xencode(key)) def fmix(h): h ^= h >> 16 h = (h * 0x85EBCA6B) & 0xFFFFFFFF h ^= h >> 13 h = (h * 0xC2B2AE35) & 0xFFFFFFFF h ^= h >> 16 return h length = len(key) nblocks = int(length / 4) h1 = seed c1 = 0xCC9E2D51 c2 = 0x1B873593 # body for block_start in _xrange(0, nblocks * 4, 4): # ??? big endian? k1 = ( key[block_start + 3] << 24 | key[block_start + 2] << 16 | key[block_start + 1] << 8 | key[block_start + 0] ) k1 = (c1 * k1) & 0xFFFFFFFF k1 = (k1 << 15 | k1 >> 17) & 0xFFFFFFFF # inlined ROTL32 k1 = (c2 * k1) & 0xFFFFFFFF h1 ^= k1 h1 = (h1 << 13 | h1 >> 19) & 0xFFFFFFFF # inlined ROTL32 h1 = (h1 * 5 + 0xE6546B64) & 0xFFFFFFFF # tail tail_index = nblocks * 4 k1 = 0 tail_size = length & 3 if tail_size >= 3: k1 ^= key[tail_index + 2] << 16 if tail_size >= 2: k1 ^= key[tail_index + 1] << 8 if tail_size >= 1: k1 ^= key[tail_index + 0] if tail_size > 0: k1 = (k1 * c1) & 0xFFFFFFFF k1 = (k1 << 15 | k1 >> 17) & 0xFFFFFFFF # inlined ROTL32 k1 = (k1 * c2) & 0xFFFFFFFF h1 ^= k1 # finalization unsigned_val = fmix(h1 ^ length) if unsigned_val & 0x80000000 == 0: return unsigned_val else: return -((unsigned_val ^ 0xFFFFFFFF) + 1) def _hashing_transform(raw_X, n_features, dtype, alternate_sign=1, seed=0): """Guts of FeatureHasher.transform""" assert n_features > 0 X = [] for x in raw_X: row = {} for f, v in x: if isinstance(v, str): f = "%s%s%s" % (f, "=", v) value = 1 else: value = v if value == 0: continue h = _hash(f, seed) index = abs(h) % n_features if alternate_sign: value *= (h >= 0) * 2 - 1 row[index] = value X.append(row) return sparse_list(X, size=n_features, dtype=dtype) class _FeatureHasherPure: """Pure python implementation of `FeatureHasher`""" def __init__( self, n_features=(2**20), input_type="dict", dtype=float, alternate_sign=True ): self._validate_params(n_features, input_type) self.dtype = dtype self.input_type = input_type self.n_features = n_features self.alternate_sign = alternate_sign check_types(self) @staticmethod def _validate_params(n_features, input_type): if not isinstance(n_features, numbers.Integral): raise TypeError( "n_features must be integral, got %r (%s)." % (n_features, type(n_features)) ) elif n_features < 1 or n_features >= MAX_INT + 1: raise ValueError("Invalid number of features (%d)." % n_features) if input_type not in ("dict", "pair", "string"): raise ValueError( "input_type must be 'dict', 'pair' or 'string', got %r." % input_type ) def transform(self, raw_X): """Transform a sequence of instances to a `sparse_list`""" raw_X = iter(raw_X) if self.input_type == "dict": raw_X = (_iteritems(d) for d in raw_X) elif self.input_type == "string": raw_X = (((f, 1) for f in x) for x in raw_X) return _hashing_transform( raw_X, self.n_features, self.dtype, self.alternate_sign, seed=0 )
0.605566
0.343645
from ._label import _encode, _encode_check_unknown from ..base import accumu, apply_2d from ..utils import ( check_types, check_array, shape, sparse_list, convert_type, check_version, ) class _BaseEncoderPure: """ Base class for encoders that includes the code to categorize and transform the input features. """ def __init__(self, estimator): check_version(estimator) self.dtype = convert_type(estimator.dtype) self.categories_ = [a.tolist() for a in estimator.categories_] if hasattr(estimator, "sparse"): self.sparse = estimator.sparse if hasattr(estimator, "drop") and (estimator.drop is not None): raise ValueError("Encoder does not handle 'drop' functionality") if hasattr(estimator, "handle_unknown"): self.handle_unknown = estimator.handle_unknown check_types(self) def _check_X(self, X): """Perform custom check_array""" X = check_array(X) n_samples, n_features = shape(X) X_columns = [] for i in range(n_features): Xi = self._get_feature(X, feature_idx=i) X_columns.append(Xi) return X_columns, n_samples, n_features def _get_feature(self, X, feature_idx): return [x[feature_idx] for x in X] def _transform(self, X, handle_unknown="error"): X_list, n_samples, n_features = self._check_X(X) X_int = [[0] * n_features] * n_samples X_mask = [[True] * n_features] * n_samples if n_features != len(self.categories_): raise ValueError( "The number of features in X is different to the number of " "features of the fitted data. The fitted data had {} features " "and the X has {} features.".format( len( self.categories_, ), n_features, ) ) for i in range(n_features): Xi = X_list[i] diff, valid_mask = _encode_check_unknown( Xi, self.categories_[i], return_mask=True ) if not (sum(valid_mask) == len(valid_mask)): if handle_unknown == "error": msg = ( "Found unknown categories {0} in column {1}" " during transform".format(diff, i) ) raise ValueError(msg) else: X_mask = [ [ valid_mask[j] if idx == i else X_mask[j][idx] for idx in range(n_features) ] for j in range(n_samples) ] Xi = [ Xi[idx] if valid_mask[idx] else self.categories_[i][0] for idx in range(len(Xi)) ] _, encoded = _encode( Xi, self.categories_[i], encode=True, check_unknown=False ) X_int = [ [encoded[j] if idx == i else X_int[j][idx] for idx in range(n_features)] for j in range(n_samples) ] return X_int, X_mask class OrdinalEncoderPure(_BaseEncoderPure): """ Pure python implementation of `OrdinalEncoder`. Args: estimator (sklearn estimator): fitted `OrdinalEncoder` object """ def transform(self, X): """Transform X to ordinal codes""" X_int, _ = self._transform(X) return apply_2d(X_int, self.dtype) class OneHotEncoderPure(_BaseEncoderPure): """ Pure python implementation of `OneHotEncoder`. Args: estimator (sklearn estimator): fitted `OneHotEncoder` object """ def transform(self, X): """Transform X using one-hot encoding""" X_int, X_mask = self._transform(X, handle_unknown=self.handle_unknown) n_samples, n_features = shape(X_int) n_values = [0] + [len(cats) for cats in self.categories_] feature_indices = list(accumu(n_values)) data = [ dict( [ (n_values[i] + X_int[j][i], self.dtype(1)) for i in range(n_features) if X_mask[j][i] ] ) for j in range(n_samples) ] out = sparse_list(data, size=feature_indices[-1], dtype=self.dtype) if not self.sparse: return out.todense() else: return out
scikit-endpoint
/scikit-endpoint-0.0.3.tar.gz/scikit-endpoint-0.0.3/scikit_endpoint/preprocessing/_encoders.py
_encoders.py
from ._label import _encode, _encode_check_unknown from ..base import accumu, apply_2d from ..utils import ( check_types, check_array, shape, sparse_list, convert_type, check_version, ) class _BaseEncoderPure: """ Base class for encoders that includes the code to categorize and transform the input features. """ def __init__(self, estimator): check_version(estimator) self.dtype = convert_type(estimator.dtype) self.categories_ = [a.tolist() for a in estimator.categories_] if hasattr(estimator, "sparse"): self.sparse = estimator.sparse if hasattr(estimator, "drop") and (estimator.drop is not None): raise ValueError("Encoder does not handle 'drop' functionality") if hasattr(estimator, "handle_unknown"): self.handle_unknown = estimator.handle_unknown check_types(self) def _check_X(self, X): """Perform custom check_array""" X = check_array(X) n_samples, n_features = shape(X) X_columns = [] for i in range(n_features): Xi = self._get_feature(X, feature_idx=i) X_columns.append(Xi) return X_columns, n_samples, n_features def _get_feature(self, X, feature_idx): return [x[feature_idx] for x in X] def _transform(self, X, handle_unknown="error"): X_list, n_samples, n_features = self._check_X(X) X_int = [[0] * n_features] * n_samples X_mask = [[True] * n_features] * n_samples if n_features != len(self.categories_): raise ValueError( "The number of features in X is different to the number of " "features of the fitted data. The fitted data had {} features " "and the X has {} features.".format( len( self.categories_, ), n_features, ) ) for i in range(n_features): Xi = X_list[i] diff, valid_mask = _encode_check_unknown( Xi, self.categories_[i], return_mask=True ) if not (sum(valid_mask) == len(valid_mask)): if handle_unknown == "error": msg = ( "Found unknown categories {0} in column {1}" " during transform".format(diff, i) ) raise ValueError(msg) else: X_mask = [ [ valid_mask[j] if idx == i else X_mask[j][idx] for idx in range(n_features) ] for j in range(n_samples) ] Xi = [ Xi[idx] if valid_mask[idx] else self.categories_[i][0] for idx in range(len(Xi)) ] _, encoded = _encode( Xi, self.categories_[i], encode=True, check_unknown=False ) X_int = [ [encoded[j] if idx == i else X_int[j][idx] for idx in range(n_features)] for j in range(n_samples) ] return X_int, X_mask class OrdinalEncoderPure(_BaseEncoderPure): """ Pure python implementation of `OrdinalEncoder`. Args: estimator (sklearn estimator): fitted `OrdinalEncoder` object """ def transform(self, X): """Transform X to ordinal codes""" X_int, _ = self._transform(X) return apply_2d(X_int, self.dtype) class OneHotEncoderPure(_BaseEncoderPure): """ Pure python implementation of `OneHotEncoder`. Args: estimator (sklearn estimator): fitted `OneHotEncoder` object """ def transform(self, X): """Transform X using one-hot encoding""" X_int, X_mask = self._transform(X, handle_unknown=self.handle_unknown) n_samples, n_features = shape(X_int) n_values = [0] + [len(cats) for cats in self.categories_] feature_indices = list(accumu(n_values)) data = [ dict( [ (n_values[i] + X_int[j][i], self.dtype(1)) for i in range(n_features) if X_mask[j][i] ] ) for j in range(n_samples) ] out = sparse_list(data, size=feature_indices[-1], dtype=self.dtype) if not self.sparse: return out.todense() else: return out
0.827793
0.416915
from math import sqrt from copy import copy as cp from ..utils import sparse_list, issparse, check_array, check_types, check_version from ..base import transpose, apply_2d, apply_axis_2d, matmult_same_dim def _handle_zeros_in_scale(scale, copy=True): """Makes sure that whenever scale is zero, we handle it correctly""" if isinstance(scale, (int, float)): if scale == 0.0: scale = 1.0 return scale elif isinstance(scale, list): if copy: scale = cp(scale) return [(1.0 if scale[i] == 0.0 else scale[i]) for i in range(len(scale))] def _row_norms(X): """Row-wise (squared) Euclidean norm of X""" X_X = matmult_same_dim(X, X) if issparse(X): norms = [sum(x.values()) for x in X_X] else: norms = apply_axis_2d(X_X, sum, axis=1) return list(map(sqrt, norms)) def normalize_pure(X, norm="l2", axis=1, copy=True, return_norm=False): """Scale input vectors individually to unit norm""" # check input compatibility if (axis == 0) and issparse(X): raise ValueError("Axis 0 is not supported for sparse data") if norm not in ("l1", "l2", "max"): raise ValueError("'%s' is not a supported norm" % norm) if axis not in [0, 1]: raise ValueError("'%d' is not a supported axis" % axis) X = check_array(X, handle_sparse="allow") if axis == 0: X = transpose(X) if issparse(X): if return_norm and norm in ("l1", "l2"): raise NotImplementedError( "return_norm=True is not implemented " "for sparse matrices with norm 'l1' " "or norm 'l2'" ) if norm == "l1": norms = [sum(map(abs, x.values())) for x in X] elif norm == "l2": norms = _row_norms(X) elif norm == "max": norms = [max(list(x.values()) + [0]) for x in X] norms = _handle_zeros_in_scale(norms, copy=False) X_sparse = [ {k: (v / float(norms[index])) for k, v in X[index].items()} for index in range(len(X)) ] X = sparse_list(X_sparse, X.size, X.dtype) else: if norm == "l1": norms = apply_axis_2d(apply_2d(X, abs), sum, axis=1) elif norm == "l2": norms = _row_norms(X) elif norm == "max": norms = apply_axis_2d(X, max, axis=1) norms = _handle_zeros_in_scale(norms, copy=False) X = [ list(map(lambda a: a / float(norms[index]), X[index])) for index in range(len(X)) ] if axis == 0: X = transpose(X) if return_norm: return X, norms else: return X class NormalizerPure: """ Pure python implementation of `Normalizer`. Args: estimator (sklearn estimator): fitted `Normalizer` object """ def __init__(self, estimator): check_version(estimator) self.norm = estimator.norm self.copy = estimator.copy check_types(self) def transform(self, X, copy=None): """Scale each non zero row of X to unit norm.""" copy = copy if copy is not None else self.copy X = check_array(X, handle_sparse="allow") return normalize_pure(X, norm=self.norm, axis=1, copy=copy) class StandardScalerPure: """ Pure python implementation of `StandardScaler`. Args: estimator (sklearn estimator): fitted `StandardScaler` object """ def __init__(self, estimator): check_version(estimator) self.with_mean = estimator.with_mean self.with_std = estimator.with_std if estimator.scale_ is None: self.scale_ = None else: self.scale_ = estimator.scale_.tolist() if estimator.mean_ is None: self.mean_ = None else: self.mean_ = estimator.mean_.tolist() check_types(self) def transform(self, X, copy=None): """Perform standardization by centering and scaling""" X = check_array(X, handle_sparse="allow") if issparse(X): if self.with_mean: raise ValueError( "Cannot center sparse matrices: pass `with_mean=False` " "instead. See docstring for motivation and alternatives." ) if self.scale_ is not None: X_ = [{k: (v / self.scale_[k]) for k, v in x.items()} for x in X] X = sparse_list(X_, size=X.size, dtype=X.dtype) else: if self.with_mean: X = [[x[i] - self.mean_[i] for i in range(len(self.mean_))] for x in X] if self.with_std: X = [ [x[i] / self.scale_[i] for i in range(len(self.scale_))] for x in X ] return X class MinMaxScalerPure: """ Pure python implementation of `MinMaxScaler`. Args: estimator (sklearn estimator): fitted `MinMaxScaler` object """ def __init__(self, estimator): check_version(estimator) self.feature_range = estimator.feature_range if estimator.scale_ is None: self.scale_ = None else: self.scale_ = estimator.scale_.tolist() if estimator.min_ is None: self.min_ = None else: self.min_ = estimator.min_.tolist() check_types(self) def transform(self, X): """Scale features of X according to feature_range""" if issparse(X): raise TypeError( "MinMaxScalerPure does not support sparse input. " "Consider using MaxAbsScalerPure instead." ) X = check_array(X) return [ [(x[i] * self.scale_[i]) + self.min_[i] for i in range(len(self.scale_))] for x in X ] class MaxAbsScalerPure: """ Pure python implementation of `MaxAbsScaler`. Args: estimator (sklearn estimator): fitted `MaxAbsScaler` object """ def __init__(self, estimator): check_version(estimator) self.copy = estimator.copy if estimator.scale_ is None: self.scale_ = None else: self.scale_ = estimator.scale_.tolist() if estimator.max_abs_ is None: self.max_abs_ = None else: self.max_abs_ = estimator.max_abs_.tolist() check_types(self) def transform(self, X): """Scale the data""" X = check_array(X, handle_sparse="allow") if issparse(X): X_ = [{k: (v / self.scale_[k]) for k, v in x.items()} for x in X] X = sparse_list(X_, size=X.size, dtype=X.dtype) else: X = [[x[i] / self.scale_[i] for i in range(len(self.scale_))] for x in X] return X
scikit-endpoint
/scikit-endpoint-0.0.3.tar.gz/scikit-endpoint-0.0.3/scikit_endpoint/preprocessing/_data.py
_data.py
from math import sqrt from copy import copy as cp from ..utils import sparse_list, issparse, check_array, check_types, check_version from ..base import transpose, apply_2d, apply_axis_2d, matmult_same_dim def _handle_zeros_in_scale(scale, copy=True): """Makes sure that whenever scale is zero, we handle it correctly""" if isinstance(scale, (int, float)): if scale == 0.0: scale = 1.0 return scale elif isinstance(scale, list): if copy: scale = cp(scale) return [(1.0 if scale[i] == 0.0 else scale[i]) for i in range(len(scale))] def _row_norms(X): """Row-wise (squared) Euclidean norm of X""" X_X = matmult_same_dim(X, X) if issparse(X): norms = [sum(x.values()) for x in X_X] else: norms = apply_axis_2d(X_X, sum, axis=1) return list(map(sqrt, norms)) def normalize_pure(X, norm="l2", axis=1, copy=True, return_norm=False): """Scale input vectors individually to unit norm""" # check input compatibility if (axis == 0) and issparse(X): raise ValueError("Axis 0 is not supported for sparse data") if norm not in ("l1", "l2", "max"): raise ValueError("'%s' is not a supported norm" % norm) if axis not in [0, 1]: raise ValueError("'%d' is not a supported axis" % axis) X = check_array(X, handle_sparse="allow") if axis == 0: X = transpose(X) if issparse(X): if return_norm and norm in ("l1", "l2"): raise NotImplementedError( "return_norm=True is not implemented " "for sparse matrices with norm 'l1' " "or norm 'l2'" ) if norm == "l1": norms = [sum(map(abs, x.values())) for x in X] elif norm == "l2": norms = _row_norms(X) elif norm == "max": norms = [max(list(x.values()) + [0]) for x in X] norms = _handle_zeros_in_scale(norms, copy=False) X_sparse = [ {k: (v / float(norms[index])) for k, v in X[index].items()} for index in range(len(X)) ] X = sparse_list(X_sparse, X.size, X.dtype) else: if norm == "l1": norms = apply_axis_2d(apply_2d(X, abs), sum, axis=1) elif norm == "l2": norms = _row_norms(X) elif norm == "max": norms = apply_axis_2d(X, max, axis=1) norms = _handle_zeros_in_scale(norms, copy=False) X = [ list(map(lambda a: a / float(norms[index]), X[index])) for index in range(len(X)) ] if axis == 0: X = transpose(X) if return_norm: return X, norms else: return X class NormalizerPure: """ Pure python implementation of `Normalizer`. Args: estimator (sklearn estimator): fitted `Normalizer` object """ def __init__(self, estimator): check_version(estimator) self.norm = estimator.norm self.copy = estimator.copy check_types(self) def transform(self, X, copy=None): """Scale each non zero row of X to unit norm.""" copy = copy if copy is not None else self.copy X = check_array(X, handle_sparse="allow") return normalize_pure(X, norm=self.norm, axis=1, copy=copy) class StandardScalerPure: """ Pure python implementation of `StandardScaler`. Args: estimator (sklearn estimator): fitted `StandardScaler` object """ def __init__(self, estimator): check_version(estimator) self.with_mean = estimator.with_mean self.with_std = estimator.with_std if estimator.scale_ is None: self.scale_ = None else: self.scale_ = estimator.scale_.tolist() if estimator.mean_ is None: self.mean_ = None else: self.mean_ = estimator.mean_.tolist() check_types(self) def transform(self, X, copy=None): """Perform standardization by centering and scaling""" X = check_array(X, handle_sparse="allow") if issparse(X): if self.with_mean: raise ValueError( "Cannot center sparse matrices: pass `with_mean=False` " "instead. See docstring for motivation and alternatives." ) if self.scale_ is not None: X_ = [{k: (v / self.scale_[k]) for k, v in x.items()} for x in X] X = sparse_list(X_, size=X.size, dtype=X.dtype) else: if self.with_mean: X = [[x[i] - self.mean_[i] for i in range(len(self.mean_))] for x in X] if self.with_std: X = [ [x[i] / self.scale_[i] for i in range(len(self.scale_))] for x in X ] return X class MinMaxScalerPure: """ Pure python implementation of `MinMaxScaler`. Args: estimator (sklearn estimator): fitted `MinMaxScaler` object """ def __init__(self, estimator): check_version(estimator) self.feature_range = estimator.feature_range if estimator.scale_ is None: self.scale_ = None else: self.scale_ = estimator.scale_.tolist() if estimator.min_ is None: self.min_ = None else: self.min_ = estimator.min_.tolist() check_types(self) def transform(self, X): """Scale features of X according to feature_range""" if issparse(X): raise TypeError( "MinMaxScalerPure does not support sparse input. " "Consider using MaxAbsScalerPure instead." ) X = check_array(X) return [ [(x[i] * self.scale_[i]) + self.min_[i] for i in range(len(self.scale_))] for x in X ] class MaxAbsScalerPure: """ Pure python implementation of `MaxAbsScaler`. Args: estimator (sklearn estimator): fitted `MaxAbsScaler` object """ def __init__(self, estimator): check_version(estimator) self.copy = estimator.copy if estimator.scale_ is None: self.scale_ = None else: self.scale_ = estimator.scale_.tolist() if estimator.max_abs_ is None: self.max_abs_ = None else: self.max_abs_ = estimator.max_abs_.tolist() check_types(self) def transform(self, X): """Scale the data""" X = check_array(X, handle_sparse="allow") if issparse(X): X_ = [{k: (v / self.scale_[k]) for k, v in x.items()} for x in X] X = sparse_list(X_, size=X.size, dtype=X.dtype) else: X = [[x[i] / self.scale_[i] for i in range(len(self.scale_))] for x in X] return X
0.847747
0.490907
from ..base import sfmax, expit from ..tree import DecisionTreeRegressorPure from ..utils import check_types, check_array MIN_VERSION = "0.82" SUPPORTED_OBJ = ["binary:logistic", "multi:softprob"] SUPPORTED_BOOSTER = ["gbtree"] class XGBClassifierPure: """ Pure python implementation of `XGBClassifier`. Only supports 'gbtree' booster and 'binary:logistic' or 'multi:softprob' objectives. Args: estimator (xgboost estimator): fitted `XGBClassifier` object """ def __init__(self, estimator): if (not isinstance(estimator.objective, str)) or ( estimator.objective not in SUPPORTED_OBJ ): raise ValueError( "Objective function not supported; only {} are supported".format( SUPPORTED_OBJ ) ) else: self.objective = estimator.objective if estimator.booster not in SUPPORTED_BOOSTER: raise ValueError("Booster: '{}' not supported".format(estimator.booster)) else: self.booster = estimator.booster self.classes_ = estimator.classes_.tolist() self.n_classes_ = estimator.n_classes_ self.n_estimators = estimator.n_estimators self.estimators_ = self._build_estimators(estimator) check_types(self) def _build_estimators(self, estimator): """Convert booster to list of pure decision tree regressors""" if not hasattr(estimator.get_booster(), "trees_to_dataframe"): raise Exception( "This xgboost estimator was likely fitted with version < {} " "which is not supported".format(MIN_VERSION) ) tree_df = estimator.get_booster().trees_to_dataframe() estimators_ = [] idx = 0 for est_id in range(self.n_estimators): if self.n_classes_ == 2: tree = tree_df[tree_df["Tree"] == idx].to_dict(orient="list") est_row_ = DecisionTreeRegressorPure(tree) idx += 1 else: est_row_ = [] for cls_id in range(self.n_classes_): tree = tree_df[tree_df["Tree"] == idx].to_dict(orient="list") est_row_.append(DecisionTreeRegressorPure(tree)) idx += 1 estimators_.append(est_row_) return estimators_ def _predict(self, X): """Raw sums of estimator predictions for each class for multi-class""" preds = [] for cls_index in range(self.n_classes_): cls_sum = [0] * len(X) for est_index in range(self.n_estimators): est_preds = self.estimators_[est_index][cls_index].predict(X) cls_sum = list(map(lambda x, y: x + y, cls_sum, est_preds)) preds.append(cls_sum) return preds def _predict_binary(self, X): """Raw sums of estimator predictions for each class for binary""" preds = [0] * len(X) for estimator in self.estimators_: preds = list(map(lambda x, y: x + y, preds, estimator.predict(X))) return preds def predict(self, X): proba = self.predict_proba(X) return [self.classes_[a.index(max(a))] for a in proba] def predict_proba(self, X): X = check_array(X) if self.objective == "multi:softprob": preds = self._predict(X) out = [] for i in range(len(X)): out.append(sfmax([preds[j][i] for j in range(self.n_classes_)])) elif self.objective == "binary:logistic": preds = self._predict_binary(X) out = list(map(expit, preds)) out = list(map(lambda x: [1 - x, x], out)) else: raise ValueError( "Objective function not supported; only {} are supported".format( SUPPORTED_OBJ ) ) return out
scikit-endpoint
/scikit-endpoint-0.0.3.tar.gz/scikit-endpoint-0.0.3/scikit_endpoint/xgboost/_classes.py
_classes.py
from ..base import sfmax, expit from ..tree import DecisionTreeRegressorPure from ..utils import check_types, check_array MIN_VERSION = "0.82" SUPPORTED_OBJ = ["binary:logistic", "multi:softprob"] SUPPORTED_BOOSTER = ["gbtree"] class XGBClassifierPure: """ Pure python implementation of `XGBClassifier`. Only supports 'gbtree' booster and 'binary:logistic' or 'multi:softprob' objectives. Args: estimator (xgboost estimator): fitted `XGBClassifier` object """ def __init__(self, estimator): if (not isinstance(estimator.objective, str)) or ( estimator.objective not in SUPPORTED_OBJ ): raise ValueError( "Objective function not supported; only {} are supported".format( SUPPORTED_OBJ ) ) else: self.objective = estimator.objective if estimator.booster not in SUPPORTED_BOOSTER: raise ValueError("Booster: '{}' not supported".format(estimator.booster)) else: self.booster = estimator.booster self.classes_ = estimator.classes_.tolist() self.n_classes_ = estimator.n_classes_ self.n_estimators = estimator.n_estimators self.estimators_ = self._build_estimators(estimator) check_types(self) def _build_estimators(self, estimator): """Convert booster to list of pure decision tree regressors""" if not hasattr(estimator.get_booster(), "trees_to_dataframe"): raise Exception( "This xgboost estimator was likely fitted with version < {} " "which is not supported".format(MIN_VERSION) ) tree_df = estimator.get_booster().trees_to_dataframe() estimators_ = [] idx = 0 for est_id in range(self.n_estimators): if self.n_classes_ == 2: tree = tree_df[tree_df["Tree"] == idx].to_dict(orient="list") est_row_ = DecisionTreeRegressorPure(tree) idx += 1 else: est_row_ = [] for cls_id in range(self.n_classes_): tree = tree_df[tree_df["Tree"] == idx].to_dict(orient="list") est_row_.append(DecisionTreeRegressorPure(tree)) idx += 1 estimators_.append(est_row_) return estimators_ def _predict(self, X): """Raw sums of estimator predictions for each class for multi-class""" preds = [] for cls_index in range(self.n_classes_): cls_sum = [0] * len(X) for est_index in range(self.n_estimators): est_preds = self.estimators_[est_index][cls_index].predict(X) cls_sum = list(map(lambda x, y: x + y, cls_sum, est_preds)) preds.append(cls_sum) return preds def _predict_binary(self, X): """Raw sums of estimator predictions for each class for binary""" preds = [0] * len(X) for estimator in self.estimators_: preds = list(map(lambda x, y: x + y, preds, estimator.predict(X))) return preds def predict(self, X): proba = self.predict_proba(X) return [self.classes_[a.index(max(a))] for a in proba] def predict_proba(self, X): X = check_array(X) if self.objective == "multi:softprob": preds = self._predict(X) out = [] for i in range(len(X)): out.append(sfmax([preds[j][i] for j in range(self.n_classes_)])) elif self.objective == "binary:logistic": preds = self._predict_binary(X) out = list(map(expit, preds)) out = list(map(lambda x: [1 - x, x], out)) else: raise ValueError( "Objective function not supported; only {} are supported".format( SUPPORTED_OBJ ) ) return out
0.685002
0.384392
import warnings from math import isnan from ..base import safe_log from ..utils import check_array, check_types, check_version class _DecisionTreeBase: """Decision tree base class""" def __init__(self, estimator): if isinstance(estimator, dict): # sourced from xgboost booster object tree dictionary self.threshold_ = list( map(lambda x: -2 if isnan(x) else x, estimator["Split"]) ) self.value_ = [[a] for a in estimator["Gain"]] self.children_left_ = list( map( lambda x: -1 if not isinstance(x, str) else int(x.split("-")[-1]), estimator["Yes"], ) ) self.children_right_ = list( map( lambda x: -1 if not isinstance(x, str) else int(x.split("-")[-1]), estimator["No"], ) ) self.feature_ = list( map( lambda x: -2 if x == "Leaf" else int(x.replace("f", "")[-1]), estimator["Feature"], ) ) else: # sourced from sklearn decision tree check_version(estimator) self.children_left_ = estimator.tree_.children_left.tolist() self.children_right_ = estimator.tree_.children_right.tolist() self.feature_ = estimator.tree_.feature.tolist() self.threshold_ = estimator.tree_.threshold.tolist() self.value_ = [a[0] for a in estimator.tree_.value.tolist()] with warnings.catch_warnings(): warnings.simplefilter("ignore") if hasattr(estimator, "classes_") and (estimator.classes_ is not None): self.classes_ = estimator.classes_.tolist() else: self.classes_ = [0, 1] check_types(self) def _get_leaf_node(self, x): if isinstance(x, dict): left_equal = lambda nd: x.get(self.feature_[nd], 0.0) else: left_equal = lambda nd: x[self.feature_[nd]] found_node = False node_id = 0 while not found_node: if self.children_left_[node_id] == self.children_right_[node_id]: found_node = True else: if left_equal(node_id) <= self.threshold_[node_id]: node_id = self.children_left_[node_id] else: node_id = self.children_right_[node_id] return node_id class DecisionTreeClassifierPure(_DecisionTreeBase): """ Pure python implementation of `DecisionTreeClassifier`. Args: estimator (sklearn estimator): fitted `DecisionTreeClassifier` object """ def _get_pred_from_leaf_node(self, node_id): return self.value_[node_id].index(max(self.value_[node_id])) def _get_proba_from_leaf_node(self, node_id): return [a / sum(self.value_[node_id]) for a in self.value_[node_id]] def predict(self, X): X = check_array(X, handle_sparse="allow") leaves = [self._get_leaf_node(x) for x in X] preds = [self._get_pred_from_leaf_node(x) for x in leaves] return [self.classes_[x] for x in preds] def predict_proba(self, X): X = check_array(X, handle_sparse="allow") leaves = [self._get_leaf_node(x) for x in X] return [self._get_proba_from_leaf_node(x) for x in leaves] def predict_log_proba(self, X): return [list(map(safe_log, x)) for x in self.predict_proba(X)] class DecisionTreeRegressorPure(_DecisionTreeBase): """ Pure python implementation of `DecisionTreeRegressor`. Args: estimator (sklearn estimator): fitted `DecisionTreeRegressor` object """ def _get_pred_from_leaf_node(self, node_id): return self.value_[node_id][0] def predict(self, X): X = check_array(X, handle_sparse="allow") leaves = [self._get_leaf_node(x) for x in X] return [self._get_pred_from_leaf_node(x) for x in leaves] class ExtraTreeClassifierPure(DecisionTreeClassifierPure): """ Pure python implementation of `ExtraTreeClassifier`. Args: estimator (sklearn estimator): fitted `ExtraTreeClassifier` object """ pass class ExtraTreeRegressorPure(DecisionTreeRegressorPure): """ Pure python implementation of `ExtraTreeRegressor`. Args: estimator (sklearn estimator): fitted `ExtraTreeRegressor` object """ pass
scikit-endpoint
/scikit-endpoint-0.0.3.tar.gz/scikit-endpoint-0.0.3/scikit_endpoint/tree/_classes.py
_classes.py
import warnings from math import isnan from ..base import safe_log from ..utils import check_array, check_types, check_version class _DecisionTreeBase: """Decision tree base class""" def __init__(self, estimator): if isinstance(estimator, dict): # sourced from xgboost booster object tree dictionary self.threshold_ = list( map(lambda x: -2 if isnan(x) else x, estimator["Split"]) ) self.value_ = [[a] for a in estimator["Gain"]] self.children_left_ = list( map( lambda x: -1 if not isinstance(x, str) else int(x.split("-")[-1]), estimator["Yes"], ) ) self.children_right_ = list( map( lambda x: -1 if not isinstance(x, str) else int(x.split("-")[-1]), estimator["No"], ) ) self.feature_ = list( map( lambda x: -2 if x == "Leaf" else int(x.replace("f", "")[-1]), estimator["Feature"], ) ) else: # sourced from sklearn decision tree check_version(estimator) self.children_left_ = estimator.tree_.children_left.tolist() self.children_right_ = estimator.tree_.children_right.tolist() self.feature_ = estimator.tree_.feature.tolist() self.threshold_ = estimator.tree_.threshold.tolist() self.value_ = [a[0] for a in estimator.tree_.value.tolist()] with warnings.catch_warnings(): warnings.simplefilter("ignore") if hasattr(estimator, "classes_") and (estimator.classes_ is not None): self.classes_ = estimator.classes_.tolist() else: self.classes_ = [0, 1] check_types(self) def _get_leaf_node(self, x): if isinstance(x, dict): left_equal = lambda nd: x.get(self.feature_[nd], 0.0) else: left_equal = lambda nd: x[self.feature_[nd]] found_node = False node_id = 0 while not found_node: if self.children_left_[node_id] == self.children_right_[node_id]: found_node = True else: if left_equal(node_id) <= self.threshold_[node_id]: node_id = self.children_left_[node_id] else: node_id = self.children_right_[node_id] return node_id class DecisionTreeClassifierPure(_DecisionTreeBase): """ Pure python implementation of `DecisionTreeClassifier`. Args: estimator (sklearn estimator): fitted `DecisionTreeClassifier` object """ def _get_pred_from_leaf_node(self, node_id): return self.value_[node_id].index(max(self.value_[node_id])) def _get_proba_from_leaf_node(self, node_id): return [a / sum(self.value_[node_id]) for a in self.value_[node_id]] def predict(self, X): X = check_array(X, handle_sparse="allow") leaves = [self._get_leaf_node(x) for x in X] preds = [self._get_pred_from_leaf_node(x) for x in leaves] return [self.classes_[x] for x in preds] def predict_proba(self, X): X = check_array(X, handle_sparse="allow") leaves = [self._get_leaf_node(x) for x in X] return [self._get_proba_from_leaf_node(x) for x in leaves] def predict_log_proba(self, X): return [list(map(safe_log, x)) for x in self.predict_proba(X)] class DecisionTreeRegressorPure(_DecisionTreeBase): """ Pure python implementation of `DecisionTreeRegressor`. Args: estimator (sklearn estimator): fitted `DecisionTreeRegressor` object """ def _get_pred_from_leaf_node(self, node_id): return self.value_[node_id][0] def predict(self, X): X = check_array(X, handle_sparse="allow") leaves = [self._get_leaf_node(x) for x in X] return [self._get_pred_from_leaf_node(x) for x in leaves] class ExtraTreeClassifierPure(DecisionTreeClassifierPure): """ Pure python implementation of `ExtraTreeClassifier`. Args: estimator (sklearn estimator): fitted `ExtraTreeClassifier` object """ pass class ExtraTreeRegressorPure(DecisionTreeRegressorPure): """ Pure python implementation of `ExtraTreeRegressor`. Args: estimator (sklearn estimator): fitted `ExtraTreeRegressor` object """ pass
0.795142
0.333313
from ..base import transpose, apply_axis_2d, apply_2d, safe_exp, safe_log, ravel, expit from ..utils import check_types, shape EPS = 1.1920929e-07 def _clip(a, a_min, a_max): if a < a_min: return a_min elif a > a_max: return a_max else: return a class _MultinomialDeviancePure: """Multinomial deviance loss function for multi-class classification""" is_multi_class = True def __init__(self, n_classes): if n_classes < 3: raise ValueError( "{0:s} requires more than 2 classes.".format(self.__class__.__name__) ) self.n_classes_ = n_classes check_types(self) def _raw_prediction_to_proba(self, raw_predictions): logsumexp = list( map(safe_log, apply_axis_2d(apply_2d(raw_predictions, safe_exp), sum)) ) return [ [ safe_exp(raw_predictions[index][i] - logsumexp[index]) for i in range(self.n_classes_) ] for index in range(len(raw_predictions)) ] def _raw_prediction_to_decision(self, raw_predictions): proba = self._raw_prediction_to_proba(raw_predictions) return [a.index(max(a)) for a in proba] def get_init_raw_predictions(self, X, estimator): probas = estimator.predict_proba(X) func = lambda x: safe_log(_clip(x, EPS, 1 - EPS)) return apply_2d(probas, func) class _BinomialDeviancePure: """Binomial deviance loss function for binary classification""" def __init__(self, n_classes): if n_classes != 2: raise ValueError( "{0:s} requires 2 classes; got {1:d} class(es)".format( self.__class__.__name__, n_classes ) ) check_types(self) def _raw_prediction_to_proba(self, raw_predictions): proba = ( ravel(raw_predictions) if shape(raw_predictions)[1] == 1 else raw_predictions ) proba_1 = list(map(expit, proba)) proba = [[(1 - x) for x in proba_1], proba_1] return transpose(proba) def _raw_prediction_to_decision(self, raw_predictions): proba = self._raw_prediction_to_proba(raw_predictions) return [a.index(max(a)) for a in proba] def get_init_raw_predictions(self, X, estimator): probas = estimator.predict_proba(X) func = lambda x: _clip(x, EPS, 1 - EPS) proba_pos_class = [func(a[1]) for a in probas] log_func = lambda x: safe_log(x / (1 - x)) return [[log_func(a)] for a in proba_pos_class] class _ExponentialLossPure: """Exponential loss function for binary classification""" def __init__(self, n_classes): if n_classes != 2: raise ValueError( "{0:s} requires 2 classes; got {1:d} class(es)".format( self.__class__.__name__, n_classes ) ) check_types(self) def _raw_prediction_to_proba(self, raw_predictions): proba = ( ravel(raw_predictions) if shape(raw_predictions)[1] == 1 else raw_predictions ) func = lambda x: expit(x) * 2.0 proba_1 = list(map(func, proba)) proba = [[(1 - x) for x in proba_1], proba_1] return transpose(proba) def _raw_prediction_to_decision(self, raw_predictions): raw_predictions = ( ravel(raw_predictions) if shape(raw_predictions)[1] == 1 else raw_predictions ) return [int(a >= 0) for a in raw_predictions] def get_init_raw_predictions(self, X, estimator): probas = estimator.predict_proba(X) func = lambda x: _clip(x, EPS, 1 - EPS) proba_pos_class = [func(a[1]) for a in probas] log_func = lambda x: 0.5 * safe_log(x / (1 - x)) return [[log_func(a)] for a in proba_pos_class]
scikit-endpoint
/scikit-endpoint-0.0.3.tar.gz/scikit-endpoint-0.0.3/scikit_endpoint/ensemble/_gb_losses.py
_gb_losses.py
from ..base import transpose, apply_axis_2d, apply_2d, safe_exp, safe_log, ravel, expit from ..utils import check_types, shape EPS = 1.1920929e-07 def _clip(a, a_min, a_max): if a < a_min: return a_min elif a > a_max: return a_max else: return a class _MultinomialDeviancePure: """Multinomial deviance loss function for multi-class classification""" is_multi_class = True def __init__(self, n_classes): if n_classes < 3: raise ValueError( "{0:s} requires more than 2 classes.".format(self.__class__.__name__) ) self.n_classes_ = n_classes check_types(self) def _raw_prediction_to_proba(self, raw_predictions): logsumexp = list( map(safe_log, apply_axis_2d(apply_2d(raw_predictions, safe_exp), sum)) ) return [ [ safe_exp(raw_predictions[index][i] - logsumexp[index]) for i in range(self.n_classes_) ] for index in range(len(raw_predictions)) ] def _raw_prediction_to_decision(self, raw_predictions): proba = self._raw_prediction_to_proba(raw_predictions) return [a.index(max(a)) for a in proba] def get_init_raw_predictions(self, X, estimator): probas = estimator.predict_proba(X) func = lambda x: safe_log(_clip(x, EPS, 1 - EPS)) return apply_2d(probas, func) class _BinomialDeviancePure: """Binomial deviance loss function for binary classification""" def __init__(self, n_classes): if n_classes != 2: raise ValueError( "{0:s} requires 2 classes; got {1:d} class(es)".format( self.__class__.__name__, n_classes ) ) check_types(self) def _raw_prediction_to_proba(self, raw_predictions): proba = ( ravel(raw_predictions) if shape(raw_predictions)[1] == 1 else raw_predictions ) proba_1 = list(map(expit, proba)) proba = [[(1 - x) for x in proba_1], proba_1] return transpose(proba) def _raw_prediction_to_decision(self, raw_predictions): proba = self._raw_prediction_to_proba(raw_predictions) return [a.index(max(a)) for a in proba] def get_init_raw_predictions(self, X, estimator): probas = estimator.predict_proba(X) func = lambda x: _clip(x, EPS, 1 - EPS) proba_pos_class = [func(a[1]) for a in probas] log_func = lambda x: safe_log(x / (1 - x)) return [[log_func(a)] for a in proba_pos_class] class _ExponentialLossPure: """Exponential loss function for binary classification""" def __init__(self, n_classes): if n_classes != 2: raise ValueError( "{0:s} requires 2 classes; got {1:d} class(es)".format( self.__class__.__name__, n_classes ) ) check_types(self) def _raw_prediction_to_proba(self, raw_predictions): proba = ( ravel(raw_predictions) if shape(raw_predictions)[1] == 1 else raw_predictions ) func = lambda x: expit(x) * 2.0 proba_1 = list(map(func, proba)) proba = [[(1 - x) for x in proba_1], proba_1] return transpose(proba) def _raw_prediction_to_decision(self, raw_predictions): raw_predictions = ( ravel(raw_predictions) if shape(raw_predictions)[1] == 1 else raw_predictions ) return [int(a >= 0) for a in raw_predictions] def get_init_raw_predictions(self, X, estimator): probas = estimator.predict_proba(X) func = lambda x: _clip(x, EPS, 1 - EPS) proba_pos_class = [func(a[1]) for a in probas] log_func = lambda x: 0.5 * safe_log(x / (1 - x)) return [[log_func(a)] for a in proba_pos_class]
0.618665
0.504089
from operator import add from ._gb_losses import ( _MultinomialDeviancePure, _BinomialDeviancePure, _ExponentialLossPure, ) from ..base import transpose, apply_2d, safe_log, operate_2d from ..utils import check_version, check_types, check_array, shape from ..map import convert_estimator class GradientBoostingClassifierPure: """ Pure python implementation of `GradientBoostingClassifier`. Args: estimator (sklearn estimator): fitted `GradientBoostingClassifier` object """ def __init__(self, estimator): check_version(estimator, "0.21.0") self.classes_ = estimator.classes_.tolist() self.estimators_ = [] for est_arr in estimator.estimators_: est_arr_ = [] for est in est_arr: est_ = convert_estimator(est) est_arr_.append(est_) self.estimators_.append(est_arr_) if hasattr(estimator, "init_"): self.init_ = convert_estimator(estimator.init_) self.loss = estimator.loss self.learning_rate = estimator.learning_rate self.n_features_ = estimator.n_features_in_ if self.loss == "deviance": self.loss_ = ( _MultinomialDeviancePure(len(self.classes_)) if len(self.classes_) > 2 else _BinomialDeviancePure(len(self.classes_)) ) elif self.loss == "exponential": self.loss_ = _ExponentialLossPure(len(self.classes_)) else: raise ValueError("Loss: '{}' not supported.".format(self.loss)) check_types(self) def _raw_predict_init(self, X): """Check input and compute raw predictions of the init estimator""" X = check_array(X) if shape(X)[1] != self.n_features_: raise ValueError( "X.shape[1] should be {0:d}, not {1:d}.".format( self.n_features_, shape(X)[1] ) ) if self.init_ == "zero": raw_predictions = [[0.0] * shape(X)[1]] * shape(X)[0] else: raw_predictions = self.loss_.get_init_raw_predictions(X, self.init_) return raw_predictions def _raw_predict(self, X): init_preds = self._raw_predict_init(X) out = [] for k in range(len(self.estimators_[0])): column = [0] * (shape(X)[0]) for index in range(len(self.estimators_)): preds = self.estimators_[index][k].predict(X) column = [ column[i] + (preds[i] * self.learning_rate) for i in range(len(preds)) ] out.append(column) out = transpose(out) return operate_2d(init_preds, out, add) def predict_proba(self, X): raw_predictions = self._raw_predict(X) return self.loss_._raw_prediction_to_proba(raw_predictions) def predict_log_proba(self, X): return apply_2d(self.predict_proba(X), safe_log) def predict(self, X): proba = self.predict_proba(X) return [self.classes_[a.index(max(a))] for a in proba]
scikit-endpoint
/scikit-endpoint-0.0.3.tar.gz/scikit-endpoint-0.0.3/scikit_endpoint/ensemble/_gb.py
_gb.py
from operator import add from ._gb_losses import ( _MultinomialDeviancePure, _BinomialDeviancePure, _ExponentialLossPure, ) from ..base import transpose, apply_2d, safe_log, operate_2d from ..utils import check_version, check_types, check_array, shape from ..map import convert_estimator class GradientBoostingClassifierPure: """ Pure python implementation of `GradientBoostingClassifier`. Args: estimator (sklearn estimator): fitted `GradientBoostingClassifier` object """ def __init__(self, estimator): check_version(estimator, "0.21.0") self.classes_ = estimator.classes_.tolist() self.estimators_ = [] for est_arr in estimator.estimators_: est_arr_ = [] for est in est_arr: est_ = convert_estimator(est) est_arr_.append(est_) self.estimators_.append(est_arr_) if hasattr(estimator, "init_"): self.init_ = convert_estimator(estimator.init_) self.loss = estimator.loss self.learning_rate = estimator.learning_rate self.n_features_ = estimator.n_features_in_ if self.loss == "deviance": self.loss_ = ( _MultinomialDeviancePure(len(self.classes_)) if len(self.classes_) > 2 else _BinomialDeviancePure(len(self.classes_)) ) elif self.loss == "exponential": self.loss_ = _ExponentialLossPure(len(self.classes_)) else: raise ValueError("Loss: '{}' not supported.".format(self.loss)) check_types(self) def _raw_predict_init(self, X): """Check input and compute raw predictions of the init estimator""" X = check_array(X) if shape(X)[1] != self.n_features_: raise ValueError( "X.shape[1] should be {0:d}, not {1:d}.".format( self.n_features_, shape(X)[1] ) ) if self.init_ == "zero": raw_predictions = [[0.0] * shape(X)[1]] * shape(X)[0] else: raw_predictions = self.loss_.get_init_raw_predictions(X, self.init_) return raw_predictions def _raw_predict(self, X): init_preds = self._raw_predict_init(X) out = [] for k in range(len(self.estimators_[0])): column = [0] * (shape(X)[0]) for index in range(len(self.estimators_)): preds = self.estimators_[index][k].predict(X) column = [ column[i] + (preds[i] * self.learning_rate) for i in range(len(preds)) ] out.append(column) out = transpose(out) return operate_2d(init_preds, out, add) def predict_proba(self, X): raw_predictions = self._raw_predict(X) return self.loss_._raw_prediction_to_proba(raw_predictions) def predict_log_proba(self, X): return apply_2d(self.predict_proba(X), safe_log) def predict(self, X): proba = self.predict_proba(X) return [self.classes_[a.index(max(a))] for a in proba]
0.865991
0.385519
from math import isnan from ..utils import shape, check_array, check_types, check_version from ..base import apply_2d, apply_axis_2d def _to_impute(val, missing_values): if isnan(missing_values): return isnan(val) else: return val == missing_values class MissingIndicatorPure: """ Pure python implementation of `MissingIndicator`. Args: estimator (sklearn estimator): fitted `MissingIndicator` object """ def __init__(self, estimator): check_version(estimator) self.features = estimator.features self.features_ = estimator.features_.tolist() self._n_features = estimator._n_features self.missing_values = ( float(estimator.missing_values) if isinstance(estimator.missing_values, float) else estimator.missing_values ) self.error_on_new = estimator.error_on_new check_types(self) def transform(self, X): X = check_array(X) if shape(X)[1] != self._n_features: raise ValueError( "X has a different number of features than during fitting." ) imputer_mask, features = self._get_missing_features_info(X) if self.features == "missing-only": features_diff_fit_trans = set(features) - set(self.features_) if self.error_on_new and len(features_diff_fit_trans) > 0: raise ValueError( "The features {} have missing values " "in transform but have no missing values " "in fit.".format(features_diff_fit_trans) ) if len(self.features_) < self._n_features: imputer_mask = [ [float(a[i]) for i in range(len(a)) if i in self.features_] for a in imputer_mask ] return imputer_mask def _get_missing_features_info(self, X): func = lambda x: _to_impute(x, self.missing_values) imputer_mask = apply_2d(X, func) if self.features == "missing-only": n_missing = apply_axis_2d(imputer_mask, sum, axis=0) if self.features == "all": features_indices = range(shape(X)[1]) else: features_indices = [a for a in n_missing if a != 0] return imputer_mask, features_indices class SimpleImputerPure: """ Pure python implementation of `SimpleImputer`. Args: estimator (sklearn estimator): fitted `SimpleImputer` object """ def __init__(self, estimator): check_version(estimator) self.statistics_ = estimator.statistics_.tolist() self.strategy = estimator.strategy if hasattr(estimator, "add_indicator"): self.add_indicator = estimator.add_indicator else: self.add_indicator = False self.missing_values = ( float(estimator.missing_values) if isinstance(estimator.missing_values, float) else estimator.missing_values ) if hasattr(estimator, "indicator_") and (estimator.indicator_ is not None): self.indicator_ = MissingIndicatorPure(estimator.indicator_) self.indicator_.error_on_new = False check_types(self) def _concatenate_indicator(self, X_imputed, X_indicator): """Concatenate indicator mask with the imputed data""" if not self.add_indicator: return X_imputed if X_indicator is None: raise ValueError( "Data from the missing indicator are not provided. Call " "_fit_indicator and _transform_indicator in the imputer " "implementation." ) return [ X_imputed[index] + X_indicator[index] for index in range(len(X_imputed)) ] def _transform_indicator(self, X): """ Compute the indicator mask. Note that X must be the original data as passed to the imputer before any imputation, since imputation may be done inplace in some cases. """ if self.add_indicator: if not hasattr(self, "indicator_"): raise ValueError( "Make sure to call _fit_indicator before _transform_indicator" ) return self.indicator_.transform(X) def transform(self, X): """Transform inpute X by imputing values""" X = check_array(X) X_indicator = self._transform_indicator(X) if shape(X)[1] != shape(self.statistics_)[0]: raise ValueError( "X has %d features per sample, expected %d" % (shape(X)[1], shape(self.statistics_)[0]) ) # delete the invalid columns if strategy is not constant if self.strategy == "constant": valid_statistics = self.statistics_ else: to_remove = [ index for index in range(len(self.statistics_)) if isnan(self.statistics_[index]) ] if len(to_remove) > 0: X = [[a[i] for i in range(len(a)) if i not in to_remove] for a in X] valid_statistics = [ self.statistics_[i] for i in range(len(self.statistics_)) if i not in to_remove ] else: valid_statistics = self.statistics_ func = ( lambda a, i: a[i] if not _to_impute(a[i], self.missing_values) else valid_statistics[i] ) X_imputed = [[func(a, i) for i in range(len(a))] for a in X] return self._concatenate_indicator(X_imputed, X_indicator)
scikit-endpoint
/scikit-endpoint-0.0.3.tar.gz/scikit-endpoint-0.0.3/scikit_endpoint/impute/_base.py
_base.py
from math import isnan from ..utils import shape, check_array, check_types, check_version from ..base import apply_2d, apply_axis_2d def _to_impute(val, missing_values): if isnan(missing_values): return isnan(val) else: return val == missing_values class MissingIndicatorPure: """ Pure python implementation of `MissingIndicator`. Args: estimator (sklearn estimator): fitted `MissingIndicator` object """ def __init__(self, estimator): check_version(estimator) self.features = estimator.features self.features_ = estimator.features_.tolist() self._n_features = estimator._n_features self.missing_values = ( float(estimator.missing_values) if isinstance(estimator.missing_values, float) else estimator.missing_values ) self.error_on_new = estimator.error_on_new check_types(self) def transform(self, X): X = check_array(X) if shape(X)[1] != self._n_features: raise ValueError( "X has a different number of features than during fitting." ) imputer_mask, features = self._get_missing_features_info(X) if self.features == "missing-only": features_diff_fit_trans = set(features) - set(self.features_) if self.error_on_new and len(features_diff_fit_trans) > 0: raise ValueError( "The features {} have missing values " "in transform but have no missing values " "in fit.".format(features_diff_fit_trans) ) if len(self.features_) < self._n_features: imputer_mask = [ [float(a[i]) for i in range(len(a)) if i in self.features_] for a in imputer_mask ] return imputer_mask def _get_missing_features_info(self, X): func = lambda x: _to_impute(x, self.missing_values) imputer_mask = apply_2d(X, func) if self.features == "missing-only": n_missing = apply_axis_2d(imputer_mask, sum, axis=0) if self.features == "all": features_indices = range(shape(X)[1]) else: features_indices = [a for a in n_missing if a != 0] return imputer_mask, features_indices class SimpleImputerPure: """ Pure python implementation of `SimpleImputer`. Args: estimator (sklearn estimator): fitted `SimpleImputer` object """ def __init__(self, estimator): check_version(estimator) self.statistics_ = estimator.statistics_.tolist() self.strategy = estimator.strategy if hasattr(estimator, "add_indicator"): self.add_indicator = estimator.add_indicator else: self.add_indicator = False self.missing_values = ( float(estimator.missing_values) if isinstance(estimator.missing_values, float) else estimator.missing_values ) if hasattr(estimator, "indicator_") and (estimator.indicator_ is not None): self.indicator_ = MissingIndicatorPure(estimator.indicator_) self.indicator_.error_on_new = False check_types(self) def _concatenate_indicator(self, X_imputed, X_indicator): """Concatenate indicator mask with the imputed data""" if not self.add_indicator: return X_imputed if X_indicator is None: raise ValueError( "Data from the missing indicator are not provided. Call " "_fit_indicator and _transform_indicator in the imputer " "implementation." ) return [ X_imputed[index] + X_indicator[index] for index in range(len(X_imputed)) ] def _transform_indicator(self, X): """ Compute the indicator mask. Note that X must be the original data as passed to the imputer before any imputation, since imputation may be done inplace in some cases. """ if self.add_indicator: if not hasattr(self, "indicator_"): raise ValueError( "Make sure to call _fit_indicator before _transform_indicator" ) return self.indicator_.transform(X) def transform(self, X): """Transform inpute X by imputing values""" X = check_array(X) X_indicator = self._transform_indicator(X) if shape(X)[1] != shape(self.statistics_)[0]: raise ValueError( "X has %d features per sample, expected %d" % (shape(X)[1], shape(self.statistics_)[0]) ) # delete the invalid columns if strategy is not constant if self.strategy == "constant": valid_statistics = self.statistics_ else: to_remove = [ index for index in range(len(self.statistics_)) if isnan(self.statistics_[index]) ] if len(to_remove) > 0: X = [[a[i] for i in range(len(a)) if i not in to_remove] for a in X] valid_statistics = [ self.statistics_[i] for i in range(len(self.statistics_)) if i not in to_remove ] else: valid_statistics = self.statistics_ func = ( lambda a, i: a[i] if not _to_impute(a[i], self.missing_values) else valid_statistics[i] ) X_imputed = [[func(a, i) for i in range(len(a))] for a in X] return self._concatenate_indicator(X_imputed, X_indicator)
0.829492
0.471223
<p> <img src="https://github.com/monte-flora/scikit-explain/blob/master/images/mintpy_logo.png?raw=true" align="right" width="400" height="400" /> </p> ![Unit Tests](https://github.com/monte-flora/scikit-explain/actions/workflows/continuous_intergration.yml/badge.svg) [![codecov](https://codecov.io/gh/monte-flora/s/branch/master/graph/badge.svg?token=GG9NRQOZ0N)](https://codecov.io/gh/monte-flora/scikit-explain) [![Updates](https://pyup.io/repos/github/monte-flora/scikit-explain/shield.svg)](https://pyup.io/repos/github/monte-flora/scikit-explain/) [![Python 3](https://pyup.io/repos/github/monte-flora/scikit-explain/python-3-shield.svg)](https://pyup.io/repos/github/monte-flora/scikit-explain/) [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black) ![PyPI](https://img.shields.io/pypi/v/scikit-explain) [![Documentation Status](https://readthedocs.org/projects/scikit-explain/badge/?version=latest)](https://scikit-explain.readthedocs.io/en/latest/?badge=latest) scikit-explain is a user-friendly Python module for tabular-style machine learning explainability. Current explainability products includes * Feature importance: * [Single- and Multi-pass Permutation Importance](https://permutationimportance.readthedocs.io/en/latest/methods.html#permutation-importance) ([Brieman et al. 2001](https://link.springer.com/article/10.1023/A:1010933404324)], [Lakshmanan et al. 2015](https://journals.ametsoc.org/view/journals/atot/32/6/jtech-d-13-00205_1.xml?rskey=hlSyXu&result=2)) * [SHAP](https://christophm.github.io/interpretable-ml-book/shap.html) * First-order PD/ALE Variance ([Greenwell et al. 2018](https://arxiv.org/abs/1805.04755)) * Grouped permutation importance ([Au et al. 2021](https://arxiv.org/abs/2104.11688)) * Feature Effects/Attributions: * [Partial Dependence](https://christophm.github.io/interpretable-ml-book/pdp.html) (PD), * [Accumulated local effects](https://christophm.github.io/interpretable-ml-book/ale.html) (ALE), * Random forest-based feature contributions ([treeinterpreter](http://blog.datadive.net/interpreting-random-forests/)) * [SHAP](https://christophm.github.io/interpretable-ml-book/shap.html) * [LIME](https://christophm.github.io/interpretable-ml-book/lime.html#lime) * Main Effect Complexity (MEC; [Molnar et al. 2019](https://arxiv.org/abs/1904.03867)) * Feature Interactions: * Second-order PD/ALE * Interaction Strength and Main Effect Complexity (IAS; [Molnar et al. 2019](https://arxiv.org/abs/1904.03867)) * Second-order PD/ALE Variance ([Greenwell et al. 2018](https://arxiv.org/abs/1805.04755)) * Second-order Permutation Importance ([Oh et al. 2019](https://www.mdpi.com/2076-3417/9/23/5191)) * Friedman H-statistic ([Friedman and Popescu 2008](https://projecteuclid.org/journals/annals-of-applied-statistics/volume-2/issue-3/Predictive-learning-via-rule-ensembles/10.1214/07-AOAS148.full)) These explainability methods are discussed at length in Christoph Molnar's [Interpretable Machine Learning](https://christophm.github.io/interpretable-ml-book/). The primary feature of this package is the accompanying built-in plotting methods, which are desgined to be easy to use while producing publication-level quality figures. The computations do leverage parallelization when possible. Documentation for scikit-explain can be found at [Read the Docs](https://scikit-explain.readthedocs.io/en/latest/index.html#). The package is under active development and will likely contain bugs or errors. Feel free to raise issues! This package is largely original code, but also includes snippets or chunks of code from preexisting packages. Our goal is not take credit from other code authors, but to make a single source for computing several machine learning explanation methods. Here is a list of packages used in scikit-explain: [**PyALE**](https://github.com/DanaJomar/PyALE), [**PermutationImportance**](https://github.com/gelijergensen/PermutationImportance), [**ALEPython**](https://github.com/blent-ai/ALEPython), [**SHAP**](https://github.com/slundberg/shap/), [**scikit-learn**](https://github.com/scikit-learn/scikit-learn), [**LIME**](https://github.com/marcotcr/lime), [**Faster-LIME**](https://github.com/seansaito/Faster-LIME), [**treeinterpreter**](https://github.com/andosa/treeinterpreter) If you employ scikit-explain in your research, please cite this github and the relevant packages listed above. If you are experiencing issues with loading the tutorial jupyter notebooks, you can enter the URL/location of the notebooks into the following address: https://nbviewer.jupyter.org/. ## Install scikit-explain can be installed through conda-forge or pip. ``` conda install -c conda-forge scikit-explain pip install scikit-explain ``` ## Dependencies scikit-explain is compatible with Python 3.8 or newer. scikit-explain requires the following packages: ``` numpy scipy pandas scikit-learn matplotlib shap>=0.30.0 xarray>=0.16.0 tqdm statsmodels seaborn>=0.11.0 ``` Scikit-explain has built-in saving and loading function for pandas dataframes and xarray datasets. Datasets are saved in netCDF4 format. To use this feature, install netCDF4 with one of the following: `pip install netCDF4` or `conda install -c conda-forge netCDF4` ### Initializing scikit-explain The interface of scikit-explain is ```ExplainToolkit```, which houses all of the explainability methods and their corresponding plotting methods. See the tutorial notebooks for examples. ```python import skexplain # Loads three ML models (random forest, gradient-boosted tree, and logistic regression) # trained on a subset of the road surface temperature data from Handler et al. (2020). estimators = skexplain.load_models() X,y = skexplain.load_data() explainer = skexplain.ExplainToolkit(estimators=estimators,X=X,y=y,) ``` ## Permutation Importance scikit-explain includes both single-pass and multiple-pass permutation importance method ([Brieman et al. 2001](https://link.springer.com/article/10.1023/A:1010933404324)], [Lakshmanan et al. 2015](https://journals.ametsoc.org/view/journals/atot/32/6/jtech-d-13-00205_1.xml?rskey=hlSyXu&result=2), [McGovern et al. 2019](https://journals.ametsoc.org/view/journals/bams/100/11/bams-d-18-0195.1.xml?rskey=TvAHl8&result=20)). The permutation direction can also be given (i.e., backward or forward). Users can also specify feature groups and compute the grouped permutation feature importance ([Au et al. 2021](https://arxiv.org/abs/2104.11688)). Scikit-explain has a function that allows for any feature ranking to be converted into a format for using the plotting package (skexplain.common.importance_utils.to_skexplain_importance). In the [tutorial](https://github.com/monte-flora/scikit-explain/blob/master/tutorial_notebooks/permutation_importance_tutorial.ipynb), users have flexibility for making publication-quality figures. ```python perm_results = explainer.permutation_importance(n_vars=10, evaluation_fn='auc') explainer.plot_importance(data=perm_results) ``` <p align="center"> <img width="811" src="https://github.com/monte-flora/scikit-explain/blob/master/images/multi_pass_perm_imp.png?raw=true" /> </p> Sample notebook can be found here: [**Permutation Importance**](https://github.com/monte-flora/scikit-explain/blob/master/tutorial_notebooks/permutation_importance_tutorial.ipynb) ## Partial dependence and Accumulated Local Effects To compute the expected functional relationship between a feature and an ML model's prediction, scikit-explain has partial dependence, accumulated local effects, or SHAP dependence. There is also an option for second-order interaction effects. For the choice of feature, you can manually select or can run the permutation importance and a built-in method will retrieve those features. It is also possible to configure the plot for readable feature names. ```python # Assumes the .permutation_importance has already been run. important_vars = explainer.get_important_vars(results, multipass=True, nvars=7) ale = explainer.ale(features=important_vars, n_bins=20) explainer.plot_ale(ale) ``` <p align="center"> <img width="811" src="https://github.com/monte-flora/scikit-explain/blob/master/images/ale_1d.png?raw=true" /> </p> Additionally, you can use the same code snippet to compute the second-order ALE (see the notebook for more details). <p align="center"> <img width="811" src="https://github.com/monte-flora/scikit-explain/blob/master/images/ale_2d.png?raw=true" /> </p> Sample notebook can be found here: - [**Accumulated Local effects**](https://github.com/monte-flora/skexplain/blob/master/tutorial_notebooks/accumulated_local_effect_tutorial.ipynb) - [**Partial Dependence**](https://github.com/monte-flora/scikit-explain/blob/master/tutorial_notebooks/partial_dependence_tutorial.ipynb) ## Feature Attributions (Local Explainability) To explain individual examples (or set of examples), scikit-explain has model-agnostic methods like SHAP and LIME and model-specific methods like tree interpreter (for decision tree-based model from scikit-learn). For SHAP, scikit-explain uses the shap.Explainer method, which automatically determines the most appropriate Shapley value algorithm ([see their docs](https://shap.readthedocs.io/en/latest/generated/shap.Explainer.html)). For LIME, scikit-explain uses the code from the Faster-LIME method. scikit-explain can create the summary and dependence plots from the shap python package, but is adapted for multiple features and an easier user interface. It is also possible to plot attributions for a single example or summarized by model performance. ```python import shap single_example = examples.iloc[[0]] explainer = skexplain.ExplainToolkit(estimators=estimators[0], X=single_example,) # For the LIME, we must provide the training dataset. We also denote any categorical features. lime_kws = {'training_data' : X.values, 'categorical_names' : ['rural', 'urban']} # The masker handles the missing features. In this case, we are using correlations # in the dataset to determine the feature groupings. These groups of features are remove or added into # sets together. shap_kws={'masker' : shap.maskers.Partition(X, max_samples=100, clustering="correlation"), 'algorithm' : 'permutation'} # method can be a single str or list of strs. attr_results = explainer.local_attributions(method=['shap', 'lime', 'tree_interpreter'], shap_kws=shap_kws, lime_kws=lime_kws) fig = explainer.plot_contributions(results) ``` <p align="center"> <img width="811" src="https://github.com/monte-flora/scikit-explain/blob/master/images/feature_contribution_single.png?raw=true" /> </p> ```python explainer = skexplain.ExplainToolkit(estimators=estimators[0],X=X, y=y) # average_attributions is used to average feature attributions and their feature values either using a simple mean or the mean based on model performance. avg_attr_results = explainer.average_attributions(method='shap', shap_kwargs=shap_kwargs, performance_based=True,) fig = myInterpreter.plot_contributions(avg_attr_results) ``` <p align="center"> <img width="811" src="https://github.com/monte-flora/scikit-explain/blob/master/images/feature_contributions_perform.png?raw=true" /> </p> ```python explainer = skexplain.ExplainToolkit(estimators=estimators[0],X=X, y=y) attr_results = explainer.local_attributions(method='lime', lime_kws=lime_kws) explainer.scatter_plot(plot_type = 'summary', dataset=attr_results) ``` <p align="center"> <img width="811" src="https://github.com/monte-flora/scikit-explain/blob/master/images/shap_dependence.png?raw=true" /> </p> ```python from skexplain.common import plotting_config features = ['tmp2m_hrs_bl_frez', 'sat_irbt', 'sfcT_hrs_ab_frez', 'tmp2m_hrs_ab_frez', 'd_rad_d'] explainer.scatter_plot(features=features, plot_type = 'dependence', dataset=dataset, display_feature_names=plotting_config.display_feature_names, display_units = plotting_config.display_units, to_probability=True) ``` <p align="center"> <img width="811" src="https://github.com/monte-flora/scikit-explain/blob/master/images/shap_summary.png?raw=true" /> </p> Sample notebook can be found here: - [**Feature Contributions**](https://github.com/monte-flora/scikit-explain/blob/master/tutorial_notebooks/feature_contributions.ipynb) - [**Additional Feature Attributions Plots**](https://github.com/monte-flora/scikit-explain/blob/master/tutorial_notebooks/additional_feature_attribution_plots.ipynb) ## Tutorial notebooks The notebooks provides the package documentation and demonstrate scikit-explain API, which was used to create the above figures. If you are experiencing issues with loading the jupyter notebooks, you can enter the URL/location of the notebooks into the following address: https://nbviewer.jupyter.org/. - [**Permutation Importance**](https://github.com/monte-flora/scikit-explain/blob/master/tutorial_notebooks/permutation_importance_tutorial.ipynb) - [**Accumulated Local effects**](https://github.com/monte-flora/scikit-explain/blob/master/tutorial_notebooks/accumulated_local_effect_tutorial.ipynb) - [**Partial Dependence**](https://github.com/monte-flora/scikit-explain/blob/master/tutorial_notebooks/partial_dependence_tutorial.ipynb) - [**Feature Contributions**](https://github.com/monte-flora/scikit-explain/blob/master/tutorial_notebooks/feature_contributions.ipynb) - [**Additional Feature Attributions Plots**](https://github.com/monte-flora/scikit-explain/blob/master/tutorial_notebooks/additional_feature_attribution_plots.ipynb)
scikit-explain
/scikit-explain-0.1.3.tar.gz/scikit-explain-0.1.3/README.md
README.md
conda install -c conda-forge scikit-explain pip install scikit-explain numpy scipy pandas scikit-learn matplotlib shap>=0.30.0 xarray>=0.16.0 tqdm statsmodels seaborn>=0.11.0 import skexplain # Loads three ML models (random forest, gradient-boosted tree, and logistic regression) # trained on a subset of the road surface temperature data from Handler et al. (2020). estimators = skexplain.load_models() X,y = skexplain.load_data() explainer = skexplain.ExplainToolkit(estimators=estimators,X=X,y=y,) perm_results = explainer.permutation_importance(n_vars=10, evaluation_fn='auc') explainer.plot_importance(data=perm_results) <p align="center"> <img width="811" src="https://github.com/monte-flora/scikit-explain/blob/master/images/ale_1d.png?raw=true" /> </p> Additionally, you can use the same code snippet to compute the second-order ALE (see the notebook for more details). <p align="center"> <img width="811" src="https://github.com/monte-flora/scikit-explain/blob/master/images/ale_2d.png?raw=true" /> </p> Sample notebook can be found here: - [**Accumulated Local effects**](https://github.com/monte-flora/skexplain/blob/master/tutorial_notebooks/accumulated_local_effect_tutorial.ipynb) - [**Partial Dependence**](https://github.com/monte-flora/scikit-explain/blob/master/tutorial_notebooks/partial_dependence_tutorial.ipynb) ## Feature Attributions (Local Explainability) To explain individual examples (or set of examples), scikit-explain has model-agnostic methods like SHAP and LIME and model-specific methods like tree interpreter (for decision tree-based model from scikit-learn). For SHAP, scikit-explain uses the shap.Explainer method, which automatically determines the most appropriate Shapley value algorithm ([see their docs](https://shap.readthedocs.io/en/latest/generated/shap.Explainer.html)). For LIME, scikit-explain uses the code from the Faster-LIME method. scikit-explain can create the summary and dependence plots from the shap python package, but is adapted for multiple features and an easier user interface. It is also possible to plot attributions for a single example or summarized by model performance. <p align="center"> <img width="811" src="https://github.com/monte-flora/scikit-explain/blob/master/images/feature_contribution_single.png?raw=true" /> </p> <p align="center"> <img width="811" src="https://github.com/monte-flora/scikit-explain/blob/master/images/feature_contributions_perform.png?raw=true" /> </p> <p align="center"> <img width="811" src="https://github.com/monte-flora/scikit-explain/blob/master/images/shap_dependence.png?raw=true" /> </p>
0.838845
0.944331
import numpy as np import sklearn from multiprocessing.pool import Pool from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor from sklearn.tree import DecisionTreeRegressor, DecisionTreeClassifier, _tree from distutils.version import LooseVersion from tqdm import tqdm if LooseVersion(sklearn.__version__) < LooseVersion("0.17"): raise Exception("treeinterpreter requires scikit-learn 0.17 or later") class TreeInterpreter: def __init__(self, model, examples, joint_contribution=False, n_jobs=1): """ Parameters ---------- model : DecisionTreeRegressor, DecisionTreeClassifier, ExtraTreeRegressor, ExtraTreeClassifier, RandomForestRegressor, RandomForestClassifier, ExtraTreesRegressor, ExtraTreesClassifier Scikit-learn model on which the prediction should be decomposed. X : array-like, shape = (n_samples, n_features) Test samples. joint_contribution : boolean Specifies if contributions are given individually from each feature, or jointly over them """ self._model = model self._examples = examples self._joint_contribution = joint_contribution self._n_jobs = n_jobs def _get_tree_paths(self, tree, node_id, depth=0): """ Returns all paths through the tree as list of node_ids """ if node_id == _tree.TREE_LEAF: raise ValueError("Invalid node_id %s" % _tree.TREE_LEAF) left_child = tree.children_left[node_id] right_child = tree.children_right[node_id] if left_child != _tree.TREE_LEAF: left_paths = self._get_tree_paths(tree, left_child, depth=depth + 1) right_paths = self._get_tree_paths(tree, right_child, depth=depth + 1) for path in left_paths: path.append(node_id) for path in right_paths: path.append(node_id) paths = left_paths + right_paths else: paths = [[node_id]] return paths def predict_tree(self, tree): """ For a given DecisionTreeRegressor, DecisionTreeClassifier, ExtraTreeRegressor, or ExtraTreeClassifier, returns a triple of [prediction, bias and feature_contributions], such that prediction ≈ bias + feature_contributions. """ leaves = tree.apply(self._examples) paths = self._get_tree_paths(tree.tree_, 0) for path in paths: path.reverse() leaf_to_path = {} # map leaves to paths for path in paths: leaf_to_path[path[-1]] = path # remove the single-dimensional inner arrays values = tree.tree_.value.squeeze(axis=1) # reshape if squeezed into a single float if len(values.shape) == 0: values = np.array([values]) if isinstance(tree, DecisionTreeRegressor): biases = np.full(self._examples.shape[0], values[paths[0][0]]) line_shape = self._examples.shape[1] elif isinstance(tree, DecisionTreeClassifier): # scikit stores category counts, we turn them into probabilities normalizer = values.sum(axis=1)[:, np.newaxis] normalizer[normalizer == 0.0] = 1.0 values /= normalizer biases = np.tile(values[paths[0][0]], (self._examples.shape[0], 1)) line_shape = (self._examples.shape[1], tree.n_classes_) direct_prediction = values[leaves] # make into python list, accessing values will be faster values_list = list(values) feature_index = list(tree.tree_.feature) contributions = [] if self._joint_contribution: for row, leaf in enumerate(leaves): path = leaf_to_path[leaf] path_features = set() contributions.append({}) for i in range(len(path) - 1): path_features.add(feature_index[path[i]]) contrib = values_list[path[i + 1]] - values_list[path[i]] # path_features.sort() contributions[row][tuple(sorted(path_features))] = ( contributions[row].get(tuple(sorted(path_features)), 0) + contrib ) return direct_prediction, biases, contributions else: unique_leaves = np.unique(leaves) unique_contributions = {} for row, leaf in enumerate(unique_leaves): for path in paths: if leaf == path[-1]: break contribs = np.zeros(line_shape) for i in range(len(path) - 1): contrib = values_list[path[i + 1]] - values_list[path[i]] contribs[feature_index[path[i]]] += contrib unique_contributions[leaf] = contribs for row, leaf in enumerate(leaves): contributions.append(unique_contributions[leaf]) return direct_prediction, biases, np.array(contributions) def predict_forest(self): """ For a given RandomForestRegressor, RandomForestClassifier, ExtraTreesRegressor, or ExtraTreesClassifier returns a triple of [prediction, bias and feature_contributions], such that prediction ≈ bias + feature_contributions. """ biases = [] contributions = [] predictions = [] if self._joint_contribution: for tree in self._model.estimators_: pred, bias, contribution = self.predict_tree() biases.append(bias) contributions.append(contribution) predictions.append(pred) total_contributions = [] for i in range(len(self._examples)): contr = {} for j, dct in enumerate(contributions): for k in set(dct[i]).union(set(contr.keys())): contr[k] = (contr.get(k, 0) * j + dct[i].get(k, 0)) / (j + 1) total_contributions.append(contr) for i, item in enumerate(contribution): total_contributions[i] sm = sum([v for v in contribution[i].values()]) return ( np.mean(predictions, axis=0), np.mean(biases, axis=0), total_contributions, ) else: if self._n_jobs > 1: pool = Pool(processes=self._n_jobs) # iterates return values from the issued tasks iterator = self._model.estimators_ for pred, bias, contribution in tqdm(pool.map(self.predict_tree, iterator), desc='Tree'): biases.append(bias) contributions.append(contribution) predictions.append(pred) pool.close() pool.join() else: for tree in tqdm(self._model.estimators_, desc='Tree'): pred, bias, contribution = self.predict_tree(tree) biases.append(bias) contributions.append(contribution) predictions.append(pred) return ( np.mean(predictions, axis=0), np.mean(biases, axis=0), np.mean(contributions, axis=0), ) def predict(self): """Returns a triple (prediction, bias, feature_contributions), such that prediction ≈ bias + feature_contributions. Returns ------- decomposed prediction : triple of * prediction, shape = (n_samples) for regression and (n_samples, n_classes) for classification * bias, shape = (n_samples) for regression and (n_samples, n_classes) for classification * contributions, If joint_contribution is False then returns and array of shape = (n_samples, n_features) for regression or shape = (n_samples, n_features, n_classes) for classification, denoting contribution from each feature. If joint_contribution is True, then shape is array of size n_samples, where each array element is a dict from a tuple of feature indices to to a value denoting the contribution from that feature tuple. """ # Only single out response variable supported, if self._model.n_outputs_ > 1: raise ValueError("Multilabel classification trees not supported") if isinstance(self._model, DecisionTreeClassifier) or isinstance( self._model, DecisionTreeRegressor ): return self.predict_tree() elif isinstance(self._model, RandomForestClassifier) or isinstance( self._model, RandomForestRegressor ): return self.predict_forest() else: raise ValueError( "Wrong model type. Base learner needs to be a " "DecisionTreeClassifier or DecisionTreeRegressor." )
scikit-explain
/scikit-explain-0.1.3.tar.gz/scikit-explain-0.1.3/skexplain/main/tree_interpreter.py
tree_interpreter.py
import numpy as np import sklearn from multiprocessing.pool import Pool from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor from sklearn.tree import DecisionTreeRegressor, DecisionTreeClassifier, _tree from distutils.version import LooseVersion from tqdm import tqdm if LooseVersion(sklearn.__version__) < LooseVersion("0.17"): raise Exception("treeinterpreter requires scikit-learn 0.17 or later") class TreeInterpreter: def __init__(self, model, examples, joint_contribution=False, n_jobs=1): """ Parameters ---------- model : DecisionTreeRegressor, DecisionTreeClassifier, ExtraTreeRegressor, ExtraTreeClassifier, RandomForestRegressor, RandomForestClassifier, ExtraTreesRegressor, ExtraTreesClassifier Scikit-learn model on which the prediction should be decomposed. X : array-like, shape = (n_samples, n_features) Test samples. joint_contribution : boolean Specifies if contributions are given individually from each feature, or jointly over them """ self._model = model self._examples = examples self._joint_contribution = joint_contribution self._n_jobs = n_jobs def _get_tree_paths(self, tree, node_id, depth=0): """ Returns all paths through the tree as list of node_ids """ if node_id == _tree.TREE_LEAF: raise ValueError("Invalid node_id %s" % _tree.TREE_LEAF) left_child = tree.children_left[node_id] right_child = tree.children_right[node_id] if left_child != _tree.TREE_LEAF: left_paths = self._get_tree_paths(tree, left_child, depth=depth + 1) right_paths = self._get_tree_paths(tree, right_child, depth=depth + 1) for path in left_paths: path.append(node_id) for path in right_paths: path.append(node_id) paths = left_paths + right_paths else: paths = [[node_id]] return paths def predict_tree(self, tree): """ For a given DecisionTreeRegressor, DecisionTreeClassifier, ExtraTreeRegressor, or ExtraTreeClassifier, returns a triple of [prediction, bias and feature_contributions], such that prediction ≈ bias + feature_contributions. """ leaves = tree.apply(self._examples) paths = self._get_tree_paths(tree.tree_, 0) for path in paths: path.reverse() leaf_to_path = {} # map leaves to paths for path in paths: leaf_to_path[path[-1]] = path # remove the single-dimensional inner arrays values = tree.tree_.value.squeeze(axis=1) # reshape if squeezed into a single float if len(values.shape) == 0: values = np.array([values]) if isinstance(tree, DecisionTreeRegressor): biases = np.full(self._examples.shape[0], values[paths[0][0]]) line_shape = self._examples.shape[1] elif isinstance(tree, DecisionTreeClassifier): # scikit stores category counts, we turn them into probabilities normalizer = values.sum(axis=1)[:, np.newaxis] normalizer[normalizer == 0.0] = 1.0 values /= normalizer biases = np.tile(values[paths[0][0]], (self._examples.shape[0], 1)) line_shape = (self._examples.shape[1], tree.n_classes_) direct_prediction = values[leaves] # make into python list, accessing values will be faster values_list = list(values) feature_index = list(tree.tree_.feature) contributions = [] if self._joint_contribution: for row, leaf in enumerate(leaves): path = leaf_to_path[leaf] path_features = set() contributions.append({}) for i in range(len(path) - 1): path_features.add(feature_index[path[i]]) contrib = values_list[path[i + 1]] - values_list[path[i]] # path_features.sort() contributions[row][tuple(sorted(path_features))] = ( contributions[row].get(tuple(sorted(path_features)), 0) + contrib ) return direct_prediction, biases, contributions else: unique_leaves = np.unique(leaves) unique_contributions = {} for row, leaf in enumerate(unique_leaves): for path in paths: if leaf == path[-1]: break contribs = np.zeros(line_shape) for i in range(len(path) - 1): contrib = values_list[path[i + 1]] - values_list[path[i]] contribs[feature_index[path[i]]] += contrib unique_contributions[leaf] = contribs for row, leaf in enumerate(leaves): contributions.append(unique_contributions[leaf]) return direct_prediction, biases, np.array(contributions) def predict_forest(self): """ For a given RandomForestRegressor, RandomForestClassifier, ExtraTreesRegressor, or ExtraTreesClassifier returns a triple of [prediction, bias and feature_contributions], such that prediction ≈ bias + feature_contributions. """ biases = [] contributions = [] predictions = [] if self._joint_contribution: for tree in self._model.estimators_: pred, bias, contribution = self.predict_tree() biases.append(bias) contributions.append(contribution) predictions.append(pred) total_contributions = [] for i in range(len(self._examples)): contr = {} for j, dct in enumerate(contributions): for k in set(dct[i]).union(set(contr.keys())): contr[k] = (contr.get(k, 0) * j + dct[i].get(k, 0)) / (j + 1) total_contributions.append(contr) for i, item in enumerate(contribution): total_contributions[i] sm = sum([v for v in contribution[i].values()]) return ( np.mean(predictions, axis=0), np.mean(biases, axis=0), total_contributions, ) else: if self._n_jobs > 1: pool = Pool(processes=self._n_jobs) # iterates return values from the issued tasks iterator = self._model.estimators_ for pred, bias, contribution in tqdm(pool.map(self.predict_tree, iterator), desc='Tree'): biases.append(bias) contributions.append(contribution) predictions.append(pred) pool.close() pool.join() else: for tree in tqdm(self._model.estimators_, desc='Tree'): pred, bias, contribution = self.predict_tree(tree) biases.append(bias) contributions.append(contribution) predictions.append(pred) return ( np.mean(predictions, axis=0), np.mean(biases, axis=0), np.mean(contributions, axis=0), ) def predict(self): """Returns a triple (prediction, bias, feature_contributions), such that prediction ≈ bias + feature_contributions. Returns ------- decomposed prediction : triple of * prediction, shape = (n_samples) for regression and (n_samples, n_classes) for classification * bias, shape = (n_samples) for regression and (n_samples, n_classes) for classification * contributions, If joint_contribution is False then returns and array of shape = (n_samples, n_features) for regression or shape = (n_samples, n_features, n_classes) for classification, denoting contribution from each feature. If joint_contribution is True, then shape is array of size n_samples, where each array element is a dict from a tuple of feature indices to to a value denoting the contribution from that feature tuple. """ # Only single out response variable supported, if self._model.n_outputs_ > 1: raise ValueError("Multilabel classification trees not supported") if isinstance(self._model, DecisionTreeClassifier) or isinstance( self._model, DecisionTreeRegressor ): return self.predict_tree() elif isinstance(self._model, RandomForestClassifier) or isinstance( self._model, RandomForestRegressor ): return self.predict_forest() else: raise ValueError( "Wrong model type. Base learner needs to be a " "DecisionTreeClassifier or DecisionTreeRegressor." )
0.817793
0.402216
import numpy as np from .error_handling import InvalidStrategyException __all__ = [ "verify_scoring_strategy", "VALID_SCORING_STRATEGIES", "argmin_of_mean", "argmax_of_mean", "indexer_of_converter", ] def verify_scoring_strategy(scoring_strategy): """Asserts that the scoring strategy is valid and interprets various strings :param scoring_strategy: a function to be used for determining optimal variables or a string. If a function, should be of the form ``([some value]) -> index``. If a string, must be one of the options in ``VALID_SCORING_STRATEGIES`` :returns: a function to be used for determining optimal variables """ if callable(scoring_strategy): return scoring_strategy elif scoring_strategy in VALID_SCORING_STRATEGIES: return VALID_SCORING_STRATEGIES[scoring_strategy] else: raise InvalidStrategyException( scoring_strategy, options=list(VALID_SCORING_STRATEGIES.keys()) ) class indexer_of_converter(object): """This object is designed to help construct a scoring strategy by breaking the process of determining an optimal score into two pieces: First, each of the scores are converted to a simpler representation. For instance, an array of scores resulting from a bootstrapped evaluation method may be converted to just their mean. Second, each of the simpler representations are compared to determine the index of the one which is most optimal. This is typically just an ``argmin`` or ``argmax`` call. """ def __init__(self, indexer, converter): """Constructs a function which first converts all objects in a list to something simpler and then uses the indexer to determine the index of the most "optimal" one :param indexer: a function which converts a list of probably simply values (like numbers) to a single index :param converter: a function which converts a single more complex object to a simpler one (like a single number) """ self.indexer = indexer self.converter = converter def __call__(self, scores): """Finds the index of the most "optimal" score in a list""" return self.indexer([self.converter(score) for score in scores]) argmin_of_mean = indexer_of_converter(np.argmin, np.mean) argmax_of_mean = indexer_of_converter(np.argmax, np.mean) VALID_SCORING_STRATEGIES = { "max": argmax_of_mean, "maximize": argmax_of_mean, "argmax": np.argmax, "min": argmin_of_mean, "minimize": argmin_of_mean, "argmin": np.argmin, "argmin_of_mean": argmin_of_mean, "argmax_of_mean": argmax_of_mean, }
scikit-explain
/scikit-explain-0.1.3.tar.gz/scikit-explain-0.1.3/skexplain/main/PermutationImportance/scoring_strategies.py
scoring_strategies.py
import numpy as np from .error_handling import InvalidStrategyException __all__ = [ "verify_scoring_strategy", "VALID_SCORING_STRATEGIES", "argmin_of_mean", "argmax_of_mean", "indexer_of_converter", ] def verify_scoring_strategy(scoring_strategy): """Asserts that the scoring strategy is valid and interprets various strings :param scoring_strategy: a function to be used for determining optimal variables or a string. If a function, should be of the form ``([some value]) -> index``. If a string, must be one of the options in ``VALID_SCORING_STRATEGIES`` :returns: a function to be used for determining optimal variables """ if callable(scoring_strategy): return scoring_strategy elif scoring_strategy in VALID_SCORING_STRATEGIES: return VALID_SCORING_STRATEGIES[scoring_strategy] else: raise InvalidStrategyException( scoring_strategy, options=list(VALID_SCORING_STRATEGIES.keys()) ) class indexer_of_converter(object): """This object is designed to help construct a scoring strategy by breaking the process of determining an optimal score into two pieces: First, each of the scores are converted to a simpler representation. For instance, an array of scores resulting from a bootstrapped evaluation method may be converted to just their mean. Second, each of the simpler representations are compared to determine the index of the one which is most optimal. This is typically just an ``argmin`` or ``argmax`` call. """ def __init__(self, indexer, converter): """Constructs a function which first converts all objects in a list to something simpler and then uses the indexer to determine the index of the most "optimal" one :param indexer: a function which converts a list of probably simply values (like numbers) to a single index :param converter: a function which converts a single more complex object to a simpler one (like a single number) """ self.indexer = indexer self.converter = converter def __call__(self, scores): """Finds the index of the most "optimal" score in a list""" return self.indexer([self.converter(score) for score in scores]) argmin_of_mean = indexer_of_converter(np.argmin, np.mean) argmax_of_mean = indexer_of_converter(np.argmax, np.mean) VALID_SCORING_STRATEGIES = { "max": argmax_of_mean, "maximize": argmax_of_mean, "argmax": np.argmax, "min": argmin_of_mean, "minimize": argmin_of_mean, "argmin": np.argmin, "argmin_of_mean": argmin_of_mean, "argmax_of_mean": argmax_of_mean, }
0.827793
0.480418
from .abstract_runner import abstract_variable_importance from .selection_strategies import ( SequentialForwardSelectionStrategy, SequentialBackwardSelectionStrategy, ) from .sklearn_api import ( score_untrained_sklearn_model, score_untrained_sklearn_model_with_probabilities, ) __all__ = [ "sequential_forward_selection", "sklearn_sequential_forward_selection", "sequential_backward_selection", "sklearn_sequential_backward_selection", ] def sequential_forward_selection( training_data, scoring_data, scoring_fn, scoring_strategy, variable_names=None, nimportant_vars=None, njobs=1, ): """Performs sequential forward selection over data given a particular set of functions for scoring and determining optimal variables :param training_data: a 2-tuple ``(inputs, outputs)`` for training in the ``scoring_fn`` :param scoring_data: a 2-tuple ``(inputs, outputs)`` for scoring in the ``scoring_fn`` :param scoring_fn: a function to be used for scoring. Should be of the form ``(training_data, scoring_data) -> some_value`` :param scoring_strategy: a function to be used for determining optimal variables. Should be of the form ``([some_value]) -> index`` :param variable_names: an optional list for variable names. If not given, will use names of columns of data (if pandas dataframe) or column indices :param nimportant_vars: number of variables to compute importance for. Defaults to all variables :param njobs: an integer for the number of threads to use. If negative, will use ``num_cpus + njobs``. Defaults to 1 :returns: :class:`PermutationImportance.result.ImportanceResult` object which contains the results for each run """ return abstract_variable_importance( training_data, scoring_data, scoring_fn, scoring_strategy, SequentialForwardSelectionStrategy, variable_names=variable_names, nimportant_vars=nimportant_vars, njobs=njobs, ) def sklearn_sequential_forward_selection( model, training_data, scoring_data, evaluation_fn, scoring_strategy, variable_names=None, nimportant_vars=None, njobs=1, nbootstrap=None, subsample=1, **kwargs ): """Performs sequential forward selection for a particular model, ``scoring_data``, ``evaluation_fn``, and strategy for determining optimal variables :param model: a sklearn model :param training_data: a 2-tuple ``(inputs, outputs)`` for training in the ``scoring_fn`` :param scoring_data: a 2-tuple ``(inputs, outputs)`` for scoring in the ``scoring_fn`` :param evaluation_fn: a function which takes the deterministic or probabilistic model predictions and scores them against the true values. Must be of the form ``(truths, predictions) -> some_value`` Probably one of the metrics in :mod:`PermutationImportance.metrics` or `sklearn.metrics <https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics>`_ :param scoring_strategy: a function to be used for determining optimal variables. Should be of the form ``([some_value]) -> index`` :param variable_names: an optional list for variable names. If not given, will use names of columns of data (if pandas dataframe) or column indices :param nimportant_vars: number of variables to compute importance for. Defaults to all variables :param njobs: an integer for the number of threads to use. If negative, will use ``num_cpus + njobs``. Defaults to 1 :param nbootstrap: number of times to perform scoring on each variable. Results over different bootstrap iterations are averaged. Defaults to 1 :param subsample: number of elements to sample (with replacement) per bootstrap round. If between 0 and 1, treated as a fraction of the number of total number of events (e.g. 0.5 means half the number of events). If not specified, subsampling will not be used and the entire data will be used (without replacement) :param kwargs: all other kwargs will be passed on to the ``evaluation_fn`` :returns: :class:`PermutationImportance.result.ImportanceResult` object which contains the results for each run """ # Check if the data is probabilistic if len(scoring_data[1].shape) > 1 and scoring_data[1].shape[1] > 1: scoring_fn = score_untrained_sklearn_model_with_probabilities( model, evaluation_fn, nbootstrap=nbootstrap, subsample=subsample, **kwargs ) else: scoring_fn = score_untrained_sklearn_model( model, evaluation_fn, nbootstrap=nbootstrap, subsample=subsample, **kwargs ) return sequential_forward_selection( training_data, scoring_data, scoring_fn, scoring_strategy, variable_names=variable_names, nimportant_vars=nimportant_vars, njobs=njobs, ) def sequential_backward_selection( training_data, scoring_data, scoring_fn, scoring_strategy, variable_names=None, nimportant_vars=None, njobs=1, ): """Performs sequential backward selection over data given a particular set of functions for scoring and determining optimal variables :param training_data: a 2-tuple ``(inputs, outputs)`` for training in the ``scoring_fn`` :param scoring_data: a 2-tuple ``(inputs, outputs)`` for scoring in the ``scoring_fn`` :param scoring_fn: a function to be used for scoring. Should be of the form ``(training_data, scoring_data) -> some_value`` :param scoring_strategy: a function to be used for determining optimal variables. Should be of the form ``([some_value]) -> index`` :param variable_names: an optional list for variable names. If not given, will use names of columns of data (if pandas dataframe) or column indices :param nimportant_vars: number of variables to compute importance for. Defaults to all variables :param njobs: an integer for the number of threads to use. If negative, will use ``num_cpus + njobs``. Defaults to 1 :returns: :class:`PermutationImportance.result.ImportanceResult` object which contains the results for each run """ return abstract_variable_importance( training_data, scoring_data, scoring_fn, scoring_strategy, SequentialBackwardSelectionStrategy, variable_names=variable_names, nimportant_vars=nimportant_vars, njobs=njobs, ) def sklearn_sequential_backward_selection( model, training_data, scoring_data, evaluation_fn, scoring_strategy, variable_names=None, nimportant_vars=None, njobs=1, nbootstrap=None, subsample=1, **kwargs ): """Performs sequential backward selection for a particular model, ``scoring_data``, ``evaluation_fn``, and strategy for determining optimal variables :param model: a sklearn model :param training_data: a 2-tuple ``(inputs, outputs)`` for training in the ``scoring_fn`` :param scoring_data: a 2-tuple ``(inputs, outputs)`` for scoring in the ``scoring_fn`` :param evaluation_fn: a function which takes the deterministic or probabilistic model predictions and scores them against the true values. Must be of the form ``(truths, predictions) -> some_value`` Probably one of the metrics in :mod:`PermutationImportance.metrics` or `sklearn.metrics <https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics>`_ :param scoring_strategy: a function to be used for determining optimal variables. Should be of the form ``([some_value]) -> index`` :param variable_names: an optional list for variable names. If not given, will use names of columns of data (if pandas dataframe) or column indices :param nimportant_vars: number of variables to compute importance for. Defaults to all variables :param njobs: an integer for the number of threads to use. If negative, will use ``num_cpus + njobs``. Defaults to 1 :param nbootstrap: number of times to perform scoring on each variable. Results over different bootstrap iterations are averaged. Defaults to 1 :param subsample: number of elements to sample (with replacement) per bootstrap round. If between 0 and 1, treated as a fraction of the number of total number of events (e.g. 0.5 means half the number of events). If not specified, subsampling will not be used and the entire data will be used (without replacement) :param kwargs: all other kwargs will be passed on to the ``evaluation_fn`` :returns: :class:`PermutationImportance.result.ImportanceResult` object which contains the results for each run """ # Check if the data is probabilistic if len(scoring_data[1].shape) > 1 and scoring_data[1].shape[1] > 1: scoring_fn = score_untrained_sklearn_model_with_probabilities( model, evaluation_fn, nbootstrap=nbootstrap, subsample=subsample, **kwargs ) else: scoring_fn = score_untrained_sklearn_model( model, evaluation_fn, nbootstrap=nbootstrap, subsample=subsample, **kwargs ) return sequential_backward_selection( training_data, scoring_data, scoring_fn, scoring_strategy, variable_names=variable_names, nimportant_vars=nimportant_vars, njobs=njobs, )
scikit-explain
/scikit-explain-0.1.3.tar.gz/scikit-explain-0.1.3/skexplain/main/PermutationImportance/sequential_selection.py
sequential_selection.py
from .abstract_runner import abstract_variable_importance from .selection_strategies import ( SequentialForwardSelectionStrategy, SequentialBackwardSelectionStrategy, ) from .sklearn_api import ( score_untrained_sklearn_model, score_untrained_sklearn_model_with_probabilities, ) __all__ = [ "sequential_forward_selection", "sklearn_sequential_forward_selection", "sequential_backward_selection", "sklearn_sequential_backward_selection", ] def sequential_forward_selection( training_data, scoring_data, scoring_fn, scoring_strategy, variable_names=None, nimportant_vars=None, njobs=1, ): """Performs sequential forward selection over data given a particular set of functions for scoring and determining optimal variables :param training_data: a 2-tuple ``(inputs, outputs)`` for training in the ``scoring_fn`` :param scoring_data: a 2-tuple ``(inputs, outputs)`` for scoring in the ``scoring_fn`` :param scoring_fn: a function to be used for scoring. Should be of the form ``(training_data, scoring_data) -> some_value`` :param scoring_strategy: a function to be used for determining optimal variables. Should be of the form ``([some_value]) -> index`` :param variable_names: an optional list for variable names. If not given, will use names of columns of data (if pandas dataframe) or column indices :param nimportant_vars: number of variables to compute importance for. Defaults to all variables :param njobs: an integer for the number of threads to use. If negative, will use ``num_cpus + njobs``. Defaults to 1 :returns: :class:`PermutationImportance.result.ImportanceResult` object which contains the results for each run """ return abstract_variable_importance( training_data, scoring_data, scoring_fn, scoring_strategy, SequentialForwardSelectionStrategy, variable_names=variable_names, nimportant_vars=nimportant_vars, njobs=njobs, ) def sklearn_sequential_forward_selection( model, training_data, scoring_data, evaluation_fn, scoring_strategy, variable_names=None, nimportant_vars=None, njobs=1, nbootstrap=None, subsample=1, **kwargs ): """Performs sequential forward selection for a particular model, ``scoring_data``, ``evaluation_fn``, and strategy for determining optimal variables :param model: a sklearn model :param training_data: a 2-tuple ``(inputs, outputs)`` for training in the ``scoring_fn`` :param scoring_data: a 2-tuple ``(inputs, outputs)`` for scoring in the ``scoring_fn`` :param evaluation_fn: a function which takes the deterministic or probabilistic model predictions and scores them against the true values. Must be of the form ``(truths, predictions) -> some_value`` Probably one of the metrics in :mod:`PermutationImportance.metrics` or `sklearn.metrics <https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics>`_ :param scoring_strategy: a function to be used for determining optimal variables. Should be of the form ``([some_value]) -> index`` :param variable_names: an optional list for variable names. If not given, will use names of columns of data (if pandas dataframe) or column indices :param nimportant_vars: number of variables to compute importance for. Defaults to all variables :param njobs: an integer for the number of threads to use. If negative, will use ``num_cpus + njobs``. Defaults to 1 :param nbootstrap: number of times to perform scoring on each variable. Results over different bootstrap iterations are averaged. Defaults to 1 :param subsample: number of elements to sample (with replacement) per bootstrap round. If between 0 and 1, treated as a fraction of the number of total number of events (e.g. 0.5 means half the number of events). If not specified, subsampling will not be used and the entire data will be used (without replacement) :param kwargs: all other kwargs will be passed on to the ``evaluation_fn`` :returns: :class:`PermutationImportance.result.ImportanceResult` object which contains the results for each run """ # Check if the data is probabilistic if len(scoring_data[1].shape) > 1 and scoring_data[1].shape[1] > 1: scoring_fn = score_untrained_sklearn_model_with_probabilities( model, evaluation_fn, nbootstrap=nbootstrap, subsample=subsample, **kwargs ) else: scoring_fn = score_untrained_sklearn_model( model, evaluation_fn, nbootstrap=nbootstrap, subsample=subsample, **kwargs ) return sequential_forward_selection( training_data, scoring_data, scoring_fn, scoring_strategy, variable_names=variable_names, nimportant_vars=nimportant_vars, njobs=njobs, ) def sequential_backward_selection( training_data, scoring_data, scoring_fn, scoring_strategy, variable_names=None, nimportant_vars=None, njobs=1, ): """Performs sequential backward selection over data given a particular set of functions for scoring and determining optimal variables :param training_data: a 2-tuple ``(inputs, outputs)`` for training in the ``scoring_fn`` :param scoring_data: a 2-tuple ``(inputs, outputs)`` for scoring in the ``scoring_fn`` :param scoring_fn: a function to be used for scoring. Should be of the form ``(training_data, scoring_data) -> some_value`` :param scoring_strategy: a function to be used for determining optimal variables. Should be of the form ``([some_value]) -> index`` :param variable_names: an optional list for variable names. If not given, will use names of columns of data (if pandas dataframe) or column indices :param nimportant_vars: number of variables to compute importance for. Defaults to all variables :param njobs: an integer for the number of threads to use. If negative, will use ``num_cpus + njobs``. Defaults to 1 :returns: :class:`PermutationImportance.result.ImportanceResult` object which contains the results for each run """ return abstract_variable_importance( training_data, scoring_data, scoring_fn, scoring_strategy, SequentialBackwardSelectionStrategy, variable_names=variable_names, nimportant_vars=nimportant_vars, njobs=njobs, ) def sklearn_sequential_backward_selection( model, training_data, scoring_data, evaluation_fn, scoring_strategy, variable_names=None, nimportant_vars=None, njobs=1, nbootstrap=None, subsample=1, **kwargs ): """Performs sequential backward selection for a particular model, ``scoring_data``, ``evaluation_fn``, and strategy for determining optimal variables :param model: a sklearn model :param training_data: a 2-tuple ``(inputs, outputs)`` for training in the ``scoring_fn`` :param scoring_data: a 2-tuple ``(inputs, outputs)`` for scoring in the ``scoring_fn`` :param evaluation_fn: a function which takes the deterministic or probabilistic model predictions and scores them against the true values. Must be of the form ``(truths, predictions) -> some_value`` Probably one of the metrics in :mod:`PermutationImportance.metrics` or `sklearn.metrics <https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics>`_ :param scoring_strategy: a function to be used for determining optimal variables. Should be of the form ``([some_value]) -> index`` :param variable_names: an optional list for variable names. If not given, will use names of columns of data (if pandas dataframe) or column indices :param nimportant_vars: number of variables to compute importance for. Defaults to all variables :param njobs: an integer for the number of threads to use. If negative, will use ``num_cpus + njobs``. Defaults to 1 :param nbootstrap: number of times to perform scoring on each variable. Results over different bootstrap iterations are averaged. Defaults to 1 :param subsample: number of elements to sample (with replacement) per bootstrap round. If between 0 and 1, treated as a fraction of the number of total number of events (e.g. 0.5 means half the number of events). If not specified, subsampling will not be used and the entire data will be used (without replacement) :param kwargs: all other kwargs will be passed on to the ``evaluation_fn`` :returns: :class:`PermutationImportance.result.ImportanceResult` object which contains the results for each run """ # Check if the data is probabilistic if len(scoring_data[1].shape) > 1 and scoring_data[1].shape[1] > 1: scoring_fn = score_untrained_sklearn_model_with_probabilities( model, evaluation_fn, nbootstrap=nbootstrap, subsample=subsample, **kwargs ) else: scoring_fn = score_untrained_sklearn_model( model, evaluation_fn, nbootstrap=nbootstrap, subsample=subsample, **kwargs ) return sequential_backward_selection( training_data, scoring_data, scoring_fn, scoring_strategy, variable_names=variable_names, nimportant_vars=nimportant_vars, njobs=njobs, )
0.913141
0.528229
from multiprocessing import Process, Queue, cpu_count try: from Queue import Full as QueueFull from Queue import Empty as QueueEmpty except ImportError: # python3 from queue import Full as QueueFull from queue import Empty as QueueEmpty __all__ = ["pool_imap_unordered"] def worker(func, recvq, sendq): for args in iter(recvq.get, None): # The args are training_data, scoring_data, var_idx # Thus, we want to return the var_idx and then # send those args to the abstract runner. result = (args[-1], func(*args)) sendq.put(result) def pool_imap_unordered(func, iterable, procs=cpu_count()): """Lazily imaps in an unordered manner over an iterable in parallel as a generator :Author: Grant Jenks <https://stackoverflow.com/users/232571/grantj> :param func: function to perform on each iterable :param iterable: iterable which has items to map over :param procs: number of workers in the pool. Defaults to the cpu count :yields: the results of the mapping """ # Create queues for sending/receiving items from iterable. sendq = Queue(procs) recvq = Queue() # Start worker processes. for rpt in range(procs): Process(target=worker, args=(func, sendq, recvq)).start() # Iterate iterable and communicate with worker processes. send_len = 0 recv_len = 0 itr = iter(iterable) try: value = next(itr) while True: try: sendq.put(value, True, 0.1) send_len += 1 value = next(itr) except QueueFull: while True: try: result = recvq.get(False) recv_len += 1 yield result except QueueEmpty: break except StopIteration: pass # Collect all remaining results. while recv_len < send_len: result = recvq.get() recv_len += 1 yield result # Terminate worker processes. for rpt in range(procs): sendq.put(None)
scikit-explain
/scikit-explain-0.1.3.tar.gz/scikit-explain-0.1.3/skexplain/main/PermutationImportance/multiprocessing_utils.py
multiprocessing_utils.py
from multiprocessing import Process, Queue, cpu_count try: from Queue import Full as QueueFull from Queue import Empty as QueueEmpty except ImportError: # python3 from queue import Full as QueueFull from queue import Empty as QueueEmpty __all__ = ["pool_imap_unordered"] def worker(func, recvq, sendq): for args in iter(recvq.get, None): # The args are training_data, scoring_data, var_idx # Thus, we want to return the var_idx and then # send those args to the abstract runner. result = (args[-1], func(*args)) sendq.put(result) def pool_imap_unordered(func, iterable, procs=cpu_count()): """Lazily imaps in an unordered manner over an iterable in parallel as a generator :Author: Grant Jenks <https://stackoverflow.com/users/232571/grantj> :param func: function to perform on each iterable :param iterable: iterable which has items to map over :param procs: number of workers in the pool. Defaults to the cpu count :yields: the results of the mapping """ # Create queues for sending/receiving items from iterable. sendq = Queue(procs) recvq = Queue() # Start worker processes. for rpt in range(procs): Process(target=worker, args=(func, sendq, recvq)).start() # Iterate iterable and communicate with worker processes. send_len = 0 recv_len = 0 itr = iter(iterable) try: value = next(itr) while True: try: sendq.put(value, True, 0.1) send_len += 1 value = next(itr) except QueueFull: while True: try: result = recvq.get(False) recv_len += 1 yield result except QueueEmpty: break except StopIteration: pass # Collect all remaining results. while recv_len < send_len: result = recvq.get() recv_len += 1 yield result # Terminate worker processes. for rpt in range(procs): sendq.put(None)
0.494629
0.225843
import numpy as np import pandas as pd from .utils import get_data_subset, make_data_from_columns, conditional_permutations __all__ = [ "SequentialForwardSelectionStrategy", "SequentialBackwardSelectionStrategy", "PermutationImportanceSelectionStrategy", "SelectionStrategy", ] class SelectionStrategy(object): """The base ``SelectionStrategy`` only provides the tools for storing the data and other important information as well as the convenience method for iterating over the selection strategies triples lazily.""" name = "Abstract Selection Strategy" def __init__(self, training_data, scoring_data, num_vars, important_vars): """Initializes the object by storing the data and keeping track of other important information :param training_data: (training_inputs, training_outputs) :param scoring_data: (scoring_inputs, scoring_outputs) :param num_vars: integer for the total number of variables :param important_vars: a list of the indices of variables which are already considered important """ self.training_data = training_data self.scoring_data = scoring_data self.num_vars = num_vars self.important_vars = important_vars def generate_datasets(self, important_variables): """Generator which returns triples (variable, training_data, scoring_data)""" raise NotImplementedError( "Please implement a strategy for generating datasets on class %s" % self.name ) def generate_all_datasets(self): """By default, loops over all variables not yet considered important""" for var in range(self.num_vars): if var not in self.important_vars: training_data, scoring_data = self.generate_datasets( self.important_vars + [var,] ) yield (training_data, scoring_data, var) def __iter__(self): return self.generate_all_datasets() class SequentialForwardSelectionStrategy(SelectionStrategy): """Sequential Forward Selection tests all variables which are not yet considered important by adding that columns to the other columns which are returned. This means that the shape of the training data will be ``(num_rows, num_important_vars + 1)``.""" name = "Sequential Forward Selection" def generate_datasets(self, important_variables): """Check each of the non-important variables. Dataset is the columns which are important :returns: (training_data, scoring_data) """ training_inputs, training_outputs = self.training_data scoring_inputs, scoring_outputs = self.scoring_data columns = important_variables # Make a slice of the training inputs training_inputs_subset = get_data_subset(training_inputs, None, columns) # Make a slice of the scoring inputs scoring_inputs_subset = get_data_subset(scoring_inputs, None, columns) return (training_inputs_subset, training_outputs), ( scoring_inputs_subset, scoring_outputs, ) class SequentialBackwardSelectionStrategy(SelectionStrategy): """Sequential Backward Selection tests all variables which are not yet considered important by removing that column from the data. This means that the shape of the training data will be ``(num_rows, num_vars - num_important_vars - 1)``.""" name = "Sequential Backward Selection" def generate_datasets(self, important_variables): """Check each of the non-important variables. Dataset is the columns which are not important :yields: a sequence of (variable being evaluated, columns to include) """ training_inputs, training_outputs = self.training_data scoring_inputs, scoring_outputs = self.scoring_data columns = [x for x in range(self.num_vars) if x not in important_variables] # Make a slice of the training inputs training_inputs_subset = get_data_subset(training_inputs, None, columns) # Make a slice of the scoring inputs scoring_inputs_subset = get_data_subset(scoring_inputs, None, columns) return (training_inputs_subset, training_outputs), ( scoring_inputs_subset, scoring_outputs, ) class PermutationImportanceSelectionStrategy(SelectionStrategy): """Permutation Importance tests all variables which are not yet considered important by shuffling that column in addition to the columns of the variables which are considered important. The shape of the data will remain constant, but at each step, one additional column will be permuted.""" name = "Permutation Importance" def __init__( self, training_data, scoring_data, num_vars, important_vars, random_state, **kwargs ): """Initializes the object by storing the data and keeping track of other important information :param training_data: (training_inputs, training_outputs) :param scoring_data: (scoring_inputs, scoring_outputs) :param num_vars: integer for the total number of variables :param important_vars: a list of the indices of variables which are already considered important """ super(PermutationImportanceSelectionStrategy, self).__init__( training_data, scoring_data, num_vars, important_vars ) # Also initialize the "shuffled data" scoring_inputs, __ = self.scoring_data indices = random_state.permutation(len(scoring_inputs)) # With each iteration of the algorithm, the indices # are shuffled once and identically for each feature. # Thus, when multiple features are permuted they are # jointly permuted (i.e., without destroying the # dependencies of the features within the group). # However, how the features are jointly permuted # changes from iteration to iteration to limit # bias due to a poor permutation. self.shuffled_scoring_inputs = get_data_subset( scoring_inputs, indices ) # This copies # keep track of the initial index (assuming this is pandas data) self.original_index = ( scoring_inputs.index if isinstance(scoring_inputs, pd.DataFrame) else None ) def generate_datasets(self, important_variables): """Check each of the non-important variables. Dataset has columns which are important shuffled :returns: (training_data, scoring_data) """ scoring_inputs, scoring_outputs = self.scoring_data complete_scoring_inputs = make_data_from_columns( [ get_data_subset( self.shuffled_scoring_inputs if i in important_variables else scoring_inputs, None, [i], ) for i in range(self.num_vars) ], index=self.original_index, ) return self.training_data, (complete_scoring_inputs, scoring_outputs) class ConditionalPermutationImportanceSelectionStrategy(SelectionStrategy): """Conditional Permutation Importance tests all variables which are not yet considered important by performing conditional permutation on that column in addition to the columns of the variables which are considered important. The shape of the data will remain constant, but at each step, one additional column will be permuted.""" name = "Conditional Permutation Importance" def __init__( self, training_data, scoring_data, num_vars, important_vars, random_state, **kwargs ): """Initializes the object by storing the data and keeping track of other important information :param training_data: (training_inputs, training_outputs) :param scoring_data: (scoring_inputs, scoring_outputs) :param num_vars: integer for the total number of variables :param important_vars: a list of the indices of variables which are already considered important """ super(ConditionalPermutationImportanceSelectionStrategy, self).__init__( training_data, scoring_data, num_vars, important_vars ) n_bins = kwargs.get("n_bins", 50) # Also initialize the "shuffled data" scoring_inputs, __ = self.scoring_data self.shuffled_scoring_inputs = conditional_permutations( scoring_inputs, n_bins, random_state ) # This copies # keep track of the initial index (assuming this is pandas data) self.original_index = ( scoring_inputs.index if isinstance(scoring_inputs, pd.DataFrame) else None ) def generate_datasets(self, important_variables): """Check each of the non-important variables. Dataset has columns which are important shuffled :returns: (training_data, scoring_data) """ scoring_inputs, scoring_outputs = self.scoring_data # If a feature has been deemed important it remains shuffled complete_scoring_inputs = make_data_from_columns( [ get_data_subset( self.shuffled_scoring_inputs if i in important_variables else scoring_inputs, None, [i], ) for i in range(self.num_vars) ], index=self.original_index, ) return self.training_data, (complete_scoring_inputs, scoring_outputs) class ForwardPermutationImportanceSelectionStrategy(SelectionStrategy): """Forward Permutation Importance permutes all variables and then tests all variables which are not yet considered.""" name = "Forward Permutation Importance" def __init__( self, training_data, scoring_data, num_vars, important_vars, random_state, **kwargs ): """Initializes the object by storing the data and keeping track of other important information :param training_data: (training_inputs, training_outputs) :param scoring_data: (scoring_inputs, scoring_outputs) :param num_vars: integer for the total number of variables :param important_vars: a list of the indices of variables which are already considered important """ super(ForwardPermutationImportanceSelectionStrategy, self).__init__( training_data, scoring_data, num_vars, important_vars ) # With each iteration of the algorithm, the indices # are shuffled once and identically for each feature. # Thus, when multiple features are permuted they are # jointly permuted (i.e., without destroying the # dependencies of the features within the group). # However, how the features are jointly permuted # changes from iteration to iteration to limit # bias due to a poor permutation. # Also initialize the "shuffled data" scoring_inputs, __ = self.scoring_data indices = random_state.permutation(len(scoring_inputs)) self.shuffled_scoring_inputs = get_data_subset( scoring_inputs, indices ) # This copies # keep track of the initial index (assuming this is pandas data) self.original_index = ( scoring_inputs.index if isinstance(scoring_inputs, pd.DataFrame) else None ) def generate_datasets(self, important_variables): """Check each of the non-important variables. Dataset has columns which are non-important variables are shuffled :returns: (training_data, scoring_data) """ scoring_inputs, scoring_outputs = self.scoring_data # If a feature has been deemed important it remains shuffled complete_scoring_inputs = make_data_from_columns( [ get_data_subset( scoring_inputs if i in important_variables else self.shuffled_scoring_inputs, columns = [i], ) for i in range(self.num_vars) ], index=self.original_index, ) return self.training_data, (complete_scoring_inputs, scoring_outputs)
scikit-explain
/scikit-explain-0.1.3.tar.gz/scikit-explain-0.1.3/skexplain/main/PermutationImportance/selection_strategies.py
selection_strategies.py
import numpy as np import pandas as pd from .utils import get_data_subset, make_data_from_columns, conditional_permutations __all__ = [ "SequentialForwardSelectionStrategy", "SequentialBackwardSelectionStrategy", "PermutationImportanceSelectionStrategy", "SelectionStrategy", ] class SelectionStrategy(object): """The base ``SelectionStrategy`` only provides the tools for storing the data and other important information as well as the convenience method for iterating over the selection strategies triples lazily.""" name = "Abstract Selection Strategy" def __init__(self, training_data, scoring_data, num_vars, important_vars): """Initializes the object by storing the data and keeping track of other important information :param training_data: (training_inputs, training_outputs) :param scoring_data: (scoring_inputs, scoring_outputs) :param num_vars: integer for the total number of variables :param important_vars: a list of the indices of variables which are already considered important """ self.training_data = training_data self.scoring_data = scoring_data self.num_vars = num_vars self.important_vars = important_vars def generate_datasets(self, important_variables): """Generator which returns triples (variable, training_data, scoring_data)""" raise NotImplementedError( "Please implement a strategy for generating datasets on class %s" % self.name ) def generate_all_datasets(self): """By default, loops over all variables not yet considered important""" for var in range(self.num_vars): if var not in self.important_vars: training_data, scoring_data = self.generate_datasets( self.important_vars + [var,] ) yield (training_data, scoring_data, var) def __iter__(self): return self.generate_all_datasets() class SequentialForwardSelectionStrategy(SelectionStrategy): """Sequential Forward Selection tests all variables which are not yet considered important by adding that columns to the other columns which are returned. This means that the shape of the training data will be ``(num_rows, num_important_vars + 1)``.""" name = "Sequential Forward Selection" def generate_datasets(self, important_variables): """Check each of the non-important variables. Dataset is the columns which are important :returns: (training_data, scoring_data) """ training_inputs, training_outputs = self.training_data scoring_inputs, scoring_outputs = self.scoring_data columns = important_variables # Make a slice of the training inputs training_inputs_subset = get_data_subset(training_inputs, None, columns) # Make a slice of the scoring inputs scoring_inputs_subset = get_data_subset(scoring_inputs, None, columns) return (training_inputs_subset, training_outputs), ( scoring_inputs_subset, scoring_outputs, ) class SequentialBackwardSelectionStrategy(SelectionStrategy): """Sequential Backward Selection tests all variables which are not yet considered important by removing that column from the data. This means that the shape of the training data will be ``(num_rows, num_vars - num_important_vars - 1)``.""" name = "Sequential Backward Selection" def generate_datasets(self, important_variables): """Check each of the non-important variables. Dataset is the columns which are not important :yields: a sequence of (variable being evaluated, columns to include) """ training_inputs, training_outputs = self.training_data scoring_inputs, scoring_outputs = self.scoring_data columns = [x for x in range(self.num_vars) if x not in important_variables] # Make a slice of the training inputs training_inputs_subset = get_data_subset(training_inputs, None, columns) # Make a slice of the scoring inputs scoring_inputs_subset = get_data_subset(scoring_inputs, None, columns) return (training_inputs_subset, training_outputs), ( scoring_inputs_subset, scoring_outputs, ) class PermutationImportanceSelectionStrategy(SelectionStrategy): """Permutation Importance tests all variables which are not yet considered important by shuffling that column in addition to the columns of the variables which are considered important. The shape of the data will remain constant, but at each step, one additional column will be permuted.""" name = "Permutation Importance" def __init__( self, training_data, scoring_data, num_vars, important_vars, random_state, **kwargs ): """Initializes the object by storing the data and keeping track of other important information :param training_data: (training_inputs, training_outputs) :param scoring_data: (scoring_inputs, scoring_outputs) :param num_vars: integer for the total number of variables :param important_vars: a list of the indices of variables which are already considered important """ super(PermutationImportanceSelectionStrategy, self).__init__( training_data, scoring_data, num_vars, important_vars ) # Also initialize the "shuffled data" scoring_inputs, __ = self.scoring_data indices = random_state.permutation(len(scoring_inputs)) # With each iteration of the algorithm, the indices # are shuffled once and identically for each feature. # Thus, when multiple features are permuted they are # jointly permuted (i.e., without destroying the # dependencies of the features within the group). # However, how the features are jointly permuted # changes from iteration to iteration to limit # bias due to a poor permutation. self.shuffled_scoring_inputs = get_data_subset( scoring_inputs, indices ) # This copies # keep track of the initial index (assuming this is pandas data) self.original_index = ( scoring_inputs.index if isinstance(scoring_inputs, pd.DataFrame) else None ) def generate_datasets(self, important_variables): """Check each of the non-important variables. Dataset has columns which are important shuffled :returns: (training_data, scoring_data) """ scoring_inputs, scoring_outputs = self.scoring_data complete_scoring_inputs = make_data_from_columns( [ get_data_subset( self.shuffled_scoring_inputs if i in important_variables else scoring_inputs, None, [i], ) for i in range(self.num_vars) ], index=self.original_index, ) return self.training_data, (complete_scoring_inputs, scoring_outputs) class ConditionalPermutationImportanceSelectionStrategy(SelectionStrategy): """Conditional Permutation Importance tests all variables which are not yet considered important by performing conditional permutation on that column in addition to the columns of the variables which are considered important. The shape of the data will remain constant, but at each step, one additional column will be permuted.""" name = "Conditional Permutation Importance" def __init__( self, training_data, scoring_data, num_vars, important_vars, random_state, **kwargs ): """Initializes the object by storing the data and keeping track of other important information :param training_data: (training_inputs, training_outputs) :param scoring_data: (scoring_inputs, scoring_outputs) :param num_vars: integer for the total number of variables :param important_vars: a list of the indices of variables which are already considered important """ super(ConditionalPermutationImportanceSelectionStrategy, self).__init__( training_data, scoring_data, num_vars, important_vars ) n_bins = kwargs.get("n_bins", 50) # Also initialize the "shuffled data" scoring_inputs, __ = self.scoring_data self.shuffled_scoring_inputs = conditional_permutations( scoring_inputs, n_bins, random_state ) # This copies # keep track of the initial index (assuming this is pandas data) self.original_index = ( scoring_inputs.index if isinstance(scoring_inputs, pd.DataFrame) else None ) def generate_datasets(self, important_variables): """Check each of the non-important variables. Dataset has columns which are important shuffled :returns: (training_data, scoring_data) """ scoring_inputs, scoring_outputs = self.scoring_data # If a feature has been deemed important it remains shuffled complete_scoring_inputs = make_data_from_columns( [ get_data_subset( self.shuffled_scoring_inputs if i in important_variables else scoring_inputs, None, [i], ) for i in range(self.num_vars) ], index=self.original_index, ) return self.training_data, (complete_scoring_inputs, scoring_outputs) class ForwardPermutationImportanceSelectionStrategy(SelectionStrategy): """Forward Permutation Importance permutes all variables and then tests all variables which are not yet considered.""" name = "Forward Permutation Importance" def __init__( self, training_data, scoring_data, num_vars, important_vars, random_state, **kwargs ): """Initializes the object by storing the data and keeping track of other important information :param training_data: (training_inputs, training_outputs) :param scoring_data: (scoring_inputs, scoring_outputs) :param num_vars: integer for the total number of variables :param important_vars: a list of the indices of variables which are already considered important """ super(ForwardPermutationImportanceSelectionStrategy, self).__init__( training_data, scoring_data, num_vars, important_vars ) # With each iteration of the algorithm, the indices # are shuffled once and identically for each feature. # Thus, when multiple features are permuted they are # jointly permuted (i.e., without destroying the # dependencies of the features within the group). # However, how the features are jointly permuted # changes from iteration to iteration to limit # bias due to a poor permutation. # Also initialize the "shuffled data" scoring_inputs, __ = self.scoring_data indices = random_state.permutation(len(scoring_inputs)) self.shuffled_scoring_inputs = get_data_subset( scoring_inputs, indices ) # This copies # keep track of the initial index (assuming this is pandas data) self.original_index = ( scoring_inputs.index if isinstance(scoring_inputs, pd.DataFrame) else None ) def generate_datasets(self, important_variables): """Check each of the non-important variables. Dataset has columns which are non-important variables are shuffled :returns: (training_data, scoring_data) """ scoring_inputs, scoring_outputs = self.scoring_data # If a feature has been deemed important it remains shuffled complete_scoring_inputs = make_data_from_columns( [ get_data_subset( scoring_inputs if i in important_variables else self.shuffled_scoring_inputs, columns = [i], ) for i in range(self.num_vars) ], index=self.original_index, ) return self.training_data, (complete_scoring_inputs, scoring_outputs)
0.842053
0.553928
import numpy as np import pandas as pd import numbers from .error_handling import InvalidDataException __all__ = ["add_ranks_to_dict", "get_data_subset", "make_data_from_columns"] def add_ranks_to_dict(result, variable_names, scoring_strategy): """Takes a list of (var, score) and converts to a dictionary of {var: (rank, score)} :param result: a dict of {var_index: score} :param variable_names: a list of variable names :param scoring_strategy: a function to be used for determining optimal variables. Should be of the form ([floats]) -> index """ if len(result) == 0: return dict() result_dict = dict() rank = 0 while len(result) > 1: var_idxs = list(result.keys()) idxs = np.argsort(var_idxs) # Sort by indices to guarantee order variables = list(np.array(var_idxs)[idxs]) scores = list(np.array(list(result.values()))[idxs]) best_var = variables[scoring_strategy(scores)] score = result.pop(best_var) result_dict[variable_names[best_var]] = (rank, score) rank += 1 var, score = list(result.items())[0] result_dict[variable_names[var]] = (rank, score) return result_dict def get_data_subset(data, rows=None, columns=None): """Returns a subset of the data corresponding to the desired rows and columns :param data: either a pandas dataframe or a numpy array :param rows: a list of row indices :param columns: a list of column indices :returns: data_subset (same type as data) """ if rows is None: rows = np.arange(data.shape[0]) if isinstance(data, pd.DataFrame): if columns is None: return data.iloc[rows] else: return data.iloc[rows, columns] elif isinstance(data, np.ndarray): if columns is None: return data[rows] else: return data[np.ix_(rows, columns)] else: raise InvalidDataException( data, "Data must be a pandas dataframe or numpy array" ) def make_data_from_columns(columns_list, index=None): """Synthesizes a dataset out of a list of columns :param columns_list: a list of either pandas series or numpy arrays :returns: a pandas dataframe or a numpy array """ if len(columns_list) == 0: raise InvalidDataException( columns_list, "Must have at least one column to synthesize dataset" ) if isinstance(columns_list[0], pd.DataFrame) or isinstance( columns_list[0], pd.Series ): df = pd.concat([c.reset_index(drop=True) for c in columns_list], axis=1) if index is not None: return df.set_index(index) else: return df elif isinstance(columns_list[0], np.ndarray): return np.column_stack(columns_list) else: raise InvalidDataException( columns_list, "Columns_list must come from a pandas dataframe or numpy arrays", ) def conditional_permutations(data, n_bins, random_state): """ Conditionally permute each feature in a dataset. Code appended to the PermutationImportance package by Montgomery Flora 2021. Args: ------------------- data : pd.DataFrame or np.ndarray shape=(n_examples, n_features,) n_bins : interger number of bins to divide a feature into. Based on a percentile method to ensure that each bin receieves a similar number of examples random_state : np.random.RandomState instance Pseudo-random number generator to control the permutations of each feature. Pass an int to get reproducible results across function calls. Returns: ------------------- permuted_data : a permuted version of data """ permuted_data = data.copy() for i in range(np.shape(data)[1]): # Get the bin values of feature if isinstance(data, pd.DataFrame): feature_values = data.iloc[:, i] elif isinstance(data, np.ndarray): feature_values = data[:, i] else: raise InvalidDataException( data, "Data must be a pandas dataframe or numpy array" ) bin_edges = np.unique( np.percentile( feature_values, np.linspace(0, 100, n_bins + 1), interpolation="lower", ) ) bin_indices = np.clip( np.digitize(feature_values, bin_edges, right=True) - 1, 0, None ) shuffled_indices = bin_indices.copy() unique_bin_values = np.unique(bin_indices) # bin_indices is composed of bin indices for a corresponding value of feature_values for bin_idx in unique_bin_values: # idx is the actual index of indices where the bin index == i idx = np.where(bin_indices == bin_idx)[0] # Replace the bin indices with a permutation of the actual indices shuffled_indices[idx] = random_state.permutation(idx) if isinstance(data, pd.DataFrame): permuted_data.iloc[:, i] = data.iloc[shuffled_indices, i] else: permuted_data[:, i] = data[shuffled_indices, i] return permuted_data def check_random_state(seed): """Turn seed into a np.random.RandomState instance Parameters. Function comes for sci-kit-learn. ---------- seed : None, int or instance of RandomState If seed is None, return the RandomState singleton used by np.random. If seed is an int, return a new RandomState instance seeded with seed. If seed is already a RandomState instance, return it. Otherwise raise ValueError. """ if seed is None or seed is np.random: return np.random.mtrand._rand if isinstance(seed, numbers.Integral): return np.random.RandomState(seed) if isinstance(seed, np.random.RandomState): return seed raise ValueError( "%r cannot be used to seed a numpy.random.RandomState" " instance" % seed ) def bootstrap_generator(n_bootstrap, seed=42): """ Create a repeatable bootstrap generator. Will create the same set of random state generators given a number of bootstrap iterations. """ base_random_state = np.random.RandomState(seed) random_num_set = base_random_state.choice(10000, size=n_bootstrap, replace=False) random_states = [np.random.RandomState(s) for s in random_num_set] return random_states
scikit-explain
/scikit-explain-0.1.3.tar.gz/scikit-explain-0.1.3/skexplain/main/PermutationImportance/utils.py
utils.py
import numpy as np import pandas as pd import numbers from .error_handling import InvalidDataException __all__ = ["add_ranks_to_dict", "get_data_subset", "make_data_from_columns"] def add_ranks_to_dict(result, variable_names, scoring_strategy): """Takes a list of (var, score) and converts to a dictionary of {var: (rank, score)} :param result: a dict of {var_index: score} :param variable_names: a list of variable names :param scoring_strategy: a function to be used for determining optimal variables. Should be of the form ([floats]) -> index """ if len(result) == 0: return dict() result_dict = dict() rank = 0 while len(result) > 1: var_idxs = list(result.keys()) idxs = np.argsort(var_idxs) # Sort by indices to guarantee order variables = list(np.array(var_idxs)[idxs]) scores = list(np.array(list(result.values()))[idxs]) best_var = variables[scoring_strategy(scores)] score = result.pop(best_var) result_dict[variable_names[best_var]] = (rank, score) rank += 1 var, score = list(result.items())[0] result_dict[variable_names[var]] = (rank, score) return result_dict def get_data_subset(data, rows=None, columns=None): """Returns a subset of the data corresponding to the desired rows and columns :param data: either a pandas dataframe or a numpy array :param rows: a list of row indices :param columns: a list of column indices :returns: data_subset (same type as data) """ if rows is None: rows = np.arange(data.shape[0]) if isinstance(data, pd.DataFrame): if columns is None: return data.iloc[rows] else: return data.iloc[rows, columns] elif isinstance(data, np.ndarray): if columns is None: return data[rows] else: return data[np.ix_(rows, columns)] else: raise InvalidDataException( data, "Data must be a pandas dataframe or numpy array" ) def make_data_from_columns(columns_list, index=None): """Synthesizes a dataset out of a list of columns :param columns_list: a list of either pandas series or numpy arrays :returns: a pandas dataframe or a numpy array """ if len(columns_list) == 0: raise InvalidDataException( columns_list, "Must have at least one column to synthesize dataset" ) if isinstance(columns_list[0], pd.DataFrame) or isinstance( columns_list[0], pd.Series ): df = pd.concat([c.reset_index(drop=True) for c in columns_list], axis=1) if index is not None: return df.set_index(index) else: return df elif isinstance(columns_list[0], np.ndarray): return np.column_stack(columns_list) else: raise InvalidDataException( columns_list, "Columns_list must come from a pandas dataframe or numpy arrays", ) def conditional_permutations(data, n_bins, random_state): """ Conditionally permute each feature in a dataset. Code appended to the PermutationImportance package by Montgomery Flora 2021. Args: ------------------- data : pd.DataFrame or np.ndarray shape=(n_examples, n_features,) n_bins : interger number of bins to divide a feature into. Based on a percentile method to ensure that each bin receieves a similar number of examples random_state : np.random.RandomState instance Pseudo-random number generator to control the permutations of each feature. Pass an int to get reproducible results across function calls. Returns: ------------------- permuted_data : a permuted version of data """ permuted_data = data.copy() for i in range(np.shape(data)[1]): # Get the bin values of feature if isinstance(data, pd.DataFrame): feature_values = data.iloc[:, i] elif isinstance(data, np.ndarray): feature_values = data[:, i] else: raise InvalidDataException( data, "Data must be a pandas dataframe or numpy array" ) bin_edges = np.unique( np.percentile( feature_values, np.linspace(0, 100, n_bins + 1), interpolation="lower", ) ) bin_indices = np.clip( np.digitize(feature_values, bin_edges, right=True) - 1, 0, None ) shuffled_indices = bin_indices.copy() unique_bin_values = np.unique(bin_indices) # bin_indices is composed of bin indices for a corresponding value of feature_values for bin_idx in unique_bin_values: # idx is the actual index of indices where the bin index == i idx = np.where(bin_indices == bin_idx)[0] # Replace the bin indices with a permutation of the actual indices shuffled_indices[idx] = random_state.permutation(idx) if isinstance(data, pd.DataFrame): permuted_data.iloc[:, i] = data.iloc[shuffled_indices, i] else: permuted_data[:, i] = data[shuffled_indices, i] return permuted_data def check_random_state(seed): """Turn seed into a np.random.RandomState instance Parameters. Function comes for sci-kit-learn. ---------- seed : None, int or instance of RandomState If seed is None, return the RandomState singleton used by np.random. If seed is an int, return a new RandomState instance seeded with seed. If seed is already a RandomState instance, return it. Otherwise raise ValueError. """ if seed is None or seed is np.random: return np.random.mtrand._rand if isinstance(seed, numbers.Integral): return np.random.RandomState(seed) if isinstance(seed, np.random.RandomState): return seed raise ValueError( "%r cannot be used to seed a numpy.random.RandomState" " instance" % seed ) def bootstrap_generator(n_bootstrap, seed=42): """ Create a repeatable bootstrap generator. Will create the same set of random state generators given a number of bootstrap iterations. """ base_random_state = np.random.RandomState(seed) random_num_set = base_random_state.choice(10000, size=n_bootstrap, replace=False) random_states = [np.random.RandomState(s) for s in random_num_set] return random_states
0.79909
0.591045
class InvalidStrategyException(Exception): """Thrown when a scoring strategy is invalid""" def __init__(self, strategy, msg=None, options=None): if msg is None: msg = ( "%s is not a valid strategy for determining the optimal variable. " % strategy ) msg += "\nShould be a callable or a valid string option. " if options is not None: msg += "Valid options are\n%r" % options super(InvalidStrategyException, self).__init__(msg) self.strategy = strategy self.options = None class InvalidInputException(Exception): """Thrown when the input to the program does not match expectations""" def __init__(self, value, msg=None): if msg is None: msg = "Input value does not match expectations: %s" % value super(InvalidInputException, self).__init__(msg) self.value = value class InvalidDataException(Exception): """Thrown when the training or scoring data is not of the right type""" def __init__(self, data, msg=None): if msg is None: msg = "Data is not of the right format" super(InvalidDataException, self).__init__(msg) self.data = data class UnmatchedLengthPredictionsException(Exception): """Thrown when the number of predictions doesn't match truths""" def __init__(self, truths, predictions, msg=None): if msg is None: msg = "Shapes of truths and predictions do not match: %r and %r" % ( truths.shape, predictions.shape, ) super(UnmatchedLengthPredictionsException, self).__init__(msg) self.truths = truths self.predictions = predictions class UnmatchingProbabilisticForecastsException(Exception): """Thrown when the shape of probabilisic predictions doesn't match the truths""" def __init__(self, truths, predictions, msg=None): if msg is None: msg = "Shapes of truths and predictions do not match: %r and %r" % ( truths.shape, predictions.shape, ) super(UnmatchingProbabilisticForecastsException, self).__init__(msg) self.truths = truths self.predictions = predictions class AmbiguousProbabilisticForecastsException(Exception): """Thrown when classes were not provided for converting probabilistic predictions to deterministic ones but are required""" def __init__(self, truths, predictions, msg=None): if msg is None: msg = "Classes not provided for converting probabilistic predictions to deterministic ones" super(AmbiguousProbabilisticForecastsException, self).__init__(msg) self.truths = truths self.predictions = predictions class FullImportanceResultWarning(Warning): """Thrown when we try to add a result to a full :class:`PermutationImportance.result.ImportanceResult`""" pass
scikit-explain
/scikit-explain-0.1.3.tar.gz/scikit-explain-0.1.3/skexplain/main/PermutationImportance/error_handling.py
error_handling.py
class InvalidStrategyException(Exception): """Thrown when a scoring strategy is invalid""" def __init__(self, strategy, msg=None, options=None): if msg is None: msg = ( "%s is not a valid strategy for determining the optimal variable. " % strategy ) msg += "\nShould be a callable or a valid string option. " if options is not None: msg += "Valid options are\n%r" % options super(InvalidStrategyException, self).__init__(msg) self.strategy = strategy self.options = None class InvalidInputException(Exception): """Thrown when the input to the program does not match expectations""" def __init__(self, value, msg=None): if msg is None: msg = "Input value does not match expectations: %s" % value super(InvalidInputException, self).__init__(msg) self.value = value class InvalidDataException(Exception): """Thrown when the training or scoring data is not of the right type""" def __init__(self, data, msg=None): if msg is None: msg = "Data is not of the right format" super(InvalidDataException, self).__init__(msg) self.data = data class UnmatchedLengthPredictionsException(Exception): """Thrown when the number of predictions doesn't match truths""" def __init__(self, truths, predictions, msg=None): if msg is None: msg = "Shapes of truths and predictions do not match: %r and %r" % ( truths.shape, predictions.shape, ) super(UnmatchedLengthPredictionsException, self).__init__(msg) self.truths = truths self.predictions = predictions class UnmatchingProbabilisticForecastsException(Exception): """Thrown when the shape of probabilisic predictions doesn't match the truths""" def __init__(self, truths, predictions, msg=None): if msg is None: msg = "Shapes of truths and predictions do not match: %r and %r" % ( truths.shape, predictions.shape, ) super(UnmatchingProbabilisticForecastsException, self).__init__(msg) self.truths = truths self.predictions = predictions class AmbiguousProbabilisticForecastsException(Exception): """Thrown when classes were not provided for converting probabilistic predictions to deterministic ones but are required""" def __init__(self, truths, predictions, msg=None): if msg is None: msg = "Classes not provided for converting probabilistic predictions to deterministic ones" super(AmbiguousProbabilisticForecastsException, self).__init__(msg) self.truths = truths self.predictions = predictions class FullImportanceResultWarning(Warning): """Thrown when we try to add a result to a full :class:`PermutationImportance.result.ImportanceResult`""" pass
0.790611
0.24243
import numpy as np import pandas as pd from .error_handling import InvalidDataException, InvalidInputException try: basestring except NameError: # Python3 basestring = str __all__ = ["verify_data", "determine_variable_names"] def verify_data(data): """Verifies that the data tuple is of the right format and coerces it to numpy arrays for the code under the hood :param data: one of the following: (pandas dataframe, string for target column), (pandas dataframe for inputs, pandas dataframe for outputs), (numpy array for inputs, numpy array for outputs) :returns: (numpy array for input, numpy array for output) or (pandas dataframe for input, pandas dataframe for output) """ try: iter(data) except TypeError: raise InvalidDataException(data, "Data must be iterable") else: if len(data) != 2: raise InvalidDataException(data, "Data must contain 2 elements") else: # check if the first element is pandas dataframe or numpy array if isinstance(data[0], pd.DataFrame): # check if the second element is string or pandas dataframe if isinstance(data[1], basestring): return ( data[0].loc[:, data[0].columns != data[1]], data[0][[data[1]]], ) elif isinstance(data[1], pd.DataFrame): return data[0], data[1] else: raise InvalidDataException( data, "Second element of data must be a string for the target column or a pandas dataframe", ) elif isinstance(data[0], np.ndarray): if isinstance(data[1], np.ndarray): return data[0], data[1] else: raise InvalidDataException( data, "Second element of data must also be a numpy array" ) else: raise InvalidDataException( data, "First element of data must be a numpy array or pandas dataframe", ) def determine_variable_names(data, variable_names): """Uses ``data`` and/or the ``variable_names`` to determine what the variable names are. If ``variable_names`` is not specified and ``data`` is not a pandas dataframe, defaults to the column indices :param data: a 2-tuple where the input data is the first item :param variable_names: either a list of variable names or None :returns: a list of variable names """ if variable_names is not None: try: iter(variable_names) except TypeError: raise InvalidInputException( variable_names, "Variable names must be iterable" ) else: if len(variable_names) != data[0].shape[1]: raise InvalidInputException( variable_names, "Variable names should have length %i" % data[0].shape[1], ) else: return np.array(variable_names) else: if isinstance(data[0], pd.DataFrame): return data[0].columns.values else: return np.arange(data[0].shape[1])
scikit-explain
/scikit-explain-0.1.3.tar.gz/scikit-explain-0.1.3/skexplain/main/PermutationImportance/data_verification.py
data_verification.py
import numpy as np import pandas as pd from .error_handling import InvalidDataException, InvalidInputException try: basestring except NameError: # Python3 basestring = str __all__ = ["verify_data", "determine_variable_names"] def verify_data(data): """Verifies that the data tuple is of the right format and coerces it to numpy arrays for the code under the hood :param data: one of the following: (pandas dataframe, string for target column), (pandas dataframe for inputs, pandas dataframe for outputs), (numpy array for inputs, numpy array for outputs) :returns: (numpy array for input, numpy array for output) or (pandas dataframe for input, pandas dataframe for output) """ try: iter(data) except TypeError: raise InvalidDataException(data, "Data must be iterable") else: if len(data) != 2: raise InvalidDataException(data, "Data must contain 2 elements") else: # check if the first element is pandas dataframe or numpy array if isinstance(data[0], pd.DataFrame): # check if the second element is string or pandas dataframe if isinstance(data[1], basestring): return ( data[0].loc[:, data[0].columns != data[1]], data[0][[data[1]]], ) elif isinstance(data[1], pd.DataFrame): return data[0], data[1] else: raise InvalidDataException( data, "Second element of data must be a string for the target column or a pandas dataframe", ) elif isinstance(data[0], np.ndarray): if isinstance(data[1], np.ndarray): return data[0], data[1] else: raise InvalidDataException( data, "Second element of data must also be a numpy array" ) else: raise InvalidDataException( data, "First element of data must be a numpy array or pandas dataframe", ) def determine_variable_names(data, variable_names): """Uses ``data`` and/or the ``variable_names`` to determine what the variable names are. If ``variable_names`` is not specified and ``data`` is not a pandas dataframe, defaults to the column indices :param data: a 2-tuple where the input data is the first item :param variable_names: either a list of variable names or None :returns: a list of variable names """ if variable_names is not None: try: iter(variable_names) except TypeError: raise InvalidInputException( variable_names, "Variable names must be iterable" ) else: if len(variable_names) != data[0].shape[1]: raise InvalidInputException( variable_names, "Variable names should have length %i" % data[0].shape[1], ) else: return np.array(variable_names) else: if isinstance(data[0], pd.DataFrame): return data[0].columns.values else: return np.arange(data[0].shape[1])
0.619241
0.616936
import numpy as np from sklearn.base import clone from .utils import get_data_subset, bootstrap_generator from joblib import Parallel, delayed __all__ = [ "model_scorer", "score_untrained_sklearn_model", "score_untrained_sklearn_model_with_probabilities", "score_trained_sklearn_model", "score_trained_sklearn_model_with_probabilities", "train_model", "get_model", "predict_model", "predict_proba_model", ] def train_model(model, X_train, y_train): """Trains a scikit-learn model and returns the trained model""" if X_train.shape[1] == 0: # No data to train over, so don't bother return None cloned_model = clone(model) return cloned_model.fit(X_train, y_train) def get_model(model, X_train, y_train): """Just return the trained model""" return model def predict_model(model, X_score): """Uses a trained scikit-learn model to predict over the scoring data""" return model.predict(X_score) def predict_proba_model(model, X_score): """Uses a trained scikit-learn model to predict class probabilities for the scoring data""" pred = model.predict_proba(X_score) # Binary classification. if pred.shape[1] == 2: return pred[:,1] else: return pred def forward_permutations(X, inds, var_idx): return np.array( [ X[:, i] if i == var_idx else X[inds, i] for i in range(X.shape[1]) ] ).T class model_scorer(object): """General purpose scoring method which takes a particular model, trains the model over the given training data, uses the trained model to predict on the given scoring data, and then evaluates those predictions using some evaluation function. Additionally provides the tools for bootstrapping the scores and providing a distribution of scores to be used for statistics. NOTE: Since these method is used internally, the scoring inputs into this method for different rounds of multipass permutation importance are already permuted for the top most features. Thus, in any current iteration, we need only permute a single column at a time. """ def __init__( self, model, training_fn, prediction_fn, evaluation_fn, nimportant_vars=1, default_score=0.0, n_permute=1, subsample=1, direction='backward', **kwargs ): """Initializes the scoring object by storing the training, predicting, and evaluation functions :param model: a scikit-learn model :param training_fn: a function for training a scikit-learn model. Must be of the form ``(model, X_train, y_train) -> trained_model | None``. If the function returns ``None``, then it is assumed that the model training failed. Probably :func:`PermutationImportance.sklearn_api.train_model` or :func:`PermutationImportance.sklearn_api.get_model` :param predicting_fn: a function for predicting on scoring data using a scikit-learn model. Must be of the form ``(model, X_score) -> predictions``. Predictions may be either deterministic or probabilistic, depending on what the evaluation_fn accepts. Probably :func:`PermutationImportance.sklearn_api.predict_model` or :func:`PermutationImportance.sklearn_api.predict_proba_model` :param evaluation_fn: a function which takes the deterministic or probabilistic model predictions and scores them against the true values. Must be of the form ``(truths, predictions) -> some_value`` Probably one of the metrics in :mod:`PermutationImportance.metrics` or `sklearn.metrics <https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics>`_ :param default_score: value to return if the model cannot be trained :param nbootstrap: number of times to perform scoring on each variable. Results over different bootstrap iterations are averaged. Defaults to None, which will not perform bootstrapping :param subsample: number of elements to sample (with replacement) per bootstrap round. If between 0 and 1, treated as a fraction of the number of total number of events (e.g. 0.5 means half the number of events). If not specified, subsampling will not be used and the entire data will be used (without replacement) """ self.model = model self.training_fn = training_fn self.prediction_fn = prediction_fn self.evaluation_fn = evaluation_fn self.default_score = default_score self.n_permute = n_permute self.subsample = subsample self.direction = direction self.kwargs = kwargs self.random_seed = kwargs.get("random_seed", 42) def _scorer(self, X, y): predictions = self.prediction_fn(self.model, X) return self.evaluation_fn(y,predictions) def get_subsample_size(self, full_size): return ( int(full_size * self.subsample) if self.subsample <= 1 else self.subsample ) def _train(self): # Try to train model trained_model = self.training_fn(self.model, X_train, y_train) # If we didn't succeed in training (probably because there weren't any # training predictors), return the default_score if trained_model is None: if self.n_permute == 1: return [self.default_score] else: return np.full((self.n_permute,), self.default_score) def get_permuted_data(self, idx, var_idx): """ Get permuted data """ X_score_sub = self.X_score y_score_sub = self.y_score X_train_sub = self.X_train inds = self.shuffled_indices[idx] if len(self.rows[0]) != self.y_score.shape[0]: X_score_sub = get_data_subset(self.X_score, self.rows[idx]) y_score_sub = get_data_subset(self.y_score, self.rows[idx]) if self.direction == 'forward': X_train_sub = get_data_subset(self.X_train, self.rows[idx]) #inds = inds[idx] if var_idx is None: return X_score_sub, y_score_sub # For the backward, X_score is mostly unpermuted expect for # the top features. For the forward, X_score is all permuted # expect for the top features. X_perm = X_score_sub.copy() if self.direction == 'backward': X_perm[:,var_idx] = X_score_sub[inds, var_idx] else: X_perm[:,var_idx] = X_train_sub[:, var_idx] return X_perm, y_score_sub def __call__(self, training_data, scoring_data, var_idx): """Uses the training, predicting, and evaluation functions to score the model given the training and scoring data :param training_data: (training_input, training_output) :param scoring_data: (scoring_input, scoring_output) :returns: either a single value or an array of values :param var_idx : integer The column index of the variable being permuted. When computing the original score, set var_idx==None. """ (self.X_train, self.y_train) = training_data (self.X_score, self.y_score) = scoring_data permuted_set = [self.get_permuted_data(idx, var_idx) for idx in range(self.n_permute)] scores = np.array([self._scorer(*arg) for arg in permuted_set]) return np.array(scores) def score_untrained_sklearn_model( model, evaluation_fn, nbootstrap=None, subsample=1, **kwargs ): """A convenience method which uses the default training and the deterministic prediction methods for scikit-learn to evaluate a model :param model: a scikit-learn model :param evaluation_fn: a function which takes the deterministic or probabilistic model predictions and scores them against the true values. Must be of the form ``(truths, predictions) -> some_value`` Probably one of the metrics in :mod:`PermutationImportance.metrics` or `sklearn.metrics <https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics>`_ :param nbootstrap: number of times to perform scoring on each variable. Results over different bootstrap iterations are averaged. Defaults to 1 :param subsample: number of elements to sample (with replacement) per bootstrap round. If between 0 and 1, treated as a fraction of the number of total number of events (e.g. 0.5 means half the number of events). If not specified, subsampling will not be used and the entire data will be used (without replacement) :param kwargs: all other kwargs passed on to the evaluation_fn :returns: a callable which accepts ``(training_data, scoring_data)`` and returns some value (probably a float or an array of floats) """ return model_scorer( model, training_fn=train_model, prediction_fn=predict_model, evaluation_fn=evaluation_fn, nbootstrap=nbootstrap, subsample=subsample, **kwargs ) def score_untrained_sklearn_model_with_probabilities( model, evaluation_fn, nbootstrap=None, subsample=1, **kwargs ): """A convenience method which uses the default training and the probabilistic prediction methods for scikit-learn to evaluate a model :param model: a scikit-learn model :param evaluation_fn: a function which takes the deterministic or probabilistic model predictions and scores them against the true values. Must be of the form ``(truths, predictions) -> some_value`` Probably one of the metrics in :mod:`PermutationImportance.metrics` or `sklearn.metrics <https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics>`_ :param nbootstrap: number of times to perform scoring on each variable. Results over different bootstrap iterations are averaged. Defaults to 1 :param subsample: number of elements to sample (with replacement) per bootstrap round. If between 0 and 1, treated as a fraction of the number of total number of events (e.g. 0.5 means half the number of events). If not specified, subsampling will not be used and the entire data will be used (without replacement) :param kwargs: all other kwargs passed on to the evaluation_fn :returns: a callable which accepts ``(training_data, scoring_data)`` and returns some value (probably a float or an array of floats) """ return model_scorer( model, training_fn=train_model, prediction_fn=predict_proba_model, evaluation_fn=evaluation_fn, nbootstrap=nbootstrap, subsample=subsample, **kwargs ) def score_trained_sklearn_model( model, evaluation_fn, n_permute=1, subsample=1, direction='backward', **kwargs ): """A convenience method which does not retrain a scikit-learn model and uses deterministic prediction methods to evaluate the model :param model: a scikit-learn model :param evaluation_fn: a function which takes the deterministic or probabilistic model predictions and scores them against the true values. Must be of the form ``(truths, predictions) -> some_value`` Probably one of the metrics in :mod:`PermutationImportance.metrics` or `sklearn.metrics <https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics>`_ :param nbootstrap: number of times to perform scoring on each variable. Results over different bootstrap iterations are averaged. Defaults to 1 :param subsample: number of elements to sample (with replacement) per bootstrap round. If between 0 and 1, treated as a fraction of the number of total number of events (e.g. 0.5 means half the number of events). If not specified, subsampling will not be used and the entire data will be used (without replacement) :param kwargs: all other kwargs passed on to the evaluation_fn :returns: a callable which accepts ``(training_data, scoring_data)`` and returns some value (probably a float or an array of floats) """ return model_scorer( model, training_fn=get_model, prediction_fn=predict_model, evaluation_fn=evaluation_fn, n_permute=n_permute, subsample=subsample, direction=direction, **kwargs ) def score_trained_sklearn_model_with_probabilities( model, evaluation_fn, n_permute=1, subsample=1, direction='backward', **kwargs ): """A convenience method which does not retrain a scikit-learn model and uses probabilistic prediction methods to evaluate the model :param model: a scikit-learn model :param evaluation_fn: a function which takes the deterministic or probabilistic model predictions and scores them against the true values. Must be of the form ``(truths, predictions) -> some_value`` Probably one of the metrics in :mod:`PermutationImportance.metrics` or `sklearn.metrics <https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics>`_ :param nbootstrap: number of times to perform scoring on each variable. Results over different bootstrap iterations are averaged. Defaults to 1 :param subsample: number of elements to sample (with replacement) per bootstrap round. If between 0 and 1, treated as a fraction of the number of total number of events (e.g. 0.5 means half the number of events). If not specified, subsampling will not be used and the entire data will be used (without replacement) :param kwargs: all other kwargs passed on to the evaluation_fn :returns: a callable which accepts ``(training_data, scoring_data)`` and returns some value (probably a float or an array of floats) """ return model_scorer( model, training_fn=get_model, prediction_fn=predict_proba_model, evaluation_fn=evaluation_fn, n_permute=n_permute, subsample=subsample, direction=direction, **kwargs )
scikit-explain
/scikit-explain-0.1.3.tar.gz/scikit-explain-0.1.3/skexplain/main/PermutationImportance/sklearn_api.py
sklearn_api.py
import numpy as np from sklearn.base import clone from .utils import get_data_subset, bootstrap_generator from joblib import Parallel, delayed __all__ = [ "model_scorer", "score_untrained_sklearn_model", "score_untrained_sklearn_model_with_probabilities", "score_trained_sklearn_model", "score_trained_sklearn_model_with_probabilities", "train_model", "get_model", "predict_model", "predict_proba_model", ] def train_model(model, X_train, y_train): """Trains a scikit-learn model and returns the trained model""" if X_train.shape[1] == 0: # No data to train over, so don't bother return None cloned_model = clone(model) return cloned_model.fit(X_train, y_train) def get_model(model, X_train, y_train): """Just return the trained model""" return model def predict_model(model, X_score): """Uses a trained scikit-learn model to predict over the scoring data""" return model.predict(X_score) def predict_proba_model(model, X_score): """Uses a trained scikit-learn model to predict class probabilities for the scoring data""" pred = model.predict_proba(X_score) # Binary classification. if pred.shape[1] == 2: return pred[:,1] else: return pred def forward_permutations(X, inds, var_idx): return np.array( [ X[:, i] if i == var_idx else X[inds, i] for i in range(X.shape[1]) ] ).T class model_scorer(object): """General purpose scoring method which takes a particular model, trains the model over the given training data, uses the trained model to predict on the given scoring data, and then evaluates those predictions using some evaluation function. Additionally provides the tools for bootstrapping the scores and providing a distribution of scores to be used for statistics. NOTE: Since these method is used internally, the scoring inputs into this method for different rounds of multipass permutation importance are already permuted for the top most features. Thus, in any current iteration, we need only permute a single column at a time. """ def __init__( self, model, training_fn, prediction_fn, evaluation_fn, nimportant_vars=1, default_score=0.0, n_permute=1, subsample=1, direction='backward', **kwargs ): """Initializes the scoring object by storing the training, predicting, and evaluation functions :param model: a scikit-learn model :param training_fn: a function for training a scikit-learn model. Must be of the form ``(model, X_train, y_train) -> trained_model | None``. If the function returns ``None``, then it is assumed that the model training failed. Probably :func:`PermutationImportance.sklearn_api.train_model` or :func:`PermutationImportance.sklearn_api.get_model` :param predicting_fn: a function for predicting on scoring data using a scikit-learn model. Must be of the form ``(model, X_score) -> predictions``. Predictions may be either deterministic or probabilistic, depending on what the evaluation_fn accepts. Probably :func:`PermutationImportance.sklearn_api.predict_model` or :func:`PermutationImportance.sklearn_api.predict_proba_model` :param evaluation_fn: a function which takes the deterministic or probabilistic model predictions and scores them against the true values. Must be of the form ``(truths, predictions) -> some_value`` Probably one of the metrics in :mod:`PermutationImportance.metrics` or `sklearn.metrics <https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics>`_ :param default_score: value to return if the model cannot be trained :param nbootstrap: number of times to perform scoring on each variable. Results over different bootstrap iterations are averaged. Defaults to None, which will not perform bootstrapping :param subsample: number of elements to sample (with replacement) per bootstrap round. If between 0 and 1, treated as a fraction of the number of total number of events (e.g. 0.5 means half the number of events). If not specified, subsampling will not be used and the entire data will be used (without replacement) """ self.model = model self.training_fn = training_fn self.prediction_fn = prediction_fn self.evaluation_fn = evaluation_fn self.default_score = default_score self.n_permute = n_permute self.subsample = subsample self.direction = direction self.kwargs = kwargs self.random_seed = kwargs.get("random_seed", 42) def _scorer(self, X, y): predictions = self.prediction_fn(self.model, X) return self.evaluation_fn(y,predictions) def get_subsample_size(self, full_size): return ( int(full_size * self.subsample) if self.subsample <= 1 else self.subsample ) def _train(self): # Try to train model trained_model = self.training_fn(self.model, X_train, y_train) # If we didn't succeed in training (probably because there weren't any # training predictors), return the default_score if trained_model is None: if self.n_permute == 1: return [self.default_score] else: return np.full((self.n_permute,), self.default_score) def get_permuted_data(self, idx, var_idx): """ Get permuted data """ X_score_sub = self.X_score y_score_sub = self.y_score X_train_sub = self.X_train inds = self.shuffled_indices[idx] if len(self.rows[0]) != self.y_score.shape[0]: X_score_sub = get_data_subset(self.X_score, self.rows[idx]) y_score_sub = get_data_subset(self.y_score, self.rows[idx]) if self.direction == 'forward': X_train_sub = get_data_subset(self.X_train, self.rows[idx]) #inds = inds[idx] if var_idx is None: return X_score_sub, y_score_sub # For the backward, X_score is mostly unpermuted expect for # the top features. For the forward, X_score is all permuted # expect for the top features. X_perm = X_score_sub.copy() if self.direction == 'backward': X_perm[:,var_idx] = X_score_sub[inds, var_idx] else: X_perm[:,var_idx] = X_train_sub[:, var_idx] return X_perm, y_score_sub def __call__(self, training_data, scoring_data, var_idx): """Uses the training, predicting, and evaluation functions to score the model given the training and scoring data :param training_data: (training_input, training_output) :param scoring_data: (scoring_input, scoring_output) :returns: either a single value or an array of values :param var_idx : integer The column index of the variable being permuted. When computing the original score, set var_idx==None. """ (self.X_train, self.y_train) = training_data (self.X_score, self.y_score) = scoring_data permuted_set = [self.get_permuted_data(idx, var_idx) for idx in range(self.n_permute)] scores = np.array([self._scorer(*arg) for arg in permuted_set]) return np.array(scores) def score_untrained_sklearn_model( model, evaluation_fn, nbootstrap=None, subsample=1, **kwargs ): """A convenience method which uses the default training and the deterministic prediction methods for scikit-learn to evaluate a model :param model: a scikit-learn model :param evaluation_fn: a function which takes the deterministic or probabilistic model predictions and scores them against the true values. Must be of the form ``(truths, predictions) -> some_value`` Probably one of the metrics in :mod:`PermutationImportance.metrics` or `sklearn.metrics <https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics>`_ :param nbootstrap: number of times to perform scoring on each variable. Results over different bootstrap iterations are averaged. Defaults to 1 :param subsample: number of elements to sample (with replacement) per bootstrap round. If between 0 and 1, treated as a fraction of the number of total number of events (e.g. 0.5 means half the number of events). If not specified, subsampling will not be used and the entire data will be used (without replacement) :param kwargs: all other kwargs passed on to the evaluation_fn :returns: a callable which accepts ``(training_data, scoring_data)`` and returns some value (probably a float or an array of floats) """ return model_scorer( model, training_fn=train_model, prediction_fn=predict_model, evaluation_fn=evaluation_fn, nbootstrap=nbootstrap, subsample=subsample, **kwargs ) def score_untrained_sklearn_model_with_probabilities( model, evaluation_fn, nbootstrap=None, subsample=1, **kwargs ): """A convenience method which uses the default training and the probabilistic prediction methods for scikit-learn to evaluate a model :param model: a scikit-learn model :param evaluation_fn: a function which takes the deterministic or probabilistic model predictions and scores them against the true values. Must be of the form ``(truths, predictions) -> some_value`` Probably one of the metrics in :mod:`PermutationImportance.metrics` or `sklearn.metrics <https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics>`_ :param nbootstrap: number of times to perform scoring on each variable. Results over different bootstrap iterations are averaged. Defaults to 1 :param subsample: number of elements to sample (with replacement) per bootstrap round. If between 0 and 1, treated as a fraction of the number of total number of events (e.g. 0.5 means half the number of events). If not specified, subsampling will not be used and the entire data will be used (without replacement) :param kwargs: all other kwargs passed on to the evaluation_fn :returns: a callable which accepts ``(training_data, scoring_data)`` and returns some value (probably a float or an array of floats) """ return model_scorer( model, training_fn=train_model, prediction_fn=predict_proba_model, evaluation_fn=evaluation_fn, nbootstrap=nbootstrap, subsample=subsample, **kwargs ) def score_trained_sklearn_model( model, evaluation_fn, n_permute=1, subsample=1, direction='backward', **kwargs ): """A convenience method which does not retrain a scikit-learn model and uses deterministic prediction methods to evaluate the model :param model: a scikit-learn model :param evaluation_fn: a function which takes the deterministic or probabilistic model predictions and scores them against the true values. Must be of the form ``(truths, predictions) -> some_value`` Probably one of the metrics in :mod:`PermutationImportance.metrics` or `sklearn.metrics <https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics>`_ :param nbootstrap: number of times to perform scoring on each variable. Results over different bootstrap iterations are averaged. Defaults to 1 :param subsample: number of elements to sample (with replacement) per bootstrap round. If between 0 and 1, treated as a fraction of the number of total number of events (e.g. 0.5 means half the number of events). If not specified, subsampling will not be used and the entire data will be used (without replacement) :param kwargs: all other kwargs passed on to the evaluation_fn :returns: a callable which accepts ``(training_data, scoring_data)`` and returns some value (probably a float or an array of floats) """ return model_scorer( model, training_fn=get_model, prediction_fn=predict_model, evaluation_fn=evaluation_fn, n_permute=n_permute, subsample=subsample, direction=direction, **kwargs ) def score_trained_sklearn_model_with_probabilities( model, evaluation_fn, n_permute=1, subsample=1, direction='backward', **kwargs ): """A convenience method which does not retrain a scikit-learn model and uses probabilistic prediction methods to evaluate the model :param model: a scikit-learn model :param evaluation_fn: a function which takes the deterministic or probabilistic model predictions and scores them against the true values. Must be of the form ``(truths, predictions) -> some_value`` Probably one of the metrics in :mod:`PermutationImportance.metrics` or `sklearn.metrics <https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics>`_ :param nbootstrap: number of times to perform scoring on each variable. Results over different bootstrap iterations are averaged. Defaults to 1 :param subsample: number of elements to sample (with replacement) per bootstrap round. If between 0 and 1, treated as a fraction of the number of total number of events (e.g. 0.5 means half the number of events). If not specified, subsampling will not be used and the entire data will be used (without replacement) :param kwargs: all other kwargs passed on to the evaluation_fn :returns: a callable which accepts ``(training_data, scoring_data)`` and returns some value (probably a float or an array of floats) """ return model_scorer( model, training_fn=get_model, prediction_fn=predict_proba_model, evaluation_fn=evaluation_fn, n_permute=n_permute, subsample=subsample, direction=direction, **kwargs )
0.903559
0.66888
import warnings try: from itertools import izip as zip except ImportError: # python3 pass from .error_handling import FullImportanceResultWarning class ImportanceResult(object): """Houses the result of any importance method, which consists of a sequence of contexts and results. An individual result can only be truly interpreted correctly in light of the corresponding context. This object allows for indexing into the contexts and results and also provides convenience methods for retrieving the results with no context and the most complete context""" def __init__(self, method, variable_names, original_score): """Initializes the results object with the method used and a list of variable names :param method: string for the type of variable importance used :param variable_names: a list of names for variables :param original_score: the score of the model when no variables are important """ self.method = method self.variable_names = variable_names self.original_score = original_score # The initial context is "empty" self.contexts = [{}] self.results = list() self.complete = False def add_new_results(self, new_results, next_important_variable=None): """Adds a new round of results. Warns if the ImportanceResult is already complete :param new_results: a dictionary with keys of variable names and values of ``(rank, score)`` :param next_important_variable: variable name of the next most important variable. If not given, will select the variable with the smallest rank """ if not self.complete: if next_important_variable is None: next_important_variable = min( new_results.keys(), key=lambda key: new_results[key][0] ) self.results.append(new_results) new_context = self.contexts[-1].copy() self.contexts.append(new_context) __, score = new_results[next_important_variable] self.contexts[-1][next_important_variable] = (len(self.results) - 1, score) # Check to see if this result could constitute the last possible one if len(self.results) == len(self.variable_names): self.results.append(dict()) self.complete = True else: warnings.warn( "Cannot add new result to full ImportanceResult", FullImportanceResultWarning, ) def retrieve_singlepass(self): """Returns the singlepass results as a dictionary with keys of variable names and values of ``(rank, score)``.""" return self.results[0] def retrieve_all_iterations(self): """Returns the singlepass results for all multipass iterations""" return self.results def retrieve_multipass(self): """Returns the multipass results as a dictionary with keys of variable names and values of ``(rank, score)``.""" return self.contexts[-1] def __iter__(self): """Iterates over pairs of contexts and results""" return zip(self.contexts, self.results) def __getitem__(self, index): """Retrieves the ith pair of ``(context, result)``""" if index < 0: index = len(self.results) + index return (self.contexts[index], self.results[index]) def __len__(self): """Returns the total number of results computed""" return len(self.results)
scikit-explain
/scikit-explain-0.1.3.tar.gz/scikit-explain-0.1.3/skexplain/main/PermutationImportance/result.py
result.py
import warnings try: from itertools import izip as zip except ImportError: # python3 pass from .error_handling import FullImportanceResultWarning class ImportanceResult(object): """Houses the result of any importance method, which consists of a sequence of contexts and results. An individual result can only be truly interpreted correctly in light of the corresponding context. This object allows for indexing into the contexts and results and also provides convenience methods for retrieving the results with no context and the most complete context""" def __init__(self, method, variable_names, original_score): """Initializes the results object with the method used and a list of variable names :param method: string for the type of variable importance used :param variable_names: a list of names for variables :param original_score: the score of the model when no variables are important """ self.method = method self.variable_names = variable_names self.original_score = original_score # The initial context is "empty" self.contexts = [{}] self.results = list() self.complete = False def add_new_results(self, new_results, next_important_variable=None): """Adds a new round of results. Warns if the ImportanceResult is already complete :param new_results: a dictionary with keys of variable names and values of ``(rank, score)`` :param next_important_variable: variable name of the next most important variable. If not given, will select the variable with the smallest rank """ if not self.complete: if next_important_variable is None: next_important_variable = min( new_results.keys(), key=lambda key: new_results[key][0] ) self.results.append(new_results) new_context = self.contexts[-1].copy() self.contexts.append(new_context) __, score = new_results[next_important_variable] self.contexts[-1][next_important_variable] = (len(self.results) - 1, score) # Check to see if this result could constitute the last possible one if len(self.results) == len(self.variable_names): self.results.append(dict()) self.complete = True else: warnings.warn( "Cannot add new result to full ImportanceResult", FullImportanceResultWarning, ) def retrieve_singlepass(self): """Returns the singlepass results as a dictionary with keys of variable names and values of ``(rank, score)``.""" return self.results[0] def retrieve_all_iterations(self): """Returns the singlepass results for all multipass iterations""" return self.results def retrieve_multipass(self): """Returns the multipass results as a dictionary with keys of variable names and values of ``(rank, score)``.""" return self.contexts[-1] def __iter__(self): """Iterates over pairs of contexts and results""" return zip(self.contexts, self.results) def __getitem__(self, index): """Retrieves the ith pair of ``(context, result)``""" if index < 0: index = len(self.results) + index return (self.contexts[index], self.results[index]) def __len__(self): """Returns the total number of results computed""" return len(self.results)
0.715821
0.439146
import numpy as np import matplotlib.pyplot as plt from matplotlib.ticker import MaxNLocator, FormatStrFormatter, AutoMinorLocator import matplotlib.ticker as mticker from matplotlib import rcParams from matplotlib.colors import ListedColormap from matplotlib.gridspec import GridSpec import matplotlib import seaborn as sns from ..common.utils import is_outlier from ..common.contrib_utils import combine_like_features import shap class PlotStructure: """ Plot handles figure and subplot generation """ def __init__(self, BASE_FONT_SIZE=12, seaborn_kws=None): GENERIC_FONT_SIZE_NAMES = [ "teensie", "tiny", "small", "normal", "big", "large", "huge", ] FONT_SIZES_ARRAY = np.arange(-6, 8, 2) + BASE_FONT_SIZE self.FONT_SIZES = { name: size for name, size in zip(GENERIC_FONT_SIZE_NAMES, FONT_SIZES_ARRAY) } if seaborn_kws is None: custom_params = {"axes.spines.right": False, "axes.spines.top": False} sns.set_theme(style="ticks", rc=custom_params) else: if seaborn_kws is not None and isinstance(seaborn_kws, dict): sns.set_theme(**seaborn_kws) # Setting the font style to serif rcParams["font.family"] = "serif" plt.rc("font", size=self.FONT_SIZES["normal"]) # controls default text sizes plt.rc("axes", titlesize=self.FONT_SIZES["tiny"]) # fontsize of the axes title plt.rc( "axes", labelsize=self.FONT_SIZES["normal"] ) # fontsize of the x and y labels plt.rc( "xtick", labelsize=self.FONT_SIZES["teensie"] ) # fontsize of the x-axis tick marks plt.rc( "ytick", labelsize=self.FONT_SIZES["teensie"] ) # fontsize of the y-axis tick marks plt.rc("legend", fontsize=self.FONT_SIZES["teensie"]) # legend fontsize plt.rc( "figure", titlesize=self.FONT_SIZES["big"] ) # fontsize of the figure title def get_fig_props(self, n_panels, **kwargs): """Determine appropriate figure properties""" width_slope = 0.875 height_slope = 0.45 intercept = 3.0 - width_slope figsize = ( min((n_panels * width_slope) + intercept, 19), min((n_panels * height_slope) + intercept, 12), ) wspace = (-0.03 * n_panels) + 0.85 hspace = (0.0175 * n_panels) + 0.3 n_columns = kwargs.get("n_columns", 3) wspace = wspace + 0.25 if n_columns > 3 else wspace kwargs["figsize"] = kwargs.get("figsize", figsize) kwargs["wspace"] = kwargs.get("wspace", wspace) kwargs["hspace"] = kwargs.get("hspace", hspace) return kwargs def create_subplots(self, n_panels, **kwargs): """ Create a series of subplots (MxN) based on the number of panels and number of columns (optionally). Args: ----------------------- n_panels : int Number of subplots to create Optional keyword args: n_columns : int The number of columns for a plot (default=3 for n_panels >=3) figsize: 2-tuple of figure size (width, height in inches) wspace : float the amount of width reserved for space between subplots, expressed as a fraction of the average axis width hspace : float sharex : boolean sharey : boolean """ # figsize = width, height in inches figsize = kwargs.get("figsize", (6.4, 4.8)) wspace = kwargs.get("wspace", 0.4) hspace = kwargs.get("hspace", 0.3) sharex = kwargs.get("sharex", False) sharey = kwargs.get("sharey", False) delete = True if n_panels <= 3: n_columns = kwargs.get("n_columns", n_panels) delete = True if n_panels != n_columns else False else: n_columns = kwargs.get("n_columns", 3) n_rows = int(n_panels / n_columns) extra_row = 0 if (n_panels % n_columns) == 0 else 1 fig, axes = plt.subplots( n_rows + extra_row, n_columns, sharex=sharex, sharey=sharey, figsize=figsize, dpi=300, ) fig.patch.set_facecolor("white") plt.subplots_adjust(wspace=wspace, hspace=hspace) if delete: n_axes_to_delete = len(axes.flat) - n_panels if n_axes_to_delete > 0: for i in range(n_axes_to_delete): fig.delaxes(axes.flat[-(i + 1)]) return fig, axes def _create_joint_subplots(self, n_panels, **kwargs): """ Create grid for multipanel drawing a bivariate plots with marginal univariate plots on the top and right hand side. """ figsize = kwargs.get("figsize", (6.4, 4.8)) ratio = kwargs.get("ratio", 5) n_columns = kwargs.get("n_columns", 3) fig = plt.figure(figsize=figsize, dpi=300) fig.patch.set_facecolor("white") extra_row = 0 if (n_panels % n_columns) == 0 else 1 nrows = ratio * (int(n_panels / n_columns) + extra_row) ncols = ratio * n_columns gs = GridSpec(ncols=ncols, nrows=nrows) main_ax_len = ratio - 1 main_axes = [] top_axes = [] rhs_axes = [] col_offset_idx = list(range(n_columns)) * int(nrows / ratio) row_offset = 0 for i in range(n_panels): col_offset = ratio * col_offset_idx[i] row_idx = 1 if i % n_columns == 0 and i > 0: row_offset += ratio main_ax = fig.add_subplot( gs[ row_idx + row_offset : main_ax_len + row_offset, col_offset : main_ax_len + col_offset - 1, ], frameon=False, ) top_ax = fig.add_subplot( gs[row_idx + row_offset - 1, col_offset : main_ax_len + col_offset - 1], frameon=False, sharex=main_ax, ) rhs_ax = fig.add_subplot( gs[ row_idx + row_offset : main_ax_len + row_offset, main_ax_len + col_offset - 1, ], frameon=False, sharey=main_ax, ) ax_marg = [top_ax, rhs_ax] for ax in ax_marg: # Turn off tick visibility for the measure axis on the marginal plots plt.setp(ax.get_xticklabels(), visible=False) plt.setp(ax.get_yticklabels(), visible=False) # Turn off the ticks on the density axis for the marginal plots plt.setp(ax.yaxis.get_majorticklines(), visible=False) plt.setp(ax.xaxis.get_majorticklines(), visible=False) plt.setp(ax.yaxis.get_minorticklines(), visible=False) plt.setp(ax.xaxis.get_minorticklines(), visible=False) ax.yaxis.grid(False) ax.xaxis.grid(False) for axis in [ax.xaxis, ax.yaxis]: axis.label.set_visible(False) main_axes.append(main_ax) top_axes.append(top_ax) rhs_axes.append(rhs_ax) n_rows = int(nrows / ratio) return fig, main_axes, top_axes, rhs_axes, n_rows def axes_to_iterator(self, n_panels, axes): """Turns axes list into iterable""" if isinstance(axes, list): return axes else: ax_iterator = [axes] if n_panels == 1 else axes.flat return ax_iterator def set_major_axis_labels( self, fig, xlabel=None, ylabel_left=None, ylabel_right=None, title=None, **kwargs, ): """ Generate a single X- and Y-axis labels for a series of subplot panels. E.g., """ fontsize = kwargs.get("fontsize", self.FONT_SIZES["normal"]) labelpad = kwargs.get("labelpad", 15) ylabel_right_color = kwargs.get("ylabel_right_color", "k") # add a big axis, hide frame ax = fig.add_subplot(111, frameon=False) # hide tick and tick label of the big axis plt.tick_params( labelcolor="none", top=False, bottom=False, left=False, right=False ) # set axes labels ax.set_xlabel(xlabel, fontsize=fontsize, labelpad=labelpad) ax.set_ylabel(ylabel_left, fontsize=fontsize, labelpad=labelpad) if ylabel_right is not None: ax_right = fig.add_subplot(1, 1, 1, sharex=ax, frameon=False) plt.tick_params( labelcolor="none", top=False, bottom=False, left=False, right=False ) ax_right.yaxis.set_label_position("right") ax_right.set_ylabel( ylabel_right, labelpad=2 * labelpad, fontsize=fontsize, color=ylabel_right_color, ) ax_right.grid(False) ax.set_title(title) ax.grid(False) return ax def set_row_labels(self, labels, axes, pos=-1, pad=1.15, rotation=270, **kwargs): """ Give a label to each row in a series of subplots """ colors = kwargs.get("colors", ["xkcd:darkish blue"] * len(labels)) fontsize = kwargs.get("fontsize", self.FONT_SIZES["small"]) if np.ndim(axes) == 2: iterator = axes[:, pos] else: iterator = [axes[pos]] for ax, row, color in zip(iterator, labels, colors): ax.yaxis.set_label_position("right") ax.annotate( row, xy=(1, 1), xytext=(pad, 0.5), xycoords=ax.transAxes, rotation=rotation, size=fontsize, ha="center", va="center", color=color, alpha=0.65, ) def add_alphabet_label(self, n_panels, axes, pos=(0.9, 0.09), alphabet_fontsize=10, **kwargs): """ A alphabet character to each subpanel. """ alphabet_list = [chr(x) for x in range(ord("a"), ord("z") + 1)] + [ f"{chr(x)}{chr(x)}" for x in range(ord("a"), ord("z") + 1) ] ax_iterator = self.axes_to_iterator(n_panels, axes) for i, ax in enumerate(ax_iterator): ax.text( pos[0], pos[1], f"({alphabet_list[i]})", fontsize=alphabet_fontsize, alpha=0.8, ha="center", va="center", transform=ax.transAxes, ) def _to_sci_notation(self, ydata, ax=None, xdata=None, colorbar=False): """ Convert decimals (less 0.01) to 10^e notation """ # f = mticker.ScalarFormatter(useOffset=False, useMathText=True) # g = lambda x, pos: "${}$".format(f._formatSciNotation("%1.10e" % x)) if colorbar and np.absolute(np.amax(ydata)) <= 0.01: # colorbar.ax.yaxis.set_major_formatter(mticker.FuncFormatter(g)) colorbar.ax.ticklabel_format( style="sci", ) colorbar.ax.tick_params(axis="y", labelsize=5) elif ax: if np.absolute(np.amax(xdata)) <= 0.01: ax.ticklabel_format( style="sci", ) # ax.xaxis.set_major_formatter(mticker.FuncFormatter(g)) ax.tick_params(axis="x", labelsize=5, rotation=45) if np.absolute(np.amax(ydata)) <= 0.01: # ax.yaxis.set_major_formatter(mticker.FuncFormatter(g)) ax.ticklabel_format( style="sci", ) ax.tick_params(axis="y", labelsize=5, rotation=45) def calculate_ticks( self, nticks, ax=None, upperbound=None, lowerbound=None, round_to=5, center=False, ): """ Calculate the y-axis ticks marks for the line plots """ if ax is not None: upperbound = round(ax.get_ybound()[1], 5) lowerbound = round(ax.get_ybound()[0], 5) max_value = max(abs(upperbound), abs(lowerbound)) if 0 < max_value < 1: if max_value < 0.1: round_to = 3 else: round_to = 5 elif 5 < max_value < 10: round_to = 2 else: round_to = 0 def round_to_a_base(a_number, base=5): return base * round(a_number / base) if max_value > 5: max_value = round_to_a_base(max_value) if center: values = np.linspace(-max_value, max_value, nticks) values = np.round(values, round_to) else: dy = upperbound - lowerbound # deprecated 8 March 2022 by Monte. if round_to > 2: fit = np.floor(dy / (nticks - 1)) + 1 dy = (nticks - 1) * fit values = np.linspace(lowerbound, lowerbound + dy, nticks) values = np.round(values, round_to) return values def set_tick_labels( self, ax, feature_names, display_feature_names, return_labels=False ): """ Setting the tick labels for the tree interpreter plots. """ if isinstance(display_feature_names, dict): labels = [ display_feature_names.get(feature_name, feature_name) for feature_name in feature_names ] else: labels = display_feature_names if return_labels: labels = [f"{l}" for l in labels] return labels else: labels = [f"{l}" for l in labels] ax.set_yticklabels(labels) def set_axis_label(self, ax, xaxis_label=None, yaxis_label=None, **kwargs): """ Setting the x- and y-axis labels with fancy labels (and optionally physical units) """ fontsize = kwargs.get("fontsize", self.FONT_SIZES["tiny"]) if xaxis_label is not None: xaxis_label_pretty = self.display_feature_names.get( xaxis_label, xaxis_label ) units = self.display_units.get(xaxis_label, "") if units == "": xaxis_label_with_units = f"{xaxis_label_pretty}" else: xaxis_label_with_units = f"{xaxis_label_pretty} ({units})" ax.set_xlabel(xaxis_label_with_units, fontsize=fontsize) if yaxis_label is not None: yaxis_label_pretty = self.display_feature_names.get( yaxis_label, yaxis_label ) units = self.display_units.get(yaxis_label, "") if units == "": yaxis_label_with_units = f"{yaxis_label_pretty}" else: yaxis_label_with_units = f"{yaxis_label_pretty} ({units})" ax.set_ylabel(yaxis_label_with_units, fontsize=fontsize) def set_legend(self, n_panels, fig, ax, major_ax=None, **kwargs): """ Set a single legend on the bottom of a figure for a set of subplots. """ if major_ax is None: major_ax = self.set_major_axis_labels(fig) fontsize = kwargs.get("fontsize", "medium") ncol = kwargs.get("ncol", 3) handles = kwargs.get("handles", None) labels = kwargs.get("labels", None) if handles is None: handles, _ = ax.get_legend_handles_labels() if labels is None: _, labels = ax.get_legend_handles_labels() if n_panels > 3: bbox_to_anchor = (0.5, -0.35) else: bbox_to_anchor = (0.5, -0.5) bbox_to_anchor = kwargs.get("bbox_to_anchor", bbox_to_anchor) # Shrink current axis's height by 10% on the bottom box = major_ax.get_position() major_ax.set_position( [box.x0, box.y0 + box.height * 0.1, box.width, box.height * 0.9] ) # Put a legend below current axis major_ax.legend( handles, labels, loc="lower center", bbox_to_anchor=bbox_to_anchor, fancybox=True, shadow=True, ncol=ncol, fontsize=fontsize, ) def set_minor_ticks(self, ax): """ Adds minor tick marks to the x- and y-axis to a subplot ax to increase readability. """ ax.xaxis.set_minor_locator(AutoMinorLocator(n=3)) ax.yaxis.set_minor_locator(AutoMinorLocator(n=3)) def set_n_ticks(self, ax, option="y", nticks=5): """ Set the max number of ticks per x- and y-axis for a subplot ax """ if option == "y" or option == "both": ax.yaxis.set_major_locator(MaxNLocator(nticks)) if option == "x" or option == "both": ax.xaxis.set_major_locator(MaxNLocator(nticks)) def make_twin_ax(self, ax): """ Create a twin axis on an existing axis with a shared x-axis """ # align the twinx axis twin_ax = ax.twinx() # Turn twin_ax grid off. twin_ax.grid(False) # Set ax's patch invisible ax.patch.set_visible(False) # Set axtwin's patch visible and colorize it in grey twin_ax.patch.set_visible(True) # move ax in front ax.set_zorder(twin_ax.get_zorder() + 1) return twin_ax def despine_plt(self, ax): """ remove all four spines of plot """ ax.spines["right"].set_visible(False) ax.spines["top"].set_visible(False) ax.spines["left"].set_visible(False) ax.spines["bottom"].set_visible(False) def annotate_bars(self, ax, num1, num2, y, width, dh=0.01, barh=0.05, delta=0): """ Annotate barplot with connections between correlated variables. Parameters ---------------- num1: index of left bar to put bracket over num2: index of right bar to put bracket over y: centers of all bars (like plt.barh() input) width: widths of all bars (like plt.barh() input) dh: height offset over bar / bar + yerr in axes coordinates (0 to 1) barh: bar height in axes coordinates (0 to 1) delta : shifting of the annotation when multiple annotations would overlap """ lx, ly = y[num1], width[num1] rx, ry = y[num2], width[num2] ax_y0, ax_y1 = plt.gca().get_xlim() dh *= (ax_y1 - ax_y0) barh *= (ax_y1 - ax_y0) y = max(ly, ry) + dh barx = [lx, lx, rx, rx] bary = [y, y+barh, y+barh, y] mid = ((lx+rx)/2, y+barh) ax.plot(np.array(bary)+delta, barx, alpha=0.8, clip_on=False) ''' Deprecated 14 March 2022. def annotate_bars(self, ax, bottom_idx, top_idx, x=0, **kwargs): """ Adds a square bracket that contains two points. Used to connect predictors in the predictor ranking plot for highly correlated pairs. """ color = kwargs.get("color", "xkcd:slate gray") ax.annotate( "", xy=(x, bottom_idx), xytext=(x, top_idx), arrowprops=dict( arrowstyle="<->,head_length=0.05,head_width=0.05", ec=color, connectionstyle="bar,fraction=0.2", shrinkA=0.5, shrinkB=0.5, linewidth=0.5, ), ) ''' def get_custom_colormap(self, vals, **kwargs): """Get a custom colormap""" cmap = kwargs.get("cmap", matplotlib.cm.PuOr) bounds = np.linspace(np.nanpercentile(vals, 0), np.nanpercentile(vals, 100), 10) norm = matplotlib.colors.BoundaryNorm( bounds, cmap.N, ) mappable = matplotlib.cm.ScalarMappable( norm=norm, cmap=cmap, ) return mappable, bounds def add_ice_colorbar(self, fig, ax, mappable, cb_label, cdata, fontsize, **kwargs): """Add a colorbar to the right of a panel to accompany ICE color-coded plots""" cb = plt.colorbar(mappable, ax=ax, pad=0.2) cb.set_label(cb_label, size=fontsize) cb.ax.tick_params(labelsize=fontsize) cb.set_alpha(1) cb.outline.set_visible(False) bbox = cb.ax.get_window_extent().transformed(fig.dpi_scale_trans.inverted()) cb.ax.set_aspect((bbox.height - 0.7) * 20) self._to_sci_notation(ax=None, colorbar=cb, ydata=cdata) def add_colorbar( self, fig, plot_obj, colorbar_label, ticks=MaxNLocator(5), ax=None, cax=None, **kwargs, ): """Adds a colorbar to the right of a panel""" # Add a colobar orientation = kwargs.get("orientation", "vertical") pad = kwargs.get("pad", 0.1) shrink = kwargs.get("shrink", 1.1) extend = kwargs.get("extend", "neither") if cax: cbar = plt.colorbar( plot_obj, cax=cax, pad=pad, ticks=ticks, shrink=shrink, orientation=orientation, extend=extend, ) else: cbar = plt.colorbar( plot_obj, ax=ax, pad=pad, ticks=ticks, shrink=shrink, orientation=orientation, extend=extend, ) cbar.ax.tick_params(labelsize=self.FONT_SIZES["tiny"]) cbar.set_label(colorbar_label, size=self.FONT_SIZES["small"]) cbar.outline.set_visible(False) # bbox = cbar.ax.get_window_extent().transformed(fig.dpi_scale_trans.inverted()) # cbar.ax.set_aspect((bbox.height - 0.7) * 20) def save_figure(self, fname, fig=None, bbox_inches="tight", dpi=300, aformat="png"): """Saves the current figure""" plt.savefig(fname=fname, bbox_inches=bbox_inches, dpi=dpi, format=aformat)
scikit-explain
/scikit-explain-0.1.3.tar.gz/scikit-explain-0.1.3/skexplain/plot/base_plotting.py
base_plotting.py
import numpy as np import matplotlib.pyplot as plt from matplotlib.ticker import MaxNLocator, FormatStrFormatter, AutoMinorLocator import matplotlib.ticker as mticker from matplotlib import rcParams from matplotlib.colors import ListedColormap from matplotlib.gridspec import GridSpec import matplotlib import seaborn as sns from ..common.utils import is_outlier from ..common.contrib_utils import combine_like_features import shap class PlotStructure: """ Plot handles figure and subplot generation """ def __init__(self, BASE_FONT_SIZE=12, seaborn_kws=None): GENERIC_FONT_SIZE_NAMES = [ "teensie", "tiny", "small", "normal", "big", "large", "huge", ] FONT_SIZES_ARRAY = np.arange(-6, 8, 2) + BASE_FONT_SIZE self.FONT_SIZES = { name: size for name, size in zip(GENERIC_FONT_SIZE_NAMES, FONT_SIZES_ARRAY) } if seaborn_kws is None: custom_params = {"axes.spines.right": False, "axes.spines.top": False} sns.set_theme(style="ticks", rc=custom_params) else: if seaborn_kws is not None and isinstance(seaborn_kws, dict): sns.set_theme(**seaborn_kws) # Setting the font style to serif rcParams["font.family"] = "serif" plt.rc("font", size=self.FONT_SIZES["normal"]) # controls default text sizes plt.rc("axes", titlesize=self.FONT_SIZES["tiny"]) # fontsize of the axes title plt.rc( "axes", labelsize=self.FONT_SIZES["normal"] ) # fontsize of the x and y labels plt.rc( "xtick", labelsize=self.FONT_SIZES["teensie"] ) # fontsize of the x-axis tick marks plt.rc( "ytick", labelsize=self.FONT_SIZES["teensie"] ) # fontsize of the y-axis tick marks plt.rc("legend", fontsize=self.FONT_SIZES["teensie"]) # legend fontsize plt.rc( "figure", titlesize=self.FONT_SIZES["big"] ) # fontsize of the figure title def get_fig_props(self, n_panels, **kwargs): """Determine appropriate figure properties""" width_slope = 0.875 height_slope = 0.45 intercept = 3.0 - width_slope figsize = ( min((n_panels * width_slope) + intercept, 19), min((n_panels * height_slope) + intercept, 12), ) wspace = (-0.03 * n_panels) + 0.85 hspace = (0.0175 * n_panels) + 0.3 n_columns = kwargs.get("n_columns", 3) wspace = wspace + 0.25 if n_columns > 3 else wspace kwargs["figsize"] = kwargs.get("figsize", figsize) kwargs["wspace"] = kwargs.get("wspace", wspace) kwargs["hspace"] = kwargs.get("hspace", hspace) return kwargs def create_subplots(self, n_panels, **kwargs): """ Create a series of subplots (MxN) based on the number of panels and number of columns (optionally). Args: ----------------------- n_panels : int Number of subplots to create Optional keyword args: n_columns : int The number of columns for a plot (default=3 for n_panels >=3) figsize: 2-tuple of figure size (width, height in inches) wspace : float the amount of width reserved for space between subplots, expressed as a fraction of the average axis width hspace : float sharex : boolean sharey : boolean """ # figsize = width, height in inches figsize = kwargs.get("figsize", (6.4, 4.8)) wspace = kwargs.get("wspace", 0.4) hspace = kwargs.get("hspace", 0.3) sharex = kwargs.get("sharex", False) sharey = kwargs.get("sharey", False) delete = True if n_panels <= 3: n_columns = kwargs.get("n_columns", n_panels) delete = True if n_panels != n_columns else False else: n_columns = kwargs.get("n_columns", 3) n_rows = int(n_panels / n_columns) extra_row = 0 if (n_panels % n_columns) == 0 else 1 fig, axes = plt.subplots( n_rows + extra_row, n_columns, sharex=sharex, sharey=sharey, figsize=figsize, dpi=300, ) fig.patch.set_facecolor("white") plt.subplots_adjust(wspace=wspace, hspace=hspace) if delete: n_axes_to_delete = len(axes.flat) - n_panels if n_axes_to_delete > 0: for i in range(n_axes_to_delete): fig.delaxes(axes.flat[-(i + 1)]) return fig, axes def _create_joint_subplots(self, n_panels, **kwargs): """ Create grid for multipanel drawing a bivariate plots with marginal univariate plots on the top and right hand side. """ figsize = kwargs.get("figsize", (6.4, 4.8)) ratio = kwargs.get("ratio", 5) n_columns = kwargs.get("n_columns", 3) fig = plt.figure(figsize=figsize, dpi=300) fig.patch.set_facecolor("white") extra_row = 0 if (n_panels % n_columns) == 0 else 1 nrows = ratio * (int(n_panels / n_columns) + extra_row) ncols = ratio * n_columns gs = GridSpec(ncols=ncols, nrows=nrows) main_ax_len = ratio - 1 main_axes = [] top_axes = [] rhs_axes = [] col_offset_idx = list(range(n_columns)) * int(nrows / ratio) row_offset = 0 for i in range(n_panels): col_offset = ratio * col_offset_idx[i] row_idx = 1 if i % n_columns == 0 and i > 0: row_offset += ratio main_ax = fig.add_subplot( gs[ row_idx + row_offset : main_ax_len + row_offset, col_offset : main_ax_len + col_offset - 1, ], frameon=False, ) top_ax = fig.add_subplot( gs[row_idx + row_offset - 1, col_offset : main_ax_len + col_offset - 1], frameon=False, sharex=main_ax, ) rhs_ax = fig.add_subplot( gs[ row_idx + row_offset : main_ax_len + row_offset, main_ax_len + col_offset - 1, ], frameon=False, sharey=main_ax, ) ax_marg = [top_ax, rhs_ax] for ax in ax_marg: # Turn off tick visibility for the measure axis on the marginal plots plt.setp(ax.get_xticklabels(), visible=False) plt.setp(ax.get_yticklabels(), visible=False) # Turn off the ticks on the density axis for the marginal plots plt.setp(ax.yaxis.get_majorticklines(), visible=False) plt.setp(ax.xaxis.get_majorticklines(), visible=False) plt.setp(ax.yaxis.get_minorticklines(), visible=False) plt.setp(ax.xaxis.get_minorticklines(), visible=False) ax.yaxis.grid(False) ax.xaxis.grid(False) for axis in [ax.xaxis, ax.yaxis]: axis.label.set_visible(False) main_axes.append(main_ax) top_axes.append(top_ax) rhs_axes.append(rhs_ax) n_rows = int(nrows / ratio) return fig, main_axes, top_axes, rhs_axes, n_rows def axes_to_iterator(self, n_panels, axes): """Turns axes list into iterable""" if isinstance(axes, list): return axes else: ax_iterator = [axes] if n_panels == 1 else axes.flat return ax_iterator def set_major_axis_labels( self, fig, xlabel=None, ylabel_left=None, ylabel_right=None, title=None, **kwargs, ): """ Generate a single X- and Y-axis labels for a series of subplot panels. E.g., """ fontsize = kwargs.get("fontsize", self.FONT_SIZES["normal"]) labelpad = kwargs.get("labelpad", 15) ylabel_right_color = kwargs.get("ylabel_right_color", "k") # add a big axis, hide frame ax = fig.add_subplot(111, frameon=False) # hide tick and tick label of the big axis plt.tick_params( labelcolor="none", top=False, bottom=False, left=False, right=False ) # set axes labels ax.set_xlabel(xlabel, fontsize=fontsize, labelpad=labelpad) ax.set_ylabel(ylabel_left, fontsize=fontsize, labelpad=labelpad) if ylabel_right is not None: ax_right = fig.add_subplot(1, 1, 1, sharex=ax, frameon=False) plt.tick_params( labelcolor="none", top=False, bottom=False, left=False, right=False ) ax_right.yaxis.set_label_position("right") ax_right.set_ylabel( ylabel_right, labelpad=2 * labelpad, fontsize=fontsize, color=ylabel_right_color, ) ax_right.grid(False) ax.set_title(title) ax.grid(False) return ax def set_row_labels(self, labels, axes, pos=-1, pad=1.15, rotation=270, **kwargs): """ Give a label to each row in a series of subplots """ colors = kwargs.get("colors", ["xkcd:darkish blue"] * len(labels)) fontsize = kwargs.get("fontsize", self.FONT_SIZES["small"]) if np.ndim(axes) == 2: iterator = axes[:, pos] else: iterator = [axes[pos]] for ax, row, color in zip(iterator, labels, colors): ax.yaxis.set_label_position("right") ax.annotate( row, xy=(1, 1), xytext=(pad, 0.5), xycoords=ax.transAxes, rotation=rotation, size=fontsize, ha="center", va="center", color=color, alpha=0.65, ) def add_alphabet_label(self, n_panels, axes, pos=(0.9, 0.09), alphabet_fontsize=10, **kwargs): """ A alphabet character to each subpanel. """ alphabet_list = [chr(x) for x in range(ord("a"), ord("z") + 1)] + [ f"{chr(x)}{chr(x)}" for x in range(ord("a"), ord("z") + 1) ] ax_iterator = self.axes_to_iterator(n_panels, axes) for i, ax in enumerate(ax_iterator): ax.text( pos[0], pos[1], f"({alphabet_list[i]})", fontsize=alphabet_fontsize, alpha=0.8, ha="center", va="center", transform=ax.transAxes, ) def _to_sci_notation(self, ydata, ax=None, xdata=None, colorbar=False): """ Convert decimals (less 0.01) to 10^e notation """ # f = mticker.ScalarFormatter(useOffset=False, useMathText=True) # g = lambda x, pos: "${}$".format(f._formatSciNotation("%1.10e" % x)) if colorbar and np.absolute(np.amax(ydata)) <= 0.01: # colorbar.ax.yaxis.set_major_formatter(mticker.FuncFormatter(g)) colorbar.ax.ticklabel_format( style="sci", ) colorbar.ax.tick_params(axis="y", labelsize=5) elif ax: if np.absolute(np.amax(xdata)) <= 0.01: ax.ticklabel_format( style="sci", ) # ax.xaxis.set_major_formatter(mticker.FuncFormatter(g)) ax.tick_params(axis="x", labelsize=5, rotation=45) if np.absolute(np.amax(ydata)) <= 0.01: # ax.yaxis.set_major_formatter(mticker.FuncFormatter(g)) ax.ticklabel_format( style="sci", ) ax.tick_params(axis="y", labelsize=5, rotation=45) def calculate_ticks( self, nticks, ax=None, upperbound=None, lowerbound=None, round_to=5, center=False, ): """ Calculate the y-axis ticks marks for the line plots """ if ax is not None: upperbound = round(ax.get_ybound()[1], 5) lowerbound = round(ax.get_ybound()[0], 5) max_value = max(abs(upperbound), abs(lowerbound)) if 0 < max_value < 1: if max_value < 0.1: round_to = 3 else: round_to = 5 elif 5 < max_value < 10: round_to = 2 else: round_to = 0 def round_to_a_base(a_number, base=5): return base * round(a_number / base) if max_value > 5: max_value = round_to_a_base(max_value) if center: values = np.linspace(-max_value, max_value, nticks) values = np.round(values, round_to) else: dy = upperbound - lowerbound # deprecated 8 March 2022 by Monte. if round_to > 2: fit = np.floor(dy / (nticks - 1)) + 1 dy = (nticks - 1) * fit values = np.linspace(lowerbound, lowerbound + dy, nticks) values = np.round(values, round_to) return values def set_tick_labels( self, ax, feature_names, display_feature_names, return_labels=False ): """ Setting the tick labels for the tree interpreter plots. """ if isinstance(display_feature_names, dict): labels = [ display_feature_names.get(feature_name, feature_name) for feature_name in feature_names ] else: labels = display_feature_names if return_labels: labels = [f"{l}" for l in labels] return labels else: labels = [f"{l}" for l in labels] ax.set_yticklabels(labels) def set_axis_label(self, ax, xaxis_label=None, yaxis_label=None, **kwargs): """ Setting the x- and y-axis labels with fancy labels (and optionally physical units) """ fontsize = kwargs.get("fontsize", self.FONT_SIZES["tiny"]) if xaxis_label is not None: xaxis_label_pretty = self.display_feature_names.get( xaxis_label, xaxis_label ) units = self.display_units.get(xaxis_label, "") if units == "": xaxis_label_with_units = f"{xaxis_label_pretty}" else: xaxis_label_with_units = f"{xaxis_label_pretty} ({units})" ax.set_xlabel(xaxis_label_with_units, fontsize=fontsize) if yaxis_label is not None: yaxis_label_pretty = self.display_feature_names.get( yaxis_label, yaxis_label ) units = self.display_units.get(yaxis_label, "") if units == "": yaxis_label_with_units = f"{yaxis_label_pretty}" else: yaxis_label_with_units = f"{yaxis_label_pretty} ({units})" ax.set_ylabel(yaxis_label_with_units, fontsize=fontsize) def set_legend(self, n_panels, fig, ax, major_ax=None, **kwargs): """ Set a single legend on the bottom of a figure for a set of subplots. """ if major_ax is None: major_ax = self.set_major_axis_labels(fig) fontsize = kwargs.get("fontsize", "medium") ncol = kwargs.get("ncol", 3) handles = kwargs.get("handles", None) labels = kwargs.get("labels", None) if handles is None: handles, _ = ax.get_legend_handles_labels() if labels is None: _, labels = ax.get_legend_handles_labels() if n_panels > 3: bbox_to_anchor = (0.5, -0.35) else: bbox_to_anchor = (0.5, -0.5) bbox_to_anchor = kwargs.get("bbox_to_anchor", bbox_to_anchor) # Shrink current axis's height by 10% on the bottom box = major_ax.get_position() major_ax.set_position( [box.x0, box.y0 + box.height * 0.1, box.width, box.height * 0.9] ) # Put a legend below current axis major_ax.legend( handles, labels, loc="lower center", bbox_to_anchor=bbox_to_anchor, fancybox=True, shadow=True, ncol=ncol, fontsize=fontsize, ) def set_minor_ticks(self, ax): """ Adds minor tick marks to the x- and y-axis to a subplot ax to increase readability. """ ax.xaxis.set_minor_locator(AutoMinorLocator(n=3)) ax.yaxis.set_minor_locator(AutoMinorLocator(n=3)) def set_n_ticks(self, ax, option="y", nticks=5): """ Set the max number of ticks per x- and y-axis for a subplot ax """ if option == "y" or option == "both": ax.yaxis.set_major_locator(MaxNLocator(nticks)) if option == "x" or option == "both": ax.xaxis.set_major_locator(MaxNLocator(nticks)) def make_twin_ax(self, ax): """ Create a twin axis on an existing axis with a shared x-axis """ # align the twinx axis twin_ax = ax.twinx() # Turn twin_ax grid off. twin_ax.grid(False) # Set ax's patch invisible ax.patch.set_visible(False) # Set axtwin's patch visible and colorize it in grey twin_ax.patch.set_visible(True) # move ax in front ax.set_zorder(twin_ax.get_zorder() + 1) return twin_ax def despine_plt(self, ax): """ remove all four spines of plot """ ax.spines["right"].set_visible(False) ax.spines["top"].set_visible(False) ax.spines["left"].set_visible(False) ax.spines["bottom"].set_visible(False) def annotate_bars(self, ax, num1, num2, y, width, dh=0.01, barh=0.05, delta=0): """ Annotate barplot with connections between correlated variables. Parameters ---------------- num1: index of left bar to put bracket over num2: index of right bar to put bracket over y: centers of all bars (like plt.barh() input) width: widths of all bars (like plt.barh() input) dh: height offset over bar / bar + yerr in axes coordinates (0 to 1) barh: bar height in axes coordinates (0 to 1) delta : shifting of the annotation when multiple annotations would overlap """ lx, ly = y[num1], width[num1] rx, ry = y[num2], width[num2] ax_y0, ax_y1 = plt.gca().get_xlim() dh *= (ax_y1 - ax_y0) barh *= (ax_y1 - ax_y0) y = max(ly, ry) + dh barx = [lx, lx, rx, rx] bary = [y, y+barh, y+barh, y] mid = ((lx+rx)/2, y+barh) ax.plot(np.array(bary)+delta, barx, alpha=0.8, clip_on=False) ''' Deprecated 14 March 2022. def annotate_bars(self, ax, bottom_idx, top_idx, x=0, **kwargs): """ Adds a square bracket that contains two points. Used to connect predictors in the predictor ranking plot for highly correlated pairs. """ color = kwargs.get("color", "xkcd:slate gray") ax.annotate( "", xy=(x, bottom_idx), xytext=(x, top_idx), arrowprops=dict( arrowstyle="<->,head_length=0.05,head_width=0.05", ec=color, connectionstyle="bar,fraction=0.2", shrinkA=0.5, shrinkB=0.5, linewidth=0.5, ), ) ''' def get_custom_colormap(self, vals, **kwargs): """Get a custom colormap""" cmap = kwargs.get("cmap", matplotlib.cm.PuOr) bounds = np.linspace(np.nanpercentile(vals, 0), np.nanpercentile(vals, 100), 10) norm = matplotlib.colors.BoundaryNorm( bounds, cmap.N, ) mappable = matplotlib.cm.ScalarMappable( norm=norm, cmap=cmap, ) return mappable, bounds def add_ice_colorbar(self, fig, ax, mappable, cb_label, cdata, fontsize, **kwargs): """Add a colorbar to the right of a panel to accompany ICE color-coded plots""" cb = plt.colorbar(mappable, ax=ax, pad=0.2) cb.set_label(cb_label, size=fontsize) cb.ax.tick_params(labelsize=fontsize) cb.set_alpha(1) cb.outline.set_visible(False) bbox = cb.ax.get_window_extent().transformed(fig.dpi_scale_trans.inverted()) cb.ax.set_aspect((bbox.height - 0.7) * 20) self._to_sci_notation(ax=None, colorbar=cb, ydata=cdata) def add_colorbar( self, fig, plot_obj, colorbar_label, ticks=MaxNLocator(5), ax=None, cax=None, **kwargs, ): """Adds a colorbar to the right of a panel""" # Add a colobar orientation = kwargs.get("orientation", "vertical") pad = kwargs.get("pad", 0.1) shrink = kwargs.get("shrink", 1.1) extend = kwargs.get("extend", "neither") if cax: cbar = plt.colorbar( plot_obj, cax=cax, pad=pad, ticks=ticks, shrink=shrink, orientation=orientation, extend=extend, ) else: cbar = plt.colorbar( plot_obj, ax=ax, pad=pad, ticks=ticks, shrink=shrink, orientation=orientation, extend=extend, ) cbar.ax.tick_params(labelsize=self.FONT_SIZES["tiny"]) cbar.set_label(colorbar_label, size=self.FONT_SIZES["small"]) cbar.outline.set_visible(False) # bbox = cbar.ax.get_window_extent().transformed(fig.dpi_scale_trans.inverted()) # cbar.ax.set_aspect((bbox.height - 0.7) * 20) def save_figure(self, fname, fig=None, bbox_inches="tight", dpi=300, aformat="png"): """Saves the current figure""" plt.savefig(fname=fname, bbox_inches=bbox_inches, dpi=dpi, format=aformat)
0.727395
0.518973
import matplotlib.pyplot as plt import seaborn as sns from matplotlib.colors import ListedColormap from scipy.stats import gaussian_kde from scipy.ndimage import gaussian_filter import scipy import itertools import numpy as np import matplotlib as mpl from scipy.ndimage import gaussian_filter from .base_plotting import PlotStructure gray4 = (189 / 255.0, 189 / 255.0, 189 / 255.0) gray5 = (150 / 255.0, 150 / 255.0, 150 / 255.0) blue2 = (222 / 255.0, 235 / 255.0, 247 / 255.0) blue5 = (107 / 255.0, 174 / 255.0, 214 / 255.0) orange3 = (253 / 255.0, 208 / 255.0, 162 / 255.0) orange5 = (253 / 255.0, 141 / 255.0, 60 / 255.0) red5 = (251 / 255.0, 106 / 255.0, 74 / 255.0) red6 = (239 / 255.0, 59 / 255.0, 44 / 255.0) purple5 = (158 / 255.0, 154 / 255.0, 200 / 255.0) purple6 = (128 / 255.0, 125 / 255.0, 186 / 255.0) purple9 = (63 / 255.0, 0 / 255.0, 125 / 255.0) custom_cmap = ListedColormap( [ gray4, gray5, blue2, blue5, orange3, orange5, red5, red6, purple5, purple6, purple9, ] ) class PlotScatter(PlotStructure): """ PlotScatter handles plotting 2D scatter between a set of features. It will also optionally overlay KDE contours of the target variable, which is a first-order method for evaluating possible feature interactions and whether the learned relationships are consistent with the data. """ oranges = ListedColormap( ["xkcd:peach", "xkcd:orange", "xkcd:bright orange", "xkcd:rust brown"] ) blues = ListedColormap( ["xkcd:periwinkle blue", "xkcd:clear blue", "xkcd:navy blue"] ) def __init__(self, BASE_FONT_SIZE=12): super().__init__(BASE_FONT_SIZE=BASE_FONT_SIZE) def plot_scatter( self, estimators, X, y, features, display_feature_names={}, display_units={}, subsample=1.0, peak_val=None, kde=False, **kwargs, ): """ Plot KDE between two features and color-code by the target variable """ # TODO: Plot relationships for multiple features!! estimator_names = list(estimators.keys()) n_panels = len(estimator_names) only_one_model = len(estimator_names) == 1 predictions = np.zeros((n_panels, len(y)), dtype=np.float16) j = 0 for estimator_name, estimator in estimators.items(): if hasattr(estimator, "predict_proba"): predictions[j, :] = estimator.predict_proba(X)[:, 1] else: predictions[j, :] = estimator.predict(X) j += 1 kwargs = self.get_fig_props(n_panels, **kwargs) # create subplots, one for each feature fig, axes = self.create_subplots( n_panels=n_panels, sharex=False, sharey=False, **kwargs, ) ax_iterator = self.axes_to_iterator(n_panels, axes) vmax = np.max(predictions) for i, ax in enumerate(ax_iterator): cf = self.scatter_( ax=ax, X=X, features=features, predictions=predictions[i, :], vmax=vmax, **kwargs, ) if subsample < 1.0: size = min(int(subsample * len(y)), len(y)) idxs = np.random.choice(len(y), size=size, replace=False) var1 = X[features[0]].values[idxs] var2 = X[features[1]].values[idxs] y1 = y.values[idxs] else: var1 = X[features[0]].values var2 = X[features[1]].values y1 = np.copy(y) # Shuffle values index = np.arange(len(var1)) np.random.shuffle(index) var1 = var1[index] var2 = var2[index] y1 = y1[index] ax.set_xlabel(display_feature_names.get(features[0], features[0])) ax.set_ylabel(display_feature_names.get(features[1], features[1])) ax.grid(color="#2A3459", alpha=0.6, linestyle="dashed", linewidth=0.5) # bluish dark grey, but slightly lighter than background if kde: cmap_set = [ self.oranges, self.blues, "Reds", "jet", ] classes = np.unique(y1) idx_sets = [np.where(y1 == c) for c in classes] for idxs, cmap in zip(idx_sets, cmap_set): # Plot positive cases cs = self.plot_kde_contours( ax, dy=var2[idxs], dx=var1[idxs], target=y1[idxs], cmap=cmap, ) handles_set = [cs.legend_elements()[-1]] labels = classes legend = ax.legend(handles_set, labels, framealpha=0.5) # Hide the right and top spines ax.spines["right"].set_visible(False) ax.spines["top"].set_visible(False) if not only_one_model: ax.set_title(estimator_names[i]) if n_panels == 1: ax_ = axes else: ax_ = axes.ravel().tolist() if hasattr(estimator, "predict_proba"): cbar_label = "Probability" else: cbar_label = "Response" cbar_label = kwargs.get("cbar_label", cbar_label) fig.colorbar(cf, ax=ax_, label=cbar_label, orientation="horizontal") return fig, axes def scatter_(self, ax, features, X, predictions, vmax, **kwargs): """ Plot 2D scatter of ML predictions; Only plots a random 20000 points """ size = min(20000, len(X)) idxs = np.random.choice(len(X), size=size, replace=False) x_val = X[features[0]].values[idxs] y_val = X[features[1]].values[idxs] z_val = predictions[idxs] # Show highest predictions on top! index = np.argsort(z_val) # index = np.random.choice(len(z_val), size=len(z_val), replace=False) x_val = x_val[index] y_val = y_val[index] z_val = z_val[index] cmap = kwargs.get("cmap", custom_cmap) zmax = vmax + 0.05 if vmax < 1.0 else 1.1 delta = 0.05 if vmax < 0.5 else 0.1 levels = [0, 0.05] + list(np.arange(0.1, zmax, delta)) norm = mpl.colors.BoundaryNorm(levels, cmap.N) sca = ax.scatter( x_val, y_val, c=z_val, cmap=cmap, alpha=0.6, s=3, norm=norm, ) return sca def kernal_density_estimate(self, dy, dx): dy_min = np.amin(dy) dx_min = np.amin(dx) dy_max = np.amax(dy) dx_max = np.amax(dx) x, y = np.mgrid[dx_min:dx_max:100j, dy_min:dy_max:100j] positions = np.vstack([x.ravel(), y.ravel()]) values = np.vstack([dx, dy]) kernel = gaussian_kde(values) f = np.reshape(kernel(positions).T, x.shape) return x, y, f def plot_kde_contours( self, ax, dy, dx, target, cmap, ): x, y, f = self.kernal_density_estimate(dy, dx) temp_linewidths = [0.85, 1.0, 1.25, 1.75] temp_thresh = [75.0, 90.0, 95.0, 97.5] temp_levels = [0.0, 0.0, 0.0, 0.0] for i in range(0, len(temp_thresh)): temp_levels[i] = np.percentile(f.ravel(), temp_thresh[i]) # masked_f = np.ma.masked_where(f < 1.6e-5, f) cs = ax.contour( x, y, f, levels=temp_levels, cmap=cmap, linewidths=temp_linewidths, alpha=1.0, ) fmt = {} for l, s in zip(cs.levels, temp_thresh[::-1]): fmt[l] = f"{int(s)}%" ax.clabel( cs, cs.levels, inline=True, fontsize=self.FONT_SIZES["teensie"], fmt=fmt ) return cs
scikit-explain
/scikit-explain-0.1.3.tar.gz/scikit-explain-0.1.3/skexplain/plot/_kde_2d.py
_kde_2d.py
import matplotlib.pyplot as plt import seaborn as sns from matplotlib.colors import ListedColormap from scipy.stats import gaussian_kde from scipy.ndimage import gaussian_filter import scipy import itertools import numpy as np import matplotlib as mpl from scipy.ndimage import gaussian_filter from .base_plotting import PlotStructure gray4 = (189 / 255.0, 189 / 255.0, 189 / 255.0) gray5 = (150 / 255.0, 150 / 255.0, 150 / 255.0) blue2 = (222 / 255.0, 235 / 255.0, 247 / 255.0) blue5 = (107 / 255.0, 174 / 255.0, 214 / 255.0) orange3 = (253 / 255.0, 208 / 255.0, 162 / 255.0) orange5 = (253 / 255.0, 141 / 255.0, 60 / 255.0) red5 = (251 / 255.0, 106 / 255.0, 74 / 255.0) red6 = (239 / 255.0, 59 / 255.0, 44 / 255.0) purple5 = (158 / 255.0, 154 / 255.0, 200 / 255.0) purple6 = (128 / 255.0, 125 / 255.0, 186 / 255.0) purple9 = (63 / 255.0, 0 / 255.0, 125 / 255.0) custom_cmap = ListedColormap( [ gray4, gray5, blue2, blue5, orange3, orange5, red5, red6, purple5, purple6, purple9, ] ) class PlotScatter(PlotStructure): """ PlotScatter handles plotting 2D scatter between a set of features. It will also optionally overlay KDE contours of the target variable, which is a first-order method for evaluating possible feature interactions and whether the learned relationships are consistent with the data. """ oranges = ListedColormap( ["xkcd:peach", "xkcd:orange", "xkcd:bright orange", "xkcd:rust brown"] ) blues = ListedColormap( ["xkcd:periwinkle blue", "xkcd:clear blue", "xkcd:navy blue"] ) def __init__(self, BASE_FONT_SIZE=12): super().__init__(BASE_FONT_SIZE=BASE_FONT_SIZE) def plot_scatter( self, estimators, X, y, features, display_feature_names={}, display_units={}, subsample=1.0, peak_val=None, kde=False, **kwargs, ): """ Plot KDE between two features and color-code by the target variable """ # TODO: Plot relationships for multiple features!! estimator_names = list(estimators.keys()) n_panels = len(estimator_names) only_one_model = len(estimator_names) == 1 predictions = np.zeros((n_panels, len(y)), dtype=np.float16) j = 0 for estimator_name, estimator in estimators.items(): if hasattr(estimator, "predict_proba"): predictions[j, :] = estimator.predict_proba(X)[:, 1] else: predictions[j, :] = estimator.predict(X) j += 1 kwargs = self.get_fig_props(n_panels, **kwargs) # create subplots, one for each feature fig, axes = self.create_subplots( n_panels=n_panels, sharex=False, sharey=False, **kwargs, ) ax_iterator = self.axes_to_iterator(n_panels, axes) vmax = np.max(predictions) for i, ax in enumerate(ax_iterator): cf = self.scatter_( ax=ax, X=X, features=features, predictions=predictions[i, :], vmax=vmax, **kwargs, ) if subsample < 1.0: size = min(int(subsample * len(y)), len(y)) idxs = np.random.choice(len(y), size=size, replace=False) var1 = X[features[0]].values[idxs] var2 = X[features[1]].values[idxs] y1 = y.values[idxs] else: var1 = X[features[0]].values var2 = X[features[1]].values y1 = np.copy(y) # Shuffle values index = np.arange(len(var1)) np.random.shuffle(index) var1 = var1[index] var2 = var2[index] y1 = y1[index] ax.set_xlabel(display_feature_names.get(features[0], features[0])) ax.set_ylabel(display_feature_names.get(features[1], features[1])) ax.grid(color="#2A3459", alpha=0.6, linestyle="dashed", linewidth=0.5) # bluish dark grey, but slightly lighter than background if kde: cmap_set = [ self.oranges, self.blues, "Reds", "jet", ] classes = np.unique(y1) idx_sets = [np.where(y1 == c) for c in classes] for idxs, cmap in zip(idx_sets, cmap_set): # Plot positive cases cs = self.plot_kde_contours( ax, dy=var2[idxs], dx=var1[idxs], target=y1[idxs], cmap=cmap, ) handles_set = [cs.legend_elements()[-1]] labels = classes legend = ax.legend(handles_set, labels, framealpha=0.5) # Hide the right and top spines ax.spines["right"].set_visible(False) ax.spines["top"].set_visible(False) if not only_one_model: ax.set_title(estimator_names[i]) if n_panels == 1: ax_ = axes else: ax_ = axes.ravel().tolist() if hasattr(estimator, "predict_proba"): cbar_label = "Probability" else: cbar_label = "Response" cbar_label = kwargs.get("cbar_label", cbar_label) fig.colorbar(cf, ax=ax_, label=cbar_label, orientation="horizontal") return fig, axes def scatter_(self, ax, features, X, predictions, vmax, **kwargs): """ Plot 2D scatter of ML predictions; Only plots a random 20000 points """ size = min(20000, len(X)) idxs = np.random.choice(len(X), size=size, replace=False) x_val = X[features[0]].values[idxs] y_val = X[features[1]].values[idxs] z_val = predictions[idxs] # Show highest predictions on top! index = np.argsort(z_val) # index = np.random.choice(len(z_val), size=len(z_val), replace=False) x_val = x_val[index] y_val = y_val[index] z_val = z_val[index] cmap = kwargs.get("cmap", custom_cmap) zmax = vmax + 0.05 if vmax < 1.0 else 1.1 delta = 0.05 if vmax < 0.5 else 0.1 levels = [0, 0.05] + list(np.arange(0.1, zmax, delta)) norm = mpl.colors.BoundaryNorm(levels, cmap.N) sca = ax.scatter( x_val, y_val, c=z_val, cmap=cmap, alpha=0.6, s=3, norm=norm, ) return sca def kernal_density_estimate(self, dy, dx): dy_min = np.amin(dy) dx_min = np.amin(dx) dy_max = np.amax(dy) dx_max = np.amax(dx) x, y = np.mgrid[dx_min:dx_max:100j, dy_min:dy_max:100j] positions = np.vstack([x.ravel(), y.ravel()]) values = np.vstack([dx, dy]) kernel = gaussian_kde(values) f = np.reshape(kernel(positions).T, x.shape) return x, y, f def plot_kde_contours( self, ax, dy, dx, target, cmap, ): x, y, f = self.kernal_density_estimate(dy, dx) temp_linewidths = [0.85, 1.0, 1.25, 1.75] temp_thresh = [75.0, 90.0, 95.0, 97.5] temp_levels = [0.0, 0.0, 0.0, 0.0] for i in range(0, len(temp_thresh)): temp_levels[i] = np.percentile(f.ravel(), temp_thresh[i]) # masked_f = np.ma.masked_where(f < 1.6e-5, f) cs = ax.contour( x, y, f, levels=temp_levels, cmap=cmap, linewidths=temp_linewidths, alpha=1.0, ) fmt = {} for l, s in zip(cs.levels, temp_thresh[::-1]): fmt[l] = f"{int(s)}%" ax.clabel( cs, cs.levels, inline=True, fontsize=self.FONT_SIZES["teensie"], fmt=fmt ) return cs
0.665084
0.351589
import numpy as np import collections from ..common.importance_utils import find_correlated_pairs_among_top_features from ..common.utils import is_list, is_correlated from .base_plotting import PlotStructure import random class PlotImportance(PlotStructure): """ PlotImportance handles plotting feature ranking plotting. The class is designed to be generic enough to handle all possible ranking methods computed within Scikit-Explain. """ SINGLE_VAR_METHODS = [ "backward_multipass", "backward_singlepass", "forward_multipass", "forward_singlepass", "ale_variance", "coefs", "shap_sum", "gini", "combined", "sage", "grouped", "grouped_only", "lime", "tree_interpreter", "sobol_total", "sobol_1st", "sobol_interact" ] DISPLAY_NAMES_DICT = { "backward_multipass": "Backward Multi-Pass", "backward_singlepass": "Backward Single-Pass", "forward_multipass": "Forward Multi-Pass", "forward_singlepass": "Forward Single-Pass", "perm_based": "Perm.-based Interact.", "ale_variance": "ALE-Based Import.", "ale_variance_interactions": "ALE-Based Interac.", "coefs": "Coef.", "shap_sum": "SHAP", "hstat": "H-Stat", "gini": "Gini", "combined": "Method-Average Ranking", "sage": "SAGE Importance Scores", "grouped": "Grouped Importance", "grouped_only": "Grouped Only Importance", "sobol_total" : 'Sobol Total', "sobol_1st" : 'Sobol 1st Order', "sobol_interact" : 'Sobol Higher Orders', } def __init__(self, BASE_FONT_SIZE=12, seaborn_kws=None): super().__init__(BASE_FONT_SIZE=BASE_FONT_SIZE, seaborn_kws=seaborn_kws) def is_bootstrapped(self, scores): """Check if the permutation importance results are bootstrapped""" return np.ndim(scores) > 1 def _get_axes(self, n_panels, **kwargs): """ Determine how many axes are required. """ if n_panels == 1: kwargs["figsize"] = kwargs.get("figsize", (3, 2.5)) elif n_panels == 2 or n_panels == 3: kwargs["figsize"] = kwargs.get("figsize", (6, 2.5)) else: figsize = kwargs.get("figsize", (8, 5)) # create subplots, one for each feature fig, axes = self.create_subplots(n_panels=n_panels, **kwargs) return fig, axes def _check_for_estimators(self, data, estimator_names): """Check that each estimator is in data""" for ds in data: if not ( collections.Counter(ds.attrs["estimators used"]) == collections.Counter(estimator_names) ): raise AttributeError( """ The estimator names given do not match the estimators used to create given data """ ) def plot_variable_importance( self, data, panels, display_feature_names={}, feature_colors=None, num_vars_to_plot=10, estimator_output="raw", plot_correlated_features=False, **kwargs, ): """Plots any variable importance method for a particular estimator Parameters ----------------- data : xarray.Dataset or list of xarray.Dataset Permutation importance dataset for one or more metrics panels: list of 2-tuples of estimator names and rank method E.g., panels = [('singlepass', 'Random Forest', ('multipass', 'Random Forest') ] will plot the singlepass and multipass results for the random forest model. Possible methods include 'multipass', 'singlepass', 'perm_based', 'ale_variance', or 'ale_variance_interactions' display_feature_names : dict A dict mapping feature names to readable, "pretty" feature names feature_colors : dict A dict mapping features to various colors. Helpful for color coding groups of features num_vars_to_plot : int Number of top variables to plot (defalut is None and will use number of multipass results) kwargs: - xlabels - ylabel - xticks - p_values - colinear_features - rho_threshold """ xlabels = kwargs.get("xlabels", None) ylabels = kwargs.get("ylabels", None) xticks = kwargs.get("xticks", None) title = kwargs.get("title", "") p_values = kwargs.get("p_values", None) colinear_features = kwargs.get("colinear_features", None) rho_threshold = kwargs.get("rho_threshold", 0.8) plot_reference_score = kwargs.get("plot_reference_score", True) plot_error = kwargs.get('plot_error', True) only_one_method = all([m[0] == panels[0][0] for m in panels]) only_one_estimator = all([m[1] == panels[0][1] for m in panels]) if not only_one_method: kwargs["hspace"] = kwargs.get("hspace", 0.6) if plot_correlated_features: X = kwargs.get("X", None) if X is None or X.empty: raise ValueError( "Must provide X to InterpretToolkit to compute the correlations!" ) corr_matrix = X.corr().abs() data = [data] if not is_list(data) else data n_panels = len(panels) fig, axes = self._get_axes(n_panels, **kwargs) ax_iterator = self.axes_to_iterator(n_panels, axes) for i, (panel, ax) in enumerate(zip(panels, ax_iterator)): # Set the facecolor. #ax.set_facecolor(kwargs.get("facecolor", (0.95, 0.95, 0.95))) method, estimator_name = panel results = data[i] if xlabels is not None: ax.set_xlabel(xlabels[i], fontsize=self.FONT_SIZES["small"]) else: if not only_one_method: ax.set_xlabel( self.DISPLAY_NAMES_DICT.get(method, method), fontsize=self.FONT_SIZES["small"], ) if not only_one_estimator: ax.set_title(estimator_name) sorted_var_names = list( results[f"{method}_rankings__{estimator_name}"].values ) if num_vars_to_plot is None: num_vars_to_plot == len(sorted_var_names) sorted_var_names = sorted_var_names[ : min(num_vars_to_plot, len(sorted_var_names)) ] sorted_var_names = sorted_var_names[::-1] scores = results[f"{method}_scores__{estimator_name}"].values scores = scores[: min(num_vars_to_plot, len(sorted_var_names))] # Reverse the order. scores = scores[::-1] # Set very small values to zero. scores = np.where(np.absolute(np.round(scores, 17)) < 1e-15, 0, scores) # Get the colors for the plot colors_to_plot = [ self.variable_to_color(var, feature_colors) for var in sorted_var_names ] # Get the predictor names variable_names_to_plot = [ f" {var}" for var in self.convert_vars_to_readable( sorted_var_names, display_feature_names, ) ] if method == "combined": scores_to_plot = np.nanpercentile(scores, 50, axis=1) # Compute the confidence intervals (ci) ci = np.abs( np.nanpercentile(scores, 50, axis=1) - np.nanpercentile(scores, [25, 75], axis=1) ) else: scores_to_plot = np.nanmean(scores, axis=1) ci = np.abs( np.nanpercentile(scores, 50, axis=1) - np.nanpercentile(scores, [2.5, 97.5], axis=1) ) if plot_reference_score: if 'forward' in method: ax.axvline(results[f'all_permuted_score__{estimator_name}'].mean(),color='k',ls=':') elif 'backward' in method: ax.axvline(results[f'original_score__{estimator_name}'].mean(),color='k',ls='--') # Despine self.despine_plt(ax) elinewidth = 0.9 if n_panels <= 3 else 0.5 if plot_error: ax.barh( np.arange(len(scores_to_plot)), scores_to_plot, linewidth=1.75, edgecolor="white", alpha=0.5, color=colors_to_plot, xerr=ci, capsize=3.0, ecolor="k", error_kw=dict( alpha=0.2, elinewidth=elinewidth, ), zorder=2, ) else: ax.barh( np.arange(len(scores_to_plot)), scores_to_plot, linewidth=1.75, edgecolor="white", alpha=0.5, color=colors_to_plot, zorder=2, ) if plot_correlated_features: self._add_correlated_brackets( ax, np.arange(len(scores_to_plot)), scores_to_plot, corr_matrix, sorted_var_names, rho_threshold ) if num_vars_to_plot >= 20: size = kwargs.get("fontsize", self.FONT_SIZES["teensie"] - 3) elif num_vars_to_plot > 10: size = kwargs.get("fontsize", self.FONT_SIZES["teensie"] - 2) else: size = kwargs.get("fontsize", self.FONT_SIZES["teensie"] - 1) # Put the variable names _into_ the plot if method not in self.SINGLE_VAR_METHODS and plot_correlated_features: pass # This is code is not flexible at the moment. #results_dict = is_correlated( # corr_matrix, sorted_var_names, rho_threshold=rho_threshold #) if colinear_features is None: fontweight = ["light"] * len(variable_names_to_plot) colors = ["k"] * len(variable_names_to_plot) else: # Bold text if the VIF > threshold (indicates a multicolinear predictor) fontweight = [ "bold" if v in colinear_features else "light" for v in sorted_var_names ] # Bold text if value is insignificant. colors = ["xkcd:medium blue" if v in colinear_features else "k" for v in sorted_var_names] ax.set_yticks(range(len(variable_names_to_plot))) ax.set_yticklabels(variable_names_to_plot) labels = ax.get_yticklabels() # Bold var names ##[label.set_fontweight(opt) for opt, label in zip(fontweight, labels)] [label.set_color(c) for c, label in zip(colors, labels)] ax.tick_params(axis="both", which="both", length=0) if xticks is not None: ax.set_xticks(xticks) else: self.set_n_ticks(ax, option="x") xlabel = ( self.DISPLAY_NAMES_DICT.get(method, method) if (only_one_method and xlabels is None) else "" ) major_ax = self.set_major_axis_labels( fig, xlabel=xlabel, ylabel_left="", ylabel_right="", title=title, fontsize=self.FONT_SIZES["small"], **kwargs, ) if ylabels is not None: self.set_row_labels( labels=ylabels, axes=axes, pos=-1, pad=1.15, rotation=270, **kwargs ) self.add_alphabet_label( n_panels, axes, pos=kwargs.get("alphabet_pos", (0.9, 0.09)), alphabet_fontsize = kwargs.get("alphabet_fontsize", 10) ) # Necessary to make sure that the tick labels for the feature names # do overlap another ax. fig.tight_layout() return fig, axes def _add_correlated_brackets(self, ax, y, width, corr_matrix, top_features, rho_threshold): """ Add bracket connecting features above a given correlation threshold. Parameters ------------------ ax : matplotlib.ax.Axes object y : width : corr_matrix: top_features: rho_threshold: """ get_colors = lambda n: list( map(lambda i: "#" + "%06x" % random.randint(0, 0xFFFFFF), range(n)) ) _, pair_indices = find_correlated_pairs_among_top_features( corr_matrix, top_features, rho_threshold=rho_threshold, ) colors = get_colors(len(pair_indices)) top_indices, bottom_indices = [], [] for p, color in zip(pair_indices, colors): delta=0 if p[0] > p[1]: bottom_idx = p[1] top_idx = p[0] else: bottom_idx = p[0] top_idx = p[1] # If a feature has already shown up in a correlated pair, # then we want to shift the brackets slightly for ease of # interpretation. if bottom_idx in bottom_indices or bottom_idx in top_indices: delta += 0.1 if top_idx in top_indices or top_idx in bottom_indices: delta += 0.1 top_indices.append(top_idx) bottom_indices.append(bottom_idx) self.annotate_bars(ax, bottom_idx, top_idx, y=y, width=width, delta=delta) # You can fill this in by using a dictionary with {var_name: legible_name} def convert_vars_to_readable(self, variables_list, VARIABLE_NAMES_DICT): """Substitutes out variable names for human-readable ones :param variables_list: a list of variable names :returns: a copy of the list with human-readable names """ human_readable_list = list() for var in variables_list: if var in VARIABLE_NAMES_DICT: human_readable_list.append(VARIABLE_NAMES_DICT[var]) else: human_readable_list.append(var) return human_readable_list # This could easily be expanded with a dictionary def variable_to_color(self, var, VARIABLES_COLOR_DICT): """ Returns the color for each variable. """ if var == "No Permutations": return "xkcd:pastel red" else: if VARIABLES_COLOR_DICT is None: return "xkcd:powder blue" elif not isinstance(VARIABLES_COLOR_DICT, dict) and isinstance( VARIABLES_COLOR_DICT, str ): return VARIABLES_COLOR_DICT else: return VARIABLES_COLOR_DICT[var]
scikit-explain
/scikit-explain-0.1.3.tar.gz/scikit-explain-0.1.3/skexplain/plot/plot_permutation_importance.py
plot_permutation_importance.py
import numpy as np import collections from ..common.importance_utils import find_correlated_pairs_among_top_features from ..common.utils import is_list, is_correlated from .base_plotting import PlotStructure import random class PlotImportance(PlotStructure): """ PlotImportance handles plotting feature ranking plotting. The class is designed to be generic enough to handle all possible ranking methods computed within Scikit-Explain. """ SINGLE_VAR_METHODS = [ "backward_multipass", "backward_singlepass", "forward_multipass", "forward_singlepass", "ale_variance", "coefs", "shap_sum", "gini", "combined", "sage", "grouped", "grouped_only", "lime", "tree_interpreter", "sobol_total", "sobol_1st", "sobol_interact" ] DISPLAY_NAMES_DICT = { "backward_multipass": "Backward Multi-Pass", "backward_singlepass": "Backward Single-Pass", "forward_multipass": "Forward Multi-Pass", "forward_singlepass": "Forward Single-Pass", "perm_based": "Perm.-based Interact.", "ale_variance": "ALE-Based Import.", "ale_variance_interactions": "ALE-Based Interac.", "coefs": "Coef.", "shap_sum": "SHAP", "hstat": "H-Stat", "gini": "Gini", "combined": "Method-Average Ranking", "sage": "SAGE Importance Scores", "grouped": "Grouped Importance", "grouped_only": "Grouped Only Importance", "sobol_total" : 'Sobol Total', "sobol_1st" : 'Sobol 1st Order', "sobol_interact" : 'Sobol Higher Orders', } def __init__(self, BASE_FONT_SIZE=12, seaborn_kws=None): super().__init__(BASE_FONT_SIZE=BASE_FONT_SIZE, seaborn_kws=seaborn_kws) def is_bootstrapped(self, scores): """Check if the permutation importance results are bootstrapped""" return np.ndim(scores) > 1 def _get_axes(self, n_panels, **kwargs): """ Determine how many axes are required. """ if n_panels == 1: kwargs["figsize"] = kwargs.get("figsize", (3, 2.5)) elif n_panels == 2 or n_panels == 3: kwargs["figsize"] = kwargs.get("figsize", (6, 2.5)) else: figsize = kwargs.get("figsize", (8, 5)) # create subplots, one for each feature fig, axes = self.create_subplots(n_panels=n_panels, **kwargs) return fig, axes def _check_for_estimators(self, data, estimator_names): """Check that each estimator is in data""" for ds in data: if not ( collections.Counter(ds.attrs["estimators used"]) == collections.Counter(estimator_names) ): raise AttributeError( """ The estimator names given do not match the estimators used to create given data """ ) def plot_variable_importance( self, data, panels, display_feature_names={}, feature_colors=None, num_vars_to_plot=10, estimator_output="raw", plot_correlated_features=False, **kwargs, ): """Plots any variable importance method for a particular estimator Parameters ----------------- data : xarray.Dataset or list of xarray.Dataset Permutation importance dataset for one or more metrics panels: list of 2-tuples of estimator names and rank method E.g., panels = [('singlepass', 'Random Forest', ('multipass', 'Random Forest') ] will plot the singlepass and multipass results for the random forest model. Possible methods include 'multipass', 'singlepass', 'perm_based', 'ale_variance', or 'ale_variance_interactions' display_feature_names : dict A dict mapping feature names to readable, "pretty" feature names feature_colors : dict A dict mapping features to various colors. Helpful for color coding groups of features num_vars_to_plot : int Number of top variables to plot (defalut is None and will use number of multipass results) kwargs: - xlabels - ylabel - xticks - p_values - colinear_features - rho_threshold """ xlabels = kwargs.get("xlabels", None) ylabels = kwargs.get("ylabels", None) xticks = kwargs.get("xticks", None) title = kwargs.get("title", "") p_values = kwargs.get("p_values", None) colinear_features = kwargs.get("colinear_features", None) rho_threshold = kwargs.get("rho_threshold", 0.8) plot_reference_score = kwargs.get("plot_reference_score", True) plot_error = kwargs.get('plot_error', True) only_one_method = all([m[0] == panels[0][0] for m in panels]) only_one_estimator = all([m[1] == panels[0][1] for m in panels]) if not only_one_method: kwargs["hspace"] = kwargs.get("hspace", 0.6) if plot_correlated_features: X = kwargs.get("X", None) if X is None or X.empty: raise ValueError( "Must provide X to InterpretToolkit to compute the correlations!" ) corr_matrix = X.corr().abs() data = [data] if not is_list(data) else data n_panels = len(panels) fig, axes = self._get_axes(n_panels, **kwargs) ax_iterator = self.axes_to_iterator(n_panels, axes) for i, (panel, ax) in enumerate(zip(panels, ax_iterator)): # Set the facecolor. #ax.set_facecolor(kwargs.get("facecolor", (0.95, 0.95, 0.95))) method, estimator_name = panel results = data[i] if xlabels is not None: ax.set_xlabel(xlabels[i], fontsize=self.FONT_SIZES["small"]) else: if not only_one_method: ax.set_xlabel( self.DISPLAY_NAMES_DICT.get(method, method), fontsize=self.FONT_SIZES["small"], ) if not only_one_estimator: ax.set_title(estimator_name) sorted_var_names = list( results[f"{method}_rankings__{estimator_name}"].values ) if num_vars_to_plot is None: num_vars_to_plot == len(sorted_var_names) sorted_var_names = sorted_var_names[ : min(num_vars_to_plot, len(sorted_var_names)) ] sorted_var_names = sorted_var_names[::-1] scores = results[f"{method}_scores__{estimator_name}"].values scores = scores[: min(num_vars_to_plot, len(sorted_var_names))] # Reverse the order. scores = scores[::-1] # Set very small values to zero. scores = np.where(np.absolute(np.round(scores, 17)) < 1e-15, 0, scores) # Get the colors for the plot colors_to_plot = [ self.variable_to_color(var, feature_colors) for var in sorted_var_names ] # Get the predictor names variable_names_to_plot = [ f" {var}" for var in self.convert_vars_to_readable( sorted_var_names, display_feature_names, ) ] if method == "combined": scores_to_plot = np.nanpercentile(scores, 50, axis=1) # Compute the confidence intervals (ci) ci = np.abs( np.nanpercentile(scores, 50, axis=1) - np.nanpercentile(scores, [25, 75], axis=1) ) else: scores_to_plot = np.nanmean(scores, axis=1) ci = np.abs( np.nanpercentile(scores, 50, axis=1) - np.nanpercentile(scores, [2.5, 97.5], axis=1) ) if plot_reference_score: if 'forward' in method: ax.axvline(results[f'all_permuted_score__{estimator_name}'].mean(),color='k',ls=':') elif 'backward' in method: ax.axvline(results[f'original_score__{estimator_name}'].mean(),color='k',ls='--') # Despine self.despine_plt(ax) elinewidth = 0.9 if n_panels <= 3 else 0.5 if plot_error: ax.barh( np.arange(len(scores_to_plot)), scores_to_plot, linewidth=1.75, edgecolor="white", alpha=0.5, color=colors_to_plot, xerr=ci, capsize=3.0, ecolor="k", error_kw=dict( alpha=0.2, elinewidth=elinewidth, ), zorder=2, ) else: ax.barh( np.arange(len(scores_to_plot)), scores_to_plot, linewidth=1.75, edgecolor="white", alpha=0.5, color=colors_to_plot, zorder=2, ) if plot_correlated_features: self._add_correlated_brackets( ax, np.arange(len(scores_to_plot)), scores_to_plot, corr_matrix, sorted_var_names, rho_threshold ) if num_vars_to_plot >= 20: size = kwargs.get("fontsize", self.FONT_SIZES["teensie"] - 3) elif num_vars_to_plot > 10: size = kwargs.get("fontsize", self.FONT_SIZES["teensie"] - 2) else: size = kwargs.get("fontsize", self.FONT_SIZES["teensie"] - 1) # Put the variable names _into_ the plot if method not in self.SINGLE_VAR_METHODS and plot_correlated_features: pass # This is code is not flexible at the moment. #results_dict = is_correlated( # corr_matrix, sorted_var_names, rho_threshold=rho_threshold #) if colinear_features is None: fontweight = ["light"] * len(variable_names_to_plot) colors = ["k"] * len(variable_names_to_plot) else: # Bold text if the VIF > threshold (indicates a multicolinear predictor) fontweight = [ "bold" if v in colinear_features else "light" for v in sorted_var_names ] # Bold text if value is insignificant. colors = ["xkcd:medium blue" if v in colinear_features else "k" for v in sorted_var_names] ax.set_yticks(range(len(variable_names_to_plot))) ax.set_yticklabels(variable_names_to_plot) labels = ax.get_yticklabels() # Bold var names ##[label.set_fontweight(opt) for opt, label in zip(fontweight, labels)] [label.set_color(c) for c, label in zip(colors, labels)] ax.tick_params(axis="both", which="both", length=0) if xticks is not None: ax.set_xticks(xticks) else: self.set_n_ticks(ax, option="x") xlabel = ( self.DISPLAY_NAMES_DICT.get(method, method) if (only_one_method and xlabels is None) else "" ) major_ax = self.set_major_axis_labels( fig, xlabel=xlabel, ylabel_left="", ylabel_right="", title=title, fontsize=self.FONT_SIZES["small"], **kwargs, ) if ylabels is not None: self.set_row_labels( labels=ylabels, axes=axes, pos=-1, pad=1.15, rotation=270, **kwargs ) self.add_alphabet_label( n_panels, axes, pos=kwargs.get("alphabet_pos", (0.9, 0.09)), alphabet_fontsize = kwargs.get("alphabet_fontsize", 10) ) # Necessary to make sure that the tick labels for the feature names # do overlap another ax. fig.tight_layout() return fig, axes def _add_correlated_brackets(self, ax, y, width, corr_matrix, top_features, rho_threshold): """ Add bracket connecting features above a given correlation threshold. Parameters ------------------ ax : matplotlib.ax.Axes object y : width : corr_matrix: top_features: rho_threshold: """ get_colors = lambda n: list( map(lambda i: "#" + "%06x" % random.randint(0, 0xFFFFFF), range(n)) ) _, pair_indices = find_correlated_pairs_among_top_features( corr_matrix, top_features, rho_threshold=rho_threshold, ) colors = get_colors(len(pair_indices)) top_indices, bottom_indices = [], [] for p, color in zip(pair_indices, colors): delta=0 if p[0] > p[1]: bottom_idx = p[1] top_idx = p[0] else: bottom_idx = p[0] top_idx = p[1] # If a feature has already shown up in a correlated pair, # then we want to shift the brackets slightly for ease of # interpretation. if bottom_idx in bottom_indices or bottom_idx in top_indices: delta += 0.1 if top_idx in top_indices or top_idx in bottom_indices: delta += 0.1 top_indices.append(top_idx) bottom_indices.append(bottom_idx) self.annotate_bars(ax, bottom_idx, top_idx, y=y, width=width, delta=delta) # You can fill this in by using a dictionary with {var_name: legible_name} def convert_vars_to_readable(self, variables_list, VARIABLE_NAMES_DICT): """Substitutes out variable names for human-readable ones :param variables_list: a list of variable names :returns: a copy of the list with human-readable names """ human_readable_list = list() for var in variables_list: if var in VARIABLE_NAMES_DICT: human_readable_list.append(VARIABLE_NAMES_DICT[var]) else: human_readable_list.append(var) return human_readable_list # This could easily be expanded with a dictionary def variable_to_color(self, var, VARIABLES_COLOR_DICT): """ Returns the color for each variable. """ if var == "No Permutations": return "xkcd:pastel red" else: if VARIABLES_COLOR_DICT is None: return "xkcd:powder blue" elif not isinstance(VARIABLES_COLOR_DICT, dict) and isinstance( VARIABLES_COLOR_DICT, str ): return VARIABLES_COLOR_DICT else: return VARIABLES_COLOR_DICT[var]
0.730578
0.371479
import matplotlib.pyplot as plt import seaborn as sns def rounding(v): """Rounding for pretty plots""" if v > 100: return int(round(v)) elif v > 0 and v < 100: return round(v, 1) elif v >= 0.1 and v < 1: return round(v, 1) elif v >= 0 and v < 0.1: return round(v, 3) def box_and_whisker( X_train, top_preds, example, display_feature_names={}, display_units={}, **kwargs ): """Create interpretability graphic""" color = kwargs.get("bar_color", "lightblue") f, axes = plt.subplots(dpi=300, nrows=len(top_preds), figsize=(4, 5)) sns.despine( fig=f, ax=axes, top=True, right=True, left=True, bottom=False, offset=None, trim=False, ) box_plots = [] for ax, v in zip(axes, top_preds): box_plot = ax.boxplot( x=X_train[v], vert=False, whis=[0, 100], patch_artist=True, widths=0.35 ) box_plots.append(box_plot) ax.annotate( display_feature_names.get(v, v) + " (" + display_units.get(v, v) + ")", xy=(0.9, 1.15), xycoords="axes fraction", ) ax.annotate( rounding(example[v]), xy=(0.9, 0.7), xycoords="axes fraction", fontsize=6, color="red", ) # plot vertical lines ax.axvline(x=example[v], color="red", zorder=5) # Remove y tick labels ax.set_yticks( [], ) # fill with colors for bplot in box_plots: for patch in bplot["boxes"]: patch.set_facecolor(color) for line in bplot["means"]: line.set_color(color) plt.subplots_adjust(wspace=5.75) f.suptitle("Training Set Distribution for Top Predictors") axes[0].set_title( "Vertical red bars show current values for this object", fontsize=8, pad=25, color="red", ) f.tight_layout() return f, axes
scikit-explain
/scikit-explain-0.1.3.tar.gz/scikit-explain-0.1.3/skexplain/plot/_box_and_whisker.py
_box_and_whisker.py
import matplotlib.pyplot as plt import seaborn as sns def rounding(v): """Rounding for pretty plots""" if v > 100: return int(round(v)) elif v > 0 and v < 100: return round(v, 1) elif v >= 0.1 and v < 1: return round(v, 1) elif v >= 0 and v < 0.1: return round(v, 3) def box_and_whisker( X_train, top_preds, example, display_feature_names={}, display_units={}, **kwargs ): """Create interpretability graphic""" color = kwargs.get("bar_color", "lightblue") f, axes = plt.subplots(dpi=300, nrows=len(top_preds), figsize=(4, 5)) sns.despine( fig=f, ax=axes, top=True, right=True, left=True, bottom=False, offset=None, trim=False, ) box_plots = [] for ax, v in zip(axes, top_preds): box_plot = ax.boxplot( x=X_train[v], vert=False, whis=[0, 100], patch_artist=True, widths=0.35 ) box_plots.append(box_plot) ax.annotate( display_feature_names.get(v, v) + " (" + display_units.get(v, v) + ")", xy=(0.9, 1.15), xycoords="axes fraction", ) ax.annotate( rounding(example[v]), xy=(0.9, 0.7), xycoords="axes fraction", fontsize=6, color="red", ) # plot vertical lines ax.axvline(x=example[v], color="red", zorder=5) # Remove y tick labels ax.set_yticks( [], ) # fill with colors for bplot in box_plots: for patch in bplot["boxes"]: patch.set_facecolor(color) for line in bplot["means"]: line.set_color(color) plt.subplots_adjust(wspace=5.75) f.suptitle("Training Set Distribution for Top Predictors") axes[0].set_title( "Vertical red bars show current values for this object", fontsize=8, pad=25, color="red", ) f.tight_layout() return f, axes
0.754192
0.526404
from functools import partial from sklearn.metrics._base import _average_binary_score from sklearn.utils.multiclass import type_of_target from sklearn.metrics import ( brier_score_loss, average_precision_score, precision_recall_curve, ) import numpy as np def brier_skill_score(y_values, forecast_probabilities): """Computes the brier skill score""" climo = np.mean((y_values - np.mean(y_values)) ** 2) return 1.0 - brier_score_loss(y_values, forecast_probabilities) / climo def modified_precision(precision, known_skew, new_skew): """ Modify the success ratio according to equation (3) from Lampert and Gancarski (2014). """ precision[precision < 1e-5] = 1e-5 term1 = new_skew / (1.0 - new_skew) term2 = (1 / precision) - 1.0 denom = known_skew + ((1 - known_skew) * term1 * term2) return known_skew / denom def calc_sr_min(skew): pod = np.linspace(0, 1, 100) sr_min = (skew * pod) / (1 - skew + (skew * pod)) return sr_min def _binary_uninterpolated_average_precision( y_true, y_score, known_skew, new_skew, pos_label=1, sample_weight=None ): precision, recall, _ = precision_recall_curve( y_true, y_score, pos_label=pos_label, sample_weight=sample_weight ) # Return the step function integral # The following works because the last entry of precision is # guaranteed to be 1, as returned by precision_recall_curve if known_skew is not None: precision = modified_precision(precision, known_skew, new_skew) return -np.sum(np.diff(recall) * np.array(precision)[:-1]) def min_aupdc( y_true, pos_label, average, sample_weight=None, known_skew=None, new_skew=None ): """ Compute the minimum possible area under the performance diagram curve. Essentially, a vote of NO for all predictions. """ min_score = np.zeros((len(y_true))) average_precision = partial( _binary_uninterpolated_average_precision, known_skew=known_skew, new_skew=new_skew, pos_label=pos_label, ) ap_min = _average_binary_score( average_precision, y_true, min_score, average, sample_weight=sample_weight ) return ap_min def norm_aupdc( y_true, y_score, known_skew=None, *, average="macro", pos_label=1, sample_weight=None, min_method="random", ): """ Compute the normalized modified average precision. Normalization removes the no-skill region either based on skew or random classifier performance. Modification alters success ratio to be consistent with a known skew. Parameters: ------------------- y_true, array of (n_samples,) Binary, truth labels (0,1) y_score, array of (n_samples,) Model predictions (either determinstic or probabilistic) known_skew, float between 0 and 1 Known or reference skew (# of 1 / n_samples) for computing the modified success ratio. min_method, 'skew' or 'random' If 'skew', then the normalization is based on the minimum AUPDC formula presented in Boyd et al. (2012). If 'random', then the normalization is based on the minimum AUPDC for a random classifier, which is equal to the known skew. Boyd, 2012: Unachievable Region in Precision-Recall Space and Its Effect on Empirical Evaluation, ArXiv """ new_skew = np.mean(y_true) if known_skew is None: known_skew = new_skew y_type = type_of_target(y_true) if y_type == "multilabel-indicator" and pos_label != 1: raise ValueError( "Parameter pos_label is fixed to 1 for " "multilabel-indicator y_true. Do not set " "pos_label or set pos_label to 1." ) elif y_type == "binary": # Convert to Python primitive type to avoid NumPy type / Python str # comparison. See https://github.com/numpy/numpy/issues/6784 present_labels = np.unique(y_true).tolist() if len(present_labels) == 2 and pos_label not in present_labels: raise ValueError( f"pos_label={pos_label} is not a valid label. It should be " f"one of {present_labels}" ) average_precision = partial( _binary_uninterpolated_average_precision, known_skew=known_skew, new_skew=new_skew, pos_label=pos_label, ) ap = _average_binary_score( average_precision, y_true, y_score, average, sample_weight=sample_weight ) if min_method == "random": ap_min = known_skew elif min_method == "skew": ap_min = min_aupdc( y_true, pos_label, average, sample_weight=sample_weight, known_skew=known_skew, new_skew=new_skew, ) naupdc = (ap - ap_min) / (1.0 - ap_min) return naupdc
scikit-explain
/scikit-explain-0.1.3.tar.gz/scikit-explain-0.1.3/skexplain/common/metrics.py
metrics.py
from functools import partial from sklearn.metrics._base import _average_binary_score from sklearn.utils.multiclass import type_of_target from sklearn.metrics import ( brier_score_loss, average_precision_score, precision_recall_curve, ) import numpy as np def brier_skill_score(y_values, forecast_probabilities): """Computes the brier skill score""" climo = np.mean((y_values - np.mean(y_values)) ** 2) return 1.0 - brier_score_loss(y_values, forecast_probabilities) / climo def modified_precision(precision, known_skew, new_skew): """ Modify the success ratio according to equation (3) from Lampert and Gancarski (2014). """ precision[precision < 1e-5] = 1e-5 term1 = new_skew / (1.0 - new_skew) term2 = (1 / precision) - 1.0 denom = known_skew + ((1 - known_skew) * term1 * term2) return known_skew / denom def calc_sr_min(skew): pod = np.linspace(0, 1, 100) sr_min = (skew * pod) / (1 - skew + (skew * pod)) return sr_min def _binary_uninterpolated_average_precision( y_true, y_score, known_skew, new_skew, pos_label=1, sample_weight=None ): precision, recall, _ = precision_recall_curve( y_true, y_score, pos_label=pos_label, sample_weight=sample_weight ) # Return the step function integral # The following works because the last entry of precision is # guaranteed to be 1, as returned by precision_recall_curve if known_skew is not None: precision = modified_precision(precision, known_skew, new_skew) return -np.sum(np.diff(recall) * np.array(precision)[:-1]) def min_aupdc( y_true, pos_label, average, sample_weight=None, known_skew=None, new_skew=None ): """ Compute the minimum possible area under the performance diagram curve. Essentially, a vote of NO for all predictions. """ min_score = np.zeros((len(y_true))) average_precision = partial( _binary_uninterpolated_average_precision, known_skew=known_skew, new_skew=new_skew, pos_label=pos_label, ) ap_min = _average_binary_score( average_precision, y_true, min_score, average, sample_weight=sample_weight ) return ap_min def norm_aupdc( y_true, y_score, known_skew=None, *, average="macro", pos_label=1, sample_weight=None, min_method="random", ): """ Compute the normalized modified average precision. Normalization removes the no-skill region either based on skew or random classifier performance. Modification alters success ratio to be consistent with a known skew. Parameters: ------------------- y_true, array of (n_samples,) Binary, truth labels (0,1) y_score, array of (n_samples,) Model predictions (either determinstic or probabilistic) known_skew, float between 0 and 1 Known or reference skew (# of 1 / n_samples) for computing the modified success ratio. min_method, 'skew' or 'random' If 'skew', then the normalization is based on the minimum AUPDC formula presented in Boyd et al. (2012). If 'random', then the normalization is based on the minimum AUPDC for a random classifier, which is equal to the known skew. Boyd, 2012: Unachievable Region in Precision-Recall Space and Its Effect on Empirical Evaluation, ArXiv """ new_skew = np.mean(y_true) if known_skew is None: known_skew = new_skew y_type = type_of_target(y_true) if y_type == "multilabel-indicator" and pos_label != 1: raise ValueError( "Parameter pos_label is fixed to 1 for " "multilabel-indicator y_true. Do not set " "pos_label or set pos_label to 1." ) elif y_type == "binary": # Convert to Python primitive type to avoid NumPy type / Python str # comparison. See https://github.com/numpy/numpy/issues/6784 present_labels = np.unique(y_true).tolist() if len(present_labels) == 2 and pos_label not in present_labels: raise ValueError( f"pos_label={pos_label} is not a valid label. It should be " f"one of {present_labels}" ) average_precision = partial( _binary_uninterpolated_average_precision, known_skew=known_skew, new_skew=new_skew, pos_label=pos_label, ) ap = _average_binary_score( average_precision, y_true, y_score, average, sample_weight=sample_weight ) if min_method == "random": ap_min = known_skew elif min_method == "skew": ap_min = min_aupdc( y_true, pos_label, average, sample_weight=sample_weight, known_skew=known_skew, new_skew=new_skew, ) naupdc = (ap - ap_min) / (1.0 - ap_min) return naupdc
0.920567
0.582996
import xarray as xr import numpy as np from skexplain.common.utils import compute_bootstrap_indices import pandas as pd def method_average_ranking(data, features, methods, estimator_names, n_features=12): """ Compute the median ranking across the results of different ranking methods. Also, include the 25-75th percentile ranking uncertainty. Parameters ------------ data : list of xarray.Dataset The set of predictor ranking results to average over. methods : list of string The ranking methods to use from the data (see plot_importance for examples) estimator_names : string or list of strings Name of the estimator(s). Returns -------- rankings_dict_avg : dict feature : median ranking pairs rankings_sorted : np.array Sorted median rankings (lower values indicates higher rank) feature_sorted : np.array The features corresponding the ranks in ``rankings_sorted`` xerr """ rankings_dict = {f: [] for f in features} for d, method in zip(data, methods): for estimator_name in estimator_names: features = d[f"{method}_rankings__{estimator_name}"].values[:n_features] rankings = {f: i for i, f in enumerate(features)} for f in features: try: rankings_dict[f].append(rankings[f]) except: rankings_dict[f].append(np.nan) max_len = np.max([len(rankings_dict[k]) for k in rankings_dict.keys()]) for k in rankings_dict.keys(): l = rankings_dict[k] if len(l) < max_len: delta = max_len - len(l) rankings_dict[k] = l + [np.nan] * delta rankings_dict_avg = { f: np.nanpercentile(rankings_dict[f], 50) for f in rankings_dict.keys() } features = np.array(list(rankings_dict_avg.keys())) rankings = np.array([rankings_dict_avg[f] for f in features]) idxs = np.argsort(rankings) rankings_sorted = rankings[idxs] features_ranked = features[idxs] scores = np.array([rankings_dict[f] for f in features_ranked]) data = {} data[f"combined_rankings__{estimator_name}"] = ( [f"n_vars_avg"], features_ranked, ) data[f"combined_scores__{estimator_name}"] = ( [f"n_vars_avg", "n_bootstrap"], scores, ) data = xr.Dataset(data) return data def non_increasing(L): # Check for decreasing scores. return all(x >= y for x, y in zip(L, L[1:])) def compute_importance(results, scoring_strategy, direction): """ Compute the importance scores from the permutation importance results. The importance score varies depending on the orientation of the loss metric and whether it is multipass or singlepass. Parameters -------------- results : InterpretToolkit.permutation_importance results xr.Dataset scoring_strategy : 'minimize' or 'maximize' Whether the strategy for assessing importance was based on minimizing or maximing the performance metric after permuting features (e.g., the goal is to 'maximize' loss metrics like MSE, but 'minimize' rank metrics like AUC) direction : 'forward' or 'backward' Whether the permutation method was 'forward' or 'backward'. Returns -------------- results : xarray.Dataset scores for each estimator and multi/singlepass are converted to proper importance scores. """ if scoring_strategy == 'argmin_of_mean': scoring_strategy = 'minimize' elif scoring_strategy == 'argmax_of_mean': scoring_strategy = 'maximize' print(direction, scoring_strategy) estimators = results.attrs["estimators used"] for estimator in estimators: orig_score = results[f"original_score__{estimator}"].values if direction == 'forward': all_permuted_score = results[f"all_permuted_score__{estimator}"].values for mode in ["singlepass", "multipass"]: permute_scores = results[f"{mode}_scores__{estimator}"].values if direction == 'forward': # For a loss metric, forward importance is generically defined # as the error(X_J') - error(X_j') where J is the set of # all features while j is some subset of J or a single feature. if scoring_strategy == 'maximize': # E.g., AUC, NAUPDC, CSI, BSS imp = permute_scores - all_permuted_score elif scoring_strategy == 'minimize': # For a rank-based metric, importance is defined opposite # of the loss metric [ error(X_j') - error(X_J') ] # E.g., MSE, BS, etc. print('This happened for forward!') imp = all_permuted_score - permute_scores elif direction == 'backward': # For a loss metric, backward importance is generically defined # as the error(X_j') - error(X_j) where j is some subset or # a single feature. if scoring_strategy == 'minimize': imp = orig_score - permute_scores elif scoring_strategy == 'maximize': # For a rank-based metric, it is defined opposite of that above. # i.e., error(X_j) - error(X_j') print('this happened for backward!') imp = permute_scores - orig_score """ decreasing = non_increasing(np.mean(permute_scores, axis=1)) if decreasing: if orientation == "negative": # Singlepass MSE imp = permute_scores - orig_score else: # Backward Multipass on AUC/AUPDC (permuted_score - (1-orig_score)). # Most positively-oriented metrics top off at 1. top = np.max(permute_scores) imp = permute_scores - (top - orig_score) else: if orientation == "negative": # Forward Multipass MSE top = np.max(permute_scores) imp = (top + orig_score) - permute_scores else: # Singlepass AUC/NAUPDC imp = orig_score - permute_scores """ # Normalize the importance score so that range is [0,1] imp = imp / (np.percentile(imp, 99) - np.percentile(imp, 1)) results[f"{mode}_scores__{estimator}"] = ( [f"n_vars_{mode}", "n_bootstrap"], imp, ) return results def to_skexplain_importance( importances, estimator_name, feature_names, method, normalize=False, bootstrap_axis=0, ): """ Convert feature ranking-based scores from non-permutation-importance methods computed by scikit-explain or other methods into a skexplain-style datset to leverage the built-in plotting code. This method handles the ranking and sorting of the importance values by assuming higher values equal higher importance. Caution: This method assumes that higher values equal higher importance! Parameters --------------- importances : 1d or 2d array-like The feature importance scores. The code assumes that 2D arrays are the result of bootstrapping. Users can declare the bootstrapping axis with `bootstrap_axis`. By default, the first axis (=0) is the bootstrap axis for skexplain methods bootstrap_axis : int (default=0) estimator_name : str The estimator name. Used for plotting and creating the dataset. feature_names : array-like of shape (n_features) The feature names. Used for plotting and creating the dataset. method : 'sage', 'coefs', 'shap_std', 'shap_sum', 'tree_interpreter', 'lime' or str The name of the feature ranking method. The named method perform specific operations. For example, local methods like 'shap_sum', 'tree_interpreter', 'lime' will sum the importance values to determine feature ranking. normalize : True/False (default=False) If True, normalize the feature importance values using min-max scaling. This is useful when comparing importance across different methods. """ bootstrap = False if method == "sage": importances_std = importances.std importances = importances.values elif method == "coefs": importances = np.absolute(importances) elif method == "shap_std": # Compute the std(SHAP) importances = np.nanstd(importances, axis=0) elif method == "shap_sum" or method == "tree_interpreter" or method == 'lime': # Compute sum of abs values importances = np.nansum(np.absolute(importances), axis=0) else: if np.ndim(importances) == 2: # average over bootstrapping bootstrap = True importances_to_save = importances.copy() importances = np.nanmean(importances, axis=bootstrap_axis) # Sort from higher score to lower score ranked_indices = np.argsort(importances)[::-1] if bootstrap: scores_ranked = importances_to_save[ranked_indices, :] else: scores_ranked = importances[ranked_indices] if method == "sage": std_ranked = importances_std[ranked_indices] features_ranked = np.array(feature_names)[ranked_indices] data = {} data[f"{method}_rankings__{estimator_name}"] = ( [f"n_vars_{method}"], features_ranked, ) if not bootstrap: scores_ranked = scores_ranked.reshape(len(scores_ranked), 1) importances = importances.reshape(len(importances), 1) if normalize: # Normalize the importance score so that range is [0,1] scores_ranked = scores_ranked / ( np.percentile(scores_ranked, 99) - np.percentile(scores_ranked, 1) ) data[f"{method}_scores__{estimator_name}"] = ( [f"n_vars_{method}", "n_bootstrap"], scores_ranked, ) if method == "sage": data[f"sage_scores_std__{estimator_name}"] = ( [f"n_vars_sage"], std_ranked, ) data = xr.Dataset(data) data.attrs["estimators used"] = estimator_name data.attrs["estimator output"] = "probability" return data def combine_top_features(results_dict, n_vars=None): """Combines the list of top features from different estimators into a single list where duplicates are removed. Args: ------------- results_dict : dict n_vars : integer """ if n_vars is None: n_vars = 1000 combined_features = [] for estimator_name in results_dict.keys(): features = results_dict[estimator_name] combined_features.append(features) unique_features = list(set.intersection(*map(set, combined_features)))[:n_vars] return unique_features def retrieve_important_vars(results, estimator_names, multipass=True): """ Return a list of the important features stored in the ImportanceObject Args: ------------------- results : python object ImportanceObject from PermutationImportance multipass : boolean if True, returns the multipass permutation importance results else returns the singlepass permutation importance results Returns: top_features : list a list of features with order determined by the permutation importance method """ perm_method = "multipass" if multipass else "singlepass" direction = results.attrs['direction'] important_vars_dict = {} for estimator_name in estimator_names: top_features = list(results[f"{direction}_{perm_method}_rankings__{estimator_name}"].values) important_vars_dict[estimator_name] = top_features return important_vars_dict def find_correlated_pairs_among_top_features( corr_matrix, top_features, rho_threshold=0.8, ): """ Of the top features, find correlated pairs above some linear correlation coefficient threshold Args: ---------------------- corr_matrix : pandas.DataFrame top_features : list of strings rho_threshold : float """ top_feature_indices = {f: i for i, f in enumerate(top_features)} sub_corr_matrix = corr_matrix[top_features].loc[top_features] pairs = [] for feature in top_features: # try: most_corr_feature = ( sub_corr_matrix[feature].sort_values(ascending=False).index[1] ) # except: # continue most_corr_value = sub_corr_matrix[feature].sort_values(ascending=False)[1] if round(most_corr_value, 5) >= rho_threshold: pairs.append((feature, most_corr_feature)) pairs = list(set([tuple(sorted(t)) for t in pairs])) pair_indices = [ (top_feature_indices[p[0]], top_feature_indices[p[1]]) for p in pairs ] return pairs, pair_indices def all_permuted_score(estimator, X, y, evaluation_fn, n_permute, subsample, random_seed=123, class_index=1): random_state = np.random.RandomState(random_seed) inds = random_state.permutation(len(X)) if isinstance(X, pd.DataFrame): X = X.values inds_set = compute_bootstrap_indices(X, subsample=1.0, n_bootstrap=n_permute, seed=90) scores = [] for inds in inds_set: X_sampled = X[inds, :] X_permuted = np.array([ X_sampled[inds, i] for i in range(X.shape[1])]).T if hasattr(estimator, 'predict_proba'): predictions = estimator.predict_proba(X_permuted)[:] # For binary classification problems. if predictions.shape[1] == 2: predictions = predictions[:,1] #print (predictions.shape) elif hasattr(estimator, 'predict'): predictions = estimator.predict(X_permuted)[:] else: raise AttributeError(f'{estimator} does not have .predict or .predict_proba!') scores.append(evaluation_fn(y, predictions)) return np.array(scores)
scikit-explain
/scikit-explain-0.1.3.tar.gz/scikit-explain-0.1.3/skexplain/common/importance_utils.py
importance_utils.py
import xarray as xr import numpy as np from skexplain.common.utils import compute_bootstrap_indices import pandas as pd def method_average_ranking(data, features, methods, estimator_names, n_features=12): """ Compute the median ranking across the results of different ranking methods. Also, include the 25-75th percentile ranking uncertainty. Parameters ------------ data : list of xarray.Dataset The set of predictor ranking results to average over. methods : list of string The ranking methods to use from the data (see plot_importance for examples) estimator_names : string or list of strings Name of the estimator(s). Returns -------- rankings_dict_avg : dict feature : median ranking pairs rankings_sorted : np.array Sorted median rankings (lower values indicates higher rank) feature_sorted : np.array The features corresponding the ranks in ``rankings_sorted`` xerr """ rankings_dict = {f: [] for f in features} for d, method in zip(data, methods): for estimator_name in estimator_names: features = d[f"{method}_rankings__{estimator_name}"].values[:n_features] rankings = {f: i for i, f in enumerate(features)} for f in features: try: rankings_dict[f].append(rankings[f]) except: rankings_dict[f].append(np.nan) max_len = np.max([len(rankings_dict[k]) for k in rankings_dict.keys()]) for k in rankings_dict.keys(): l = rankings_dict[k] if len(l) < max_len: delta = max_len - len(l) rankings_dict[k] = l + [np.nan] * delta rankings_dict_avg = { f: np.nanpercentile(rankings_dict[f], 50) for f in rankings_dict.keys() } features = np.array(list(rankings_dict_avg.keys())) rankings = np.array([rankings_dict_avg[f] for f in features]) idxs = np.argsort(rankings) rankings_sorted = rankings[idxs] features_ranked = features[idxs] scores = np.array([rankings_dict[f] for f in features_ranked]) data = {} data[f"combined_rankings__{estimator_name}"] = ( [f"n_vars_avg"], features_ranked, ) data[f"combined_scores__{estimator_name}"] = ( [f"n_vars_avg", "n_bootstrap"], scores, ) data = xr.Dataset(data) return data def non_increasing(L): # Check for decreasing scores. return all(x >= y for x, y in zip(L, L[1:])) def compute_importance(results, scoring_strategy, direction): """ Compute the importance scores from the permutation importance results. The importance score varies depending on the orientation of the loss metric and whether it is multipass or singlepass. Parameters -------------- results : InterpretToolkit.permutation_importance results xr.Dataset scoring_strategy : 'minimize' or 'maximize' Whether the strategy for assessing importance was based on minimizing or maximing the performance metric after permuting features (e.g., the goal is to 'maximize' loss metrics like MSE, but 'minimize' rank metrics like AUC) direction : 'forward' or 'backward' Whether the permutation method was 'forward' or 'backward'. Returns -------------- results : xarray.Dataset scores for each estimator and multi/singlepass are converted to proper importance scores. """ if scoring_strategy == 'argmin_of_mean': scoring_strategy = 'minimize' elif scoring_strategy == 'argmax_of_mean': scoring_strategy = 'maximize' print(direction, scoring_strategy) estimators = results.attrs["estimators used"] for estimator in estimators: orig_score = results[f"original_score__{estimator}"].values if direction == 'forward': all_permuted_score = results[f"all_permuted_score__{estimator}"].values for mode in ["singlepass", "multipass"]: permute_scores = results[f"{mode}_scores__{estimator}"].values if direction == 'forward': # For a loss metric, forward importance is generically defined # as the error(X_J') - error(X_j') where J is the set of # all features while j is some subset of J or a single feature. if scoring_strategy == 'maximize': # E.g., AUC, NAUPDC, CSI, BSS imp = permute_scores - all_permuted_score elif scoring_strategy == 'minimize': # For a rank-based metric, importance is defined opposite # of the loss metric [ error(X_j') - error(X_J') ] # E.g., MSE, BS, etc. print('This happened for forward!') imp = all_permuted_score - permute_scores elif direction == 'backward': # For a loss metric, backward importance is generically defined # as the error(X_j') - error(X_j) where j is some subset or # a single feature. if scoring_strategy == 'minimize': imp = orig_score - permute_scores elif scoring_strategy == 'maximize': # For a rank-based metric, it is defined opposite of that above. # i.e., error(X_j) - error(X_j') print('this happened for backward!') imp = permute_scores - orig_score """ decreasing = non_increasing(np.mean(permute_scores, axis=1)) if decreasing: if orientation == "negative": # Singlepass MSE imp = permute_scores - orig_score else: # Backward Multipass on AUC/AUPDC (permuted_score - (1-orig_score)). # Most positively-oriented metrics top off at 1. top = np.max(permute_scores) imp = permute_scores - (top - orig_score) else: if orientation == "negative": # Forward Multipass MSE top = np.max(permute_scores) imp = (top + orig_score) - permute_scores else: # Singlepass AUC/NAUPDC imp = orig_score - permute_scores """ # Normalize the importance score so that range is [0,1] imp = imp / (np.percentile(imp, 99) - np.percentile(imp, 1)) results[f"{mode}_scores__{estimator}"] = ( [f"n_vars_{mode}", "n_bootstrap"], imp, ) return results def to_skexplain_importance( importances, estimator_name, feature_names, method, normalize=False, bootstrap_axis=0, ): """ Convert feature ranking-based scores from non-permutation-importance methods computed by scikit-explain or other methods into a skexplain-style datset to leverage the built-in plotting code. This method handles the ranking and sorting of the importance values by assuming higher values equal higher importance. Caution: This method assumes that higher values equal higher importance! Parameters --------------- importances : 1d or 2d array-like The feature importance scores. The code assumes that 2D arrays are the result of bootstrapping. Users can declare the bootstrapping axis with `bootstrap_axis`. By default, the first axis (=0) is the bootstrap axis for skexplain methods bootstrap_axis : int (default=0) estimator_name : str The estimator name. Used for plotting and creating the dataset. feature_names : array-like of shape (n_features) The feature names. Used for plotting and creating the dataset. method : 'sage', 'coefs', 'shap_std', 'shap_sum', 'tree_interpreter', 'lime' or str The name of the feature ranking method. The named method perform specific operations. For example, local methods like 'shap_sum', 'tree_interpreter', 'lime' will sum the importance values to determine feature ranking. normalize : True/False (default=False) If True, normalize the feature importance values using min-max scaling. This is useful when comparing importance across different methods. """ bootstrap = False if method == "sage": importances_std = importances.std importances = importances.values elif method == "coefs": importances = np.absolute(importances) elif method == "shap_std": # Compute the std(SHAP) importances = np.nanstd(importances, axis=0) elif method == "shap_sum" or method == "tree_interpreter" or method == 'lime': # Compute sum of abs values importances = np.nansum(np.absolute(importances), axis=0) else: if np.ndim(importances) == 2: # average over bootstrapping bootstrap = True importances_to_save = importances.copy() importances = np.nanmean(importances, axis=bootstrap_axis) # Sort from higher score to lower score ranked_indices = np.argsort(importances)[::-1] if bootstrap: scores_ranked = importances_to_save[ranked_indices, :] else: scores_ranked = importances[ranked_indices] if method == "sage": std_ranked = importances_std[ranked_indices] features_ranked = np.array(feature_names)[ranked_indices] data = {} data[f"{method}_rankings__{estimator_name}"] = ( [f"n_vars_{method}"], features_ranked, ) if not bootstrap: scores_ranked = scores_ranked.reshape(len(scores_ranked), 1) importances = importances.reshape(len(importances), 1) if normalize: # Normalize the importance score so that range is [0,1] scores_ranked = scores_ranked / ( np.percentile(scores_ranked, 99) - np.percentile(scores_ranked, 1) ) data[f"{method}_scores__{estimator_name}"] = ( [f"n_vars_{method}", "n_bootstrap"], scores_ranked, ) if method == "sage": data[f"sage_scores_std__{estimator_name}"] = ( [f"n_vars_sage"], std_ranked, ) data = xr.Dataset(data) data.attrs["estimators used"] = estimator_name data.attrs["estimator output"] = "probability" return data def combine_top_features(results_dict, n_vars=None): """Combines the list of top features from different estimators into a single list where duplicates are removed. Args: ------------- results_dict : dict n_vars : integer """ if n_vars is None: n_vars = 1000 combined_features = [] for estimator_name in results_dict.keys(): features = results_dict[estimator_name] combined_features.append(features) unique_features = list(set.intersection(*map(set, combined_features)))[:n_vars] return unique_features def retrieve_important_vars(results, estimator_names, multipass=True): """ Return a list of the important features stored in the ImportanceObject Args: ------------------- results : python object ImportanceObject from PermutationImportance multipass : boolean if True, returns the multipass permutation importance results else returns the singlepass permutation importance results Returns: top_features : list a list of features with order determined by the permutation importance method """ perm_method = "multipass" if multipass else "singlepass" direction = results.attrs['direction'] important_vars_dict = {} for estimator_name in estimator_names: top_features = list(results[f"{direction}_{perm_method}_rankings__{estimator_name}"].values) important_vars_dict[estimator_name] = top_features return important_vars_dict def find_correlated_pairs_among_top_features( corr_matrix, top_features, rho_threshold=0.8, ): """ Of the top features, find correlated pairs above some linear correlation coefficient threshold Args: ---------------------- corr_matrix : pandas.DataFrame top_features : list of strings rho_threshold : float """ top_feature_indices = {f: i for i, f in enumerate(top_features)} sub_corr_matrix = corr_matrix[top_features].loc[top_features] pairs = [] for feature in top_features: # try: most_corr_feature = ( sub_corr_matrix[feature].sort_values(ascending=False).index[1] ) # except: # continue most_corr_value = sub_corr_matrix[feature].sort_values(ascending=False)[1] if round(most_corr_value, 5) >= rho_threshold: pairs.append((feature, most_corr_feature)) pairs = list(set([tuple(sorted(t)) for t in pairs])) pair_indices = [ (top_feature_indices[p[0]], top_feature_indices[p[1]]) for p in pairs ] return pairs, pair_indices def all_permuted_score(estimator, X, y, evaluation_fn, n_permute, subsample, random_seed=123, class_index=1): random_state = np.random.RandomState(random_seed) inds = random_state.permutation(len(X)) if isinstance(X, pd.DataFrame): X = X.values inds_set = compute_bootstrap_indices(X, subsample=1.0, n_bootstrap=n_permute, seed=90) scores = [] for inds in inds_set: X_sampled = X[inds, :] X_permuted = np.array([ X_sampled[inds, i] for i in range(X.shape[1])]).T if hasattr(estimator, 'predict_proba'): predictions = estimator.predict_proba(X_permuted)[:] # For binary classification problems. if predictions.shape[1] == 2: predictions = predictions[:,1] #print (predictions.shape) elif hasattr(estimator, 'predict'): predictions = estimator.predict(X_permuted)[:] else: raise AttributeError(f'{estimator} does not have .predict or .predict_proba!') scores.append(evaluation_fn(y, predictions)) return np.array(scores)
0.885749
0.579311
import numpy as np import xarray as xr import pandas as pd from collections import ChainMap from statsmodels.distributions.empirical_distribution import ECDF from scipy.stats import t from sklearn.linear_model import Ridge class MissingFeaturesError(Exception): """ Raised when features are missing. E.g., All features are require for IAS or MEC """ def __init__(self, estimator_name, missing_features): self.message = f"""ALE for {estimator_name} was not computed for all features. These features were missing: {missing_features}""" super().__init__(self.message) def check_all_features_for_ale(ale, estimator_names, features): """ Is there ALE values for each feature """ data_vars = ale.data_vars for estimator_name in estimator_names: _list = [True if f'{f}__{estimator_name}__ale' in data_vars else False for f in features] if not all(_list): missing_features = np.array(features)[np.where(~np.array(_list))[0]] raise MissingFeaturesError(estimator_name, missing_features) def flatten_nested_list(list_of_lists): """Turn a list of list into a single, flatten list""" all_elements_are_lists = all([is_list(item) for item in list_of_lists]) if not all_elements_are_lists: new_list_of_lists = [] for item in list_of_lists: if is_list(item): new_list_of_lists.append(item) else: new_list_of_lists.append([item]) list_of_lists = new_list_of_lists return [item for elem in list_of_lists for item in elem] def is_dataset(data): return isinstance(data, xr.Dataset) def is_dataframe(data): return isinstance(data, pd.DataFrame) def check_is_permuted(X, X_permuted): permuted_features = [] for f in X.columns: if not np.array_equal(X.loc[:, f], X_permuted.loc[:, f]): permuted_features.append(f) return permuted_features def is_correlated(corr_matrix, feature_pairs, rho_threshold=0.8): """ Returns dict where the key are the feature pairs and the items are booleans of whether the pair is linearly correlated above the given threshold. """ results = {} for pair in feature_pairs: f1, f2 = pair.split("__") corr = corr_matrix[f1][f2] results[pair] = round(corr, 3) >= rho_threshold return results def is_fitted(estimator): """ Checks if a scikit-learn estimator/transformer has already been fit. Parameters ---------- estimator: scikit-learn estimator (e.g. RandomForestClassifier) or transformer (e.g. MinMaxScaler) object Returns ------- Boolean that indicates if ``estimator`` has already been fit (True) or not (False). """ attrs = [v for v in vars(estimator) if v.endswith("_") and not v.startswith("__")] return len(attrs) != 0 def determine_feature_dtype(X, features): """ Determine if any features are categorical. """ feature_names = list(X.columns) non_cat_features = [] cat_features = [] for f in features: if f not in feature_names: raise KeyError(f"'{f}' is not a valid feature.") if str(X.dtypes[f]) == "category": cat_features.append(f) else: non_cat_features.append(f) return non_cat_features, cat_features def cartesian(array, out=None): """Generate a cartesian product of input array. Parameters Codes comes directly from sklearn/utils/extmath.py ---------- array : list of array-like 1-D array to form the cartesian product of. out : ndarray Array to place the cartesian product in. Returns ------- out : ndarray 2-D array of shape (M, len(array)) containing cartesian products formed of input array. X -------- >>> cartesian(([1, 2, 3], [4, 5], [6, 7])) array([[1, 4, 6], [1, 4, 7], [1, 5, 6], [1, 5, 7], [2, 4, 6], [2, 4, 7], [2, 5, 6], [2, 5, 7], [3, 4, 6], [3, 4, 7], [3, 5, 6], [3, 5, 7]]) """ array = [np.asarray(x) for x in array] shape = (len(x) for x in array) dtype = array[0].dtype ix = np.indices(shape) ix = ix.reshape(len(array), -1).T if out is None: out = np.empty_like(ix, dtype=dtype) for n, arr in enumerate(array): out[:, n] = array[n][ix[:, n]] return out def to_dataframe(results, estimator_names, feature_names): """ Convert the feature contribution results to a pandas.DataFrame with nested indexing. """ # results[0] = dict of avg. contributions per estimator # results[1] = dict of avg. feature values per estimator contrib_names = feature_names.copy() contrib_names += ["Bias"] nested_key = results[0][estimator_names[0]].keys() dframes = [] for key in nested_key: data = [] for name in estimator_names: contribs_dict = results[0][name][key] vals_dict = results[1][name][key] data.append( [contribs_dict[f] for f in contrib_names] + [vals_dict[f] for f in feature_names] ) column_names = [f + "_contrib" for f in contrib_names] + [ f + "_val" for f in feature_names ] df = pd.DataFrame(data, columns=column_names, index=estimator_names) dframes.append(df) result = pd.concat(dframes, keys=list(nested_key)) return result def to_xarray(data): """Converts data dict to xarray.Dataset""" ds = xr.Dataset(data) return ds def is_str(a): """Check if argument is a string""" return isinstance(a, str) def is_list(a): """Check if argument is a list""" return isinstance(a, list) def to_list(a): """Convert argument to a list""" return [a] def is_tuple(a): """Check if argument is a tuple""" return isinstance(a, tuple) def is_valid_feature(features, official_feature_list): """Check if a feature is valid""" for f in features: if isinstance(f, tuple): for sub_f in f: if sub_f not in official_feature_list: raise Exception(f"Feature {sub_f} is not a valid feature!") else: if f not in official_feature_list: raise Exception(f"Feature {f} is not a valid feature!") def is_classifier(estimator): """Return True if the given estimator is (probably) a classifier. Parameters Function from base.py in sklearn ---------- estimator : object Estimator object to test. Returns ------- out : bool True if estimator is a classifier and False otherwise. """ return getattr(estimator, "_estimator_type", None) == "classifier" def is_regressor(estimator): """Return True if the given estimator is (probably) a regressor. Parameters Functions from base.py in sklearn ---------- estimator : object Estimator object to test. Returns ------- out : bool True if estimator is a regressor and False otherwise. """ return getattr(estimator, "_estimator_type", None) == "regressor" def is_all_dict(alist): """Check if every element of a list are dicts""" return all([isinstance(l, dict) for l in alist]) def compute_bootstrap_indices(X, subsample=1.0, n_bootstrap=1, seed=90): """ Routine to generate the indices for bootstrapped X. Args: ---------------- X : pandas.DataFrame, numpy.array subsample : float or integer n_bootstrap : integer Return: ---------------- bootstrap_indices : list list of indices of the size of subsample or subsample*len(X) """ base_random_state = np.random.RandomState(seed=seed) random_num_set = base_random_state.choice(10000, size=n_bootstrap, replace=False) random_states = [np.random.RandomState(s) for s in random_num_set] n_samples = len(X) size = int(n_samples * subsample) if subsample <= 1.0 else subsample bootstrap_indices = [ random_state.choice(range(n_samples), size=size).tolist() for random_state in random_states ] return bootstrap_indices def merge_dict(dicts): """Merge a list of dicts into a single dict""" return dict(ChainMap(*dicts)) def merge_nested_dict(dicts): """ Merge a list of nested dicts into a single dict """ merged_dict = {} for d in dicts: for key in d.keys(): for subkey in d[key].keys(): if key not in list(merged_dict.keys()): merged_dict[key] = {subkey: {}} merged_dict[key][subkey] = d[key][subkey] return merged_dict def is_outlier(points, thresh=3.5): """ Returns a boolean array with True if points are outliers and False otherwise. Parameters: ----------- points : An numobservations by numdimensions array of observations thresh : The modified z-score to use as a threshold. Observations with a modified z-score (based on the median absolute deviation) greater than this value will be classified as outliers. Returns: -------- mask : A numobservations-length boolean array. References: ---------- Boris Iglewicz and David Hoaglin (1993), "Volume 16: How to Detect and Handle Outliers", The ASQC Basic References in Quality Control: Statistical Techniques, Edward F. Mykytka, Ph.D., Editor. """ if len(points.shape) == 1: points = points[:, None] median = np.median(points, axis=0) diff = np.sum((points - median) ** 2, axis=-1) diff = np.sqrt(diff) med_abs_deviation = np.median(diff) modified_z_score = 0.6745 * diff / med_abs_deviation return modified_z_score > thresh def cmds(D, k=2): """Classical multidimensional scaling Theory and code references: https://en.wikipedia.org/wiki/Multidimensional_scaling#Classical_multidimensional_scaling http://www.nervouscomputer.com/hfs/cmdscale-in-python/ Arguments: D -- A squared matrix-like object (array, DataFrame, ....), usually a distance matrix """ n = D.shape[0] if D.shape[0] != D.shape[1]: raise Exception("The matrix D should be squared") if k > (n - 1): raise Exception("k should be an integer <= D.shape[0] - 1") # (1) Set up the squared proximity matrix D_double = np.square(D) # (2) Apply double centering: using the centering matrix # centering matrix center_mat = np.eye(n) - np.ones((n, n)) / n # apply the centering B = -(1 / 2) * center_mat.dot(D_double).dot(center_mat) # (3) Determine the m largest eigenvalues # (where m is the number of dimensions desired for the output) # extract the eigenvalues eigenvals, eigenvecs = np.linalg.eigh(B) # sort descending idx = np.argsort(eigenvals)[::-1] eigenvals = eigenvals[idx] eigenvecs = eigenvecs[:, idx] # (4) Now, X=eigenvecs.dot(eigen_sqrt_diag), # where eigen_sqrt_diag = diag(sqrt(eigenvals)) eigen_sqrt_diag = np.diag(np.sqrt(eigenvals[0:k])) ret = eigenvecs[:, 0:k].dot(eigen_sqrt_diag) return ret def order_groups(X, feature): """Assign an order to the values of a categorical feature. The function returns an order to the unique values in X[feature] according to their similarity based on the other features. The distance between two categories is the sum over the distances of each feature. Arguments: X -- A pandas DataFrame containing all the features to considering in the ordering (including the categorical feature to be ordered). feature -- String, the name of the column holding the categorical feature to be ordered. """ features = X.columns # groups = X[feature].cat.categories.values groups = X[feature].unique() D_cumu = pd.DataFrame(0, index=groups, columns=groups) K = len(groups) for j in set(features) - set([feature]): D = pd.DataFrame(index=groups, columns=groups) # discrete/factor feature j # e.g. j = 'color' if (X[j].dtypes.name == "category") | ( (len(X[j].unique()) <= 10) & ("float" not in X[j].dtypes.name) ): # counts and proportions of each value in j in each group in 'feature' cross_counts = pd.crosstab(X[feature], X[j]) cross_props = cross_counts.div(np.sum(cross_counts, axis=1), axis=0) for i in range(K): group = groups[i] D_values = abs(cross_props - cross_props.loc[group]).sum(axis=1) / 2 D.loc[group, :] = D_values D.loc[:, group] = D_values else: # continuous feature j # e.g. j = 'length' # extract the 1/100 quantiles of the feature j seq = np.arange(0, 1, 1 / 100) q_X_j = X[j].quantile(seq).to_list() # get the ecdf (empiricial cumulative distribution function) # compute the function from the data points in each group X_ecdf = X.groupby(feature)[j].agg(ECDF) # apply each of the functions on the quantiles # i.e. for each quantile value get the probability that j will take # a value less than or equal to this value. q_ecdf = X_ecdf.apply(lambda x: x(q_X_j)) for i in range(K): group = groups[i] D_values = q_ecdf.apply(lambda x: max(abs(x - q_ecdf[group]))) D.loc[group, :] = D_values D.loc[:, group] = D_values D_cumu = D_cumu + D # To avoid numpy.core._exceptions._UFuncInputCastingError, convert to dtype float32 D_cumu = D_cumu.astype(float) # reduce the dimension of the cumulative distance matrix to 1 D1D = cmds(D_cumu, 1).flatten() # order groups based on the values order_idx = D1D.argsort() groups_ordered = D_cumu.index[D1D.argsort()] return pd.Series(range(K), index=groups_ordered) def quantile_ied(x_vec, q): """ Inverse of empirical distribution function (quantile R type 1). More details in https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.mquantiles.html https://stat.ethz.ch/R-manual/R-devel/library/stats/html/quantile.html https://en.wikipedia.org/wiki/Quantile Arguments: x_vec -- A pandas series containing the values to compute the quantile for q -- An array of probabilities (values between 0 and 1) """ x_vec = x_vec.sort_values() n = len(x_vec) - 1 m = 0 j = (n * q + m).astype(int) # location of the value g = n * q + m - j gamma = (g != 0).astype(int) quant_res = (1 - gamma) * x_vec.shift(1, fill_value=0).iloc[j] + gamma * x_vec.iloc[ j ] quant_res.index = q # add min at quantile zero and max at quantile one (if needed) if 0 in q: quant_res.loc[0] = x_vec.min() if 1 in q: quant_res.loc[1] = x_vec.max() return quant_res def CI_estimate(x_vec, C=0.95): """Estimate the size of the confidence interval of a data sample. The confidence interval of the given data sample (x_vec) is [mean(x_vec) - returned value, mean(x_vec) + returned value]. """ alpha = 1 - C n = len(x_vec) stand_err = x_vec.std() / np.sqrt(n) critical_val = 1 - (alpha / 2) z_star = stand_err * t.ppf(critical_val, n - 1) return z_star dict_disc_to_bin = { 'quartile': [25, 50, 75], 'quintile': [20, 40, 60, 80], 'decile': [10, 20, 30, 40, 50, 60, 70, 80, 90] } def ridge_solve(tup): data_synthetic_onehot, model_pred, weights = tup solver = Ridge(alpha=1, fit_intercept=True) solver.fit(data_synthetic_onehot, model_pred, sample_weight=weights.ravel()) # Get explanations importance = solver.coef_[ data_synthetic_onehot[0].toarray().ravel() == 1].ravel() bias = solver.intercept_ return importance, bias def kernel_fn(distances, kernel_width): return np.sqrt(np.exp(-(distances ** 2) / kernel_width ** 2)) def discretize(X, percentiles=[25, 50, 75], all_bins=None): if all_bins is None: all_bins = np.percentile(X, percentiles, axis=0).T return (np.array([np.digitize(a, bins) for (a, bins) in zip(X.T, all_bins)]).T, all_bins)
scikit-explain
/scikit-explain-0.1.3.tar.gz/scikit-explain-0.1.3/skexplain/common/utils.py
utils.py
import numpy as np import xarray as xr import pandas as pd from collections import ChainMap from statsmodels.distributions.empirical_distribution import ECDF from scipy.stats import t from sklearn.linear_model import Ridge class MissingFeaturesError(Exception): """ Raised when features are missing. E.g., All features are require for IAS or MEC """ def __init__(self, estimator_name, missing_features): self.message = f"""ALE for {estimator_name} was not computed for all features. These features were missing: {missing_features}""" super().__init__(self.message) def check_all_features_for_ale(ale, estimator_names, features): """ Is there ALE values for each feature """ data_vars = ale.data_vars for estimator_name in estimator_names: _list = [True if f'{f}__{estimator_name}__ale' in data_vars else False for f in features] if not all(_list): missing_features = np.array(features)[np.where(~np.array(_list))[0]] raise MissingFeaturesError(estimator_name, missing_features) def flatten_nested_list(list_of_lists): """Turn a list of list into a single, flatten list""" all_elements_are_lists = all([is_list(item) for item in list_of_lists]) if not all_elements_are_lists: new_list_of_lists = [] for item in list_of_lists: if is_list(item): new_list_of_lists.append(item) else: new_list_of_lists.append([item]) list_of_lists = new_list_of_lists return [item for elem in list_of_lists for item in elem] def is_dataset(data): return isinstance(data, xr.Dataset) def is_dataframe(data): return isinstance(data, pd.DataFrame) def check_is_permuted(X, X_permuted): permuted_features = [] for f in X.columns: if not np.array_equal(X.loc[:, f], X_permuted.loc[:, f]): permuted_features.append(f) return permuted_features def is_correlated(corr_matrix, feature_pairs, rho_threshold=0.8): """ Returns dict where the key are the feature pairs and the items are booleans of whether the pair is linearly correlated above the given threshold. """ results = {} for pair in feature_pairs: f1, f2 = pair.split("__") corr = corr_matrix[f1][f2] results[pair] = round(corr, 3) >= rho_threshold return results def is_fitted(estimator): """ Checks if a scikit-learn estimator/transformer has already been fit. Parameters ---------- estimator: scikit-learn estimator (e.g. RandomForestClassifier) or transformer (e.g. MinMaxScaler) object Returns ------- Boolean that indicates if ``estimator`` has already been fit (True) or not (False). """ attrs = [v for v in vars(estimator) if v.endswith("_") and not v.startswith("__")] return len(attrs) != 0 def determine_feature_dtype(X, features): """ Determine if any features are categorical. """ feature_names = list(X.columns) non_cat_features = [] cat_features = [] for f in features: if f not in feature_names: raise KeyError(f"'{f}' is not a valid feature.") if str(X.dtypes[f]) == "category": cat_features.append(f) else: non_cat_features.append(f) return non_cat_features, cat_features def cartesian(array, out=None): """Generate a cartesian product of input array. Parameters Codes comes directly from sklearn/utils/extmath.py ---------- array : list of array-like 1-D array to form the cartesian product of. out : ndarray Array to place the cartesian product in. Returns ------- out : ndarray 2-D array of shape (M, len(array)) containing cartesian products formed of input array. X -------- >>> cartesian(([1, 2, 3], [4, 5], [6, 7])) array([[1, 4, 6], [1, 4, 7], [1, 5, 6], [1, 5, 7], [2, 4, 6], [2, 4, 7], [2, 5, 6], [2, 5, 7], [3, 4, 6], [3, 4, 7], [3, 5, 6], [3, 5, 7]]) """ array = [np.asarray(x) for x in array] shape = (len(x) for x in array) dtype = array[0].dtype ix = np.indices(shape) ix = ix.reshape(len(array), -1).T if out is None: out = np.empty_like(ix, dtype=dtype) for n, arr in enumerate(array): out[:, n] = array[n][ix[:, n]] return out def to_dataframe(results, estimator_names, feature_names): """ Convert the feature contribution results to a pandas.DataFrame with nested indexing. """ # results[0] = dict of avg. contributions per estimator # results[1] = dict of avg. feature values per estimator contrib_names = feature_names.copy() contrib_names += ["Bias"] nested_key = results[0][estimator_names[0]].keys() dframes = [] for key in nested_key: data = [] for name in estimator_names: contribs_dict = results[0][name][key] vals_dict = results[1][name][key] data.append( [contribs_dict[f] for f in contrib_names] + [vals_dict[f] for f in feature_names] ) column_names = [f + "_contrib" for f in contrib_names] + [ f + "_val" for f in feature_names ] df = pd.DataFrame(data, columns=column_names, index=estimator_names) dframes.append(df) result = pd.concat(dframes, keys=list(nested_key)) return result def to_xarray(data): """Converts data dict to xarray.Dataset""" ds = xr.Dataset(data) return ds def is_str(a): """Check if argument is a string""" return isinstance(a, str) def is_list(a): """Check if argument is a list""" return isinstance(a, list) def to_list(a): """Convert argument to a list""" return [a] def is_tuple(a): """Check if argument is a tuple""" return isinstance(a, tuple) def is_valid_feature(features, official_feature_list): """Check if a feature is valid""" for f in features: if isinstance(f, tuple): for sub_f in f: if sub_f not in official_feature_list: raise Exception(f"Feature {sub_f} is not a valid feature!") else: if f not in official_feature_list: raise Exception(f"Feature {f} is not a valid feature!") def is_classifier(estimator): """Return True if the given estimator is (probably) a classifier. Parameters Function from base.py in sklearn ---------- estimator : object Estimator object to test. Returns ------- out : bool True if estimator is a classifier and False otherwise. """ return getattr(estimator, "_estimator_type", None) == "classifier" def is_regressor(estimator): """Return True if the given estimator is (probably) a regressor. Parameters Functions from base.py in sklearn ---------- estimator : object Estimator object to test. Returns ------- out : bool True if estimator is a regressor and False otherwise. """ return getattr(estimator, "_estimator_type", None) == "regressor" def is_all_dict(alist): """Check if every element of a list are dicts""" return all([isinstance(l, dict) for l in alist]) def compute_bootstrap_indices(X, subsample=1.0, n_bootstrap=1, seed=90): """ Routine to generate the indices for bootstrapped X. Args: ---------------- X : pandas.DataFrame, numpy.array subsample : float or integer n_bootstrap : integer Return: ---------------- bootstrap_indices : list list of indices of the size of subsample or subsample*len(X) """ base_random_state = np.random.RandomState(seed=seed) random_num_set = base_random_state.choice(10000, size=n_bootstrap, replace=False) random_states = [np.random.RandomState(s) for s in random_num_set] n_samples = len(X) size = int(n_samples * subsample) if subsample <= 1.0 else subsample bootstrap_indices = [ random_state.choice(range(n_samples), size=size).tolist() for random_state in random_states ] return bootstrap_indices def merge_dict(dicts): """Merge a list of dicts into a single dict""" return dict(ChainMap(*dicts)) def merge_nested_dict(dicts): """ Merge a list of nested dicts into a single dict """ merged_dict = {} for d in dicts: for key in d.keys(): for subkey in d[key].keys(): if key not in list(merged_dict.keys()): merged_dict[key] = {subkey: {}} merged_dict[key][subkey] = d[key][subkey] return merged_dict def is_outlier(points, thresh=3.5): """ Returns a boolean array with True if points are outliers and False otherwise. Parameters: ----------- points : An numobservations by numdimensions array of observations thresh : The modified z-score to use as a threshold. Observations with a modified z-score (based on the median absolute deviation) greater than this value will be classified as outliers. Returns: -------- mask : A numobservations-length boolean array. References: ---------- Boris Iglewicz and David Hoaglin (1993), "Volume 16: How to Detect and Handle Outliers", The ASQC Basic References in Quality Control: Statistical Techniques, Edward F. Mykytka, Ph.D., Editor. """ if len(points.shape) == 1: points = points[:, None] median = np.median(points, axis=0) diff = np.sum((points - median) ** 2, axis=-1) diff = np.sqrt(diff) med_abs_deviation = np.median(diff) modified_z_score = 0.6745 * diff / med_abs_deviation return modified_z_score > thresh def cmds(D, k=2): """Classical multidimensional scaling Theory and code references: https://en.wikipedia.org/wiki/Multidimensional_scaling#Classical_multidimensional_scaling http://www.nervouscomputer.com/hfs/cmdscale-in-python/ Arguments: D -- A squared matrix-like object (array, DataFrame, ....), usually a distance matrix """ n = D.shape[0] if D.shape[0] != D.shape[1]: raise Exception("The matrix D should be squared") if k > (n - 1): raise Exception("k should be an integer <= D.shape[0] - 1") # (1) Set up the squared proximity matrix D_double = np.square(D) # (2) Apply double centering: using the centering matrix # centering matrix center_mat = np.eye(n) - np.ones((n, n)) / n # apply the centering B = -(1 / 2) * center_mat.dot(D_double).dot(center_mat) # (3) Determine the m largest eigenvalues # (where m is the number of dimensions desired for the output) # extract the eigenvalues eigenvals, eigenvecs = np.linalg.eigh(B) # sort descending idx = np.argsort(eigenvals)[::-1] eigenvals = eigenvals[idx] eigenvecs = eigenvecs[:, idx] # (4) Now, X=eigenvecs.dot(eigen_sqrt_diag), # where eigen_sqrt_diag = diag(sqrt(eigenvals)) eigen_sqrt_diag = np.diag(np.sqrt(eigenvals[0:k])) ret = eigenvecs[:, 0:k].dot(eigen_sqrt_diag) return ret def order_groups(X, feature): """Assign an order to the values of a categorical feature. The function returns an order to the unique values in X[feature] according to their similarity based on the other features. The distance between two categories is the sum over the distances of each feature. Arguments: X -- A pandas DataFrame containing all the features to considering in the ordering (including the categorical feature to be ordered). feature -- String, the name of the column holding the categorical feature to be ordered. """ features = X.columns # groups = X[feature].cat.categories.values groups = X[feature].unique() D_cumu = pd.DataFrame(0, index=groups, columns=groups) K = len(groups) for j in set(features) - set([feature]): D = pd.DataFrame(index=groups, columns=groups) # discrete/factor feature j # e.g. j = 'color' if (X[j].dtypes.name == "category") | ( (len(X[j].unique()) <= 10) & ("float" not in X[j].dtypes.name) ): # counts and proportions of each value in j in each group in 'feature' cross_counts = pd.crosstab(X[feature], X[j]) cross_props = cross_counts.div(np.sum(cross_counts, axis=1), axis=0) for i in range(K): group = groups[i] D_values = abs(cross_props - cross_props.loc[group]).sum(axis=1) / 2 D.loc[group, :] = D_values D.loc[:, group] = D_values else: # continuous feature j # e.g. j = 'length' # extract the 1/100 quantiles of the feature j seq = np.arange(0, 1, 1 / 100) q_X_j = X[j].quantile(seq).to_list() # get the ecdf (empiricial cumulative distribution function) # compute the function from the data points in each group X_ecdf = X.groupby(feature)[j].agg(ECDF) # apply each of the functions on the quantiles # i.e. for each quantile value get the probability that j will take # a value less than or equal to this value. q_ecdf = X_ecdf.apply(lambda x: x(q_X_j)) for i in range(K): group = groups[i] D_values = q_ecdf.apply(lambda x: max(abs(x - q_ecdf[group]))) D.loc[group, :] = D_values D.loc[:, group] = D_values D_cumu = D_cumu + D # To avoid numpy.core._exceptions._UFuncInputCastingError, convert to dtype float32 D_cumu = D_cumu.astype(float) # reduce the dimension of the cumulative distance matrix to 1 D1D = cmds(D_cumu, 1).flatten() # order groups based on the values order_idx = D1D.argsort() groups_ordered = D_cumu.index[D1D.argsort()] return pd.Series(range(K), index=groups_ordered) def quantile_ied(x_vec, q): """ Inverse of empirical distribution function (quantile R type 1). More details in https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.mquantiles.html https://stat.ethz.ch/R-manual/R-devel/library/stats/html/quantile.html https://en.wikipedia.org/wiki/Quantile Arguments: x_vec -- A pandas series containing the values to compute the quantile for q -- An array of probabilities (values between 0 and 1) """ x_vec = x_vec.sort_values() n = len(x_vec) - 1 m = 0 j = (n * q + m).astype(int) # location of the value g = n * q + m - j gamma = (g != 0).astype(int) quant_res = (1 - gamma) * x_vec.shift(1, fill_value=0).iloc[j] + gamma * x_vec.iloc[ j ] quant_res.index = q # add min at quantile zero and max at quantile one (if needed) if 0 in q: quant_res.loc[0] = x_vec.min() if 1 in q: quant_res.loc[1] = x_vec.max() return quant_res def CI_estimate(x_vec, C=0.95): """Estimate the size of the confidence interval of a data sample. The confidence interval of the given data sample (x_vec) is [mean(x_vec) - returned value, mean(x_vec) + returned value]. """ alpha = 1 - C n = len(x_vec) stand_err = x_vec.std() / np.sqrt(n) critical_val = 1 - (alpha / 2) z_star = stand_err * t.ppf(critical_val, n - 1) return z_star dict_disc_to_bin = { 'quartile': [25, 50, 75], 'quintile': [20, 40, 60, 80], 'decile': [10, 20, 30, 40, 50, 60, 70, 80, 90] } def ridge_solve(tup): data_synthetic_onehot, model_pred, weights = tup solver = Ridge(alpha=1, fit_intercept=True) solver.fit(data_synthetic_onehot, model_pred, sample_weight=weights.ravel()) # Get explanations importance = solver.coef_[ data_synthetic_onehot[0].toarray().ravel() == 1].ravel() bias = solver.intercept_ return importance, bias def kernel_fn(distances, kernel_width): return np.sqrt(np.exp(-(distances ** 2) / kernel_width ** 2)) def discretize(X, percentiles=[25, 50, 75], all_bins=None): if all_bins is None: all_bins = np.percentile(X, percentiles, axis=0).T return (np.array([np.digitize(a, bins) for (a, bins) in zip(X.T, all_bins)]).T, all_bins)
0.792304
0.412767
scikit-ext ========== |PyPI| |Status| |License| |Travis| .. |PyPI| image:: https://img.shields.io/pypi/v/scikit-ext.svg :target: https://pypi.org/project/scikit-ext/ .. |Status| image:: https://img.shields.io/pypi/status/scikit-ext.svg :target: https://pypi.org/project/scikit-ext/ .. |License| image:: https://img.shields.io/pypi/l/scikit-ext.svg :target: https://github.com/denver1117/scikit-ext/blob/master/LICENSE .. |Travis| image:: https://travis-ci.org/denver1117/scikit-ext.svg?branch=master :target: https://travis-ci.org/denver1117/scikit-ext About ~~~~~ The ``scikit_ext`` package contains various scikit-learn extensions, built entirely on top of ``sklearn`` base classes. The package is separated into two modules: `estimators <http://scikit-ext.s3-website-us-east-1.amazonaws.com/scikit_ext.html#module-scikit_ext.estimators>`__ and `scorers <http://scikit-ext.s3-website-us-east-1.amazonaws.com/scikit_ext.html#module-scikit_ext.scorers>`__. Full documentation can be found `here <http://scikit-ext.s3-website-us-east-1.amazonaws.com/index.html>`__. Installation ~~~~~~~~~~~~ `Package Index on PyPI <https://pypi.python.org/pypi/scikit-ext>`__ To install: :: pip install scikit-ext Estimators ~~~~~~~~~~ - ``MultiGridSearchCV``: Extension to native sklearn ``GridSearchCV`` for multiple estimators and param\_grids. Accepts a list of estimators and param\_grids, iterating through each fitting a ``GridSearchCV`` model for each estimator/param\_grid. Chooses the best fitted ``GridSearchCV`` model. Inherits sklearn's ``BaseSearchCV`` class, so attributes and methods are all similar to ``GridSearchCV``. - ``PrunedPipeline``: Extension to native sklearn ``Pipeline`` intended for text learning pipelines with a vectorization step and a feature selection step. Instead of remembering all vectorizer vocabulary elements and selecting appropriate features at prediction time, the extension prunes the vocabulary after fitting to only include elements who will ultimately survive the feature selection filter applied later in the pipeline. This reduces memory and improves prediction latency. Predictions will be identical to those made with a trained ``Pipeline`` model. Inherits sklearn's ``Pipeline`` class, so attributes and methods are all similar to ``Pipeline``. - ``ZoomGridSearchCV``: Extension to native sklearn ``GridSearchCV``. Fits multiple ``GridSearchCV`` models, updating the ``param_grid`` after each iteration. The update looks at successful parameter values for each grid key. A new list of values is created which expands the resolution of the search values centered around the best performing value of the previous fit. This allows the standard grid search process to start with a small number of distant values for each parameter, and zoom in as the better performing corner of the hyperparameter search space becomes clear. - ``IterRandomEstimator``: Meta-Estimator intended primarily for unsupervised estimators whose fitted model can be heavily dependent on an arbitrary random initialization state. It is best used for problems where a ``fit_predict`` method is intended, so the only data used for prediction will be the same data on which the model was fitted. - ``OptimizedEnsemble``: An optimized ensemble class. Will find the optimal ``n_estimators`` parameter for the given ensemble estimator, according to the specified input parameters. - ``OneVsRestAdjClassifier``: One-Vs-Rest multiclass strategy. The adjusted version is a custom extension which overwrites the inherited ``predict_proba`` method with a more flexible method allowing custom normalization for the predicted probabilities. Any norm argument that can be passed directly to ``sklearn.preprocessing.normalize`` is allowed. Additionally, norm=None will skip the normalization step alltogeter. To mimick the inherited ``OneVsRestClassfier`` behavior, set norm='l2'. All other methods are inherited from ``OneVsRestClassifier``. Scorers ~~~~~~~ - ``TimeScorer``: Score using estimated prediction latency of estimator. - ``MemoryScorer``: Score using estimated memory of pickled estimator object. - ``CombinedScorer``: Score combining multiple scorers by averaging their scores. - ``cluster_distribution_score``: Scoring function which scores the resulting cluster distribution accross classes. A more even distribution indicates a higher score. Authors ~~~~~~~ Evan Harris License ~~~~~~~ This project is licensed under the MIT License - see the LICENSE file for details
scikit-ext
/scikit-ext-0.1.16.tar.gz/scikit-ext-0.1.16/README.rst
README.rst
scikit-ext ========== |PyPI| |Status| |License| |Travis| .. |PyPI| image:: https://img.shields.io/pypi/v/scikit-ext.svg :target: https://pypi.org/project/scikit-ext/ .. |Status| image:: https://img.shields.io/pypi/status/scikit-ext.svg :target: https://pypi.org/project/scikit-ext/ .. |License| image:: https://img.shields.io/pypi/l/scikit-ext.svg :target: https://github.com/denver1117/scikit-ext/blob/master/LICENSE .. |Travis| image:: https://travis-ci.org/denver1117/scikit-ext.svg?branch=master :target: https://travis-ci.org/denver1117/scikit-ext About ~~~~~ The ``scikit_ext`` package contains various scikit-learn extensions, built entirely on top of ``sklearn`` base classes. The package is separated into two modules: `estimators <http://scikit-ext.s3-website-us-east-1.amazonaws.com/scikit_ext.html#module-scikit_ext.estimators>`__ and `scorers <http://scikit-ext.s3-website-us-east-1.amazonaws.com/scikit_ext.html#module-scikit_ext.scorers>`__. Full documentation can be found `here <http://scikit-ext.s3-website-us-east-1.amazonaws.com/index.html>`__. Installation ~~~~~~~~~~~~ `Package Index on PyPI <https://pypi.python.org/pypi/scikit-ext>`__ To install: :: pip install scikit-ext Estimators ~~~~~~~~~~ - ``MultiGridSearchCV``: Extension to native sklearn ``GridSearchCV`` for multiple estimators and param\_grids. Accepts a list of estimators and param\_grids, iterating through each fitting a ``GridSearchCV`` model for each estimator/param\_grid. Chooses the best fitted ``GridSearchCV`` model. Inherits sklearn's ``BaseSearchCV`` class, so attributes and methods are all similar to ``GridSearchCV``. - ``PrunedPipeline``: Extension to native sklearn ``Pipeline`` intended for text learning pipelines with a vectorization step and a feature selection step. Instead of remembering all vectorizer vocabulary elements and selecting appropriate features at prediction time, the extension prunes the vocabulary after fitting to only include elements who will ultimately survive the feature selection filter applied later in the pipeline. This reduces memory and improves prediction latency. Predictions will be identical to those made with a trained ``Pipeline`` model. Inherits sklearn's ``Pipeline`` class, so attributes and methods are all similar to ``Pipeline``. - ``ZoomGridSearchCV``: Extension to native sklearn ``GridSearchCV``. Fits multiple ``GridSearchCV`` models, updating the ``param_grid`` after each iteration. The update looks at successful parameter values for each grid key. A new list of values is created which expands the resolution of the search values centered around the best performing value of the previous fit. This allows the standard grid search process to start with a small number of distant values for each parameter, and zoom in as the better performing corner of the hyperparameter search space becomes clear. - ``IterRandomEstimator``: Meta-Estimator intended primarily for unsupervised estimators whose fitted model can be heavily dependent on an arbitrary random initialization state. It is best used for problems where a ``fit_predict`` method is intended, so the only data used for prediction will be the same data on which the model was fitted. - ``OptimizedEnsemble``: An optimized ensemble class. Will find the optimal ``n_estimators`` parameter for the given ensemble estimator, according to the specified input parameters. - ``OneVsRestAdjClassifier``: One-Vs-Rest multiclass strategy. The adjusted version is a custom extension which overwrites the inherited ``predict_proba`` method with a more flexible method allowing custom normalization for the predicted probabilities. Any norm argument that can be passed directly to ``sklearn.preprocessing.normalize`` is allowed. Additionally, norm=None will skip the normalization step alltogeter. To mimick the inherited ``OneVsRestClassfier`` behavior, set norm='l2'. All other methods are inherited from ``OneVsRestClassifier``. Scorers ~~~~~~~ - ``TimeScorer``: Score using estimated prediction latency of estimator. - ``MemoryScorer``: Score using estimated memory of pickled estimator object. - ``CombinedScorer``: Score combining multiple scorers by averaging their scores. - ``cluster_distribution_score``: Scoring function which scores the resulting cluster distribution accross classes. A more even distribution indicates a higher score. Authors ~~~~~~~ Evan Harris License ~~~~~~~ This project is licensed under the MIT License - see the LICENSE file for details
0.935479
0.636113
import numpy as np import time import _pickle as cPickle from sklearn.metrics.scorer import _BaseScorer class TimeScorer(_BaseScorer): def _score(self, method_caller, estimator, X, y_true=None, n_iter=1, unit=True, scoring=None, tradeoff=None, sample_weight=None): """ Evaluate prediction latency. Parameters ---------- method_caller : callable Returns predictions given an estimator, method name, and other arguments, potentially caching results. estimator : object Trained estimator to use for scoring. X : array-like or sparse matrix Test data that will be fed to estimator.predict. y_true : array-like, default None Gold standard target values for X. Not necessary for _TimeScorer. n_iter : int, default 1 Number of timing runs. unit : bool, default True Use per-unit latency or total latency. scoring: scorer object, default None Scorer used for trade-off. tradeoff: float, default None Multiplier for tradeoff. Returns ------- score : float Custom score combining scoring method (optional) and estimator prediction latency (ms). """ # overwrite kwargs from _kwargs if "n_iter" in self._kwargs.keys(): n_iter = self._kwargs["n_iter"] if "unit" in self._kwargs.keys(): unit = self._kwargs["unit"] if "scoring" in self._kwargs.keys(): scoring = self._kwargs["scoring"] if "tradeoff" in self._kwargs.keys(): tradeoff = self._kwargs["tradeoff"] # run timing iterations count = 0 time_sum = 0 while count < n_iter: count += 1 if unit: time_sum += np.sum([ self._elapsed(estimator, [x]) for x in X]) else: time_sum += self._elapsed(estimator, X) unit_time = 1000 * float((time_sum / float(n_iter)) / float(len(X))) if scoring and tradeoff: scoring_score = scoring(estimator, X, y_true) return scoring_score - (tradeoff * unit_time) else: return 1. / unit_time def _elapsed(self, estimator, X): """ Return elapsed time for predict method of estimator on X. """ start_time = time.time() y_pred = estimator.predict(X) end_time = time.time() return end_time - start_time class MemoryScorer(_BaseScorer): def _score(self, method_caller, estimator, X=None, y_true=None, scoring=None, tradeoff=None, sample_weight=None): """ Score using estimated memory of pickled estimator object. Parameters ---------- method_caller : callable Returns predictions given an estimator, method name, and other arguments, potentially caching results. estimator : object Trained estimator to use for scoring. X : array-like or sparse matrix Test data that will be fed to estimator.predict. Not necessary for _MemoryScorer. y_true : array-like, default None Gold standard target values for X. Not necessary for _MemoryScorer. scoring: scorer object, default None Scorer used for trade-off. tradeoff: float, default None Multiplier for tradeoff. Returns ------- score : float Custom score combining scoring method (optional) and estimator memory (MB). """ # overwrite kwargs from _kwargs if "scoring" in self._kwargs.keys(): scoring = self._kwargs["scoring"] if "tradeoff" in self._kwargs.keys(): tradeoff = self._kwargs["tradeoff"] obj_size = (0.000001 * float(len(cPickle.dumps(estimator)))) if scoring and tradeoff: scoring_score = scoring(estimator, X, y_true) return scoring_score - (tradeoff * obj_size) else: return 1. / obj_size class CombinedScorer(_BaseScorer): def _score(self, method_caller, estimator, X=None, y_true=None, scoring=None, sample_weight=None): """ Combine multiple scorers using the average of their scores. Parameters ---------- method_caller : callable Returns predictions given an estimator, method name, and other arguments, potentially caching results. estimator : object Trained estimator to use for scoring. X : array-like or sparse matrix Test data that will be fed to estimator.predict. Not necessary for _MemoryScorer. y_true : array-like, default None Gold standard target values for X. Not necessary for _MemoryScorer. scoring: list of scorer objects, default None List of scorers to average. Returns ------- score : float Custom score combining input scoring methods using the mean score.. """ # overwrite kwargs from _kwargs if "scoring" in self._kwargs.keys(): scoring = self._kwargs["scoring"] if (not isinstance(scoring, list)) and (not isinstance(scoring, tuple)): scoring = [scoring] return np.mean([x(estimator, X, y_true) for x in scoring]) def cluster_distribution_score(X, labels): """ Scoring function which scores the resulting cluster distribution accross classes. A more even distribution indicates a higher score. Parameters ---------- X : array-like, shape (``n_samples``, ``n_features``) List of ``n_features``-dimensional data points. Each row corresponds to a single data point. labels : array-like, shape (``n_samples``,) Predicted labels for each sample. Returns ------- score : float The resulting Cluster Distribution score. """ n_clusters = float(len(np.unique(labels))) max_count = float(np.max(np.bincount(labels))) return 1.0 / ((max_count / len(labels)) / (1.0 / n_clusters))
scikit-ext
/scikit-ext-0.1.16.tar.gz/scikit-ext-0.1.16/scikit_ext/scorers.py
scorers.py
import numpy as np import time import _pickle as cPickle from sklearn.metrics.scorer import _BaseScorer class TimeScorer(_BaseScorer): def _score(self, method_caller, estimator, X, y_true=None, n_iter=1, unit=True, scoring=None, tradeoff=None, sample_weight=None): """ Evaluate prediction latency. Parameters ---------- method_caller : callable Returns predictions given an estimator, method name, and other arguments, potentially caching results. estimator : object Trained estimator to use for scoring. X : array-like or sparse matrix Test data that will be fed to estimator.predict. y_true : array-like, default None Gold standard target values for X. Not necessary for _TimeScorer. n_iter : int, default 1 Number of timing runs. unit : bool, default True Use per-unit latency or total latency. scoring: scorer object, default None Scorer used for trade-off. tradeoff: float, default None Multiplier for tradeoff. Returns ------- score : float Custom score combining scoring method (optional) and estimator prediction latency (ms). """ # overwrite kwargs from _kwargs if "n_iter" in self._kwargs.keys(): n_iter = self._kwargs["n_iter"] if "unit" in self._kwargs.keys(): unit = self._kwargs["unit"] if "scoring" in self._kwargs.keys(): scoring = self._kwargs["scoring"] if "tradeoff" in self._kwargs.keys(): tradeoff = self._kwargs["tradeoff"] # run timing iterations count = 0 time_sum = 0 while count < n_iter: count += 1 if unit: time_sum += np.sum([ self._elapsed(estimator, [x]) for x in X]) else: time_sum += self._elapsed(estimator, X) unit_time = 1000 * float((time_sum / float(n_iter)) / float(len(X))) if scoring and tradeoff: scoring_score = scoring(estimator, X, y_true) return scoring_score - (tradeoff * unit_time) else: return 1. / unit_time def _elapsed(self, estimator, X): """ Return elapsed time for predict method of estimator on X. """ start_time = time.time() y_pred = estimator.predict(X) end_time = time.time() return end_time - start_time class MemoryScorer(_BaseScorer): def _score(self, method_caller, estimator, X=None, y_true=None, scoring=None, tradeoff=None, sample_weight=None): """ Score using estimated memory of pickled estimator object. Parameters ---------- method_caller : callable Returns predictions given an estimator, method name, and other arguments, potentially caching results. estimator : object Trained estimator to use for scoring. X : array-like or sparse matrix Test data that will be fed to estimator.predict. Not necessary for _MemoryScorer. y_true : array-like, default None Gold standard target values for X. Not necessary for _MemoryScorer. scoring: scorer object, default None Scorer used for trade-off. tradeoff: float, default None Multiplier for tradeoff. Returns ------- score : float Custom score combining scoring method (optional) and estimator memory (MB). """ # overwrite kwargs from _kwargs if "scoring" in self._kwargs.keys(): scoring = self._kwargs["scoring"] if "tradeoff" in self._kwargs.keys(): tradeoff = self._kwargs["tradeoff"] obj_size = (0.000001 * float(len(cPickle.dumps(estimator)))) if scoring and tradeoff: scoring_score = scoring(estimator, X, y_true) return scoring_score - (tradeoff * obj_size) else: return 1. / obj_size class CombinedScorer(_BaseScorer): def _score(self, method_caller, estimator, X=None, y_true=None, scoring=None, sample_weight=None): """ Combine multiple scorers using the average of their scores. Parameters ---------- method_caller : callable Returns predictions given an estimator, method name, and other arguments, potentially caching results. estimator : object Trained estimator to use for scoring. X : array-like or sparse matrix Test data that will be fed to estimator.predict. Not necessary for _MemoryScorer. y_true : array-like, default None Gold standard target values for X. Not necessary for _MemoryScorer. scoring: list of scorer objects, default None List of scorers to average. Returns ------- score : float Custom score combining input scoring methods using the mean score.. """ # overwrite kwargs from _kwargs if "scoring" in self._kwargs.keys(): scoring = self._kwargs["scoring"] if (not isinstance(scoring, list)) and (not isinstance(scoring, tuple)): scoring = [scoring] return np.mean([x(estimator, X, y_true) for x in scoring]) def cluster_distribution_score(X, labels): """ Scoring function which scores the resulting cluster distribution accross classes. A more even distribution indicates a higher score. Parameters ---------- X : array-like, shape (``n_samples``, ``n_features``) List of ``n_features``-dimensional data points. Each row corresponds to a single data point. labels : array-like, shape (``n_samples``,) Predicted labels for each sample. Returns ------- score : float The resulting Cluster Distribution score. """ n_clusters = float(len(np.unique(labels))) max_count = float(np.max(np.bincount(labels))) return 1.0 / ((max_count / len(labels)) / (1.0 / n_clusters))
0.910438
0.401219
import numpy as np import pandas as pd from scipy.sparse import csr_matrix from scipy.stats import rankdata from sklearn.model_selection import GridSearchCV from sklearn.multiclass import OneVsRestClassifier from sklearn.preprocessing import normalize from sklearn.base import ( BaseEstimator, ClassifierMixin, is_classifier, clone) from sklearn.utils.metaestimators import if_delegate_has_method from sklearn.model_selection._split import check_cv from sklearn.model_selection._search import BaseSearchCV from sklearn.model_selection import cross_val_score from sklearn.exceptions import NotFittedError from sklearn.metrics import calinski_harabasz_score from sklearn.pipeline import Pipeline class ZoomGridSearchCV(GridSearchCV): """ Fits multiple ``GridSearchCV`` models, updating the ``param_grid`` after each iteration. The update looks at successful parameter values for each grid key. A new list of values is created which expands the resolution of the search values centered around the best performing value of the previous fit. This allows the standard grid search process to start with a small number of distant values for each parameter, and zoom in as the better performing corner of the hyperparameter search space becomes clear. The process only updates paramter keys whose values are all of type ``int`` or are all of type ``float``. Any other data type valued parameters or mixed parameters will simply be copied and reused for each iteration. The only stopping criteria for iterations is the ``n_iter`` parameter. Inherits ``GridSearchCV`` so all methods and attributes are identical except for ``fit`` which is overriden by a method looping through the ``fit`` method of ``GridSearchCV``. Ultimately, the class exactly resembles a fitted ``GridSearchCV`` after ``fit`` is run. Running ``fit`` with ``n_iter = 0`` is identical to funning ``fit`` with ``GridSearchCV``. """ def __init__(self, estimator, param_grid, n_iter=1, **kwargs): GridSearchCV.__init__( self, estimator, param_grid, **kwargs) self._fit = GridSearchCV.fit self.n_iter=n_iter def fit(self, X, y=None, groups=None, **fit_params): """ Run fit with all sets of parameters. For ``n_iter`` iterations, zoom in on successful parameters, creating a new parameter grid and refitting. Parameters ---------- X : array-like, shape = [n_samples, n_features] Training vector, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] or [n_samples, n_output], optional Target relative to X for classification or regression; None for unsupervised learning. groups : array-like, with shape (n_samples,), optional Group labels for the samples used while splitting the dataset into train/test set. **fit_params : dict of string -> object Parameters passed to the ``fit`` method of the estimator """ n = -1 while n < self.n_iter: if n > -1: self._update_grid() if self.verbose > 0: print("Grid Updated on Iteration {0}:".format(n)) print(self.param_grid) else: if self.verbose > 0: print("Initial Grid:") print(self.param_grid) GridSearchCV.fit(self, X, y=y, groups=groups, **fit_params) n += 1 def _update_grid(self): """ Update parameter grid based on previous fit results """ results = pd.DataFrame(self.cv_results_) # get parameters to update update_params = {} for key, value in self.param_grid.items(): if all(isinstance(x, int) for x in value): updated_value = self._update_elements( results, key, value, dtype=int) elif all(isinstance(x, float) for x in value): updated_value = self._update_elements( results, key, value, dtype=float) else: updated_value = value if len(updated_value) > 0: update_params[key] = updated_value # update parameter grid attribute self.param_grid = update_params def _update_elements(self, results, key, value, dtype=int): """ Update elements of a single param_grid key, value pair """ tmp = (results.loc[~pd.isnull(results["param_{0}".format(key)]), ["param_{0}".format(key), "rank_test_score"]] .sort_values("rank_test_score")) best_val = tmp["param_{0}".format(key)].values[0] value_range = (np.max(value) - np.min(value)) / 5.0 val = ( list( np.linspace(best_val, best_val + value_range, int(round(len(value) / 2.0)))) + list( np.linspace(best_val - value_range, best_val, int(round(len(value) / 2.0))))) val = list(np.unique([dtype(x) for x in val])) if all(x >= 0 for x in value): val = [x for x in val if x >= 0] elif all(x <= 0 for x in value): val = [x for x in val if x <= 0] return val class PrunedPipeline(Pipeline): """ A standard sklearn feature Pipeline with additional pruning method. After fitting, the pruning method is applied to the fitted pipeline. This applies the feature selection directly to the fitted vocabulary (and idf values if applicable), removing all elements of these attributes that will not ultimately survive the feature selection filter. The ``PrunedPipeline`` will make idential predictions as a similarly trained ``Pipeline``. However, it will require less memory and will make faster predictions. Parameters ---------- steps : list List of (name, transform) tuples (implementing fit/transform) that are chained, in the order in which they are chained, with the last object an estimator. memory : None, str or object with the joblib.Memory interface, optional Used to cache the fitted transformers of the pipeline. By default, no caching is performed. If a string is given, it is the path to the caching directory. Enabling caching triggers a clone of the transformers before fitting. Therefore, the transformer instance given to the pipeline cannot be inspected directly. Use the attribute ``named_steps`` or ``steps`` to inspect estimators within the pipeline. Caching the transformers is advantageous when fitting is time consuming. vectorizer_name : str, default vec Name of ``Pipeline`` step which performs feature extraction. Any transformer with a ``vocabulary_``dictionary can be the step with this name. Ideal transformers are of types sklearn.feature_extraction.text.CountVectorizer or sklearn.feature_extraction.text.TfidfVectorizer. selector_name : str, default select Name of ``Pipeline`` step which performs feature selection. Any transformer with a ``get_support`` method returning an iterable of booleans with length ``len(vocabulary_)`` can be the step with this name. Ideal transformers are of type sklearn.feature_selection.univariate_selection._BaseFilter. Attributes ---------- named_steps : bunch object, a dictionary with attribute access Read-only attribute to access any step parameter by user given name. Keys are step names and values are steps parameters. """ def __init__(self, steps, memory=None, vectorizer_name="vec", selector_name="select", verbose=False): self.steps = steps self.memory = memory self.verbose = verbose self.vectorizer_name = vectorizer_name self.selector_name = selector_name self._validate_steps() self._validate_prune() def fit(self, X, y=None, **fit_params): """ Fit the model Fit all the transforms one after the other and transform the data, then fit the transformed data using the final estimator. Perform prune after standard pipeline fit. Parameters ---------- X : iterable Training data. Must fulfill input requirements of first step of the pipeline. y : iterable, default=None Training targets. Must fulfill label requirements for all steps of the pipeline. **fit_params : dict of string -> object Parameters passed to the ``fit`` method of each step, where each parameter name is prefixed such that parameter ``p`` for step ``s`` has key ``s__p``. Returns ------- self : PrunedPipeline This estimator """ # standard Pipeline fit method self._validate_prune() Xt, fit_params = self._fit(X, y, **fit_params) if self._final_estimator is not None: self._final_estimator.fit(Xt, y, **fit_params) # prune pipeline if self.selector_name and self.vectorizer_name: self._prune() return self def _validate_prune(self): """ Validate prune step inputs """ names, estimators = zip(*self.steps) for name in [self.selector_name, self.vectorizer_name]: if name: if not name in names: raise ValueError( "Name {0} should exist in steps".format( name)) self.selector_index = names.index(self.selector_name) self.vectorizer_index = names.index(self.vectorizer_name) def _prune(self): """ Prune fitted ``Pipeline`` object. The pruner runs the ``get_support`` method from the designated feature selector, returning the selector mask. Then the ``vocabulary_`` (and optional ``idf_`` if exists) attribute is pruned to only contain elements who survive the selector mask. The selector step is then removed from the pipeline. Transform methods on the pipeline will then reflect these changes, reducing the size of the vectorizer and effectively skipping the selector step. """ # collect pipeline step data voc = self.steps[self.vectorizer_index][1].vocabulary_ if hasattr(self.steps[self.vectorizer_index][1], "idf_"): idf = self.steps[self.vectorizer_index][1].idf_ else: idf = None support = self.steps[self.selector_index][1].get_support() # restructure vocabulary terms = [] indices = [] for key, value in voc.items(): terms.append(key) indices.append(value) sort_mask = np.argsort(indices) terms = np.array(terms)[sort_mask] # rebuild vocabulary dictionary new_vocab = {} new_idf = [] count = 0 for index in range(len(terms)): if support[index]: new_vocab[terms[index]] = count if idf is not None: new_idf.append(idf[index]) count += 1 # replace vocabulary self.steps[self.vectorizer_index][1].vocabulary_ = new_vocab if idf is not None: self.steps[self.vectorizer_index][1]._tfidf._idf_diag = csr_matrix(np.diag(new_idf)) removed_step = self.steps.pop(self.selector_index) class MultiGridSearchCV(BaseSearchCV): """ An iterator through multiple GridSearchCV models using various ``estimators`` and associated ``param_grids``. Providing two equal length iterables as required arguments containing estimators and paraeter grids, as well as keyword arguments for GridSearchCV, will then simply iterate through and fit multiple GridSearchCV models, fitting them sequentially. Then the maximum ``best_score_`` is compared accross the GridSearchCV models, and the best one is identified. The best estimator is set as an attribute, ``best_estimator_`` and the best GridSearchCV model is set as an attribute, ``best_grid_search_cv_``. """ def __init__(self, estimators, param_grids, gs_estimator=GridSearchCV, **kwargs): self.estimators=estimators self.param_grids=param_grids self.gs_estimator=gs_estimator self.gs_kwargs=kwargs BaseSearchCV.__init__( self, None, **kwargs) def fit(self, X, y=None): """ Iterate through estimators and param_grids, fitting each, and then chosing the best. Parameters ---------- X : array-like, shape = [n_samples, n_features] Training vector, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] or [n_samples, n_output], optional Target relative to X for classification or regression; None for unsupervised learning. """ # Iterate through estimators fitting each models = [] for index in range(len(self.estimators)): model = self.gs_estimator( self.estimators[index], self.param_grids[index], **self.gs_kwargs) model.fit(X, y) models.append(model) # Generate cross validation results cv_df = pd.DataFrame() for index in range(len(models)): tmpDf = pd.DataFrame(models[index].cv_results_) tmpDf["grid_search_index"] = index cv_df = cv_df.append(tmpDf, sort=True) cv_df.index = range(len(cv_df)) cv_df = cv_df[[c for c in cv_df.columns if "param_" not in c]] cv_df["rank_test_score"] = map(int, (len(cv_df) + 1) - rankdata(cv_df["mean_test_score"], method="ordinal")) self.cv_results_ = {} for col in cv_df.columns: self.cv_results_[col] = list(cv_df[col].values) # Find best model and set associated attributes self.scores_ = [x.best_score_ for x in models] self.best_index_ = np.argmax(self.scores_) self.best_score_ = models[self.best_index_].best_score_ self.best_grid_search_cv_ = models[self.best_index_] self.best_estimator_ = models[self.best_index_].best_estimator_ self.scorer_ = self.best_grid_search_cv_.scorer_ self.multimetric_ = self.best_grid_search_cv_.multimetric_ self.n_splits_ = self.best_grid_search_cv_.n_splits_ return self class IterRandomEstimator(BaseEstimator, ClassifierMixin): """ Meta-Estimator intended primarily for unsupervised estimators whose fitted model can be heavily dependent on an arbitrary random initialization state. It is best used for problems where a ``fit_predict`` method is intended, so the only data used for prediction will be the same data on which the model was fitted. The ``fit`` method will fit multiple iterations of the same base estimator, varying the ``random_state`` argument for each iteration. The iterations will stop either when ``max_iter`` is reached, or when the target score is obtained. The model does not use cross validation to find the best estimator. It simply fits and scores on the entire input data set. A hyperparaeter is not being optimized here, only random initialization states. The idea is to find the best fitted model, and keep that exact model, rather than to find the best hyperparameter set. """ def __init__(self, estimator, target_score=None, max_iter=10, random_state=None, scoring=calinski_harabasz_score, fit_params=None, verbose=0): self.estimator=estimator self.target_score=target_score self.max_iter=max_iter self.random_state=random_state if not self.random_state: self.random_state = np.random.randint(100) self.fit_params=fit_params self.verbose=verbose self.scoring=scoring def fit(self, X, y=None, **fit_params): """ Run fit on the estimator attribute multiple times with various ``random_state`` arguments and choose the fitted estimator with the best score. Uses ``calinski_harabasz_score`` if no scoring is provided. Parameters ---------- X : array-like, shape = [n_samples, n_features] Training vector, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] or [n_samples, n_output], optional Target relative to X for classification or regression; None for unsupervised learning. **fit_params : dict of string -> object Parameters passed to the ``fit`` method of the estimator """ estimator = self.estimator estimator.verbose = self.verbose if self.verbose > 0: if not self.target_score: print("Fitting {0} estimators unless a target " "score of {1} is reached".format( self.max_iter, self.target_score)) else: print("Fitting {0} estimators".format( self.max_iter)) count = 0 scores = [] estimators = [] states = [] random_state = self.random_state if not random_state: random_state = n while count < self.max_iter: estimator = clone(estimator) if random_state: random_state = random_state + 1 estimator.random_state = random_state estimator.fit(X, y, **fit_params) labels = estimator.labels_ score = self.scoring(X, labels) scores.append(score) estimators.append(estimator) states.append(random_state) if self.target_score is not None and score > self.target_score: break count += 1 self.best_estimator_ = estimators[np.argmax(scores)] self.best_score_ = np.max(scores) self.best_index_ = np.argmax(scores) self.best_params_ = self.best_estimator_.get_params() self.scores_ = scores self.random_states_ = states class OptimizedEnsemble(BaseSearchCV): """ An optimized ensemble class. Will find the optimal ``n_estimators`` parameter for the given ensemble estimator, according to the specified input parameters. The ``fit`` method will iterate through n_estimators options, starting with n_estimators_init, and using the step_function reursively from there. Stop at max_iter or when the score gain between iterations is less than threshold. The OptimizedEnsemble class can then itself be used as an Estimator, or the ``best_estimator_`` attribute can be accessed directly, which is a fitted version of the input estimator with the optimal parameters. """ def __init__(self, estimator, n_estimators_init=5, threshold=0.01, max_iter=10, step_function=lambda x: x*2, **kwargs): self.n_estimators_init=n_estimators_init self.threshold=threshold self.step_function=step_function self.max_iter=max_iter BaseSearchCV.__init__( self, estimator, **kwargs) def fit(self, X, y, **fit_params): """ Find the optimal ``n_estimators`` parameter using a custom optimization routine. Parameters ---------- X : array-like, shape = [n_samples, n_features] Training vector, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] or [n_samples, n_output], optional Target relative to X for classification or regression; None for unsupervised learning. **fit_params : dict of string -> object Parameters passed to the ``fit`` method of the estimator """ estimator = self.estimator cv = check_cv(self.cv, y, classifier=is_classifier(estimator)) n_splits = cv.get_n_splits(X, y, groups=None) if self.verbose > 0: print("Fitting {0} folds for each n_estimators candidate, " "for a maximum of {1} candidates, totalling" " a maximum of {2} fits".format(n_splits, self.max_iter, self.max_iter * n_splits)) count = 0 scores = [] n_estimators = [] n_est = self.n_estimators_init while count < self.max_iter: estimator = clone(estimator) estimator.n_estimators = n_est score = np.mean(cross_val_score( estimator, X, y, cv=self.cv, scoring=self.scoring, fit_params=fit_params, verbose=self.verbose, n_jobs=self.n_jobs, pre_dispatch=self.pre_dispatch)) scores.append(score) n_estimators.append(n_est) if (count > 0 and (scores[count] - scores[count - 1]) < self.threshold): break else: best_estimator = estimator count += 1 n_est = self.step_function(n_est) self.scores_ = scores self.n_estimators_list_ = n_estimators if self.refit: self.best_estimator_ = clone(best_estimator) if y is not None: self.best_estimator_.fit(X, y, **fit_params) else: self.best_estimator_.fit(X, **fit_params) self.best_index_ = count - 1 self.best_score_ = self.scores_[count - 1] self.best_n_estimators_ = self.n_estimators_list_[count - 1] self.best_params_ = self.best_estimator_.get_params() return self @if_delegate_has_method(delegate=('best_estimator_', 'estimator')) def score(self, X, y=None): """ Call score on the estimator with the best found parameters. Only available if the underlying estimator supports ``score``. This uses the score defined by the ``best_estimator_.score`` method. Parameters ---------- X : array-like, shape = [n_samples, n_features] Input data, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] or [n_samples, n_output], optional Target relative to X for classification or regression; None for unsupervised learning. Returns ------- score : float """ self._check_is_fitted('score') return self.best_estimator_.score(X, y) class OneVsRestAdjClassifier(OneVsRestClassifier): """ One-vs-the-rest (OvR) multiclass strategy Also known as one-vs-all, this strategy consists in fitting one classifier per class. For each classifier, the class is fitted against all the other classes. In addition to its computational efficiency (only n_classes classifiers are needed), one advantage of this approach is its interpretability. Since each class is represented by one and one classifier only, it is possible to gain knowledge about the class by inspecting its corresponding classifier. This is the most commonly used strategy for multiclass classification and is a fair default choice. The adjusted version is a custom extension which overwrites the inherited predict_proba() method with a more flexible method allowing custom normalization for the predicted probabilities. Any norm argument that can be passed directly to sklearn.preprocessing.normalize is allowed. Additionally, norm=None will skip the normalization step alltogeter. To mimick the inherited OneVsRestClassfier behavior, set norm='l2'. All other methods are inherited from OneVsRestClassifier. Parameters ---------- estimator : estimator object An estimator object implementing fit and one of decision_function or predict_proba. n_jobs : int, optional, default: 1 The number of jobs to use for the computation. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. norm: str, optional, default: None Normalization method to be passed straight into sklearn.preprocessing.normalize as the norm input. A value of None (default) will skip the normalization step. Attributes ---------- estimators_ : list of n_classes estimators Estimators used for predictions. classes_ : array, shape = [n_classes] Class labels. label_binarizer_ : LabelBinarizer object Object used to transform multiclass labels to binary labels and vice-versa. multilabel_ : boolean Whether a OneVsRestClassifier is a multilabel classifier. """ def __init__(self, estimator, norm=None, **kwargs): OneVsRestClassifier.__init__( self, estimator, **kwargs) self.norm = norm def predict_proba(self, X): """ Probability estimates. The returned estimates for all classes are ordered by label of classes. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- T : array-like, shape = [n_samples, n_classes] Returns the probability of the sample for each class in the model, where classes are ordered as they are in self.classes_. """ probs = [] for index in range(len(self.estimators_)): probs.append(self.estimators_[index].predict_proba(X)[:,1]) out = np.array([ [probs[y][index] for y in range(len(self.estimators_))] for index in range(len(probs[0]))]) if self.norm: return normalize(out, norm=self.norm) else: return out
scikit-ext
/scikit-ext-0.1.16.tar.gz/scikit-ext-0.1.16/scikit_ext/estimators.py
estimators.py
import numpy as np import pandas as pd from scipy.sparse import csr_matrix from scipy.stats import rankdata from sklearn.model_selection import GridSearchCV from sklearn.multiclass import OneVsRestClassifier from sklearn.preprocessing import normalize from sklearn.base import ( BaseEstimator, ClassifierMixin, is_classifier, clone) from sklearn.utils.metaestimators import if_delegate_has_method from sklearn.model_selection._split import check_cv from sklearn.model_selection._search import BaseSearchCV from sklearn.model_selection import cross_val_score from sklearn.exceptions import NotFittedError from sklearn.metrics import calinski_harabasz_score from sklearn.pipeline import Pipeline class ZoomGridSearchCV(GridSearchCV): """ Fits multiple ``GridSearchCV`` models, updating the ``param_grid`` after each iteration. The update looks at successful parameter values for each grid key. A new list of values is created which expands the resolution of the search values centered around the best performing value of the previous fit. This allows the standard grid search process to start with a small number of distant values for each parameter, and zoom in as the better performing corner of the hyperparameter search space becomes clear. The process only updates paramter keys whose values are all of type ``int`` or are all of type ``float``. Any other data type valued parameters or mixed parameters will simply be copied and reused for each iteration. The only stopping criteria for iterations is the ``n_iter`` parameter. Inherits ``GridSearchCV`` so all methods and attributes are identical except for ``fit`` which is overriden by a method looping through the ``fit`` method of ``GridSearchCV``. Ultimately, the class exactly resembles a fitted ``GridSearchCV`` after ``fit`` is run. Running ``fit`` with ``n_iter = 0`` is identical to funning ``fit`` with ``GridSearchCV``. """ def __init__(self, estimator, param_grid, n_iter=1, **kwargs): GridSearchCV.__init__( self, estimator, param_grid, **kwargs) self._fit = GridSearchCV.fit self.n_iter=n_iter def fit(self, X, y=None, groups=None, **fit_params): """ Run fit with all sets of parameters. For ``n_iter`` iterations, zoom in on successful parameters, creating a new parameter grid and refitting. Parameters ---------- X : array-like, shape = [n_samples, n_features] Training vector, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] or [n_samples, n_output], optional Target relative to X for classification or regression; None for unsupervised learning. groups : array-like, with shape (n_samples,), optional Group labels for the samples used while splitting the dataset into train/test set. **fit_params : dict of string -> object Parameters passed to the ``fit`` method of the estimator """ n = -1 while n < self.n_iter: if n > -1: self._update_grid() if self.verbose > 0: print("Grid Updated on Iteration {0}:".format(n)) print(self.param_grid) else: if self.verbose > 0: print("Initial Grid:") print(self.param_grid) GridSearchCV.fit(self, X, y=y, groups=groups, **fit_params) n += 1 def _update_grid(self): """ Update parameter grid based on previous fit results """ results = pd.DataFrame(self.cv_results_) # get parameters to update update_params = {} for key, value in self.param_grid.items(): if all(isinstance(x, int) for x in value): updated_value = self._update_elements( results, key, value, dtype=int) elif all(isinstance(x, float) for x in value): updated_value = self._update_elements( results, key, value, dtype=float) else: updated_value = value if len(updated_value) > 0: update_params[key] = updated_value # update parameter grid attribute self.param_grid = update_params def _update_elements(self, results, key, value, dtype=int): """ Update elements of a single param_grid key, value pair """ tmp = (results.loc[~pd.isnull(results["param_{0}".format(key)]), ["param_{0}".format(key), "rank_test_score"]] .sort_values("rank_test_score")) best_val = tmp["param_{0}".format(key)].values[0] value_range = (np.max(value) - np.min(value)) / 5.0 val = ( list( np.linspace(best_val, best_val + value_range, int(round(len(value) / 2.0)))) + list( np.linspace(best_val - value_range, best_val, int(round(len(value) / 2.0))))) val = list(np.unique([dtype(x) for x in val])) if all(x >= 0 for x in value): val = [x for x in val if x >= 0] elif all(x <= 0 for x in value): val = [x for x in val if x <= 0] return val class PrunedPipeline(Pipeline): """ A standard sklearn feature Pipeline with additional pruning method. After fitting, the pruning method is applied to the fitted pipeline. This applies the feature selection directly to the fitted vocabulary (and idf values if applicable), removing all elements of these attributes that will not ultimately survive the feature selection filter. The ``PrunedPipeline`` will make idential predictions as a similarly trained ``Pipeline``. However, it will require less memory and will make faster predictions. Parameters ---------- steps : list List of (name, transform) tuples (implementing fit/transform) that are chained, in the order in which they are chained, with the last object an estimator. memory : None, str or object with the joblib.Memory interface, optional Used to cache the fitted transformers of the pipeline. By default, no caching is performed. If a string is given, it is the path to the caching directory. Enabling caching triggers a clone of the transformers before fitting. Therefore, the transformer instance given to the pipeline cannot be inspected directly. Use the attribute ``named_steps`` or ``steps`` to inspect estimators within the pipeline. Caching the transformers is advantageous when fitting is time consuming. vectorizer_name : str, default vec Name of ``Pipeline`` step which performs feature extraction. Any transformer with a ``vocabulary_``dictionary can be the step with this name. Ideal transformers are of types sklearn.feature_extraction.text.CountVectorizer or sklearn.feature_extraction.text.TfidfVectorizer. selector_name : str, default select Name of ``Pipeline`` step which performs feature selection. Any transformer with a ``get_support`` method returning an iterable of booleans with length ``len(vocabulary_)`` can be the step with this name. Ideal transformers are of type sklearn.feature_selection.univariate_selection._BaseFilter. Attributes ---------- named_steps : bunch object, a dictionary with attribute access Read-only attribute to access any step parameter by user given name. Keys are step names and values are steps parameters. """ def __init__(self, steps, memory=None, vectorizer_name="vec", selector_name="select", verbose=False): self.steps = steps self.memory = memory self.verbose = verbose self.vectorizer_name = vectorizer_name self.selector_name = selector_name self._validate_steps() self._validate_prune() def fit(self, X, y=None, **fit_params): """ Fit the model Fit all the transforms one after the other and transform the data, then fit the transformed data using the final estimator. Perform prune after standard pipeline fit. Parameters ---------- X : iterable Training data. Must fulfill input requirements of first step of the pipeline. y : iterable, default=None Training targets. Must fulfill label requirements for all steps of the pipeline. **fit_params : dict of string -> object Parameters passed to the ``fit`` method of each step, where each parameter name is prefixed such that parameter ``p`` for step ``s`` has key ``s__p``. Returns ------- self : PrunedPipeline This estimator """ # standard Pipeline fit method self._validate_prune() Xt, fit_params = self._fit(X, y, **fit_params) if self._final_estimator is not None: self._final_estimator.fit(Xt, y, **fit_params) # prune pipeline if self.selector_name and self.vectorizer_name: self._prune() return self def _validate_prune(self): """ Validate prune step inputs """ names, estimators = zip(*self.steps) for name in [self.selector_name, self.vectorizer_name]: if name: if not name in names: raise ValueError( "Name {0} should exist in steps".format( name)) self.selector_index = names.index(self.selector_name) self.vectorizer_index = names.index(self.vectorizer_name) def _prune(self): """ Prune fitted ``Pipeline`` object. The pruner runs the ``get_support`` method from the designated feature selector, returning the selector mask. Then the ``vocabulary_`` (and optional ``idf_`` if exists) attribute is pruned to only contain elements who survive the selector mask. The selector step is then removed from the pipeline. Transform methods on the pipeline will then reflect these changes, reducing the size of the vectorizer and effectively skipping the selector step. """ # collect pipeline step data voc = self.steps[self.vectorizer_index][1].vocabulary_ if hasattr(self.steps[self.vectorizer_index][1], "idf_"): idf = self.steps[self.vectorizer_index][1].idf_ else: idf = None support = self.steps[self.selector_index][1].get_support() # restructure vocabulary terms = [] indices = [] for key, value in voc.items(): terms.append(key) indices.append(value) sort_mask = np.argsort(indices) terms = np.array(terms)[sort_mask] # rebuild vocabulary dictionary new_vocab = {} new_idf = [] count = 0 for index in range(len(terms)): if support[index]: new_vocab[terms[index]] = count if idf is not None: new_idf.append(idf[index]) count += 1 # replace vocabulary self.steps[self.vectorizer_index][1].vocabulary_ = new_vocab if idf is not None: self.steps[self.vectorizer_index][1]._tfidf._idf_diag = csr_matrix(np.diag(new_idf)) removed_step = self.steps.pop(self.selector_index) class MultiGridSearchCV(BaseSearchCV): """ An iterator through multiple GridSearchCV models using various ``estimators`` and associated ``param_grids``. Providing two equal length iterables as required arguments containing estimators and paraeter grids, as well as keyword arguments for GridSearchCV, will then simply iterate through and fit multiple GridSearchCV models, fitting them sequentially. Then the maximum ``best_score_`` is compared accross the GridSearchCV models, and the best one is identified. The best estimator is set as an attribute, ``best_estimator_`` and the best GridSearchCV model is set as an attribute, ``best_grid_search_cv_``. """ def __init__(self, estimators, param_grids, gs_estimator=GridSearchCV, **kwargs): self.estimators=estimators self.param_grids=param_grids self.gs_estimator=gs_estimator self.gs_kwargs=kwargs BaseSearchCV.__init__( self, None, **kwargs) def fit(self, X, y=None): """ Iterate through estimators and param_grids, fitting each, and then chosing the best. Parameters ---------- X : array-like, shape = [n_samples, n_features] Training vector, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] or [n_samples, n_output], optional Target relative to X for classification or regression; None for unsupervised learning. """ # Iterate through estimators fitting each models = [] for index in range(len(self.estimators)): model = self.gs_estimator( self.estimators[index], self.param_grids[index], **self.gs_kwargs) model.fit(X, y) models.append(model) # Generate cross validation results cv_df = pd.DataFrame() for index in range(len(models)): tmpDf = pd.DataFrame(models[index].cv_results_) tmpDf["grid_search_index"] = index cv_df = cv_df.append(tmpDf, sort=True) cv_df.index = range(len(cv_df)) cv_df = cv_df[[c for c in cv_df.columns if "param_" not in c]] cv_df["rank_test_score"] = map(int, (len(cv_df) + 1) - rankdata(cv_df["mean_test_score"], method="ordinal")) self.cv_results_ = {} for col in cv_df.columns: self.cv_results_[col] = list(cv_df[col].values) # Find best model and set associated attributes self.scores_ = [x.best_score_ for x in models] self.best_index_ = np.argmax(self.scores_) self.best_score_ = models[self.best_index_].best_score_ self.best_grid_search_cv_ = models[self.best_index_] self.best_estimator_ = models[self.best_index_].best_estimator_ self.scorer_ = self.best_grid_search_cv_.scorer_ self.multimetric_ = self.best_grid_search_cv_.multimetric_ self.n_splits_ = self.best_grid_search_cv_.n_splits_ return self class IterRandomEstimator(BaseEstimator, ClassifierMixin): """ Meta-Estimator intended primarily for unsupervised estimators whose fitted model can be heavily dependent on an arbitrary random initialization state. It is best used for problems where a ``fit_predict`` method is intended, so the only data used for prediction will be the same data on which the model was fitted. The ``fit`` method will fit multiple iterations of the same base estimator, varying the ``random_state`` argument for each iteration. The iterations will stop either when ``max_iter`` is reached, or when the target score is obtained. The model does not use cross validation to find the best estimator. It simply fits and scores on the entire input data set. A hyperparaeter is not being optimized here, only random initialization states. The idea is to find the best fitted model, and keep that exact model, rather than to find the best hyperparameter set. """ def __init__(self, estimator, target_score=None, max_iter=10, random_state=None, scoring=calinski_harabasz_score, fit_params=None, verbose=0): self.estimator=estimator self.target_score=target_score self.max_iter=max_iter self.random_state=random_state if not self.random_state: self.random_state = np.random.randint(100) self.fit_params=fit_params self.verbose=verbose self.scoring=scoring def fit(self, X, y=None, **fit_params): """ Run fit on the estimator attribute multiple times with various ``random_state`` arguments and choose the fitted estimator with the best score. Uses ``calinski_harabasz_score`` if no scoring is provided. Parameters ---------- X : array-like, shape = [n_samples, n_features] Training vector, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] or [n_samples, n_output], optional Target relative to X for classification or regression; None for unsupervised learning. **fit_params : dict of string -> object Parameters passed to the ``fit`` method of the estimator """ estimator = self.estimator estimator.verbose = self.verbose if self.verbose > 0: if not self.target_score: print("Fitting {0} estimators unless a target " "score of {1} is reached".format( self.max_iter, self.target_score)) else: print("Fitting {0} estimators".format( self.max_iter)) count = 0 scores = [] estimators = [] states = [] random_state = self.random_state if not random_state: random_state = n while count < self.max_iter: estimator = clone(estimator) if random_state: random_state = random_state + 1 estimator.random_state = random_state estimator.fit(X, y, **fit_params) labels = estimator.labels_ score = self.scoring(X, labels) scores.append(score) estimators.append(estimator) states.append(random_state) if self.target_score is not None and score > self.target_score: break count += 1 self.best_estimator_ = estimators[np.argmax(scores)] self.best_score_ = np.max(scores) self.best_index_ = np.argmax(scores) self.best_params_ = self.best_estimator_.get_params() self.scores_ = scores self.random_states_ = states class OptimizedEnsemble(BaseSearchCV): """ An optimized ensemble class. Will find the optimal ``n_estimators`` parameter for the given ensemble estimator, according to the specified input parameters. The ``fit`` method will iterate through n_estimators options, starting with n_estimators_init, and using the step_function reursively from there. Stop at max_iter or when the score gain between iterations is less than threshold. The OptimizedEnsemble class can then itself be used as an Estimator, or the ``best_estimator_`` attribute can be accessed directly, which is a fitted version of the input estimator with the optimal parameters. """ def __init__(self, estimator, n_estimators_init=5, threshold=0.01, max_iter=10, step_function=lambda x: x*2, **kwargs): self.n_estimators_init=n_estimators_init self.threshold=threshold self.step_function=step_function self.max_iter=max_iter BaseSearchCV.__init__( self, estimator, **kwargs) def fit(self, X, y, **fit_params): """ Find the optimal ``n_estimators`` parameter using a custom optimization routine. Parameters ---------- X : array-like, shape = [n_samples, n_features] Training vector, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] or [n_samples, n_output], optional Target relative to X for classification or regression; None for unsupervised learning. **fit_params : dict of string -> object Parameters passed to the ``fit`` method of the estimator """ estimator = self.estimator cv = check_cv(self.cv, y, classifier=is_classifier(estimator)) n_splits = cv.get_n_splits(X, y, groups=None) if self.verbose > 0: print("Fitting {0} folds for each n_estimators candidate, " "for a maximum of {1} candidates, totalling" " a maximum of {2} fits".format(n_splits, self.max_iter, self.max_iter * n_splits)) count = 0 scores = [] n_estimators = [] n_est = self.n_estimators_init while count < self.max_iter: estimator = clone(estimator) estimator.n_estimators = n_est score = np.mean(cross_val_score( estimator, X, y, cv=self.cv, scoring=self.scoring, fit_params=fit_params, verbose=self.verbose, n_jobs=self.n_jobs, pre_dispatch=self.pre_dispatch)) scores.append(score) n_estimators.append(n_est) if (count > 0 and (scores[count] - scores[count - 1]) < self.threshold): break else: best_estimator = estimator count += 1 n_est = self.step_function(n_est) self.scores_ = scores self.n_estimators_list_ = n_estimators if self.refit: self.best_estimator_ = clone(best_estimator) if y is not None: self.best_estimator_.fit(X, y, **fit_params) else: self.best_estimator_.fit(X, **fit_params) self.best_index_ = count - 1 self.best_score_ = self.scores_[count - 1] self.best_n_estimators_ = self.n_estimators_list_[count - 1] self.best_params_ = self.best_estimator_.get_params() return self @if_delegate_has_method(delegate=('best_estimator_', 'estimator')) def score(self, X, y=None): """ Call score on the estimator with the best found parameters. Only available if the underlying estimator supports ``score``. This uses the score defined by the ``best_estimator_.score`` method. Parameters ---------- X : array-like, shape = [n_samples, n_features] Input data, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] or [n_samples, n_output], optional Target relative to X for classification or regression; None for unsupervised learning. Returns ------- score : float """ self._check_is_fitted('score') return self.best_estimator_.score(X, y) class OneVsRestAdjClassifier(OneVsRestClassifier): """ One-vs-the-rest (OvR) multiclass strategy Also known as one-vs-all, this strategy consists in fitting one classifier per class. For each classifier, the class is fitted against all the other classes. In addition to its computational efficiency (only n_classes classifiers are needed), one advantage of this approach is its interpretability. Since each class is represented by one and one classifier only, it is possible to gain knowledge about the class by inspecting its corresponding classifier. This is the most commonly used strategy for multiclass classification and is a fair default choice. The adjusted version is a custom extension which overwrites the inherited predict_proba() method with a more flexible method allowing custom normalization for the predicted probabilities. Any norm argument that can be passed directly to sklearn.preprocessing.normalize is allowed. Additionally, norm=None will skip the normalization step alltogeter. To mimick the inherited OneVsRestClassfier behavior, set norm='l2'. All other methods are inherited from OneVsRestClassifier. Parameters ---------- estimator : estimator object An estimator object implementing fit and one of decision_function or predict_proba. n_jobs : int, optional, default: 1 The number of jobs to use for the computation. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. norm: str, optional, default: None Normalization method to be passed straight into sklearn.preprocessing.normalize as the norm input. A value of None (default) will skip the normalization step. Attributes ---------- estimators_ : list of n_classes estimators Estimators used for predictions. classes_ : array, shape = [n_classes] Class labels. label_binarizer_ : LabelBinarizer object Object used to transform multiclass labels to binary labels and vice-versa. multilabel_ : boolean Whether a OneVsRestClassifier is a multilabel classifier. """ def __init__(self, estimator, norm=None, **kwargs): OneVsRestClassifier.__init__( self, estimator, **kwargs) self.norm = norm def predict_proba(self, X): """ Probability estimates. The returned estimates for all classes are ordered by label of classes. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- T : array-like, shape = [n_samples, n_classes] Returns the probability of the sample for each class in the model, where classes are ordered as they are in self.classes_. """ probs = [] for index in range(len(self.estimators_)): probs.append(self.estimators_[index].predict_proba(X)[:,1]) out = np.array([ [probs[y][index] for y in range(len(self.estimators_))] for index in range(len(probs[0]))]) if self.norm: return normalize(out, norm=self.norm) else: return out
0.886131
0.543833
import numpy as np import pandas as pd from sklearn.base import BaseEstimator, TransformerMixin from sklearn.utils import check_array from sklearn.utils.validation import check_is_fitted from skfair.common import as_list def scalar_projection(vec, unto): return vec.dot(unto) / unto.dot(unto) def vector_projection(vec, unto): return scalar_projection(vec, unto) * unto class InformationFilter(BaseEstimator, TransformerMixin): """ The `InformationFilter` uses a variant of the gram smidt process to filter information out of the dataset. This can be useful if you want to filter information out of a dataset because of fairness. To explain how it works: given a training matrix :math:`X` that contains columns :math:`x_1, ..., x_k`. If we assume columns :math:`x_1` and :math:`x_2` to be the sensitive columns then the information-filter will remove information by applying these transformations; .. math:: \\begin{split} v_1 & = x_1 \\\\ v_2 & = x_2 - \\frac{x_2 v_1}{v_1 v_1}\\\\ v_3 & = x_3 - \\frac{x_k v_1}{v_1 v_1} - \\frac{x_2 v_2}{v_2 v_2}\\\\ ... \\\\ v_k & = x_k - \\frac{x_k v_1}{v_1 v_1} - \\frac{x_2 v_2}{v_2 v_2} \\end{split} Concatenating our vectors (but removing the sensitive ones) gives us a new training matrix :math:`X_{fair} = [v_3, ..., v_k]`. :param columns: the columns to filter out this can be a sequence of either int (in the case of numpy) or string (in the case of pandas). :param alpha: parameter to control how much to filter, for alpha=1 we filter out all information while for alpha=0 we don't apply any. """ def __init__(self, columns, alpha=1): self.columns = columns self.alpha = alpha def _check_coltype(self, X): for col in as_list(self.columns): if isinstance(col, str): if isinstance(X, np.ndarray): raise ValueError( f"column {col} is a string but datatype receive is numpy." ) if isinstance(X, pd.DataFrame): if col not in X.columns: raise ValueError(f"column {col} is not in {X.columns}") if isinstance(col, int): if col not in range(np.atleast_2d(np.array(X)).shape[1]): raise ValueError( f"column {col} is out of bounds for input shape {X.shape}" ) def _col_idx(self, X, name): if isinstance(name, str): if isinstance(X, np.ndarray): raise ValueError( "You cannot have a column of type string on a numpy input matrix." ) return {name: i for i, name in enumerate(X.columns)}[name] return name def _make_v_vectors(self, X, col_ids): vs = np.zeros((X.shape[0], len(col_ids))) for i, c in enumerate(col_ids): vs[:, i] = X[:, col_ids[i]] for j in range(0, i): vs[:, i] = vs[:, i] - vector_projection(vs[:, i], vs[:, j]) return vs def fit(self, X, y=None): """Learn the projection required to make the dataset orthogonal to sensitive columns.""" self._check_coltype(X) self.col_ids_ = [ v if isinstance(v, int) else self._col_idx(X, v) for v in as_list(self.columns) ] X = check_array(X, estimator=self) X_fair = X.copy() v_vectors = self._make_v_vectors(X, self.col_ids_) # gram smidt process but only on sensitive attributes for i, col in enumerate(X_fair.T): for v in v_vectors.T: X_fair[:, i] = X_fair[:, i] - vector_projection(X_fair[:, i], v) # we want to learn matrix P: X P = X_fair # this means we first need to create X_fair in order to learn P self.projection_, resid, rank, s = np.linalg.lstsq(X, X_fair, rcond=None) return self def transform(self, X): """Transforms X by applying the information filter.""" check_is_fitted(self, ["projection_", "col_ids_"]) self._check_coltype(X) X = check_array(X, estimator=self) # apply the projection and remove the column we won't need X_fair = X @ self.projection_ X_removed = np.delete(X_fair, self.col_ids_, axis=1) X_orig = np.delete(X, self.col_ids_, axis=1) return self.alpha * np.atleast_2d(X_removed) + (1 - self.alpha) * np.atleast_2d( X_orig )
scikit-fairness
/scikit-fairness-0.0.1.tar.gz/scikit-fairness-0.0.1/skfair/preprocessing/informationfilter.py
informationfilter.py
import numpy as np import pandas as pd from sklearn.base import BaseEstimator, TransformerMixin from sklearn.utils import check_array from sklearn.utils.validation import check_is_fitted from skfair.common import as_list def scalar_projection(vec, unto): return vec.dot(unto) / unto.dot(unto) def vector_projection(vec, unto): return scalar_projection(vec, unto) * unto class InformationFilter(BaseEstimator, TransformerMixin): """ The `InformationFilter` uses a variant of the gram smidt process to filter information out of the dataset. This can be useful if you want to filter information out of a dataset because of fairness. To explain how it works: given a training matrix :math:`X` that contains columns :math:`x_1, ..., x_k`. If we assume columns :math:`x_1` and :math:`x_2` to be the sensitive columns then the information-filter will remove information by applying these transformations; .. math:: \\begin{split} v_1 & = x_1 \\\\ v_2 & = x_2 - \\frac{x_2 v_1}{v_1 v_1}\\\\ v_3 & = x_3 - \\frac{x_k v_1}{v_1 v_1} - \\frac{x_2 v_2}{v_2 v_2}\\\\ ... \\\\ v_k & = x_k - \\frac{x_k v_1}{v_1 v_1} - \\frac{x_2 v_2}{v_2 v_2} \\end{split} Concatenating our vectors (but removing the sensitive ones) gives us a new training matrix :math:`X_{fair} = [v_3, ..., v_k]`. :param columns: the columns to filter out this can be a sequence of either int (in the case of numpy) or string (in the case of pandas). :param alpha: parameter to control how much to filter, for alpha=1 we filter out all information while for alpha=0 we don't apply any. """ def __init__(self, columns, alpha=1): self.columns = columns self.alpha = alpha def _check_coltype(self, X): for col in as_list(self.columns): if isinstance(col, str): if isinstance(X, np.ndarray): raise ValueError( f"column {col} is a string but datatype receive is numpy." ) if isinstance(X, pd.DataFrame): if col not in X.columns: raise ValueError(f"column {col} is not in {X.columns}") if isinstance(col, int): if col not in range(np.atleast_2d(np.array(X)).shape[1]): raise ValueError( f"column {col} is out of bounds for input shape {X.shape}" ) def _col_idx(self, X, name): if isinstance(name, str): if isinstance(X, np.ndarray): raise ValueError( "You cannot have a column of type string on a numpy input matrix." ) return {name: i for i, name in enumerate(X.columns)}[name] return name def _make_v_vectors(self, X, col_ids): vs = np.zeros((X.shape[0], len(col_ids))) for i, c in enumerate(col_ids): vs[:, i] = X[:, col_ids[i]] for j in range(0, i): vs[:, i] = vs[:, i] - vector_projection(vs[:, i], vs[:, j]) return vs def fit(self, X, y=None): """Learn the projection required to make the dataset orthogonal to sensitive columns.""" self._check_coltype(X) self.col_ids_ = [ v if isinstance(v, int) else self._col_idx(X, v) for v in as_list(self.columns) ] X = check_array(X, estimator=self) X_fair = X.copy() v_vectors = self._make_v_vectors(X, self.col_ids_) # gram smidt process but only on sensitive attributes for i, col in enumerate(X_fair.T): for v in v_vectors.T: X_fair[:, i] = X_fair[:, i] - vector_projection(X_fair[:, i], v) # we want to learn matrix P: X P = X_fair # this means we first need to create X_fair in order to learn P self.projection_, resid, rank, s = np.linalg.lstsq(X, X_fair, rcond=None) return self def transform(self, X): """Transforms X by applying the information filter.""" check_is_fitted(self, ["projection_", "col_ids_"]) self._check_coltype(X) X = check_array(X, estimator=self) # apply the projection and remove the column we won't need X_fair = X @ self.projection_ X_removed = np.delete(X_fair, self.col_ids_, axis=1) X_orig = np.delete(X, self.col_ids_, axis=1) return self.alpha * np.atleast_2d(X_removed) + (1 - self.alpha) * np.atleast_2d( X_orig )
0.883104
0.645888
.. image:: https://raw.githubusercontent.com/GAA-UAM/scikit-fda/develop/docs/logos/title_logo/title_logo.png :alt: scikit-fda: Functional Data Analysis in Python scikit-fda: Functional Data Analysis in Python =================================================== |python|_ |build-status| |docs| |Codecov|_ |PyPIBadge|_ |license|_ |doi| Functional Data Analysis, or FDA, is the field of Statistics that analyses data that depend on a continuous parameter. This package offers classes, methods and functions to give support to FDA in Python. Includes a wide range of utils to work with functional data, and its representation, exploratory analysis, or preprocessing, among other tasks such as inference, classification, regression or clustering of functional data. See documentation for further information on the features included in the package. Documentation ============= The documentation is available at `fda.readthedocs.io/en/stable/ <https://fda.readthedocs.io/en/stable/>`_, which includes detailed information of the different modules, classes and methods of the package, along with several examples showing different functionalities. The documentation of the latest version, corresponding with the develop version of the package, can be found at `fda.readthedocs.io/en/latest/ <https://fda.readthedocs.io/en/latest/>`_. Installation ============ Currently, *scikit-fda* is available in Python 3.6 and 3.7, regardless of the platform. The stable version can be installed via PyPI_: .. code:: pip install scikit-fda Installation from source ------------------------ It is possible to install the latest version of the package, available in the develop branch, by cloning this repository and doing a manual installation. .. code:: bash git clone https://github.com/GAA-UAM/scikit-fda.git pip install ./scikit-fda Make sure that your default Python version is currently supported, or change the python and pip commands by specifying a version, such as ``python3.6``: .. code:: bash git clone https://github.com/GAA-UAM/scikit-fda.git python3.6 -m pip install ./scikit-fda Requirements ------------ *scikit-fda* depends on the following packages: * `cython <https://github.com/cython/cython>`_ - Python to C compiler * `fdasrsf <https://github.com/jdtuck/fdasrsf_python>`_ - SRSF framework * `findiff <https://github.com/maroba/findiff>`_ - Finite differences * `matplotlib <https://github.com/matplotlib/matplotlib>`_ - Plotting with Python * `multimethod <https://github.com/coady/multimethod>`_ - Multiple dispatch * `numpy <https://github.com/numpy/numpy>`_ - The fundamental package for scientific computing with Python * `pandas <https://github.com/pandas-dev/pandas>`_ - Powerful Python data analysis toolkit * `rdata <https://github.com/vnmabus/rdata>`_ - Reader of R datasets in .rda format in Python * `scikit-datasets <https://github.com/daviddiazvico/scikit-datasets>`_ - Scikit-learn compatible datasets * `scikit-learn <https://github.com/scikit-learn/scikit-learn>`_ - Machine learning in Python * `scipy <https://github.com/scipy/scipy>`_ - Scientific computation in Python * `setuptools <https://github.com/pypa/setuptools>`_ - Python Packaging The dependencies are automatically installed. Contributions ============= All contributions are welcome. You can help this project grow in multiple ways, from creating an issue, reporting an improvement or a bug, to doing a repository fork and creating a pull request to the development branch. The people involved at some point in the development of the package can be found in the `contributors file <https://github.com/GAA-UAM/scikit-fda/blob/develop/THANKS.txt>`_. .. Citation ======== If you find this project useful, please cite: .. todo:: Include citation to scikit-fda paper. License ======= The package is licensed under the BSD 3-Clause License. A copy of the license_ can be found along with the code. .. _examples: https://fda.readthedocs.io/en/latest/auto_examples/index.html .. _PyPI: https://pypi.org/project/scikit-fda/ .. |python| image:: https://img.shields.io/pypi/pyversions/scikit-fda.svg .. _python: https://badge.fury.io/py/scikit-fda .. |build-status| image:: https://travis-ci.org/GAA-UAM/scikit-fda.svg?branch=develop :alt: build status :scale: 100% :target: https://travis-ci.com/GAA-UAM/scikit-fda .. |docs| image:: https://readthedocs.org/projects/fda/badge/?version=latest :alt: Documentation Status :scale: 100% :target: http://fda.readthedocs.io/en/latest/?badge=latest .. |Codecov| image:: https://codecov.io/gh/GAA-UAM/scikit-fda/branch/develop/graph/badge.svg .. _Codecov: https://codecov.io/github/GAA-UAM/scikit-fda?branch=develop .. |PyPIBadge| image:: https://badge.fury.io/py/scikit-fda.svg .. _PyPIBadge: https://badge.fury.io/py/scikit-fda .. |license| image:: https://img.shields.io/badge/License-BSD%203--Clause-blue.svg .. _license: https://github.com/GAA-UAM/scikit-fda/blob/master/LICENSE.txt .. |doi| image:: https://zenodo.org/badge/DOI/10.5281/zenodo.3468127.svg :target: https://doi.org/10.5281/zenodo.3468127
scikit-fda-sim
/scikit-fda-sim-0.7.1.tar.gz/scikit-fda-sim-0.7.1/README.rst
README.rst
.. image:: https://raw.githubusercontent.com/GAA-UAM/scikit-fda/develop/docs/logos/title_logo/title_logo.png :alt: scikit-fda: Functional Data Analysis in Python scikit-fda: Functional Data Analysis in Python =================================================== |python|_ |build-status| |docs| |Codecov|_ |PyPIBadge|_ |license|_ |doi| Functional Data Analysis, or FDA, is the field of Statistics that analyses data that depend on a continuous parameter. This package offers classes, methods and functions to give support to FDA in Python. Includes a wide range of utils to work with functional data, and its representation, exploratory analysis, or preprocessing, among other tasks such as inference, classification, regression or clustering of functional data. See documentation for further information on the features included in the package. Documentation ============= The documentation is available at `fda.readthedocs.io/en/stable/ <https://fda.readthedocs.io/en/stable/>`_, which includes detailed information of the different modules, classes and methods of the package, along with several examples showing different functionalities. The documentation of the latest version, corresponding with the develop version of the package, can be found at `fda.readthedocs.io/en/latest/ <https://fda.readthedocs.io/en/latest/>`_. Installation ============ Currently, *scikit-fda* is available in Python 3.6 and 3.7, regardless of the platform. The stable version can be installed via PyPI_: .. code:: pip install scikit-fda Installation from source ------------------------ It is possible to install the latest version of the package, available in the develop branch, by cloning this repository and doing a manual installation. .. code:: bash git clone https://github.com/GAA-UAM/scikit-fda.git pip install ./scikit-fda Make sure that your default Python version is currently supported, or change the python and pip commands by specifying a version, such as ``python3.6``: .. code:: bash git clone https://github.com/GAA-UAM/scikit-fda.git python3.6 -m pip install ./scikit-fda Requirements ------------ *scikit-fda* depends on the following packages: * `cython <https://github.com/cython/cython>`_ - Python to C compiler * `fdasrsf <https://github.com/jdtuck/fdasrsf_python>`_ - SRSF framework * `findiff <https://github.com/maroba/findiff>`_ - Finite differences * `matplotlib <https://github.com/matplotlib/matplotlib>`_ - Plotting with Python * `multimethod <https://github.com/coady/multimethod>`_ - Multiple dispatch * `numpy <https://github.com/numpy/numpy>`_ - The fundamental package for scientific computing with Python * `pandas <https://github.com/pandas-dev/pandas>`_ - Powerful Python data analysis toolkit * `rdata <https://github.com/vnmabus/rdata>`_ - Reader of R datasets in .rda format in Python * `scikit-datasets <https://github.com/daviddiazvico/scikit-datasets>`_ - Scikit-learn compatible datasets * `scikit-learn <https://github.com/scikit-learn/scikit-learn>`_ - Machine learning in Python * `scipy <https://github.com/scipy/scipy>`_ - Scientific computation in Python * `setuptools <https://github.com/pypa/setuptools>`_ - Python Packaging The dependencies are automatically installed. Contributions ============= All contributions are welcome. You can help this project grow in multiple ways, from creating an issue, reporting an improvement or a bug, to doing a repository fork and creating a pull request to the development branch. The people involved at some point in the development of the package can be found in the `contributors file <https://github.com/GAA-UAM/scikit-fda/blob/develop/THANKS.txt>`_. .. Citation ======== If you find this project useful, please cite: .. todo:: Include citation to scikit-fda paper. License ======= The package is licensed under the BSD 3-Clause License. A copy of the license_ can be found along with the code. .. _examples: https://fda.readthedocs.io/en/latest/auto_examples/index.html .. _PyPI: https://pypi.org/project/scikit-fda/ .. |python| image:: https://img.shields.io/pypi/pyversions/scikit-fda.svg .. _python: https://badge.fury.io/py/scikit-fda .. |build-status| image:: https://travis-ci.org/GAA-UAM/scikit-fda.svg?branch=develop :alt: build status :scale: 100% :target: https://travis-ci.com/GAA-UAM/scikit-fda .. |docs| image:: https://readthedocs.org/projects/fda/badge/?version=latest :alt: Documentation Status :scale: 100% :target: http://fda.readthedocs.io/en/latest/?badge=latest .. |Codecov| image:: https://codecov.io/gh/GAA-UAM/scikit-fda/branch/develop/graph/badge.svg .. _Codecov: https://codecov.io/github/GAA-UAM/scikit-fda?branch=develop .. |PyPIBadge| image:: https://badge.fury.io/py/scikit-fda.svg .. _PyPIBadge: https://badge.fury.io/py/scikit-fda .. |license| image:: https://img.shields.io/badge/License-BSD%203--Clause-blue.svg .. _license: https://github.com/GAA-UAM/scikit-fda/blob/master/LICENSE.txt .. |doi| image:: https://zenodo.org/badge/DOI/10.5281/zenodo.3468127.svg :target: https://doi.org/10.5281/zenodo.3468127
0.904158
0.76947
from __future__ import annotations from abc import ABC, abstractmethod from typing import TYPE_CHECKING, Any, Generic, TypeVar, overload import sklearn.base if TYPE_CHECKING: from ..typing._numpy import NDArrayFloat, NDArrayInt SelfType = TypeVar("SelfType") TransformerNoTarget = TypeVar( "TransformerNoTarget", bound="TransformerMixin[Any, Any, None]", ) Input = TypeVar("Input", contravariant=True) Output = TypeVar("Output", covariant=True) Target = TypeVar("Target", contravariant=True) TargetPrediction = TypeVar("TargetPrediction") class BaseEstimator( # noqa: D101 ABC, sklearn.base.BaseEstimator, # type: ignore[misc] ): pass # noqa: WPS604 class TransformerMixin( # noqa: D101 ABC, Generic[Input, Output, Target], sklearn.base.TransformerMixin, # type: ignore[misc] ): @overload def fit( self: TransformerNoTarget, X: Input, ) -> TransformerNoTarget: pass @overload def fit( self: SelfType, X: Input, y: Target, ) -> SelfType: pass def fit( # noqa: D102 self: SelfType, X: Input, y: Target | None = None, ) -> SelfType: return self @overload def fit_transform( self: TransformerNoTarget, X: Input, ) -> Output: pass @overload def fit_transform( self, X: Input, y: Target, ) -> Output: pass def fit_transform( # noqa: D102 self, X: Input, y: Target | None = None, **fit_params: Any, ) -> Output: if y is None: return self.fit( # type: ignore[no-any-return] X, **fit_params, ).transform(X) return self.fit( # type: ignore[no-any-return] X, y, **fit_params, ).transform(X) class InductiveTransformerMixin( # noqa: D101 TransformerMixin[Input, Output, Target], ): @abstractmethod def transform( # noqa: D102 self: SelfType, X: Input, ) -> Output: pass class OutlierMixin( # noqa: D101 ABC, Generic[Input], sklearn.base.OutlierMixin, # type: ignore[misc] ): def fit_predict( # noqa: D102 self, X: Input, y: object = None, ) -> NDArrayInt: return self.fit(X, y).predict(X) # type: ignore[no-any-return] class ClassifierMixin( # noqa: D101 ABC, Generic[Input, TargetPrediction], sklearn.base.ClassifierMixin, # type: ignore[misc] ): def fit( # noqa: D102 self: SelfType, X: Input, y: TargetPrediction, ) -> SelfType: return self @abstractmethod def predict( # noqa: D102 self: SelfType, X: Input, ) -> TargetPrediction: pass def score( # noqa: D102 self, X: Input, y: Target, sample_weight: NDArrayFloat | None = None, ) -> float: return super().score( # type: ignore[no-any-return] X, y, sample_weight=sample_weight, ) class ClusterMixin( # noqa: D101 ABC, Generic[Input], sklearn.base.ClusterMixin, # type: ignore[misc] ): def fit_predict( # noqa: D102 self, X: Input, y: object = None, ) -> NDArrayInt: return super().fit_predict(X, y) # type: ignore[no-any-return] class RegressorMixin( # noqa: D101 ABC, Generic[Input, TargetPrediction], sklearn.base.RegressorMixin, # type: ignore[misc] ): def fit( # noqa: D102 self: SelfType, X: Input, y: TargetPrediction, ) -> SelfType: return self @abstractmethod def predict( # noqa: D102 self: SelfType, X: Input, ) -> TargetPrediction: pass def score( # noqa: D102 self, X: Input, y: TargetPrediction, sample_weight: NDArrayFloat | None = None, ) -> float: from ..misc.scoring import r2_score y_pred = self.predict(X) return r2_score( y, y_pred, sample_weight=sample_weight, )
scikit-fda-sim
/scikit-fda-sim-0.7.1.tar.gz/scikit-fda-sim-0.7.1/skfda/_utils/_sklearn_adapter.py
_sklearn_adapter.py
from __future__ import annotations from abc import ABC, abstractmethod from typing import TYPE_CHECKING, Any, Generic, TypeVar, overload import sklearn.base if TYPE_CHECKING: from ..typing._numpy import NDArrayFloat, NDArrayInt SelfType = TypeVar("SelfType") TransformerNoTarget = TypeVar( "TransformerNoTarget", bound="TransformerMixin[Any, Any, None]", ) Input = TypeVar("Input", contravariant=True) Output = TypeVar("Output", covariant=True) Target = TypeVar("Target", contravariant=True) TargetPrediction = TypeVar("TargetPrediction") class BaseEstimator( # noqa: D101 ABC, sklearn.base.BaseEstimator, # type: ignore[misc] ): pass # noqa: WPS604 class TransformerMixin( # noqa: D101 ABC, Generic[Input, Output, Target], sklearn.base.TransformerMixin, # type: ignore[misc] ): @overload def fit( self: TransformerNoTarget, X: Input, ) -> TransformerNoTarget: pass @overload def fit( self: SelfType, X: Input, y: Target, ) -> SelfType: pass def fit( # noqa: D102 self: SelfType, X: Input, y: Target | None = None, ) -> SelfType: return self @overload def fit_transform( self: TransformerNoTarget, X: Input, ) -> Output: pass @overload def fit_transform( self, X: Input, y: Target, ) -> Output: pass def fit_transform( # noqa: D102 self, X: Input, y: Target | None = None, **fit_params: Any, ) -> Output: if y is None: return self.fit( # type: ignore[no-any-return] X, **fit_params, ).transform(X) return self.fit( # type: ignore[no-any-return] X, y, **fit_params, ).transform(X) class InductiveTransformerMixin( # noqa: D101 TransformerMixin[Input, Output, Target], ): @abstractmethod def transform( # noqa: D102 self: SelfType, X: Input, ) -> Output: pass class OutlierMixin( # noqa: D101 ABC, Generic[Input], sklearn.base.OutlierMixin, # type: ignore[misc] ): def fit_predict( # noqa: D102 self, X: Input, y: object = None, ) -> NDArrayInt: return self.fit(X, y).predict(X) # type: ignore[no-any-return] class ClassifierMixin( # noqa: D101 ABC, Generic[Input, TargetPrediction], sklearn.base.ClassifierMixin, # type: ignore[misc] ): def fit( # noqa: D102 self: SelfType, X: Input, y: TargetPrediction, ) -> SelfType: return self @abstractmethod def predict( # noqa: D102 self: SelfType, X: Input, ) -> TargetPrediction: pass def score( # noqa: D102 self, X: Input, y: Target, sample_weight: NDArrayFloat | None = None, ) -> float: return super().score( # type: ignore[no-any-return] X, y, sample_weight=sample_weight, ) class ClusterMixin( # noqa: D101 ABC, Generic[Input], sklearn.base.ClusterMixin, # type: ignore[misc] ): def fit_predict( # noqa: D102 self, X: Input, y: object = None, ) -> NDArrayInt: return super().fit_predict(X, y) # type: ignore[no-any-return] class RegressorMixin( # noqa: D101 ABC, Generic[Input, TargetPrediction], sklearn.base.RegressorMixin, # type: ignore[misc] ): def fit( # noqa: D102 self: SelfType, X: Input, y: TargetPrediction, ) -> SelfType: return self @abstractmethod def predict( # noqa: D102 self: SelfType, X: Input, ) -> TargetPrediction: pass def score( # noqa: D102 self, X: Input, y: TargetPrediction, sample_weight: NDArrayFloat | None = None, ) -> float: from ..misc.scoring import r2_score y_pred = self.predict(X) return r2_score( y, y_pred, sample_weight=sample_weight, )
0.875814
0.271692
from __future__ import annotations from typing import TYPE_CHECKING, Optional import numpy as np from scipy.interpolate import PchipInterpolator from ..typing._base import DomainRangeLike from ..typing._numpy import ArrayLike, NDArrayFloat if TYPE_CHECKING: from ..representation import FDataGrid def invert_warping( warping: FDataGrid, *, output_points: Optional[ArrayLike] = None, ) -> FDataGrid: r""" Compute the inverse of a diffeomorphism. Let :math:`\gamma : [a,b] \rightarrow [a,b]` be a function strictly increasing, calculates the corresponding inverse :math:`\gamma^{-1} : [a,b] \rightarrow [a,b]` such that :math:`\gamma^{-1} \circ \gamma = \gamma \circ \gamma^{-1} = \gamma_{id}`. Uses a PCHIP interpolator to compute approximately the inverse. Args: warping: Functions to be inverted. output_points: Set of points where the functions are interpolated to obtain the inverse, by default uses the sample points of the fdatagrid. Returns: Inverse of the original functions. Raises: ValueError: If the functions are not strictly increasing or are multidimensional. Examples: >>> import numpy as np >>> from skfda import FDataGrid We will construct the warping :math:`\gamma : [0,1] \rightarrow [0,1]` wich maps t to t^3. >>> t = np.linspace(0, 1) >>> gamma = FDataGrid(t**3, t) >>> gamma FDataGrid(...) We will compute the inverse. >>> inverse = invert_warping(gamma) >>> inverse FDataGrid(...) The result of the composition should be approximately the identity function . >>> identity = gamma.compose(inverse) >>> identity([0, 0.25, 0.5, 0.75, 1]).round(3) array([[[ 0. ], [ 0.25], [ 0.5 ], [ 0.75], [ 1. ]]]) """ from ..misc.validation import check_fdata_dimensions check_fdata_dimensions( warping, dim_domain=1, dim_codomain=1, ) output_points = ( warping.grid_points[0] if output_points is None else np.asarray(output_points) ) y = warping(output_points)[..., 0] data_matrix = np.empty((warping.n_samples, len(output_points))) for i in range(warping.n_samples): data_matrix[i] = PchipInterpolator(y[i], output_points)(output_points) return warping.copy(data_matrix=data_matrix, grid_points=output_points) def normalize_scale( t: NDArrayFloat, a: float = 0, b: float = 1, ) -> NDArrayFloat: """ Perfoms an afine translation to normalize an interval. Args: t: Array of dim 1 or 2 with at least 2 values. a: Starting point of the new interval. Defaults 0. b: Stopping point of the new interval. Defaults 1. Returns: Array with the transformed interval. """ t = t.T # Broadcast to normalize multiple arrays t1 = np.array(t, copy=True) t1 -= t[0] # Translation to [0, t[-1] - t[0]] t1 *= (b - a) / (t[-1] - t[0]) # Scale to [0, b-a] t1 += a # Translation to [a, b] t1[0] = a # Fix possible round errors t1[-1] = b return t1.T def normalize_warping( warping: FDataGrid, domain_range: Optional[DomainRangeLike] = None, ) -> FDataGrid: r""" Rescale a warping to normalize their :term:`domain`. Given a set of warpings :math:`\gamma_i:[a,b]\rightarrow [a,b]` it is used an affine traslation to change the domain of the transformation to other domain, :math:`\tilde \gamma_i:[\tilde a,\tilde b] \rightarrow [\tilde a, \tilde b]`. Args: warping: Set of warpings to rescale. domain_range: New domain range of the warping. By default it is used the same domain range. Returns: Normalized warpings. """ from ..misc.validation import validate_domain_range domain_range_tuple = ( warping.domain_range[0] if domain_range is None else validate_domain_range(domain_range)[0] ) data_matrix = normalize_scale( warping.data_matrix[..., 0], *domain_range_tuple, ) grid_points = normalize_scale(warping.grid_points[0], *domain_range_tuple) return warping.copy( data_matrix=data_matrix, grid_points=grid_points, domain_range=domain_range, )
scikit-fda-sim
/scikit-fda-sim-0.7.1.tar.gz/scikit-fda-sim-0.7.1/skfda/_utils/_warping.py
_warping.py
from __future__ import annotations from typing import TYPE_CHECKING, Optional import numpy as np from scipy.interpolate import PchipInterpolator from ..typing._base import DomainRangeLike from ..typing._numpy import ArrayLike, NDArrayFloat if TYPE_CHECKING: from ..representation import FDataGrid def invert_warping( warping: FDataGrid, *, output_points: Optional[ArrayLike] = None, ) -> FDataGrid: r""" Compute the inverse of a diffeomorphism. Let :math:`\gamma : [a,b] \rightarrow [a,b]` be a function strictly increasing, calculates the corresponding inverse :math:`\gamma^{-1} : [a,b] \rightarrow [a,b]` such that :math:`\gamma^{-1} \circ \gamma = \gamma \circ \gamma^{-1} = \gamma_{id}`. Uses a PCHIP interpolator to compute approximately the inverse. Args: warping: Functions to be inverted. output_points: Set of points where the functions are interpolated to obtain the inverse, by default uses the sample points of the fdatagrid. Returns: Inverse of the original functions. Raises: ValueError: If the functions are not strictly increasing or are multidimensional. Examples: >>> import numpy as np >>> from skfda import FDataGrid We will construct the warping :math:`\gamma : [0,1] \rightarrow [0,1]` wich maps t to t^3. >>> t = np.linspace(0, 1) >>> gamma = FDataGrid(t**3, t) >>> gamma FDataGrid(...) We will compute the inverse. >>> inverse = invert_warping(gamma) >>> inverse FDataGrid(...) The result of the composition should be approximately the identity function . >>> identity = gamma.compose(inverse) >>> identity([0, 0.25, 0.5, 0.75, 1]).round(3) array([[[ 0. ], [ 0.25], [ 0.5 ], [ 0.75], [ 1. ]]]) """ from ..misc.validation import check_fdata_dimensions check_fdata_dimensions( warping, dim_domain=1, dim_codomain=1, ) output_points = ( warping.grid_points[0] if output_points is None else np.asarray(output_points) ) y = warping(output_points)[..., 0] data_matrix = np.empty((warping.n_samples, len(output_points))) for i in range(warping.n_samples): data_matrix[i] = PchipInterpolator(y[i], output_points)(output_points) return warping.copy(data_matrix=data_matrix, grid_points=output_points) def normalize_scale( t: NDArrayFloat, a: float = 0, b: float = 1, ) -> NDArrayFloat: """ Perfoms an afine translation to normalize an interval. Args: t: Array of dim 1 or 2 with at least 2 values. a: Starting point of the new interval. Defaults 0. b: Stopping point of the new interval. Defaults 1. Returns: Array with the transformed interval. """ t = t.T # Broadcast to normalize multiple arrays t1 = np.array(t, copy=True) t1 -= t[0] # Translation to [0, t[-1] - t[0]] t1 *= (b - a) / (t[-1] - t[0]) # Scale to [0, b-a] t1 += a # Translation to [a, b] t1[0] = a # Fix possible round errors t1[-1] = b return t1.T def normalize_warping( warping: FDataGrid, domain_range: Optional[DomainRangeLike] = None, ) -> FDataGrid: r""" Rescale a warping to normalize their :term:`domain`. Given a set of warpings :math:`\gamma_i:[a,b]\rightarrow [a,b]` it is used an affine traslation to change the domain of the transformation to other domain, :math:`\tilde \gamma_i:[\tilde a,\tilde b] \rightarrow [\tilde a, \tilde b]`. Args: warping: Set of warpings to rescale. domain_range: New domain range of the warping. By default it is used the same domain range. Returns: Normalized warpings. """ from ..misc.validation import validate_domain_range domain_range_tuple = ( warping.domain_range[0] if domain_range is None else validate_domain_range(domain_range)[0] ) data_matrix = normalize_scale( warping.data_matrix[..., 0], *domain_range_tuple, ) grid_points = normalize_scale(warping.grid_points[0], *domain_range_tuple) return warping.copy( data_matrix=data_matrix, grid_points=grid_points, domain_range=domain_range, )
0.970099
0.665635
from __future__ import annotations import functools import numbers from functools import singledispatch from typing import ( TYPE_CHECKING, Any, Callable, Iterable, List, Optional, Sequence, Sized, Tuple, Type, TypeVar, Union, cast, overload, ) import numpy as np import scipy.integrate from pandas.api.indexers import check_array_indexer from sklearn.preprocessing import LabelEncoder from sklearn.utils.multiclass import check_classification_targets from typing_extensions import Literal, ParamSpec, Protocol from ..typing._base import GridPoints, GridPointsLike from ..typing._numpy import NDArrayAny, NDArrayFloat, NDArrayInt, NDArrayStr from ._sklearn_adapter import BaseEstimator ArrayDTypeT = TypeVar("ArrayDTypeT", bound="np.generic") if TYPE_CHECKING: from ..representation import FData, FDataGrid from ..representation.basis import Basis from ..representation.extrapolation import ExtrapolationLike T = TypeVar("T", bound=FData) Input = TypeVar("Input", bound=Union[FData, NDArrayFloat]) Output = TypeVar("Output", bound=Union[FData, NDArrayFloat]) Target = TypeVar("Target", bound=NDArrayInt) _MapAcceptableSelf = TypeVar( "_MapAcceptableSelf", bound="_MapAcceptable", ) class _MapAcceptable(Protocol, Sized): def __getitem__( self: _MapAcceptableSelf, __key: Union[slice, NDArrayInt], # noqa: WPS112 ) -> _MapAcceptableSelf: pass @property def nbytes(self) -> int: pass _MapAcceptableT = TypeVar( "_MapAcceptableT", bound=_MapAcceptable, contravariant=True, ) MapFunctionT = TypeVar("MapFunctionT", covariant=True) P = ParamSpec("P") class _MapFunction(Protocol[_MapAcceptableT, P, MapFunctionT]): """Protocol for functions that can be mapped over several arrays.""" def __call__( self, *args: _MapAcceptableT, **kwargs: P.kwargs, ) -> MapFunctionT: pass class _PairwiseFunction(Protocol[_MapAcceptableT, P, MapFunctionT]): """Protocol for pairwise array functions.""" def __call__( self, __arg1: _MapAcceptableT, # noqa: WPS112 __arg2: _MapAcceptableT, # noqa: WPS112 **kwargs: P.kwargs, # type: ignore[name-defined] ) -> MapFunctionT: pass def _to_grid( X: FData, y: FData, eval_points: Optional[NDArrayFloat] = None, ) -> Tuple[FDataGrid, FDataGrid]: """Transform a pair of FDatas in grids to perform calculations.""" from .. import FDataGrid x_is_grid = isinstance(X, FDataGrid) y_is_grid = isinstance(y, FDataGrid) if eval_points is not None: X = X.to_grid(eval_points) y = y.to_grid(eval_points) elif x_is_grid and not y_is_grid: y = y.to_grid(X.grid_points[0]) elif not x_is_grid and y_is_grid: X = X.to_grid(y.grid_points[0]) elif not x_is_grid and not y_is_grid: X = X.to_grid() y = y.to_grid() return X, y def _to_grid_points(grid_points_like: GridPointsLike) -> GridPoints: """Convert to grid points. If the original list is one-dimensional (e.g. [1, 2, 3]), return list to array (in this case [array([1, 2, 3])]). If the original list is two-dimensional (e.g. [[1, 2, 3], [4, 5]]), return a list containing other one-dimensional arrays (in this case [array([1, 2, 3]), array([4, 5])]). In any other case the behaviour is unespecified. """ unidimensional = False if not isinstance(grid_points_like, Iterable): grid_points_like = [grid_points_like] if not isinstance(grid_points_like[0], Iterable): unidimensional = True if unidimensional: return (_int_to_real(np.asarray(grid_points_like)),) return tuple(_int_to_real(np.asarray(i)) for i in grid_points_like) @overload def _cartesian_product( axes: Sequence[np.typing.NDArray[ArrayDTypeT]], *, flatten: bool = True, return_shape: Literal[False] = False, ) -> np.typing.NDArray[ArrayDTypeT]: pass @overload def _cartesian_product( axes: Sequence[np.typing.NDArray[ArrayDTypeT]], *, flatten: bool = True, return_shape: Literal[True], ) -> Tuple[np.typing.NDArray[ArrayDTypeT], Tuple[int, ...]]: pass def _cartesian_product( # noqa: WPS234 axes: Sequence[np.typing.NDArray[ArrayDTypeT]], *, flatten: bool = True, return_shape: bool = False, ) -> ( np.typing.NDArray[ArrayDTypeT] | Tuple[np.typing.NDArray[ArrayDTypeT], Tuple[int, ...]] ): """ Compute the cartesian product of the axes. Computes the cartesian product of the axes and returns a numpy array of 1 dimension with all the possible combinations, for an arbitrary number of dimensions. Args: axes: List with axes. flatten: Whether to return the flatten array or keep one dimension per axis. return_shape: If ``True`` return the shape of the array before flattening. Returns: Numpy 2-D array with all the possible combinations. The entry (i,j) represent the j-th coordinate of the i-th point. If ``return_shape`` is ``True`` returns also the shape of the array before flattening. Examples: >>> from skfda._utils import _cartesian_product >>> axes = [[0,1],[2,3]] >>> _cartesian_product(axes) array([[0, 2], [0, 3], [1, 2], [1, 3]]) >>> axes = [[0,1],[2,3],[4]] >>> _cartesian_product(axes) array([[0, 2, 4], [0, 3, 4], [1, 2, 4], [1, 3, 4]]) >>> axes = [[0,1]] >>> _cartesian_product(axes) array([[0], [1]]) """ cartesian = np.stack(np.meshgrid(*axes, indexing='ij'), -1) shape = cartesian.shape if flatten: cartesian = cartesian.reshape(-1, len(axes)) if return_shape: return cartesian, shape return cartesian # type: ignore[no-any-return] def _same_domain(fd: Union[Basis, FData], fd2: Union[Basis, FData]) -> bool: """Check if the domain range of two objects is the same.""" return np.array_equal(fd.domain_range, fd2.domain_range) def _one_grid_to_points( axes: GridPointsLike, *, dim_domain: int, ) -> Tuple[NDArrayFloat, Tuple[int, ...]]: """ Convert a list of ndarrays, one per domain dimension, in the points. Returns also the shape containing the information of how each point is formed. """ axes = _to_grid_points(axes) if len(axes) != dim_domain: raise ValueError( f"Length of axes should be {dim_domain}", ) cartesian, shape = _cartesian_product(axes, return_shape=True) # Drop domain size dimension, as it is not needed to reshape the output shape = shape[:-1] return cartesian, shape class EvaluateMethod(Protocol): """Evaluation method.""" def __call__( self, __eval_points: NDArrayFloat, # noqa: WPS112 extrapolation: Optional[ExtrapolationLike], aligned: bool, ) -> NDArrayFloat: """Evaluate a function.""" pass @overload def _evaluate_grid( axes: GridPointsLike, *, evaluate_method: EvaluateMethod, n_samples: int, dim_domain: int, dim_codomain: int, extrapolation: Optional[ExtrapolationLike] = None, aligned: Literal[True] = True, ) -> NDArrayFloat: pass @overload def _evaluate_grid( axes: Iterable[GridPointsLike], *, evaluate_method: EvaluateMethod, n_samples: int, dim_domain: int, dim_codomain: int, extrapolation: Optional[ExtrapolationLike] = None, aligned: Literal[False], ) -> NDArrayFloat: pass @overload def _evaluate_grid( axes: Union[GridPointsLike, Iterable[GridPointsLike]], *, evaluate_method: EvaluateMethod, n_samples: int, dim_domain: int, dim_codomain: int, extrapolation: Optional[ExtrapolationLike] = None, aligned: bool, ) -> NDArrayFloat: pass def _evaluate_grid( # noqa: WPS234 axes: Union[GridPointsLike, Iterable[GridPointsLike]], *, evaluate_method: EvaluateMethod, n_samples: int, dim_domain: int, dim_codomain: int, extrapolation: Optional[ExtrapolationLike] = None, aligned: bool = True, ) -> NDArrayFloat: """ Evaluate the functional object in the cartesian grid. This method is called internally by :meth:`evaluate` when the argument `grid` is True. Evaluates the functional object in the grid generated by the cartesian product of the axes. The length of the list of axes should be equal than the domain dimension of the object. If the list of axes has lengths :math:`n_1, n_2, ..., n_m`, where :math:`m` is equal than the dimension of the domain, the result of the evaluation in the grid will be a matrix with :math:`m+1` dimensions and shape :math:`n_{samples} x n_1 x n_2 x ... x n_m`. If `aligned` is false each sample is evaluated in a different grid, and the list of axes should contain a list of axes for each sample. If the domain dimension is 1, the result of the behaviour of the evaluation will be the same than :meth:`evaluate` without the grid option, but with worst performance. Args: axes: List of axes to generated the grid where the object will be evaluated. evaluate_method: Function used to evaluate the functional object. n_samples: Number of samples. dim_domain: Domain dimension. dim_codomain: Codomain dimension. extrapolation: Controls the extrapolation mode for elements outside the domain range. By default it is used the mode defined during the instance of the object. aligned: If False evaluates each sample in a different grid. evaluate_method: method to use to evaluate the points n_samples: number of samples dim_domain: dimension of the domain dim_codomain: dimensions of the codomain Returns: Numpy array with dim_domain + 1 dimensions with the result of the evaluation. Raises: ValueError: If there are a different number of axes than the domain dimension. """ # Compute intersection points and resulting shapes if aligned: axes = cast(GridPointsLike, axes) eval_points, shape = _one_grid_to_points(axes, dim_domain=dim_domain) else: axes_per_sample = cast(Iterable[GridPointsLike], axes) axes_per_sample = list(axes_per_sample) eval_points_tuple, shape_tuple = zip( *[ _one_grid_to_points(a, dim_domain=dim_domain) for a in axes_per_sample ], ) if len(eval_points_tuple) != n_samples: raise ValueError( "Should be provided a list of axis per sample", ) eval_points = np.asarray(eval_points_tuple) # Evaluate the points evaluated = evaluate_method( eval_points, extrapolation=extrapolation, aligned=aligned, ) # Reshape the result if aligned: res = evaluated.reshape( [n_samples] + list(shape) + [dim_codomain], ) else: res = np.asarray([ r.reshape(list(s) + [dim_codomain]) for r, s in zip(evaluated, shape_tuple) ]) return res def nquad_vec( func: Callable[[NDArrayFloat], NDArrayFloat], ranges: Sequence[Tuple[float, float]], ) -> NDArrayFloat: """Perform multiple integration of vector valued functions.""" initial_depth = len(ranges) - 1 def integrate(*args: Any, depth: int) -> NDArrayFloat: # noqa: WPS430 if depth == 0: f = functools.partial(func, *args) else: f = functools.partial(integrate, *args, depth=depth - 1) return scipy.integrate.quad_vec( # type: ignore[no-any-return] f, *ranges[initial_depth - depth], )[0] return integrate(depth=initial_depth) def _map_in_batches( function: _MapFunction[_MapAcceptableT, P, np.typing.NDArray[ArrayDTypeT]], arguments: Tuple[_MapAcceptableT, ...], indexes: Tuple[NDArrayInt, ...], memory_per_batch: Optional[int] = None, *args: P.args, # Should be empty **kwargs: P.kwargs, ) -> np.typing.NDArray[ArrayDTypeT]: """ Map a function over samples of FData or ndarray tuples efficiently. This function prevents a large set of indexes to use all available memory and hang the PC. """ if memory_per_batch is None: # 256MB is not too big memory_per_batch = 256 * 1024 * 1024 # noqa: WPS432 memory_per_element = sum(a.nbytes // len(a) for a in arguments) n_elements_per_batch_allowed = memory_per_batch // memory_per_element if n_elements_per_batch_allowed < 1: raise ValueError("Too few memory allowed for the operation") n_indexes = len(indexes[0]) assert all(n_indexes == len(i) for i in indexes) batches: List[np.typing.NDArray[ArrayDTypeT]] = [] for pos in range(0, n_indexes, n_elements_per_batch_allowed): batch_args = tuple( a[i[pos:pos + n_elements_per_batch_allowed]] for a, i in zip(arguments, indexes) ) batches.append(function(*batch_args, **kwargs)) return np.concatenate(batches, axis=0) def _pairwise_symmetric( function: _PairwiseFunction[ _MapAcceptableT, P, np.typing.NDArray[ArrayDTypeT], ], arg1: _MapAcceptableT, arg2: Optional[_MapAcceptableT] = None, memory_per_batch: Optional[int] = None, *args: P.args, # Should be empty **kwargs: P.kwargs, ) -> np.typing.NDArray[ArrayDTypeT]: """Compute pairwise a commutative function.""" def map_function( *args: _MapAcceptableT, **kwargs: P.kwargs, ) -> np.typing.NDArray[ArrayDTypeT]: """Just to keep Mypy happy.""" return function(args[0], args[1], **kwargs) dim1 = len(arg1) if arg2 is None or arg2 is arg1: triu_indices = np.triu_indices(dim1) triang_vec = _map_in_batches( map_function, (arg1, arg1), triu_indices, memory_per_batch, **kwargs, # type: ignore[arg-type] ) matrix = np.empty((dim1, dim1), dtype=triang_vec.dtype) # Set upper matrix matrix[triu_indices] = triang_vec # Set lower matrix matrix[(triu_indices[1], triu_indices[0])] = triang_vec return matrix dim2 = len(arg2) indices = np.indices((dim1, dim2)) vec = _map_in_batches( map_function, (arg1, arg2), (indices[0].ravel(), indices[1].ravel()), memory_per_batch=memory_per_batch, **kwargs, # type: ignore[arg-type] ) return np.reshape(vec, (dim1, dim2)) def _int_to_real(array: Union[NDArrayInt, NDArrayFloat]) -> NDArrayFloat: """Convert integer arrays to floating point.""" return array + 0.0 def _check_array_key(array: NDArrayAny, key: Any) -> Any: """Check a getitem key.""" key = check_array_indexer(array, key) if isinstance(key, tuple): non_ellipsis = [i for i in key if i is not Ellipsis] if len(non_ellipsis) > 1: raise KeyError(key) key = non_ellipsis[0] if isinstance(key, numbers.Integral): # To accept also numpy ints key = int(key) if key < 0: key = len(array) + key if not 0 <= key < len(array): raise IndexError("index out of bounds") return slice(key, key + 1) return key def _check_estimator(estimator: Type[BaseEstimator]) -> None: from sklearn.utils.estimator_checks import ( check_get_params_invariance, check_set_params, ) name = estimator.__name__ instance = estimator() check_get_params_invariance(name, instance) check_set_params(name, instance) def _classifier_get_classes( y: NDArrayStr | NDArrayInt, ) -> Tuple[NDArrayStr | NDArrayInt, NDArrayInt]: check_classification_targets(y) le = LabelEncoder() y_ind = le.fit_transform(y) classes = le.classes_ if classes.size < 2: raise ValueError( f'The number of classes has to be greater than' f'one; got {classes.size} class', ) return classes, y_ind
scikit-fda-sim
/scikit-fda-sim-0.7.1.tar.gz/scikit-fda-sim-0.7.1/skfda/_utils/_utils.py
_utils.py
from __future__ import annotations import functools import numbers from functools import singledispatch from typing import ( TYPE_CHECKING, Any, Callable, Iterable, List, Optional, Sequence, Sized, Tuple, Type, TypeVar, Union, cast, overload, ) import numpy as np import scipy.integrate from pandas.api.indexers import check_array_indexer from sklearn.preprocessing import LabelEncoder from sklearn.utils.multiclass import check_classification_targets from typing_extensions import Literal, ParamSpec, Protocol from ..typing._base import GridPoints, GridPointsLike from ..typing._numpy import NDArrayAny, NDArrayFloat, NDArrayInt, NDArrayStr from ._sklearn_adapter import BaseEstimator ArrayDTypeT = TypeVar("ArrayDTypeT", bound="np.generic") if TYPE_CHECKING: from ..representation import FData, FDataGrid from ..representation.basis import Basis from ..representation.extrapolation import ExtrapolationLike T = TypeVar("T", bound=FData) Input = TypeVar("Input", bound=Union[FData, NDArrayFloat]) Output = TypeVar("Output", bound=Union[FData, NDArrayFloat]) Target = TypeVar("Target", bound=NDArrayInt) _MapAcceptableSelf = TypeVar( "_MapAcceptableSelf", bound="_MapAcceptable", ) class _MapAcceptable(Protocol, Sized): def __getitem__( self: _MapAcceptableSelf, __key: Union[slice, NDArrayInt], # noqa: WPS112 ) -> _MapAcceptableSelf: pass @property def nbytes(self) -> int: pass _MapAcceptableT = TypeVar( "_MapAcceptableT", bound=_MapAcceptable, contravariant=True, ) MapFunctionT = TypeVar("MapFunctionT", covariant=True) P = ParamSpec("P") class _MapFunction(Protocol[_MapAcceptableT, P, MapFunctionT]): """Protocol for functions that can be mapped over several arrays.""" def __call__( self, *args: _MapAcceptableT, **kwargs: P.kwargs, ) -> MapFunctionT: pass class _PairwiseFunction(Protocol[_MapAcceptableT, P, MapFunctionT]): """Protocol for pairwise array functions.""" def __call__( self, __arg1: _MapAcceptableT, # noqa: WPS112 __arg2: _MapAcceptableT, # noqa: WPS112 **kwargs: P.kwargs, # type: ignore[name-defined] ) -> MapFunctionT: pass def _to_grid( X: FData, y: FData, eval_points: Optional[NDArrayFloat] = None, ) -> Tuple[FDataGrid, FDataGrid]: """Transform a pair of FDatas in grids to perform calculations.""" from .. import FDataGrid x_is_grid = isinstance(X, FDataGrid) y_is_grid = isinstance(y, FDataGrid) if eval_points is not None: X = X.to_grid(eval_points) y = y.to_grid(eval_points) elif x_is_grid and not y_is_grid: y = y.to_grid(X.grid_points[0]) elif not x_is_grid and y_is_grid: X = X.to_grid(y.grid_points[0]) elif not x_is_grid and not y_is_grid: X = X.to_grid() y = y.to_grid() return X, y def _to_grid_points(grid_points_like: GridPointsLike) -> GridPoints: """Convert to grid points. If the original list is one-dimensional (e.g. [1, 2, 3]), return list to array (in this case [array([1, 2, 3])]). If the original list is two-dimensional (e.g. [[1, 2, 3], [4, 5]]), return a list containing other one-dimensional arrays (in this case [array([1, 2, 3]), array([4, 5])]). In any other case the behaviour is unespecified. """ unidimensional = False if not isinstance(grid_points_like, Iterable): grid_points_like = [grid_points_like] if not isinstance(grid_points_like[0], Iterable): unidimensional = True if unidimensional: return (_int_to_real(np.asarray(grid_points_like)),) return tuple(_int_to_real(np.asarray(i)) for i in grid_points_like) @overload def _cartesian_product( axes: Sequence[np.typing.NDArray[ArrayDTypeT]], *, flatten: bool = True, return_shape: Literal[False] = False, ) -> np.typing.NDArray[ArrayDTypeT]: pass @overload def _cartesian_product( axes: Sequence[np.typing.NDArray[ArrayDTypeT]], *, flatten: bool = True, return_shape: Literal[True], ) -> Tuple[np.typing.NDArray[ArrayDTypeT], Tuple[int, ...]]: pass def _cartesian_product( # noqa: WPS234 axes: Sequence[np.typing.NDArray[ArrayDTypeT]], *, flatten: bool = True, return_shape: bool = False, ) -> ( np.typing.NDArray[ArrayDTypeT] | Tuple[np.typing.NDArray[ArrayDTypeT], Tuple[int, ...]] ): """ Compute the cartesian product of the axes. Computes the cartesian product of the axes and returns a numpy array of 1 dimension with all the possible combinations, for an arbitrary number of dimensions. Args: axes: List with axes. flatten: Whether to return the flatten array or keep one dimension per axis. return_shape: If ``True`` return the shape of the array before flattening. Returns: Numpy 2-D array with all the possible combinations. The entry (i,j) represent the j-th coordinate of the i-th point. If ``return_shape`` is ``True`` returns also the shape of the array before flattening. Examples: >>> from skfda._utils import _cartesian_product >>> axes = [[0,1],[2,3]] >>> _cartesian_product(axes) array([[0, 2], [0, 3], [1, 2], [1, 3]]) >>> axes = [[0,1],[2,3],[4]] >>> _cartesian_product(axes) array([[0, 2, 4], [0, 3, 4], [1, 2, 4], [1, 3, 4]]) >>> axes = [[0,1]] >>> _cartesian_product(axes) array([[0], [1]]) """ cartesian = np.stack(np.meshgrid(*axes, indexing='ij'), -1) shape = cartesian.shape if flatten: cartesian = cartesian.reshape(-1, len(axes)) if return_shape: return cartesian, shape return cartesian # type: ignore[no-any-return] def _same_domain(fd: Union[Basis, FData], fd2: Union[Basis, FData]) -> bool: """Check if the domain range of two objects is the same.""" return np.array_equal(fd.domain_range, fd2.domain_range) def _one_grid_to_points( axes: GridPointsLike, *, dim_domain: int, ) -> Tuple[NDArrayFloat, Tuple[int, ...]]: """ Convert a list of ndarrays, one per domain dimension, in the points. Returns also the shape containing the information of how each point is formed. """ axes = _to_grid_points(axes) if len(axes) != dim_domain: raise ValueError( f"Length of axes should be {dim_domain}", ) cartesian, shape = _cartesian_product(axes, return_shape=True) # Drop domain size dimension, as it is not needed to reshape the output shape = shape[:-1] return cartesian, shape class EvaluateMethod(Protocol): """Evaluation method.""" def __call__( self, __eval_points: NDArrayFloat, # noqa: WPS112 extrapolation: Optional[ExtrapolationLike], aligned: bool, ) -> NDArrayFloat: """Evaluate a function.""" pass @overload def _evaluate_grid( axes: GridPointsLike, *, evaluate_method: EvaluateMethod, n_samples: int, dim_domain: int, dim_codomain: int, extrapolation: Optional[ExtrapolationLike] = None, aligned: Literal[True] = True, ) -> NDArrayFloat: pass @overload def _evaluate_grid( axes: Iterable[GridPointsLike], *, evaluate_method: EvaluateMethod, n_samples: int, dim_domain: int, dim_codomain: int, extrapolation: Optional[ExtrapolationLike] = None, aligned: Literal[False], ) -> NDArrayFloat: pass @overload def _evaluate_grid( axes: Union[GridPointsLike, Iterable[GridPointsLike]], *, evaluate_method: EvaluateMethod, n_samples: int, dim_domain: int, dim_codomain: int, extrapolation: Optional[ExtrapolationLike] = None, aligned: bool, ) -> NDArrayFloat: pass def _evaluate_grid( # noqa: WPS234 axes: Union[GridPointsLike, Iterable[GridPointsLike]], *, evaluate_method: EvaluateMethod, n_samples: int, dim_domain: int, dim_codomain: int, extrapolation: Optional[ExtrapolationLike] = None, aligned: bool = True, ) -> NDArrayFloat: """ Evaluate the functional object in the cartesian grid. This method is called internally by :meth:`evaluate` when the argument `grid` is True. Evaluates the functional object in the grid generated by the cartesian product of the axes. The length of the list of axes should be equal than the domain dimension of the object. If the list of axes has lengths :math:`n_1, n_2, ..., n_m`, where :math:`m` is equal than the dimension of the domain, the result of the evaluation in the grid will be a matrix with :math:`m+1` dimensions and shape :math:`n_{samples} x n_1 x n_2 x ... x n_m`. If `aligned` is false each sample is evaluated in a different grid, and the list of axes should contain a list of axes for each sample. If the domain dimension is 1, the result of the behaviour of the evaluation will be the same than :meth:`evaluate` without the grid option, but with worst performance. Args: axes: List of axes to generated the grid where the object will be evaluated. evaluate_method: Function used to evaluate the functional object. n_samples: Number of samples. dim_domain: Domain dimension. dim_codomain: Codomain dimension. extrapolation: Controls the extrapolation mode for elements outside the domain range. By default it is used the mode defined during the instance of the object. aligned: If False evaluates each sample in a different grid. evaluate_method: method to use to evaluate the points n_samples: number of samples dim_domain: dimension of the domain dim_codomain: dimensions of the codomain Returns: Numpy array with dim_domain + 1 dimensions with the result of the evaluation. Raises: ValueError: If there are a different number of axes than the domain dimension. """ # Compute intersection points and resulting shapes if aligned: axes = cast(GridPointsLike, axes) eval_points, shape = _one_grid_to_points(axes, dim_domain=dim_domain) else: axes_per_sample = cast(Iterable[GridPointsLike], axes) axes_per_sample = list(axes_per_sample) eval_points_tuple, shape_tuple = zip( *[ _one_grid_to_points(a, dim_domain=dim_domain) for a in axes_per_sample ], ) if len(eval_points_tuple) != n_samples: raise ValueError( "Should be provided a list of axis per sample", ) eval_points = np.asarray(eval_points_tuple) # Evaluate the points evaluated = evaluate_method( eval_points, extrapolation=extrapolation, aligned=aligned, ) # Reshape the result if aligned: res = evaluated.reshape( [n_samples] + list(shape) + [dim_codomain], ) else: res = np.asarray([ r.reshape(list(s) + [dim_codomain]) for r, s in zip(evaluated, shape_tuple) ]) return res def nquad_vec( func: Callable[[NDArrayFloat], NDArrayFloat], ranges: Sequence[Tuple[float, float]], ) -> NDArrayFloat: """Perform multiple integration of vector valued functions.""" initial_depth = len(ranges) - 1 def integrate(*args: Any, depth: int) -> NDArrayFloat: # noqa: WPS430 if depth == 0: f = functools.partial(func, *args) else: f = functools.partial(integrate, *args, depth=depth - 1) return scipy.integrate.quad_vec( # type: ignore[no-any-return] f, *ranges[initial_depth - depth], )[0] return integrate(depth=initial_depth) def _map_in_batches( function: _MapFunction[_MapAcceptableT, P, np.typing.NDArray[ArrayDTypeT]], arguments: Tuple[_MapAcceptableT, ...], indexes: Tuple[NDArrayInt, ...], memory_per_batch: Optional[int] = None, *args: P.args, # Should be empty **kwargs: P.kwargs, ) -> np.typing.NDArray[ArrayDTypeT]: """ Map a function over samples of FData or ndarray tuples efficiently. This function prevents a large set of indexes to use all available memory and hang the PC. """ if memory_per_batch is None: # 256MB is not too big memory_per_batch = 256 * 1024 * 1024 # noqa: WPS432 memory_per_element = sum(a.nbytes // len(a) for a in arguments) n_elements_per_batch_allowed = memory_per_batch // memory_per_element if n_elements_per_batch_allowed < 1: raise ValueError("Too few memory allowed for the operation") n_indexes = len(indexes[0]) assert all(n_indexes == len(i) for i in indexes) batches: List[np.typing.NDArray[ArrayDTypeT]] = [] for pos in range(0, n_indexes, n_elements_per_batch_allowed): batch_args = tuple( a[i[pos:pos + n_elements_per_batch_allowed]] for a, i in zip(arguments, indexes) ) batches.append(function(*batch_args, **kwargs)) return np.concatenate(batches, axis=0) def _pairwise_symmetric( function: _PairwiseFunction[ _MapAcceptableT, P, np.typing.NDArray[ArrayDTypeT], ], arg1: _MapAcceptableT, arg2: Optional[_MapAcceptableT] = None, memory_per_batch: Optional[int] = None, *args: P.args, # Should be empty **kwargs: P.kwargs, ) -> np.typing.NDArray[ArrayDTypeT]: """Compute pairwise a commutative function.""" def map_function( *args: _MapAcceptableT, **kwargs: P.kwargs, ) -> np.typing.NDArray[ArrayDTypeT]: """Just to keep Mypy happy.""" return function(args[0], args[1], **kwargs) dim1 = len(arg1) if arg2 is None or arg2 is arg1: triu_indices = np.triu_indices(dim1) triang_vec = _map_in_batches( map_function, (arg1, arg1), triu_indices, memory_per_batch, **kwargs, # type: ignore[arg-type] ) matrix = np.empty((dim1, dim1), dtype=triang_vec.dtype) # Set upper matrix matrix[triu_indices] = triang_vec # Set lower matrix matrix[(triu_indices[1], triu_indices[0])] = triang_vec return matrix dim2 = len(arg2) indices = np.indices((dim1, dim2)) vec = _map_in_batches( map_function, (arg1, arg2), (indices[0].ravel(), indices[1].ravel()), memory_per_batch=memory_per_batch, **kwargs, # type: ignore[arg-type] ) return np.reshape(vec, (dim1, dim2)) def _int_to_real(array: Union[NDArrayInt, NDArrayFloat]) -> NDArrayFloat: """Convert integer arrays to floating point.""" return array + 0.0 def _check_array_key(array: NDArrayAny, key: Any) -> Any: """Check a getitem key.""" key = check_array_indexer(array, key) if isinstance(key, tuple): non_ellipsis = [i for i in key if i is not Ellipsis] if len(non_ellipsis) > 1: raise KeyError(key) key = non_ellipsis[0] if isinstance(key, numbers.Integral): # To accept also numpy ints key = int(key) if key < 0: key = len(array) + key if not 0 <= key < len(array): raise IndexError("index out of bounds") return slice(key, key + 1) return key def _check_estimator(estimator: Type[BaseEstimator]) -> None: from sklearn.utils.estimator_checks import ( check_get_params_invariance, check_set_params, ) name = estimator.__name__ instance = estimator() check_get_params_invariance(name, instance) check_set_params(name, instance) def _classifier_get_classes( y: NDArrayStr | NDArrayInt, ) -> Tuple[NDArrayStr | NDArrayInt, NDArrayInt]: check_classification_targets(y) le = LabelEncoder() y_ind = le.fit_transform(y) classes = le.classes_ if classes.size < 2: raise ValueError( f'The number of classes has to be greater than' f'one; got {classes.size} class', ) return classes, y_ind
0.922067
0.426919
from __future__ import annotations import abc import math from typing import TypeVar import numpy as np import scipy.stats import sklearn from scipy.special import comb from typing_extensions import Literal from ..._utils._sklearn_adapter import BaseEstimator, InductiveTransformerMixin from ...typing._numpy import NDArrayFloat, NDArrayInt T = TypeVar("T", contravariant=True) SelfType = TypeVar("SelfType") _Side = Literal["left", "right"] Input = TypeVar("Input", contravariant=True) class _DepthOrOutlyingness( BaseEstimator, InductiveTransformerMixin[Input, NDArrayFloat, object], ): """Abstract class representing a depth or outlyingness function.""" def fit(self: SelfType, X: Input, y: object = None) -> SelfType: """ Learn the distribution from the observations. Args: X: Functional dataset from which the distribution of the data is inferred. y: Unused. Kept only for convention. Returns: Fitted estimator. """ return self @abc.abstractmethod def transform(self, X: Input) -> NDArrayFloat: """ Compute the depth or outlyingness inside the learned distribution. Args: X: Points whose depth is going to be evaluated. Returns: Depth of each observation. """ pass def fit_transform(self, X: Input, y: object = None) -> NDArrayFloat: """ Compute the depth or outlyingness of each observation. This computation is done with respect to the whole dataset. Args: X: Dataset. y: Unused. Kept only for convention. Returns: Depth of each observation. """ return self.fit(X).transform(X) def __call__( self, X: Input, *, distribution: Input | None = None, ) -> NDArrayFloat: """ Allow the depth or outlyingness to be used as a function. Args: X: Points whose depth is going to be evaluated. distribution: Functional dataset from which the distribution of the data is inferred. If ``None`` it is the same as ``X``. Returns: Depth of each observation. """ copy: _DepthOrOutlyingness[Input] = sklearn.base.clone(self) if distribution is None: return copy.fit_transform(X) return copy.fit(distribution).transform(X) @property def max(self) -> float: """ Maximum (or supremum if there is no maximum) of the possibly predicted values. """ return 1 @property def min(self) -> float: """ Minimum (or infimum if there is no maximum) of the possibly predicted values. """ return 0 class Depth(_DepthOrOutlyingness[T]): """Abstract class representing a depth function.""" class Outlyingness(_DepthOrOutlyingness[T]): """Abstract class representing an outlyingness function.""" def _searchsorted_one_dim( array: NDArrayFloat, values: NDArrayFloat, *, side: _Side = 'left', ) -> NDArrayInt: return np.searchsorted(array, values, side=side) _searchsorted_vectorized = np.vectorize( _searchsorted_one_dim, signature='(n),(m),()->(m)', excluded='side', ) def _searchsorted_ordered( array: NDArrayFloat, values: NDArrayFloat, *, side: _Side = 'left', ) -> NDArrayInt: return _searchsorted_vectorized( # type: ignore[no-any-return] array, values, side=side, ) def _cumulative_distribution(column: NDArrayFloat) -> NDArrayFloat: """ Calculate the cumulative distribution function at each point. Args: column: Array containing the values over which the distribution function is calculated. Returns: Array containing the evaluation at each point of the distribution function. Examples: >>> _cumulative_distribution(np.array([1, 4, 5, 1, 2, 2, 4, 1, 1, 3])) array([ 0.4, 0.9, 1. , 0.4, 0.6, 0.6, 0.9, 0.4, 0.4, 0.7]) """ return _searchsorted_ordered( np.sort(column), column, side='right', ) / len(column) class _UnivariateFraimanMuniz(Depth[NDArrayFloat]): r""" Univariate depth used to compute the Fraiman an Muniz depth. Each column is considered as the samples of an aleatory variable. The univariate depth of each of the samples of each column is calculated as follows: .. math:: D(x) = 1 - \left\lvert \frac{1}{2}- F(x)\right\rvert Where :math:`F` stands for the marginal univariate distribution function of each column. """ def fit(self: SelfType, X: NDArrayFloat, y: object = None) -> SelfType: self._sorted_values = np.sort(X, axis=0) return self def transform(self, X: NDArrayFloat) -> NDArrayFloat: cum_dist = _searchsorted_ordered( np.moveaxis(self._sorted_values, 0, -1), np.moveaxis(X, 0, -1), side='right', ).astype(X.dtype) / len(self._sorted_values) assert cum_dist.shape[-2] == 1 ret = 0.5 - np.moveaxis(cum_dist, -1, 0)[..., 0] ret = - np.abs(ret) ret += 1 return ret @property def min(self) -> float: return 1 / 2 class SimplicialDepth(Depth[NDArrayFloat]): r""" Simplicial depth. The simplicial depth of a point :math:`x` in :math:`\mathbb{R}^p` given a distribution :math:`F` is the probability that a random simplex with its :math:`p + 1` points sampled from :math:`F` contains :math:`x`. References: Liu, R. Y. (1990). On a Notion of Data Depth Based on Random Simplices. The Annals of Statistics, 18(1), 405–414. """ def fit( # noqa: D102 self, X: NDArrayFloat, y: object = None, ) -> SimplicialDepth: self._dim = X.shape[-1] if self._dim == 1: self.sorted_values = np.sort(X, axis=0) else: raise NotImplementedError( "SimplicialDepth is currently only " "implemented for one-dimensional data.", ) return self def transform(self, X: NDArrayFloat) -> NDArrayFloat: # noqa: D102 assert self._dim == X.shape[-1] if self._dim == 1: positions_left = _searchsorted_ordered( np.moveaxis(self.sorted_values, 0, -1), np.moveaxis(X, 0, -1), ) positions_left = np.moveaxis(positions_left, -1, 0)[..., 0] positions_right = _searchsorted_ordered( np.moveaxis(self.sorted_values, 0, -1), np.moveaxis(X, 0, -1), side='right', ) positions_right = np.moveaxis(positions_right, -1, 0)[..., 0] num_strictly_below = positions_left num_strictly_above = len(self.sorted_values) - positions_right total_pairs = comb(len(self.sorted_values), 2) return ( # type: ignore[no-any-return] total_pairs - comb(num_strictly_below, 2) - comb(num_strictly_above, 2) ) / total_pairs class OutlyingnessBasedDepth(Depth[T]): r""" Computes depth based on an outlyingness measure. An outlyingness function :math:`O(x)` can be converted to a depth function as .. math:: D(x) = \frac{1}{1 + O(x)} if :math:`O(x)` is unbounded or as .. math:: D(x) = 1 - \frac{O(x)}{\sup O(x)} if :math:`O(x)` is bounded. If the infimum value of the outlyiness function is not zero, it is subtracted beforehand. Args: outlyingness (Outlyingness): Outlyingness object. References: Serfling, R. (2006). Depth functions in nonparametric multivariate inference. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 72, 1. """ def __init__(self, outlyingness: Outlyingness[T]): self.outlyingness = outlyingness def fit( # noqa: D102 self, X: T, y: object = None, ) -> OutlyingnessBasedDepth[T]: self.outlyingness.fit(X) return self def transform(self, X: T) -> NDArrayFloat: # noqa: D102 outlyingness_values = self.outlyingness.transform(X) min_val = self.outlyingness.min max_val = self.outlyingness.max if math.isinf(max_val): return 1 / (1 + outlyingness_values - min_val) return 1 - (outlyingness_values - min_val) / (max_val - min_val) class StahelDonohoOutlyingness(Outlyingness[NDArrayFloat]): r""" Computes Stahel-Donoho outlyingness. Stahel-Donoho outlyingness is defined as .. math:: \sup_{\|u\|=1} \frac{|u^T x - \text{Med}(u^T X))|}{\text{MAD}(u^TX)} where :math:`\text{X}` is a sample with distribution :math:`F`, :math:`\text{Med}` is the median and :math:`\text{MAD}` is the median absolute deviation. References: Zuo, Y., Cui, H., & He, X. (2004). On the Stahel-Donoho estimator and depth-weighted means of multivariate data. Annals of Statistics, 32(1), 167–188. https://doi.org/10.1214/aos/1079120132 """ def fit( # noqa: D102 self, X: NDArrayFloat, y: object = None, ) -> StahelDonohoOutlyingness: dim = X.shape[-1] if dim == 1: self._location = np.median(X, axis=0) self._scale = scipy.stats.median_abs_deviation(X, axis=0) else: raise NotImplementedError("Only implemented for one dimension") return self def transform(self, X: NDArrayFloat) -> NDArrayFloat: # noqa: D102 dim = X.shape[-1] if dim == 1: # Special case, can be computed exactly diff: NDArrayFloat = np.abs(X - self._location) / self._scale return diff[..., 0] raise NotImplementedError("Only implemented for one dimension") @property def max(self) -> float: return math.inf class ProjectionDepth(OutlyingnessBasedDepth[NDArrayFloat]): """ Computes Projection depth. It is defined as the depth induced by the :class:`Stahel-Donoho outlyingness <StahelDonohoOutlyingness>`. See also: :class:`StahelDonohoOutlyingness`: Stahel-Donoho outlyingness. References: Zuo, Y., Cui, H., & He, X. (2004). On the Stahel-Donoho estimator and depth-weighted means of multivariate data. Annals of Statistics, 32(1), 167–188. https://doi.org/10.1214/aos/1079120132 """ def __init__(self) -> None: super().__init__(outlyingness=StahelDonohoOutlyingness())
scikit-fda-sim
/scikit-fda-sim-0.7.1.tar.gz/scikit-fda-sim-0.7.1/skfda/exploratory/depth/multivariate.py
multivariate.py
from __future__ import annotations import abc import math from typing import TypeVar import numpy as np import scipy.stats import sklearn from scipy.special import comb from typing_extensions import Literal from ..._utils._sklearn_adapter import BaseEstimator, InductiveTransformerMixin from ...typing._numpy import NDArrayFloat, NDArrayInt T = TypeVar("T", contravariant=True) SelfType = TypeVar("SelfType") _Side = Literal["left", "right"] Input = TypeVar("Input", contravariant=True) class _DepthOrOutlyingness( BaseEstimator, InductiveTransformerMixin[Input, NDArrayFloat, object], ): """Abstract class representing a depth or outlyingness function.""" def fit(self: SelfType, X: Input, y: object = None) -> SelfType: """ Learn the distribution from the observations. Args: X: Functional dataset from which the distribution of the data is inferred. y: Unused. Kept only for convention. Returns: Fitted estimator. """ return self @abc.abstractmethod def transform(self, X: Input) -> NDArrayFloat: """ Compute the depth or outlyingness inside the learned distribution. Args: X: Points whose depth is going to be evaluated. Returns: Depth of each observation. """ pass def fit_transform(self, X: Input, y: object = None) -> NDArrayFloat: """ Compute the depth or outlyingness of each observation. This computation is done with respect to the whole dataset. Args: X: Dataset. y: Unused. Kept only for convention. Returns: Depth of each observation. """ return self.fit(X).transform(X) def __call__( self, X: Input, *, distribution: Input | None = None, ) -> NDArrayFloat: """ Allow the depth or outlyingness to be used as a function. Args: X: Points whose depth is going to be evaluated. distribution: Functional dataset from which the distribution of the data is inferred. If ``None`` it is the same as ``X``. Returns: Depth of each observation. """ copy: _DepthOrOutlyingness[Input] = sklearn.base.clone(self) if distribution is None: return copy.fit_transform(X) return copy.fit(distribution).transform(X) @property def max(self) -> float: """ Maximum (or supremum if there is no maximum) of the possibly predicted values. """ return 1 @property def min(self) -> float: """ Minimum (or infimum if there is no maximum) of the possibly predicted values. """ return 0 class Depth(_DepthOrOutlyingness[T]): """Abstract class representing a depth function.""" class Outlyingness(_DepthOrOutlyingness[T]): """Abstract class representing an outlyingness function.""" def _searchsorted_one_dim( array: NDArrayFloat, values: NDArrayFloat, *, side: _Side = 'left', ) -> NDArrayInt: return np.searchsorted(array, values, side=side) _searchsorted_vectorized = np.vectorize( _searchsorted_one_dim, signature='(n),(m),()->(m)', excluded='side', ) def _searchsorted_ordered( array: NDArrayFloat, values: NDArrayFloat, *, side: _Side = 'left', ) -> NDArrayInt: return _searchsorted_vectorized( # type: ignore[no-any-return] array, values, side=side, ) def _cumulative_distribution(column: NDArrayFloat) -> NDArrayFloat: """ Calculate the cumulative distribution function at each point. Args: column: Array containing the values over which the distribution function is calculated. Returns: Array containing the evaluation at each point of the distribution function. Examples: >>> _cumulative_distribution(np.array([1, 4, 5, 1, 2, 2, 4, 1, 1, 3])) array([ 0.4, 0.9, 1. , 0.4, 0.6, 0.6, 0.9, 0.4, 0.4, 0.7]) """ return _searchsorted_ordered( np.sort(column), column, side='right', ) / len(column) class _UnivariateFraimanMuniz(Depth[NDArrayFloat]): r""" Univariate depth used to compute the Fraiman an Muniz depth. Each column is considered as the samples of an aleatory variable. The univariate depth of each of the samples of each column is calculated as follows: .. math:: D(x) = 1 - \left\lvert \frac{1}{2}- F(x)\right\rvert Where :math:`F` stands for the marginal univariate distribution function of each column. """ def fit(self: SelfType, X: NDArrayFloat, y: object = None) -> SelfType: self._sorted_values = np.sort(X, axis=0) return self def transform(self, X: NDArrayFloat) -> NDArrayFloat: cum_dist = _searchsorted_ordered( np.moveaxis(self._sorted_values, 0, -1), np.moveaxis(X, 0, -1), side='right', ).astype(X.dtype) / len(self._sorted_values) assert cum_dist.shape[-2] == 1 ret = 0.5 - np.moveaxis(cum_dist, -1, 0)[..., 0] ret = - np.abs(ret) ret += 1 return ret @property def min(self) -> float: return 1 / 2 class SimplicialDepth(Depth[NDArrayFloat]): r""" Simplicial depth. The simplicial depth of a point :math:`x` in :math:`\mathbb{R}^p` given a distribution :math:`F` is the probability that a random simplex with its :math:`p + 1` points sampled from :math:`F` contains :math:`x`. References: Liu, R. Y. (1990). On a Notion of Data Depth Based on Random Simplices. The Annals of Statistics, 18(1), 405–414. """ def fit( # noqa: D102 self, X: NDArrayFloat, y: object = None, ) -> SimplicialDepth: self._dim = X.shape[-1] if self._dim == 1: self.sorted_values = np.sort(X, axis=0) else: raise NotImplementedError( "SimplicialDepth is currently only " "implemented for one-dimensional data.", ) return self def transform(self, X: NDArrayFloat) -> NDArrayFloat: # noqa: D102 assert self._dim == X.shape[-1] if self._dim == 1: positions_left = _searchsorted_ordered( np.moveaxis(self.sorted_values, 0, -1), np.moveaxis(X, 0, -1), ) positions_left = np.moveaxis(positions_left, -1, 0)[..., 0] positions_right = _searchsorted_ordered( np.moveaxis(self.sorted_values, 0, -1), np.moveaxis(X, 0, -1), side='right', ) positions_right = np.moveaxis(positions_right, -1, 0)[..., 0] num_strictly_below = positions_left num_strictly_above = len(self.sorted_values) - positions_right total_pairs = comb(len(self.sorted_values), 2) return ( # type: ignore[no-any-return] total_pairs - comb(num_strictly_below, 2) - comb(num_strictly_above, 2) ) / total_pairs class OutlyingnessBasedDepth(Depth[T]): r""" Computes depth based on an outlyingness measure. An outlyingness function :math:`O(x)` can be converted to a depth function as .. math:: D(x) = \frac{1}{1 + O(x)} if :math:`O(x)` is unbounded or as .. math:: D(x) = 1 - \frac{O(x)}{\sup O(x)} if :math:`O(x)` is bounded. If the infimum value of the outlyiness function is not zero, it is subtracted beforehand. Args: outlyingness (Outlyingness): Outlyingness object. References: Serfling, R. (2006). Depth functions in nonparametric multivariate inference. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 72, 1. """ def __init__(self, outlyingness: Outlyingness[T]): self.outlyingness = outlyingness def fit( # noqa: D102 self, X: T, y: object = None, ) -> OutlyingnessBasedDepth[T]: self.outlyingness.fit(X) return self def transform(self, X: T) -> NDArrayFloat: # noqa: D102 outlyingness_values = self.outlyingness.transform(X) min_val = self.outlyingness.min max_val = self.outlyingness.max if math.isinf(max_val): return 1 / (1 + outlyingness_values - min_val) return 1 - (outlyingness_values - min_val) / (max_val - min_val) class StahelDonohoOutlyingness(Outlyingness[NDArrayFloat]): r""" Computes Stahel-Donoho outlyingness. Stahel-Donoho outlyingness is defined as .. math:: \sup_{\|u\|=1} \frac{|u^T x - \text{Med}(u^T X))|}{\text{MAD}(u^TX)} where :math:`\text{X}` is a sample with distribution :math:`F`, :math:`\text{Med}` is the median and :math:`\text{MAD}` is the median absolute deviation. References: Zuo, Y., Cui, H., & He, X. (2004). On the Stahel-Donoho estimator and depth-weighted means of multivariate data. Annals of Statistics, 32(1), 167–188. https://doi.org/10.1214/aos/1079120132 """ def fit( # noqa: D102 self, X: NDArrayFloat, y: object = None, ) -> StahelDonohoOutlyingness: dim = X.shape[-1] if dim == 1: self._location = np.median(X, axis=0) self._scale = scipy.stats.median_abs_deviation(X, axis=0) else: raise NotImplementedError("Only implemented for one dimension") return self def transform(self, X: NDArrayFloat) -> NDArrayFloat: # noqa: D102 dim = X.shape[-1] if dim == 1: # Special case, can be computed exactly diff: NDArrayFloat = np.abs(X - self._location) / self._scale return diff[..., 0] raise NotImplementedError("Only implemented for one dimension") @property def max(self) -> float: return math.inf class ProjectionDepth(OutlyingnessBasedDepth[NDArrayFloat]): """ Computes Projection depth. It is defined as the depth induced by the :class:`Stahel-Donoho outlyingness <StahelDonohoOutlyingness>`. See also: :class:`StahelDonohoOutlyingness`: Stahel-Donoho outlyingness. References: Zuo, Y., Cui, H., & He, X. (2004). On the Stahel-Donoho estimator and depth-weighted means of multivariate data. Annals of Statistics, 32(1), 167–188. https://doi.org/10.1214/aos/1079120132 """ def __init__(self) -> None: super().__init__(outlyingness=StahelDonohoOutlyingness())
0.946312
0.6372
from __future__ import annotations import itertools from typing import TypeVar import numpy as np import scipy.integrate from ..._utils._sklearn_adapter import BaseEstimator from ...misc.metrics import l2_distance from ...misc.metrics._utils import _fit_metric from ...representation import FData, FDataGrid from ...typing._metric import Metric from ...typing._numpy import NDArrayFloat from .multivariate import Depth, SimplicialDepth, _UnivariateFraimanMuniz T = TypeVar("T", bound=FData) class IntegratedDepth(Depth[FDataGrid]): r""" Functional depth as the integral of a multivariate depth. Args: multivariate_depth (Depth): Multivariate depth to integrate. By default it is the one used by Fraiman and Muniz, that is, .. math:: D(x) = 1 - \left\lvert \frac{1}{2}- F(x)\right\rvert Examples: >>> import skfda >>> >>> data_matrix = [[1, 1, 2, 3, 2.5, 2], ... [0.5, 0.5, 1, 2, 1.5, 1], ... [-1, -1, -0.5, 1, 1, 0.5], ... [-0.5, -0.5, -0.5, -1, -1, -1]] >>> grid_points = [0, 2, 4, 6, 8, 10] >>> fd = skfda.FDataGrid(data_matrix, grid_points) >>> depth = skfda.exploratory.depth.IntegratedDepth() >>> depth(fd) array([ 0.5 , 0.75 , 0.925, 0.875]) References: Fraiman, R., & Muniz, G. (2001). Trimmed means for functional data. Test, 10(2), 419–440. https://doi.org/10.1007/BF02595706 """ def __init__( self, *, multivariate_depth: Depth[NDArrayFloat] | None = None, ) -> None: self.multivariate_depth = multivariate_depth def fit( # noqa: D102 self, X: FDataGrid, y: object = None, ) -> IntegratedDepth: self.multivariate_depth_: Depth[NDArrayFloat] if self.multivariate_depth is None: self.multivariate_depth_ = _UnivariateFraimanMuniz() else: self.multivariate_depth_ = self.multivariate_depth self._domain_range = X.domain_range self._grid_points = X.grid_points self.multivariate_depth_.fit(X.data_matrix) return self def transform(self, X: FDataGrid) -> NDArrayFloat: # noqa: D102 pointwise_depth = self.multivariate_depth_.transform(X.data_matrix) interval_len = ( self._domain_range[0][1] - self._domain_range[0][0] ) integrand = pointwise_depth for d, s in zip(X.domain_range, X.grid_points): integrand = scipy.integrate.simps( integrand, x=s, axis=1, ) interval_len = d[1] - d[0] integrand /= interval_len return integrand @property def max(self) -> float: if self.multivariate_depth is None: return 1 return self.multivariate_depth.max @property def min(self) -> float: if self.multivariate_depth is None: return 1 / 2 return self.multivariate_depth.min class ModifiedBandDepth(IntegratedDepth): """ Implementation of Modified Band Depth for functional data. The band depth of each sample is obtained by computing the fraction of time its graph is contained in the bands determined by two sample curves. In the case the fdatagrid :term:`domain` dimension is 2, instead of curves, surfaces determine the bands. In larger dimensions, the hyperplanes determine the bands. Examples: >>> import skfda >>> >>> data_matrix = [[1, 1, 2, 3, 2.5, 2], ... [0.5, 0.5, 1, 2, 1.5, 1], ... [-1, -1, -0.5, 1, 1, 0.5], ... [-0.5, -0.5, -0.5, -1, -1, -1]] >>> grid_points = [0, 2, 4, 6, 8, 10] >>> fd = skfda.FDataGrid(data_matrix, grid_points) >>> depth = skfda.exploratory.depth.ModifiedBandDepth() >>> values = depth(fd) >>> values.round(2) array([ 0.5 , 0.83, 0.73, 0.67]) References: López-Pintado, S., & Romo, J. (2009). On the Concept of Depth for Functional Data. Journal of the American Statistical Association, 104(486), 718–734. https://doi.org/10.1198/jasa.2009.0108 """ def __init__(self) -> None: super().__init__(multivariate_depth=SimplicialDepth()) class BandDepth(Depth[FDataGrid]): """ Implementation of Band Depth for functional data. The band depth of each sample is obtained by computing the fraction of the bands determined by two sample curves containing the whole graph of the first one. In the case the fdatagrid :term:`domain` dimension is 2, instead of curves, surfaces determine the bands. In larger dimensions, the hyperplanes determine the bands. Examples: >>> import skfda >>> >>> data_matrix = [[1, 1, 2, 3, 2.5, 2], ... [0.5, 0.5, 1, 2, 1.5, 1], ... [-1, -1, -0.5, 1, 1, 0.5], ... [-0.5, -0.5, -0.5, -1, -1, -1]] >>> grid_points = [0, 2, 4, 6, 8, 10] >>> fd = skfda.FDataGrid(data_matrix, grid_points) >>> depth = skfda.exploratory.depth.BandDepth() >>> depth(fd) array([ 0.5 , 0.83333333, 0.5 , 0.5 ]) References: López-Pintado, S., & Romo, J. (2009). On the Concept of Depth for Functional Data. Journal of the American Statistical Association, 104(486), 718–734. https://doi.org/10.1198/jasa.2009.0108 """ def fit(self, X: FDataGrid, y: object = None) -> BandDepth: # noqa: D102 if X.dim_codomain != 1: raise NotImplementedError( "Band depth not implemented for vector valued functions", ) self._distribution = X return self def transform(self, X: FDataGrid) -> NDArrayFloat: # noqa: D102 num_in = np.zeros(shape=len(X), dtype=X.data_matrix.dtype) n_total = 0 for f1, f2 in itertools.combinations(self._distribution, 2): between_range_1 = ( (f1.data_matrix <= X.data_matrix) & (X.data_matrix <= f2.data_matrix) ) between_range_2 = ( (f2.data_matrix <= X.data_matrix) & (X.data_matrix <= f1.data_matrix) ) between_range = between_range_1 | between_range_2 num_in += np.all( between_range, axis=tuple(range(1, X.data_matrix.ndim)), ) n_total += 1 return num_in / n_total class DistanceBasedDepth(Depth[FDataGrid], BaseEstimator): r""" Functional depth based on a metric. Parameters: metric: The metric to use as M in the following depth calculation .. math:: D(x) = [1 + M(x, \mu)]^{-1}. as explained in :footcite:`serfling+zuo_2000_depth_function`. Examples: >>> import skfda >>> from skfda.exploratory.depth import DistanceBasedDepth >>> from skfda.misc.metrics import MahalanobisDistance >>> data_matrix = [[1, 1, 2, 3, 2.5, 2], ... [0.5, 0.5, 1, 2, 1.5, 1], ... [-1, -1, -0.5, 1, 1, 0.5], ... [-0.5, -0.5, -0.5, -1, -1, -1]] >>> grid_points = [0, 2, 4, 6, 8, 10] >>> fd = skfda.FDataGrid(data_matrix, grid_points) >>> depth = DistanceBasedDepth(MahalanobisDistance(2)) >>> depth(fd) array([ 0.41897777, 0.8058132 , 0.31097392, 0.31723619]) References: .. footbibliography:: """ def __init__( self, metric: Metric[T] = l2_distance, ) -> None: self.metric = metric def fit( # noqa: D102 self, X: T, y: object = None, ) -> DistanceBasedDepth: """Fit the model using X as training data. Args: X: FDataGrid with the training data or array matrix with shape (n_samples, n_samples) if metric='precomputed'. y: Ignored. Returns: self """ _fit_metric(self.metric, X) self.mean_ = X.mean() return self def transform(self, X: T) -> NDArrayFloat: # noqa: D102 """Compute the depth of given observations. Args: X: FDataGrid with the observations to use in the calculation. Returns: Array with the depths. """ return 1 / (1 + self.metric(X, self.mean_))
scikit-fda-sim
/scikit-fda-sim-0.7.1.tar.gz/scikit-fda-sim-0.7.1/skfda/exploratory/depth/_depth.py
_depth.py
from __future__ import annotations import itertools from typing import TypeVar import numpy as np import scipy.integrate from ..._utils._sklearn_adapter import BaseEstimator from ...misc.metrics import l2_distance from ...misc.metrics._utils import _fit_metric from ...representation import FData, FDataGrid from ...typing._metric import Metric from ...typing._numpy import NDArrayFloat from .multivariate import Depth, SimplicialDepth, _UnivariateFraimanMuniz T = TypeVar("T", bound=FData) class IntegratedDepth(Depth[FDataGrid]): r""" Functional depth as the integral of a multivariate depth. Args: multivariate_depth (Depth): Multivariate depth to integrate. By default it is the one used by Fraiman and Muniz, that is, .. math:: D(x) = 1 - \left\lvert \frac{1}{2}- F(x)\right\rvert Examples: >>> import skfda >>> >>> data_matrix = [[1, 1, 2, 3, 2.5, 2], ... [0.5, 0.5, 1, 2, 1.5, 1], ... [-1, -1, -0.5, 1, 1, 0.5], ... [-0.5, -0.5, -0.5, -1, -1, -1]] >>> grid_points = [0, 2, 4, 6, 8, 10] >>> fd = skfda.FDataGrid(data_matrix, grid_points) >>> depth = skfda.exploratory.depth.IntegratedDepth() >>> depth(fd) array([ 0.5 , 0.75 , 0.925, 0.875]) References: Fraiman, R., & Muniz, G. (2001). Trimmed means for functional data. Test, 10(2), 419–440. https://doi.org/10.1007/BF02595706 """ def __init__( self, *, multivariate_depth: Depth[NDArrayFloat] | None = None, ) -> None: self.multivariate_depth = multivariate_depth def fit( # noqa: D102 self, X: FDataGrid, y: object = None, ) -> IntegratedDepth: self.multivariate_depth_: Depth[NDArrayFloat] if self.multivariate_depth is None: self.multivariate_depth_ = _UnivariateFraimanMuniz() else: self.multivariate_depth_ = self.multivariate_depth self._domain_range = X.domain_range self._grid_points = X.grid_points self.multivariate_depth_.fit(X.data_matrix) return self def transform(self, X: FDataGrid) -> NDArrayFloat: # noqa: D102 pointwise_depth = self.multivariate_depth_.transform(X.data_matrix) interval_len = ( self._domain_range[0][1] - self._domain_range[0][0] ) integrand = pointwise_depth for d, s in zip(X.domain_range, X.grid_points): integrand = scipy.integrate.simps( integrand, x=s, axis=1, ) interval_len = d[1] - d[0] integrand /= interval_len return integrand @property def max(self) -> float: if self.multivariate_depth is None: return 1 return self.multivariate_depth.max @property def min(self) -> float: if self.multivariate_depth is None: return 1 / 2 return self.multivariate_depth.min class ModifiedBandDepth(IntegratedDepth): """ Implementation of Modified Band Depth for functional data. The band depth of each sample is obtained by computing the fraction of time its graph is contained in the bands determined by two sample curves. In the case the fdatagrid :term:`domain` dimension is 2, instead of curves, surfaces determine the bands. In larger dimensions, the hyperplanes determine the bands. Examples: >>> import skfda >>> >>> data_matrix = [[1, 1, 2, 3, 2.5, 2], ... [0.5, 0.5, 1, 2, 1.5, 1], ... [-1, -1, -0.5, 1, 1, 0.5], ... [-0.5, -0.5, -0.5, -1, -1, -1]] >>> grid_points = [0, 2, 4, 6, 8, 10] >>> fd = skfda.FDataGrid(data_matrix, grid_points) >>> depth = skfda.exploratory.depth.ModifiedBandDepth() >>> values = depth(fd) >>> values.round(2) array([ 0.5 , 0.83, 0.73, 0.67]) References: López-Pintado, S., & Romo, J. (2009). On the Concept of Depth for Functional Data. Journal of the American Statistical Association, 104(486), 718–734. https://doi.org/10.1198/jasa.2009.0108 """ def __init__(self) -> None: super().__init__(multivariate_depth=SimplicialDepth()) class BandDepth(Depth[FDataGrid]): """ Implementation of Band Depth for functional data. The band depth of each sample is obtained by computing the fraction of the bands determined by two sample curves containing the whole graph of the first one. In the case the fdatagrid :term:`domain` dimension is 2, instead of curves, surfaces determine the bands. In larger dimensions, the hyperplanes determine the bands. Examples: >>> import skfda >>> >>> data_matrix = [[1, 1, 2, 3, 2.5, 2], ... [0.5, 0.5, 1, 2, 1.5, 1], ... [-1, -1, -0.5, 1, 1, 0.5], ... [-0.5, -0.5, -0.5, -1, -1, -1]] >>> grid_points = [0, 2, 4, 6, 8, 10] >>> fd = skfda.FDataGrid(data_matrix, grid_points) >>> depth = skfda.exploratory.depth.BandDepth() >>> depth(fd) array([ 0.5 , 0.83333333, 0.5 , 0.5 ]) References: López-Pintado, S., & Romo, J. (2009). On the Concept of Depth for Functional Data. Journal of the American Statistical Association, 104(486), 718–734. https://doi.org/10.1198/jasa.2009.0108 """ def fit(self, X: FDataGrid, y: object = None) -> BandDepth: # noqa: D102 if X.dim_codomain != 1: raise NotImplementedError( "Band depth not implemented for vector valued functions", ) self._distribution = X return self def transform(self, X: FDataGrid) -> NDArrayFloat: # noqa: D102 num_in = np.zeros(shape=len(X), dtype=X.data_matrix.dtype) n_total = 0 for f1, f2 in itertools.combinations(self._distribution, 2): between_range_1 = ( (f1.data_matrix <= X.data_matrix) & (X.data_matrix <= f2.data_matrix) ) between_range_2 = ( (f2.data_matrix <= X.data_matrix) & (X.data_matrix <= f1.data_matrix) ) between_range = between_range_1 | between_range_2 num_in += np.all( between_range, axis=tuple(range(1, X.data_matrix.ndim)), ) n_total += 1 return num_in / n_total class DistanceBasedDepth(Depth[FDataGrid], BaseEstimator): r""" Functional depth based on a metric. Parameters: metric: The metric to use as M in the following depth calculation .. math:: D(x) = [1 + M(x, \mu)]^{-1}. as explained in :footcite:`serfling+zuo_2000_depth_function`. Examples: >>> import skfda >>> from skfda.exploratory.depth import DistanceBasedDepth >>> from skfda.misc.metrics import MahalanobisDistance >>> data_matrix = [[1, 1, 2, 3, 2.5, 2], ... [0.5, 0.5, 1, 2, 1.5, 1], ... [-1, -1, -0.5, 1, 1, 0.5], ... [-0.5, -0.5, -0.5, -1, -1, -1]] >>> grid_points = [0, 2, 4, 6, 8, 10] >>> fd = skfda.FDataGrid(data_matrix, grid_points) >>> depth = DistanceBasedDepth(MahalanobisDistance(2)) >>> depth(fd) array([ 0.41897777, 0.8058132 , 0.31097392, 0.31723619]) References: .. footbibliography:: """ def __init__( self, metric: Metric[T] = l2_distance, ) -> None: self.metric = metric def fit( # noqa: D102 self, X: T, y: object = None, ) -> DistanceBasedDepth: """Fit the model using X as training data. Args: X: FDataGrid with the training data or array matrix with shape (n_samples, n_samples) if metric='precomputed'. y: Ignored. Returns: self """ _fit_metric(self.metric, X) self.mean_ = X.mean() return self def transform(self, X: T) -> NDArrayFloat: # noqa: D102 """Compute the depth of given observations. Args: X: FDataGrid with the observations to use in the calculation. Returns: Array with the depths. """ return 1 / (1 + self.metric(X, self.mean_))
0.933081
0.494629
from __future__ import annotations from builtins import isinstance from typing import TypeVar, Union import numpy as np from scipy import integrate from scipy.stats import rankdata from ...misc.metrics._lp_distances import l2_distance from ...representation import FData, FDataGrid from ...typing._metric import Metric from ...typing._numpy import NDArrayFloat from ..depth import Depth, ModifiedBandDepth F = TypeVar('F', bound=FData) T = TypeVar('T', bound=Union[NDArrayFloat, FData]) def mean( X: F, weights: NDArrayFloat | None = None, ) -> F: """ Compute the mean of all the samples in a FData object. Args: X: Object containing all the samples whose mean is wanted. weights: Sample weight. By default, uniform weight are used. Returns: Mean of all the samples in the original object, as a :term:`functional data object` with just one sample. """ if weights is None: return X.mean() weight = (1 / np.sum(weights)) * weights return (X * weight).sum() def var(X: FData) -> FDataGrid: """ Compute the variance of a set of samples in a FData object. Args: X: Object containing all the set of samples whose variance is desired. Returns: Variance of all the samples in the original object, as a :term:`functional data object` with just one sample. """ return X.var() # type: ignore[no-any-return] def gmean(X: FDataGrid) -> FDataGrid: """ Compute the geometric mean of all the samples in a FDataGrid object. Args: X: Object containing all the samples whose geometric mean is wanted. Returns: Geometric mean of all the samples in the original object, as a :term:`functional data object` with just one sample. """ return X.gmean() def cov(X: FData) -> FDataGrid: """ Compute the covariance. Calculates the covariance matrix representing the covariance of the functional samples at the observation points. Args: X: Object containing different samples of a functional variable. Returns: Covariance of all the samples in the original object, as a :term:`functional data object` with just one sample. """ return X.cov() # type: ignore[no-any-return] def modified_epigraph_index(X: FDataGrid) -> NDArrayFloat: """ Calculate the Modified Epigraph Index of a FDataGrid. The MEI represents the mean time a curve stays below other curve. In this case we will calculate the MEI for each curve in relation with all the other curves of our dataset. """ interval_len = ( X.domain_range[0][1] - X.domain_range[0][0] ) # Array containing at each point the number of curves # are above it. num_functions_above: NDArrayFloat = rankdata( -X.data_matrix, method='max', axis=0, ) - 1 integrand = num_functions_above for d, s in zip(X.domain_range, X.grid_points): integrand = integrate.simps( integrand, x=s, axis=1, ) interval_len = d[1] - d[0] integrand /= interval_len integrand /= X.n_samples return integrand.flatten() def depth_based_median( X: T, depth_method: Depth[T] | None = None, ) -> T: """ Compute the median based on a depth measure. The depth based median is the deepest curve given a certain depth measure. Args: X: Object containing different samples of a functional variable. depth_method: Depth method used to order the data. Defaults to :func:`modified band depth <skfda.exploratory.depth.ModifiedBandDepth>`. Returns: Object containing the computed depth_based median. See also: :func:`geometric_median` """ depth_method_used: Depth[T] if depth_method is None: assert isinstance(X, FDataGrid) depth_method_used = ModifiedBandDepth() else: depth_method_used = depth_method depth = depth_method_used(X) indices_descending_depth = (-depth).argsort(axis=0) # The median is the deepest curve return X[indices_descending_depth[0]] def _weighted_average(X: T, weights: NDArrayFloat) -> T: if isinstance(X, FData): return (X * weights).sum() return (X.T * weights).T.sum(axis=0) # type: ignore[no-any-return] def geometric_median( X: T, *, tol: float = 1.e-8, metric: Metric[T] = l2_distance, ) -> T: r""" Compute the geometric median. The sample geometric median is the point that minimizes the :math:`L_1` norm of the vector of distances to all observations: .. math:: \underset{y \in L(\mathcal{T})}{\arg \min} \sum_{i=1}^N \left \| x_i-y \right \| The geometric median in the functional case is also described in :footcite:`gervini_2008_estimation`. Instead of the proposed algorithm, however, the current implementation uses the corrected Weiszfeld algorithm to compute the median. Args: X: Object containing different samples of a functional variable. tol: tolerance used to check convergence. metric: metric used to compute the vector of distances. By default is the :math:`L_2` distance. Returns: Object containing the computed geometric median. Example: >>> from skfda import FDataGrid >>> data_matrix = [[0.5, 1, 2, .5], [1.5, 1, 4, .5]] >>> X = FDataGrid(data_matrix) >>> median = geometric_median(X) >>> median.data_matrix[0, ..., 0] array([ 1. , 1. , 3. , 0.5]) See also: :func:`depth_based_median` References: .. footbibliography:: """ weights = np.full(len(X), 1 / len(X)) median = _weighted_average(X, weights) distances = metric(X, median) while True: zero_distances = (distances == 0) n_zeros = np.sum(zero_distances) weights_new = ( (1 / distances) / np.sum(1 / distances) if n_zeros == 0 else (1 / n_zeros) * zero_distances ) median_new = _weighted_average(X, weights_new) if l2_distance(median_new, median) < tol: return median_new distances = metric(X, median_new) weights, median = (weights_new, median_new) def trim_mean( X: F, proportiontocut: float, *, depth_method: Depth[F] | None = None, ) -> FDataGrid: """Compute the trimmed means based on a depth measure. The trimmed means consists in computing the mean function without a percentage of least deep curves. That is, we first remove the least deep curves and then we compute the mean as usual. Note that in scipy the leftmost and rightmost proportiontocut data are removed. In this case, as we order the data by the depth, we only remove those that have the least depth values. Args: X: Object containing different samples of a functional variable. proportiontocut: Indicates the percentage of functions to remove. It is not easy to determine as it varies from dataset to dataset. depth_method: Method used to order the data. Defaults to :func:`modified band depth <skfda.exploratory.depth.ModifiedBandDepth>`. Returns: Object containing the computed trimmed mean. """ if depth_method is None: depth_method = ModifiedBandDepth() n_samples_to_keep = (len(X) - int(len(X) * proportiontocut)) # compute the depth of each curve and store the indexes in descending order depth = depth_method(X) indices_descending_depth = (-depth).argsort(axis=0) trimmed_curves = X[indices_descending_depth[:n_samples_to_keep]] return trimmed_curves.mean()
scikit-fda-sim
/scikit-fda-sim-0.7.1.tar.gz/scikit-fda-sim-0.7.1/skfda/exploratory/stats/_stats.py
_stats.py
from __future__ import annotations from builtins import isinstance from typing import TypeVar, Union import numpy as np from scipy import integrate from scipy.stats import rankdata from ...misc.metrics._lp_distances import l2_distance from ...representation import FData, FDataGrid from ...typing._metric import Metric from ...typing._numpy import NDArrayFloat from ..depth import Depth, ModifiedBandDepth F = TypeVar('F', bound=FData) T = TypeVar('T', bound=Union[NDArrayFloat, FData]) def mean( X: F, weights: NDArrayFloat | None = None, ) -> F: """ Compute the mean of all the samples in a FData object. Args: X: Object containing all the samples whose mean is wanted. weights: Sample weight. By default, uniform weight are used. Returns: Mean of all the samples in the original object, as a :term:`functional data object` with just one sample. """ if weights is None: return X.mean() weight = (1 / np.sum(weights)) * weights return (X * weight).sum() def var(X: FData) -> FDataGrid: """ Compute the variance of a set of samples in a FData object. Args: X: Object containing all the set of samples whose variance is desired. Returns: Variance of all the samples in the original object, as a :term:`functional data object` with just one sample. """ return X.var() # type: ignore[no-any-return] def gmean(X: FDataGrid) -> FDataGrid: """ Compute the geometric mean of all the samples in a FDataGrid object. Args: X: Object containing all the samples whose geometric mean is wanted. Returns: Geometric mean of all the samples in the original object, as a :term:`functional data object` with just one sample. """ return X.gmean() def cov(X: FData) -> FDataGrid: """ Compute the covariance. Calculates the covariance matrix representing the covariance of the functional samples at the observation points. Args: X: Object containing different samples of a functional variable. Returns: Covariance of all the samples in the original object, as a :term:`functional data object` with just one sample. """ return X.cov() # type: ignore[no-any-return] def modified_epigraph_index(X: FDataGrid) -> NDArrayFloat: """ Calculate the Modified Epigraph Index of a FDataGrid. The MEI represents the mean time a curve stays below other curve. In this case we will calculate the MEI for each curve in relation with all the other curves of our dataset. """ interval_len = ( X.domain_range[0][1] - X.domain_range[0][0] ) # Array containing at each point the number of curves # are above it. num_functions_above: NDArrayFloat = rankdata( -X.data_matrix, method='max', axis=0, ) - 1 integrand = num_functions_above for d, s in zip(X.domain_range, X.grid_points): integrand = integrate.simps( integrand, x=s, axis=1, ) interval_len = d[1] - d[0] integrand /= interval_len integrand /= X.n_samples return integrand.flatten() def depth_based_median( X: T, depth_method: Depth[T] | None = None, ) -> T: """ Compute the median based on a depth measure. The depth based median is the deepest curve given a certain depth measure. Args: X: Object containing different samples of a functional variable. depth_method: Depth method used to order the data. Defaults to :func:`modified band depth <skfda.exploratory.depth.ModifiedBandDepth>`. Returns: Object containing the computed depth_based median. See also: :func:`geometric_median` """ depth_method_used: Depth[T] if depth_method is None: assert isinstance(X, FDataGrid) depth_method_used = ModifiedBandDepth() else: depth_method_used = depth_method depth = depth_method_used(X) indices_descending_depth = (-depth).argsort(axis=0) # The median is the deepest curve return X[indices_descending_depth[0]] def _weighted_average(X: T, weights: NDArrayFloat) -> T: if isinstance(X, FData): return (X * weights).sum() return (X.T * weights).T.sum(axis=0) # type: ignore[no-any-return] def geometric_median( X: T, *, tol: float = 1.e-8, metric: Metric[T] = l2_distance, ) -> T: r""" Compute the geometric median. The sample geometric median is the point that minimizes the :math:`L_1` norm of the vector of distances to all observations: .. math:: \underset{y \in L(\mathcal{T})}{\arg \min} \sum_{i=1}^N \left \| x_i-y \right \| The geometric median in the functional case is also described in :footcite:`gervini_2008_estimation`. Instead of the proposed algorithm, however, the current implementation uses the corrected Weiszfeld algorithm to compute the median. Args: X: Object containing different samples of a functional variable. tol: tolerance used to check convergence. metric: metric used to compute the vector of distances. By default is the :math:`L_2` distance. Returns: Object containing the computed geometric median. Example: >>> from skfda import FDataGrid >>> data_matrix = [[0.5, 1, 2, .5], [1.5, 1, 4, .5]] >>> X = FDataGrid(data_matrix) >>> median = geometric_median(X) >>> median.data_matrix[0, ..., 0] array([ 1. , 1. , 3. , 0.5]) See also: :func:`depth_based_median` References: .. footbibliography:: """ weights = np.full(len(X), 1 / len(X)) median = _weighted_average(X, weights) distances = metric(X, median) while True: zero_distances = (distances == 0) n_zeros = np.sum(zero_distances) weights_new = ( (1 / distances) / np.sum(1 / distances) if n_zeros == 0 else (1 / n_zeros) * zero_distances ) median_new = _weighted_average(X, weights_new) if l2_distance(median_new, median) < tol: return median_new distances = metric(X, median_new) weights, median = (weights_new, median_new) def trim_mean( X: F, proportiontocut: float, *, depth_method: Depth[F] | None = None, ) -> FDataGrid: """Compute the trimmed means based on a depth measure. The trimmed means consists in computing the mean function without a percentage of least deep curves. That is, we first remove the least deep curves and then we compute the mean as usual. Note that in scipy the leftmost and rightmost proportiontocut data are removed. In this case, as we order the data by the depth, we only remove those that have the least depth values. Args: X: Object containing different samples of a functional variable. proportiontocut: Indicates the percentage of functions to remove. It is not easy to determine as it varies from dataset to dataset. depth_method: Method used to order the data. Defaults to :func:`modified band depth <skfda.exploratory.depth.ModifiedBandDepth>`. Returns: Object containing the computed trimmed mean. """ if depth_method is None: depth_method = ModifiedBandDepth() n_samples_to_keep = (len(X) - int(len(X) * proportiontocut)) # compute the depth of each curve and store the indexes in descending order depth = depth_method(X) indices_descending_depth = (-depth).argsort(axis=0) trimmed_curves = X[indices_descending_depth[:n_samples_to_keep]] return trimmed_curves.mean()
0.980186
0.679205
from __future__ import annotations import copy import itertools from functools import partial from typing import Generator, List, Sequence, Tuple, Type, cast import numpy as np from matplotlib.artist import Artist from matplotlib.axes import Axes from matplotlib.backend_bases import Event from matplotlib.figure import Figure from matplotlib.widgets import Slider, Widget from ._baseplot import BasePlot from ._utils import _get_axes_shape, _get_figure_and_axes, _set_figure_layout def _set_val_noevents(widget: Widget, val: float) -> None: e = widget.eventson widget.eventson = False widget.set_val(val) widget.eventson = e class MultipleDisplay: """ MultipleDisplay class used to combine and interact with plots. This module is used to combine different BasePlot objects that represent the same curves or surfaces, and represent them together in the same figure. Besides this, it includes the functionality necessary to interact with the graphics by clicking the points, hovering over them... Picking the points allow us to see our selected function standing out among the others in all the axes. It is also possible to add widgets to interact with the plots. Args: displays: Baseplot objects that will be plotted in the fig. criteria: Sequence of criteria used to order the points in the slider widget. The size should be equal to sliders, as each criterion is for one slider. sliders: Sequence of widgets that will be plotted. label_sliders: Label of each of the sliders. chart: Figure over with the graphs are plotted or axis over where the graphs are plotted. If None and ax is also None, the figure is initialized. fig: Figure over with the graphs are plotted in case ax is not specified. If None and ax is also None, the figure is initialized. axes: Axis where the graphs are plotted. If None, see param fig. Attributes: length_data: Number of instances or curves of the different displays. clicked: Boolean indicating whether a point has being clicked. selected_sample: Index of the function selected with the interactive module or widgets. """ def __init__( self, displays: BasePlot | Sequence[BasePlot], criteria: Sequence[float] | Sequence[Sequence[float]] = (), sliders: Type[Widget] | Sequence[Type[Widget]] = (), label_sliders: str | Sequence[str] | None = None, chart: Figure | Axes | None = None, fig: Figure | None = None, axes: Sequence[Axes] | None = None, ): if isinstance(displays, BasePlot): displays = (displays,) self.displays = [copy.copy(d) for d in displays] self._n_graphs = sum(d.n_subplots for d in self.displays) self.length_data = next( d.n_samples for d in self.displays if d.n_samples is not None ) self.sliders: List[Widget] = [] self.selected_sample: int | None = None if len(criteria) != 0 and not isinstance(criteria[0], Sequence): criteria = cast(Sequence[float], criteria) criteria = (criteria,) criteria = cast(Sequence[Sequence[float]], criteria) self.criteria = criteria if not isinstance(sliders, Sequence): sliders = (sliders,) if isinstance(label_sliders, str): label_sliders = (label_sliders,) if len(criteria) != len(sliders): raise ValueError( f"Size of criteria, and sliders should be equal " f"(have {len(criteria)} and {len(sliders)}).", ) self._init_axes( chart, fig=fig, axes=axes, extra=len(criteria), ) self._create_sliders( criteria=criteria, sliders=sliders, label_sliders=label_sliders, ) def _init_axes( self, chart: Figure | Axes | None = None, *, fig: Figure | None = None, axes: Sequence[Axes] | None = None, extra: int = 0, ) -> None: """ Initialize the axes and figure. Args: chart: Figure over with the graphs are plotted or axis over where the graphs are plotted. If None and ax is also None, the figure is initialized. fig: Figure over with the graphs are plotted in case ax is not specified. If None and ax is also None, the figure is initialized. axes: Axis where the graphs are plotted. If None, see param fig. extra: integer indicating the extra axes needed due to the necessity for them to plot the sliders. """ widget_aspect = 1 / 8 fig, axes = _get_figure_and_axes(chart, fig, axes) if len(axes) not in {0, self._n_graphs + extra}: raise ValueError("Invalid number of axes.") n_rows, n_cols = _get_axes_shape(self._n_graphs + extra) dim = list( itertools.chain.from_iterable( [d.dim] * d.n_subplots for d in self.displays ), ) + [2] * extra number_axes = n_rows * n_cols fig, axes = _set_figure_layout( fig=fig, axes=axes, n_axes=self._n_graphs + extra, dim=dim, ) for i in range(self._n_graphs, number_axes): if i >= self._n_graphs + extra: axes[i].set_visible(False) else: axes[i].set_box_aspect(widget_aspect) self.fig = fig self.axes = axes def _create_sliders( self, *, criteria: Sequence[Sequence[float]], sliders: Sequence[Type[Widget]], label_sliders: Sequence[str] | None = None, ) -> None: """ Create the sliders with the criteria selected. Args: criteria: Different criterion for each of the sliders. sliders: Widget types. label_sliders: Sequence of the names of each slider. """ for c in criteria: if len(c) != self.length_data: raise ValueError( "Slider criteria should be of the same size as data", ) for k, criterion in enumerate(criteria): label = label_sliders[k] if label_sliders else None self.add_slider( axes=self.axes[self._n_graphs + k], criterion=criterion, widget_class=sliders[k], label=label, ) def plot(self) -> Figure: """ Plot Multiple Display method. Plot the different BasePlot objects and widgets selected. Activates the interactivity functionality of clicking and hovering points. When clicking a point, the rest will be made partially transparent in all the corresponding graphs. Returns: fig: figure object in which the displays and widgets will be plotted. """ if self._n_graphs > 1: for d in self.displays[1:]: if ( d.n_samples is not None and d.n_samples != self.length_data ): raise ValueError( "Length of some data sets are not equal ", ) for ax in self.axes[:self._n_graphs]: ax.clear() int_index = 0 for disp in self.displays: axes_needed = disp.n_subplots end_index = axes_needed + int_index disp._set_figure_and_axes(axes=self.axes[int_index:end_index]) disp.plot() int_index = end_index self.fig.canvas.mpl_connect('pick_event', self.pick) self.fig.suptitle("Multiple display") self.fig.tight_layout() return self.fig def pick(self, event: Event) -> None: """ Activate interactive functionality when picking a point. Callback method that is activated when a point is picked. If no point was clicked previously, all the points but the one selected will be more transparent in all the graphs. If a point was clicked already, this new point will be the one highlighted among the rest. If the same point is clicked, the initial state of the graphics is restored. Args: event: event object containing the artist of the point picked. """ selected_sample = self._sample_from_artist(event.artist) if selected_sample is not None: if self.selected_sample == selected_sample: self._deselect_samples() else: self._select_sample(selected_sample) def _sample_from_artist(self, artist: Artist) -> int | None: """Return the sample corresponding to an artist.""" for d in self.displays: if d.artists is None: continue for i, a in enumerate(d.axes_): if a == artist.axes: if len(d.axes_) == 1: return np.where( # type: ignore[no-any-return] d.artists == artist, )[0][0] else: return np.where( # type: ignore[no-any-return] d.artists[:, i] == artist, )[0][0] return None def _visit_artists(self) -> Generator[Tuple[int, Artist], None, None]: for i in range(self.length_data): for d in self.displays: if d.artists is None: continue yield from ((i, artist) for artist in np.ravel(d.artists[i])) def _select_sample(self, selected_sample: int) -> None: """Reduce the transparency of all the points but the selected one.""" for i, artist in self._visit_artists(): artist.set_alpha(1.0 if i == selected_sample else 0.1) for criterion, slider in zip(self.criteria, self.sliders): val_widget = criterion[selected_sample] _set_val_noevents(slider, val_widget) self.selected_sample = selected_sample self.fig.canvas.draw_idle() def _deselect_samples(self) -> None: """Restore the original transparency of all the points.""" for _, artist in self._visit_artists(): artist.set_alpha(1) self.selected_sample = None self.fig.canvas.draw_idle() def add_slider( self, axes: Axes, criterion: Sequence[float], widget_class: Type[Widget] = Slider, label: str | None = None, ) -> None: """ Add the slider to the MultipleDisplay object. Args: axes: Axes for the widget. criterion: Criterion used for the slider. widget_class: Widget type. label: Name of the slider. """ full_desc = "" if label is None else label ordered_criterion_values, ordered_criterion_indexes = zip( *sorted(zip(criterion, range(self.length_data))), ) widget = widget_class( ax=axes, label=full_desc, valmin=ordered_criterion_values[0], valmax=ordered_criterion_values[-1], valinit=ordered_criterion_values[0], valstep=ordered_criterion_values, valfmt="%.3g", ) self.sliders.append(widget) axes.annotate( f"{ordered_criterion_values[0]:.3g}", xy=(0, -0.5), xycoords='axes fraction', annotation_clip=False, ) axes.annotate( f"{ordered_criterion_values[-1]:.3g}", xy=(0.95, -0.5), xycoords='axes fraction', annotation_clip=False, ) on_changed_function = partial( self._value_updated, ordered_criterion_values=ordered_criterion_values, ordered_criterion_indexes=ordered_criterion_indexes, ) widget.on_changed(on_changed_function) def _value_updated( self, value: float, ordered_criterion_values: Sequence[float], ordered_criterion_indexes: Sequence[int], ) -> None: """ Update the graphs when a widget is clicked. Args: value: Current value of the widget. ordered_criterion_values: Ordered values of the criterion. ordered_criterion_indexes: Sample numbers ordered using the criterion. """ value_index = int(np.searchsorted(ordered_criterion_values, value)) self.selected_sample = ordered_criterion_indexes[value_index] self._select_sample(self.selected_sample)
scikit-fda-sim
/scikit-fda-sim-0.7.1.tar.gz/scikit-fda-sim-0.7.1/skfda/exploratory/visualization/_multiple_display.py
_multiple_display.py
from __future__ import annotations import copy import itertools from functools import partial from typing import Generator, List, Sequence, Tuple, Type, cast import numpy as np from matplotlib.artist import Artist from matplotlib.axes import Axes from matplotlib.backend_bases import Event from matplotlib.figure import Figure from matplotlib.widgets import Slider, Widget from ._baseplot import BasePlot from ._utils import _get_axes_shape, _get_figure_and_axes, _set_figure_layout def _set_val_noevents(widget: Widget, val: float) -> None: e = widget.eventson widget.eventson = False widget.set_val(val) widget.eventson = e class MultipleDisplay: """ MultipleDisplay class used to combine and interact with plots. This module is used to combine different BasePlot objects that represent the same curves or surfaces, and represent them together in the same figure. Besides this, it includes the functionality necessary to interact with the graphics by clicking the points, hovering over them... Picking the points allow us to see our selected function standing out among the others in all the axes. It is also possible to add widgets to interact with the plots. Args: displays: Baseplot objects that will be plotted in the fig. criteria: Sequence of criteria used to order the points in the slider widget. The size should be equal to sliders, as each criterion is for one slider. sliders: Sequence of widgets that will be plotted. label_sliders: Label of each of the sliders. chart: Figure over with the graphs are plotted or axis over where the graphs are plotted. If None and ax is also None, the figure is initialized. fig: Figure over with the graphs are plotted in case ax is not specified. If None and ax is also None, the figure is initialized. axes: Axis where the graphs are plotted. If None, see param fig. Attributes: length_data: Number of instances or curves of the different displays. clicked: Boolean indicating whether a point has being clicked. selected_sample: Index of the function selected with the interactive module or widgets. """ def __init__( self, displays: BasePlot | Sequence[BasePlot], criteria: Sequence[float] | Sequence[Sequence[float]] = (), sliders: Type[Widget] | Sequence[Type[Widget]] = (), label_sliders: str | Sequence[str] | None = None, chart: Figure | Axes | None = None, fig: Figure | None = None, axes: Sequence[Axes] | None = None, ): if isinstance(displays, BasePlot): displays = (displays,) self.displays = [copy.copy(d) for d in displays] self._n_graphs = sum(d.n_subplots for d in self.displays) self.length_data = next( d.n_samples for d in self.displays if d.n_samples is not None ) self.sliders: List[Widget] = [] self.selected_sample: int | None = None if len(criteria) != 0 and not isinstance(criteria[0], Sequence): criteria = cast(Sequence[float], criteria) criteria = (criteria,) criteria = cast(Sequence[Sequence[float]], criteria) self.criteria = criteria if not isinstance(sliders, Sequence): sliders = (sliders,) if isinstance(label_sliders, str): label_sliders = (label_sliders,) if len(criteria) != len(sliders): raise ValueError( f"Size of criteria, and sliders should be equal " f"(have {len(criteria)} and {len(sliders)}).", ) self._init_axes( chart, fig=fig, axes=axes, extra=len(criteria), ) self._create_sliders( criteria=criteria, sliders=sliders, label_sliders=label_sliders, ) def _init_axes( self, chart: Figure | Axes | None = None, *, fig: Figure | None = None, axes: Sequence[Axes] | None = None, extra: int = 0, ) -> None: """ Initialize the axes and figure. Args: chart: Figure over with the graphs are plotted or axis over where the graphs are plotted. If None and ax is also None, the figure is initialized. fig: Figure over with the graphs are plotted in case ax is not specified. If None and ax is also None, the figure is initialized. axes: Axis where the graphs are plotted. If None, see param fig. extra: integer indicating the extra axes needed due to the necessity for them to plot the sliders. """ widget_aspect = 1 / 8 fig, axes = _get_figure_and_axes(chart, fig, axes) if len(axes) not in {0, self._n_graphs + extra}: raise ValueError("Invalid number of axes.") n_rows, n_cols = _get_axes_shape(self._n_graphs + extra) dim = list( itertools.chain.from_iterable( [d.dim] * d.n_subplots for d in self.displays ), ) + [2] * extra number_axes = n_rows * n_cols fig, axes = _set_figure_layout( fig=fig, axes=axes, n_axes=self._n_graphs + extra, dim=dim, ) for i in range(self._n_graphs, number_axes): if i >= self._n_graphs + extra: axes[i].set_visible(False) else: axes[i].set_box_aspect(widget_aspect) self.fig = fig self.axes = axes def _create_sliders( self, *, criteria: Sequence[Sequence[float]], sliders: Sequence[Type[Widget]], label_sliders: Sequence[str] | None = None, ) -> None: """ Create the sliders with the criteria selected. Args: criteria: Different criterion for each of the sliders. sliders: Widget types. label_sliders: Sequence of the names of each slider. """ for c in criteria: if len(c) != self.length_data: raise ValueError( "Slider criteria should be of the same size as data", ) for k, criterion in enumerate(criteria): label = label_sliders[k] if label_sliders else None self.add_slider( axes=self.axes[self._n_graphs + k], criterion=criterion, widget_class=sliders[k], label=label, ) def plot(self) -> Figure: """ Plot Multiple Display method. Plot the different BasePlot objects and widgets selected. Activates the interactivity functionality of clicking and hovering points. When clicking a point, the rest will be made partially transparent in all the corresponding graphs. Returns: fig: figure object in which the displays and widgets will be plotted. """ if self._n_graphs > 1: for d in self.displays[1:]: if ( d.n_samples is not None and d.n_samples != self.length_data ): raise ValueError( "Length of some data sets are not equal ", ) for ax in self.axes[:self._n_graphs]: ax.clear() int_index = 0 for disp in self.displays: axes_needed = disp.n_subplots end_index = axes_needed + int_index disp._set_figure_and_axes(axes=self.axes[int_index:end_index]) disp.plot() int_index = end_index self.fig.canvas.mpl_connect('pick_event', self.pick) self.fig.suptitle("Multiple display") self.fig.tight_layout() return self.fig def pick(self, event: Event) -> None: """ Activate interactive functionality when picking a point. Callback method that is activated when a point is picked. If no point was clicked previously, all the points but the one selected will be more transparent in all the graphs. If a point was clicked already, this new point will be the one highlighted among the rest. If the same point is clicked, the initial state of the graphics is restored. Args: event: event object containing the artist of the point picked. """ selected_sample = self._sample_from_artist(event.artist) if selected_sample is not None: if self.selected_sample == selected_sample: self._deselect_samples() else: self._select_sample(selected_sample) def _sample_from_artist(self, artist: Artist) -> int | None: """Return the sample corresponding to an artist.""" for d in self.displays: if d.artists is None: continue for i, a in enumerate(d.axes_): if a == artist.axes: if len(d.axes_) == 1: return np.where( # type: ignore[no-any-return] d.artists == artist, )[0][0] else: return np.where( # type: ignore[no-any-return] d.artists[:, i] == artist, )[0][0] return None def _visit_artists(self) -> Generator[Tuple[int, Artist], None, None]: for i in range(self.length_data): for d in self.displays: if d.artists is None: continue yield from ((i, artist) for artist in np.ravel(d.artists[i])) def _select_sample(self, selected_sample: int) -> None: """Reduce the transparency of all the points but the selected one.""" for i, artist in self._visit_artists(): artist.set_alpha(1.0 if i == selected_sample else 0.1) for criterion, slider in zip(self.criteria, self.sliders): val_widget = criterion[selected_sample] _set_val_noevents(slider, val_widget) self.selected_sample = selected_sample self.fig.canvas.draw_idle() def _deselect_samples(self) -> None: """Restore the original transparency of all the points.""" for _, artist in self._visit_artists(): artist.set_alpha(1) self.selected_sample = None self.fig.canvas.draw_idle() def add_slider( self, axes: Axes, criterion: Sequence[float], widget_class: Type[Widget] = Slider, label: str | None = None, ) -> None: """ Add the slider to the MultipleDisplay object. Args: axes: Axes for the widget. criterion: Criterion used for the slider. widget_class: Widget type. label: Name of the slider. """ full_desc = "" if label is None else label ordered_criterion_values, ordered_criterion_indexes = zip( *sorted(zip(criterion, range(self.length_data))), ) widget = widget_class( ax=axes, label=full_desc, valmin=ordered_criterion_values[0], valmax=ordered_criterion_values[-1], valinit=ordered_criterion_values[0], valstep=ordered_criterion_values, valfmt="%.3g", ) self.sliders.append(widget) axes.annotate( f"{ordered_criterion_values[0]:.3g}", xy=(0, -0.5), xycoords='axes fraction', annotation_clip=False, ) axes.annotate( f"{ordered_criterion_values[-1]:.3g}", xy=(0.95, -0.5), xycoords='axes fraction', annotation_clip=False, ) on_changed_function = partial( self._value_updated, ordered_criterion_values=ordered_criterion_values, ordered_criterion_indexes=ordered_criterion_indexes, ) widget.on_changed(on_changed_function) def _value_updated( self, value: float, ordered_criterion_values: Sequence[float], ordered_criterion_indexes: Sequence[int], ) -> None: """ Update the graphs when a widget is clicked. Args: value: Current value of the widget. ordered_criterion_values: Ordered values of the criterion. ordered_criterion_indexes: Sample numbers ordered using the criterion. """ value_index = int(np.searchsorted(ordered_criterion_values, value)) self.selected_sample = ordered_criterion_indexes[value_index] self._select_sample(self.selected_sample)
0.948858
0.437042
from __future__ import annotations from typing import Any, Sequence import matplotlib import matplotlib.pyplot as plt import numpy as np from matplotlib.artist import Artist from matplotlib.axes import Axes from matplotlib.colors import Colormap from matplotlib.figure import Figure from matplotlib.patches import Ellipse from ...representation import FDataGrid from ...typing._numpy import NDArrayFloat, NDArrayInt from ..depth import Depth from ..outliers import MSPlotOutlierDetector from ._baseplot import BasePlot class MagnitudeShapePlot(BasePlot): r""" Implementation of the magnitude-shape plot. This plot, which is based on the calculation of the :func:`directional outlyingness <fda.magnitude_shape_plot.directional_outlyingness>` of each of the samples, serves as a visualization tool for the centrality of curves. Furthermore, an outlier detection procedure is included. The norm of the mean of the directional outlyingness (:math:`\lVert \mathbf{MO}\rVert`) is plotted in the x-axis, and the variation of the directional outlyingness (:math:`VO`) in the y-axis. The outliers are detected using an instance of :class:`MSPlotOutlierDetector`. For more information see :footcite:ts:`dai+genton_2018_visualization`. Args: fdata: Object containing the data. multivariate_depth: Method used to order the data. Defaults to :class:`projection depth <fda.depth_measures.multivariate.ProjectionDepth>`. pointwise_weights: an array containing the weights of each points of discretisation where values have been recorded. cutoff_factor: Factor that multiplies the cutoff value, in order to consider more or less curves as outliers. assume_centered: If True, the support of the robust location and the covariance estimates is computed, and a covariance estimate is recomputed from it, without centering the data. Useful to work with data whose mean is significantly equal to zero but is not exactly zero. If False, default value, the robust location and covariance are directly computed with the FastMCD algorithm without additional treatment. support_fraction: The proportion of points to be included in the support of the raw MCD estimate. Default is None, which implies that the minimum value of support_fraction will be used within the algorithm: [n_sample + n_features + 1] / 2 random_state: If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by np.random. By default, it is 0. ellipsoid: Whether to draw the non outlying ellipsoid. Attributes: points(numpy.ndarray): 2-dimensional matrix where each row contains the points plotted in the graph. outliers (1-D array, (fdata.n_samples,)): Contains 1 or 0 to denote if a sample is an outlier or not, respecively. colormap(matplotlib.pyplot.LinearSegmentedColormap, optional): Colormap from which the colors of the plot are extracted. Defaults to 'seismic'. color (float, optional): Tone of the colormap in which the nonoutlier points are plotted. Defaults to 0.2. outliercol (float, optional): Tone of the colormap in which the outliers are plotted. Defaults to 0.8. xlabel (string, optional): Label of the x-axis. Defaults to 'MO', mean of the directional outlyingness. ylabel (string, optional): Label of the y-axis. Defaults to 'VO', variation of the directional outlyingness. title (string, optional): Title of the plot. defaults to 'MS-Plot'. Representation in a Jupyter notebook: .. jupyter-execute:: from skfda.datasets import make_gaussian_process from skfda.misc.covariances import Exponential from skfda.exploratory.visualization import MagnitudeShapePlot fd = make_gaussian_process( n_samples=20, cov=Exponential(), random_state=1) MagnitudeShapePlot(fd) Example: >>> import skfda >>> data_matrix = [[1, 1, 2, 3, 2.5, 2], ... [0.5, 0.5, 1, 2, 1.5, 1], ... [-1, -1, -0.5, 1, 1, 0.5], ... [-0.5, -0.5, -0.5, -1, -1, -1]] >>> grid_points = [ 0., 2., 4., 6., 8., 10.] >>> fd = skfda.FDataGrid(data_matrix, grid_points) >>> MagnitudeShapePlot(fd) MagnitudeShapePlot( fdata=FDataGrid( array([[[ 1. ], [ 1. ], [ 2. ], [ 3. ], [ 2.5], [ 2. ]], [[ 0.5], [ 0.5], [ 1. ], [ 2. ], [ 1.5], [ 1. ]], [[-1. ], [-1. ], [-0.5], [ 1. ], [ 1. ], [ 0.5]], [[-0.5], [-0.5], [-0.5], [-1. ], [-1. ], [-1. ]]]), grid_points=(array([ 0., 2., 4., 6., 8., 10.]),), domain_range=((0.0, 10.0),), ...), multivariate_depth=None, pointwise_weights=None, cutoff_factor=1, points=array([[ 1.66666667, 0.12777778], [ 0. , 0. ], [-0.8 , 0.17666667], [-1.74444444, 0.94395062]]), outliers=array([False, False, False, False]), colormap=seismic, color=0.2, outliercol=0.8, xlabel='MO', ylabel='VO', title='') References: .. footbibliography:: """ def __init__( self, fdata: FDataGrid, chart: Figure | Axes | None = None, *, fig: Figure | None = None, axes: Sequence[Axes] | None = None, ellipsoid: bool = True, **kwargs: Any, ) -> None: BasePlot.__init__( self, chart, fig=fig, axes=axes, ) if fdata.dim_codomain > 1: raise NotImplementedError( "Only support 1 dimension on the codomain.") self.outlier_detector = MSPlotOutlierDetector(**kwargs) y = self.outlier_detector.fit_predict(fdata) outliers = (y == -1) self.ellipsoid = ellipsoid self._fdata = fdata self._outliers = outliers self._colormap = plt.cm.get_cmap('seismic') self._color = 0.2 self._outliercol = 0.8 self.xlabel = 'MO' self.ylabel = 'VO' self.title = ( "" if self.fdata.dataset_name is None else self.fdata.dataset_name ) @property def fdata(self) -> FDataGrid: return self._fdata @property def multivariate_depth(self) -> Depth[NDArrayFloat] | None: return self.outlier_detector.multivariate_depth @property def pointwise_weights(self) -> NDArrayFloat | None: return self.outlier_detector.pointwise_weights @property def cutoff_factor(self) -> float: return self.outlier_detector.cutoff_factor @property def points(self) -> NDArrayFloat: return self.outlier_detector.points_ @property def outliers(self) -> NDArrayInt: return self._outliers # type: ignore[no-any-return] @property def colormap(self) -> Colormap: return self._colormap @colormap.setter def colormap(self, value: Colormap) -> None: if not isinstance(value, matplotlib.colors.Colormap): raise ValueError( "colormap must be of type " "matplotlib.colors.Colormap", ) self._colormap = value @property def color(self) -> float: return self._color @color.setter def color(self, value: float) -> None: if value < 0 or value > 1: raise ValueError( "color must be a number between 0 and 1.") self._color = value @property def outliercol(self) -> float: return self._outliercol @outliercol.setter def outliercol(self, value: float) -> None: if value < 0 or value > 1: raise ValueError( "outcol must be a number between 0 and 1.") self._outliercol = value @property def n_samples(self) -> int: return self.fdata.n_samples def _plot( self, fig: Figure, axes: Axes, ) -> None: self.artists = np.zeros( (self.n_samples, 1), dtype=Artist, ) colors = np.zeros((self.fdata.n_samples, 4)) colors[np.where(self.outliers == 1)] = self.colormap(self.outliercol) colors[np.where(self.outliers == 0)] = self.colormap(self.color) colors_rgba = [tuple(i) for i in colors] if self.ellipsoid: center = self.outlier_detector.cov_.location_ prec = self.outlier_detector.cov_.get_precision() K = ( self.outlier_detector.cutoff_value_ / self.outlier_detector.scaling_ ) eigvals, eigvecs = np.linalg.eigh(prec) a, b = np.sqrt(K / eigvals) if eigvecs[0, 1] * eigvecs[1, 0] > 0: eigvecs[:, 0] *= -1 angle = np.rad2deg(np.arctan2(eigvecs[1, 0], eigvecs[0, 0])) ellipse = Ellipse( xy=center, width=2 * a, height=2 * b, angle=angle, facecolor='C0', alpha=0.1, ) axes[0].add_patch(ellipse) for i, _ in enumerate(self.points[:, 0].ravel()): self.artists[i, 0] = axes[0].scatter( self.points[:, 0].ravel()[i], self.points[:, 1].ravel()[i], color=colors_rgba[i], picker=True, pickradius=2, ) axes[0].set_xlabel(self.xlabel) axes[0].set_ylabel(self.ylabel) axes[0].set_title(self.title) def __repr__(self) -> str: """Return repr(self).""" return ( f"MagnitudeShapePlot(" f"\nfdata={repr(self.fdata)}," f"\nmultivariate_depth={self.multivariate_depth}," f"\npointwise_weights={repr(self.pointwise_weights)}," f"\ncutoff_factor={repr(self.cutoff_factor)}," f"\npoints={repr(self.points)}," f"\noutliers={repr(self.outliers)}," f"\ncolormap={self.colormap.name}," f"\ncolor={repr(self.color)}," f"\noutliercol={repr(self.outliercol)}," f"\nxlabel={repr(self.xlabel)}," f"\nylabel={repr(self.ylabel)}," f"\ntitle={repr(self.title)})" ).replace('\n', '\n ')
scikit-fda-sim
/scikit-fda-sim-0.7.1.tar.gz/scikit-fda-sim-0.7.1/skfda/exploratory/visualization/_magnitude_shape_plot.py
_magnitude_shape_plot.py
from __future__ import annotations from typing import Any, Sequence import matplotlib import matplotlib.pyplot as plt import numpy as np from matplotlib.artist import Artist from matplotlib.axes import Axes from matplotlib.colors import Colormap from matplotlib.figure import Figure from matplotlib.patches import Ellipse from ...representation import FDataGrid from ...typing._numpy import NDArrayFloat, NDArrayInt from ..depth import Depth from ..outliers import MSPlotOutlierDetector from ._baseplot import BasePlot class MagnitudeShapePlot(BasePlot): r""" Implementation of the magnitude-shape plot. This plot, which is based on the calculation of the :func:`directional outlyingness <fda.magnitude_shape_plot.directional_outlyingness>` of each of the samples, serves as a visualization tool for the centrality of curves. Furthermore, an outlier detection procedure is included. The norm of the mean of the directional outlyingness (:math:`\lVert \mathbf{MO}\rVert`) is plotted in the x-axis, and the variation of the directional outlyingness (:math:`VO`) in the y-axis. The outliers are detected using an instance of :class:`MSPlotOutlierDetector`. For more information see :footcite:ts:`dai+genton_2018_visualization`. Args: fdata: Object containing the data. multivariate_depth: Method used to order the data. Defaults to :class:`projection depth <fda.depth_measures.multivariate.ProjectionDepth>`. pointwise_weights: an array containing the weights of each points of discretisation where values have been recorded. cutoff_factor: Factor that multiplies the cutoff value, in order to consider more or less curves as outliers. assume_centered: If True, the support of the robust location and the covariance estimates is computed, and a covariance estimate is recomputed from it, without centering the data. Useful to work with data whose mean is significantly equal to zero but is not exactly zero. If False, default value, the robust location and covariance are directly computed with the FastMCD algorithm without additional treatment. support_fraction: The proportion of points to be included in the support of the raw MCD estimate. Default is None, which implies that the minimum value of support_fraction will be used within the algorithm: [n_sample + n_features + 1] / 2 random_state: If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by np.random. By default, it is 0. ellipsoid: Whether to draw the non outlying ellipsoid. Attributes: points(numpy.ndarray): 2-dimensional matrix where each row contains the points plotted in the graph. outliers (1-D array, (fdata.n_samples,)): Contains 1 or 0 to denote if a sample is an outlier or not, respecively. colormap(matplotlib.pyplot.LinearSegmentedColormap, optional): Colormap from which the colors of the plot are extracted. Defaults to 'seismic'. color (float, optional): Tone of the colormap in which the nonoutlier points are plotted. Defaults to 0.2. outliercol (float, optional): Tone of the colormap in which the outliers are plotted. Defaults to 0.8. xlabel (string, optional): Label of the x-axis. Defaults to 'MO', mean of the directional outlyingness. ylabel (string, optional): Label of the y-axis. Defaults to 'VO', variation of the directional outlyingness. title (string, optional): Title of the plot. defaults to 'MS-Plot'. Representation in a Jupyter notebook: .. jupyter-execute:: from skfda.datasets import make_gaussian_process from skfda.misc.covariances import Exponential from skfda.exploratory.visualization import MagnitudeShapePlot fd = make_gaussian_process( n_samples=20, cov=Exponential(), random_state=1) MagnitudeShapePlot(fd) Example: >>> import skfda >>> data_matrix = [[1, 1, 2, 3, 2.5, 2], ... [0.5, 0.5, 1, 2, 1.5, 1], ... [-1, -1, -0.5, 1, 1, 0.5], ... [-0.5, -0.5, -0.5, -1, -1, -1]] >>> grid_points = [ 0., 2., 4., 6., 8., 10.] >>> fd = skfda.FDataGrid(data_matrix, grid_points) >>> MagnitudeShapePlot(fd) MagnitudeShapePlot( fdata=FDataGrid( array([[[ 1. ], [ 1. ], [ 2. ], [ 3. ], [ 2.5], [ 2. ]], [[ 0.5], [ 0.5], [ 1. ], [ 2. ], [ 1.5], [ 1. ]], [[-1. ], [-1. ], [-0.5], [ 1. ], [ 1. ], [ 0.5]], [[-0.5], [-0.5], [-0.5], [-1. ], [-1. ], [-1. ]]]), grid_points=(array([ 0., 2., 4., 6., 8., 10.]),), domain_range=((0.0, 10.0),), ...), multivariate_depth=None, pointwise_weights=None, cutoff_factor=1, points=array([[ 1.66666667, 0.12777778], [ 0. , 0. ], [-0.8 , 0.17666667], [-1.74444444, 0.94395062]]), outliers=array([False, False, False, False]), colormap=seismic, color=0.2, outliercol=0.8, xlabel='MO', ylabel='VO', title='') References: .. footbibliography:: """ def __init__( self, fdata: FDataGrid, chart: Figure | Axes | None = None, *, fig: Figure | None = None, axes: Sequence[Axes] | None = None, ellipsoid: bool = True, **kwargs: Any, ) -> None: BasePlot.__init__( self, chart, fig=fig, axes=axes, ) if fdata.dim_codomain > 1: raise NotImplementedError( "Only support 1 dimension on the codomain.") self.outlier_detector = MSPlotOutlierDetector(**kwargs) y = self.outlier_detector.fit_predict(fdata) outliers = (y == -1) self.ellipsoid = ellipsoid self._fdata = fdata self._outliers = outliers self._colormap = plt.cm.get_cmap('seismic') self._color = 0.2 self._outliercol = 0.8 self.xlabel = 'MO' self.ylabel = 'VO' self.title = ( "" if self.fdata.dataset_name is None else self.fdata.dataset_name ) @property def fdata(self) -> FDataGrid: return self._fdata @property def multivariate_depth(self) -> Depth[NDArrayFloat] | None: return self.outlier_detector.multivariate_depth @property def pointwise_weights(self) -> NDArrayFloat | None: return self.outlier_detector.pointwise_weights @property def cutoff_factor(self) -> float: return self.outlier_detector.cutoff_factor @property def points(self) -> NDArrayFloat: return self.outlier_detector.points_ @property def outliers(self) -> NDArrayInt: return self._outliers # type: ignore[no-any-return] @property def colormap(self) -> Colormap: return self._colormap @colormap.setter def colormap(self, value: Colormap) -> None: if not isinstance(value, matplotlib.colors.Colormap): raise ValueError( "colormap must be of type " "matplotlib.colors.Colormap", ) self._colormap = value @property def color(self) -> float: return self._color @color.setter def color(self, value: float) -> None: if value < 0 or value > 1: raise ValueError( "color must be a number between 0 and 1.") self._color = value @property def outliercol(self) -> float: return self._outliercol @outliercol.setter def outliercol(self, value: float) -> None: if value < 0 or value > 1: raise ValueError( "outcol must be a number between 0 and 1.") self._outliercol = value @property def n_samples(self) -> int: return self.fdata.n_samples def _plot( self, fig: Figure, axes: Axes, ) -> None: self.artists = np.zeros( (self.n_samples, 1), dtype=Artist, ) colors = np.zeros((self.fdata.n_samples, 4)) colors[np.where(self.outliers == 1)] = self.colormap(self.outliercol) colors[np.where(self.outliers == 0)] = self.colormap(self.color) colors_rgba = [tuple(i) for i in colors] if self.ellipsoid: center = self.outlier_detector.cov_.location_ prec = self.outlier_detector.cov_.get_precision() K = ( self.outlier_detector.cutoff_value_ / self.outlier_detector.scaling_ ) eigvals, eigvecs = np.linalg.eigh(prec) a, b = np.sqrt(K / eigvals) if eigvecs[0, 1] * eigvecs[1, 0] > 0: eigvecs[:, 0] *= -1 angle = np.rad2deg(np.arctan2(eigvecs[1, 0], eigvecs[0, 0])) ellipse = Ellipse( xy=center, width=2 * a, height=2 * b, angle=angle, facecolor='C0', alpha=0.1, ) axes[0].add_patch(ellipse) for i, _ in enumerate(self.points[:, 0].ravel()): self.artists[i, 0] = axes[0].scatter( self.points[:, 0].ravel()[i], self.points[:, 1].ravel()[i], color=colors_rgba[i], picker=True, pickradius=2, ) axes[0].set_xlabel(self.xlabel) axes[0].set_ylabel(self.ylabel) axes[0].set_title(self.title) def __repr__(self) -> str: """Return repr(self).""" return ( f"MagnitudeShapePlot(" f"\nfdata={repr(self.fdata)}," f"\nmultivariate_depth={self.multivariate_depth}," f"\npointwise_weights={repr(self.pointwise_weights)}," f"\ncutoff_factor={repr(self.cutoff_factor)}," f"\npoints={repr(self.points)}," f"\noutliers={repr(self.outliers)}," f"\ncolormap={self.colormap.name}," f"\ncolor={repr(self.color)}," f"\noutliercol={repr(self.outliercol)}," f"\nxlabel={repr(self.xlabel)}," f"\nylabel={repr(self.ylabel)}," f"\ntitle={repr(self.title)})" ).replace('\n', '\n ')
0.959317
0.741545
from __future__ import annotations from typing import Sequence, Tuple import matplotlib import matplotlib.patches as mpatches import matplotlib.pyplot as plt import numpy as np from matplotlib.artist import Artist from matplotlib.axes import Axes from matplotlib.collections import PatchCollection from matplotlib.figure import Figure from matplotlib.patches import Rectangle from matplotlib.ticker import MaxNLocator from sklearn.exceptions import NotFittedError from sklearn.utils.validation import check_is_fitted from typing_extensions import Protocol from ...misc.validation import check_fdata_same_dimensions from ...representation import FData, FDataGrid from ...typing._numpy import NDArrayFloat, NDArrayInt from ._baseplot import BasePlot from ._utils import ColorLike, _darken, _set_labels class ClusteringEstimator(Protocol): @property def n_clusters(self) -> int: pass @property def cluster_centers_(self) -> FDataGrid: pass @property def labels_(self) -> NDArrayInt: pass def fit(self, X: FDataGrid) -> ClusteringEstimator: pass def predict(self, X: FDataGrid) -> NDArrayInt: pass class FuzzyClusteringEstimator(ClusteringEstimator, Protocol): def predict_proba(self, X: FDataGrid) -> NDArrayFloat: pass def _plot_clustering_checks( estimator: ClusteringEstimator, fdata: FData, sample_colors: Sequence[ColorLike] | None, sample_labels: Sequence[str] | None, cluster_colors: Sequence[ColorLike] | None, cluster_labels: Sequence[str] | None, center_colors: Sequence[ColorLike] | None, center_labels: Sequence[str] | None, ) -> None: """Check the arguments.""" if ( sample_colors is not None and len(sample_colors) != fdata.n_samples ): raise ValueError( "sample_colors must contain a color for each sample.", ) if ( sample_labels is not None and len(sample_labels) != fdata.n_samples ): raise ValueError( "sample_labels must contain a label for each sample.", ) if ( cluster_colors is not None and len(cluster_colors) != estimator.n_clusters ): raise ValueError( "cluster_colors must contain a color for each cluster.", ) if ( cluster_labels is not None and len(cluster_labels) != estimator.n_clusters ): raise ValueError( "cluster_labels must contain a label for each cluster.", ) if ( center_colors is not None and len(center_colors) != estimator.n_clusters ): raise ValueError( "center_colors must contain a color for each center.", ) if ( center_labels is not None and len(center_labels) != estimator.n_clusters ): raise ValueError( "centers_labels must contain a label for each center.", ) def _get_labels( x_label: str | None, y_label: str | None, title: str | None, xlabel_str: str, ) -> Tuple[str, str, str]: """ Get the axes labels. Set the arguments *xlabel*, *ylabel*, *title* passed to the plot functions :func:`plot_cluster_lines <skfda.exploratory.visualization.clustering_plots.plot_cluster_lines>` and :func:`plot_cluster_bars <skfda.exploratory.visualization.clustering_plots.plot_cluster_bars>`, in case they are not set yet. Args: x_label: Label for the x-axes. y_label: Label for the y-axes. title: Title for the figure where the clustering results are ploted. xlabel_str: In case xlabel is None, string to use for the labels in the x-axes. Returns: xlabel: Labels for the x-axes. ylabel: Labels for the y-axes. title: Title for the figure where the clustering results are plotted. """ if x_label is None: x_label = xlabel_str if y_label is None: y_label = "Degree of membership" if title is None: title = "Degrees of membership of the samples to each cluster" return x_label, y_label, title class ClusterPlot(BasePlot): """ ClusterPlot class. Args: estimator: estimator used to calculate the clusters. X: contains the samples which are grouped into different clusters. fig: figure over which the graphs are plotted in case ax is not specified. If None and ax is also None, the figure is initialized. axes: axis over where the graphs are plotted. If None, see param fig. n_rows: designates the number of rows of the figure to plot the different dimensions of the image. Only specified if fig and ax are None. n_cols: designates the number of columns of the figure to plot the different dimensions of the image. Only specified if fig and ax are None. sample_labels: contains in order the labels of each sample of the fdatagrid. cluster_colors: contains in order the colors of each cluster the samples of the fdatagrid are classified into. cluster_labels: contains in order the names of each cluster the samples of the fdatagrid are classified into. center_colors: contains in order the colors of each centroid of the clusters the samples of the fdatagrid are classified into. center_labels: contains in order the labels of each centroid of the clusters the samples of the fdatagrid are classified into. center_width: width of the centroid curves. colormap: colormap from which the colors of the plot are taken. Defaults to `rainbow`. """ def __init__( self, estimator: ClusteringEstimator, fdata: FDataGrid, chart: Figure | Axes | None = None, fig: Figure | None = None, axes: Axes | Sequence[Axes] | None = None, n_rows: int | None = None, n_cols: int | None = None, sample_labels: Sequence[str] | None = None, cluster_colors: Sequence[ColorLike] | None = None, cluster_labels: Sequence[str] | None = None, center_colors: Sequence[ColorLike] | None = None, center_labels: Sequence[str] | None = None, center_width: int = 3, colormap: matplotlib.colors.Colormap = None, ) -> None: if colormap is None: colormap = plt.cm.get_cmap('rainbow') super().__init__( chart, fig=fig, axes=axes, n_rows=n_rows, n_cols=n_cols, ) self.fdata = fdata self.estimator = estimator self.sample_labels = sample_labels self.cluster_colors = cluster_colors self.cluster_labels = cluster_labels self.center_colors = center_colors self.center_labels = center_labels self.center_width = center_width self.colormap = colormap @property def n_subplots(self) -> int: return self.fdata.dim_codomain @property def n_samples(self) -> int: return self.fdata.n_samples def _plot_clusters( self, fig: Figure, axes: Sequence[Axes], ) -> None: """Implement the plot of the FDataGrid samples by clusters.""" _plot_clustering_checks( estimator=self.estimator, fdata=self.fdata, sample_colors=None, sample_labels=self.sample_labels, cluster_colors=self.cluster_colors, cluster_labels=self.cluster_labels, center_colors=self.center_colors, center_labels=self.center_labels, ) if self.sample_labels is None: self.sample_labels = [ f'$SAMPLE: {i}$' for i in range(self.fdata.n_samples) ] if self.cluster_colors is None: self.cluster_colors = self.colormap( np.arange(self.estimator.n_clusters) / (self.estimator.n_clusters - 1), ) if self.cluster_labels is None: self.cluster_labels = [ f'$CLUSTER: {i}$' for i in range(self.estimator.n_clusters) ] if self.center_colors is None: self.center_colors = [_darken(c, 0.5) for c in self.cluster_colors] if self.center_labels is None: self.center_labels = [ f'$CENTER: {i}$' for i in range(self.estimator.n_clusters) ] colors_by_cluster = np.asarray(self.cluster_colors)[self.labels] patches = [ mpatches.Patch( color=self.cluster_colors[i], label=self.cluster_labels[i], ) for i in range(self.estimator.n_clusters) ] artists = [ axes[j].plot( self.fdata.grid_points[0], self.fdata.data_matrix[i, :, j], c=colors_by_cluster[i], label=self.sample_labels[i], ) for j in range(self.fdata.dim_codomain) for i in range(self.fdata.n_samples) ] self.artists = np.array(artists).reshape( (self.n_subplots, self.n_samples), ).T for j in range(self.fdata.dim_codomain): for i in range(self.estimator.n_clusters): axes[j].plot( self.fdata.grid_points[0], self.estimator.cluster_centers_.data_matrix[i, :, j], c=self.center_colors[i], label=self.center_labels[i], linewidth=self.center_width, ) axes[j].legend(handles=patches) _set_labels(self.fdata, fig, axes) def _plot( self, fig: Figure, axes: Sequence[Axes], ) -> None: try: check_is_fitted(self.estimator) check_fdata_same_dimensions( self.estimator.cluster_centers_, self.fdata, ) except NotFittedError: self.estimator.fit(self.fdata) self.labels = self.estimator.labels_ self._plot_clusters(fig=fig, axes=axes) class ClusterMembershipLinesPlot(BasePlot): """ Class ClusterMembershipLinesPlot. Args: estimator: estimator used to calculate the clusters. X: contains the samples which are grouped into different clusters. fig: figure over which the graph is plotted in case ax is not specified. If None and ax is also None, the figure is initialized. axes: axis over where the graph is plotted. If None, see param fig. sample_colors: contains in order the colors of each sample of the fdatagrid. sample_labels: contains in order the labels of each sample of the fdatagrid. cluster_labels: contains in order the names of each cluster the samples of the fdatagrid are classified into. colormap: colormap from which the colors of the plot are taken. x_label: Label for the x-axis. Defaults to "Cluster". y_label: Label for the y-axis. Defaults to "Degree of membership". title: Title for the figure where the clustering results are ploted. Defaults to "Degrees of membership of the samples to each cluster". """ def __init__( self, estimator: FuzzyClusteringEstimator, fdata: FDataGrid, *, chart: Figure | Axes | None = None, fig: Figure | None = None, axes: Axes | Sequence[Axes] | None = None, sample_colors: Sequence[ColorLike] | None = None, sample_labels: Sequence[str] | None = None, cluster_labels: Sequence[str] | None = None, colormap: matplotlib.colors.Colormap = None, x_label: str | None = None, y_label: str | None = None, title: str | None = None, ) -> None: if colormap is None: colormap = plt.cm.get_cmap('rainbow') super().__init__( chart, fig=fig, axes=axes, ) self.fdata = fdata self.estimator = estimator self.sample_labels = sample_labels self.sample_colors = sample_colors self.cluster_labels = cluster_labels self.x_label = x_label self.y_label = y_label self.title = title self.colormap = colormap @property def n_samples(self) -> int: return self.fdata.n_samples def _plot( self, fig: Figure, axes: Sequence[Axes], ) -> None: try: check_is_fitted(self.estimator) check_fdata_same_dimensions( self.estimator.cluster_centers_, self.fdata, ) except NotFittedError: self.estimator.fit(self.fdata) membership = self.estimator.predict_proba(self.fdata) _plot_clustering_checks( estimator=self.estimator, fdata=self.fdata, sample_colors=self.sample_colors, sample_labels=self.sample_labels, cluster_colors=None, cluster_labels=self.cluster_labels, center_colors=None, center_labels=None, ) x_label, y_label, title = _get_labels( self.x_label, self.y_label, self.title, "Cluster", ) if self.sample_colors is None: self.cluster_colors = self.colormap( np.arange(self.estimator.n_clusters) / (self.estimator.n_clusters - 1), ) labels_by_cluster = self.estimator.labels_ self.sample_colors = self.cluster_colors[labels_by_cluster] if self.sample_labels is None: self.sample_labels = [ f'$SAMPLE: {i}$' for i in range(self.fdata.n_samples) ] if self.cluster_labels is None: self.cluster_labels = [ f'${i}$' for i in range(self.estimator.n_clusters) ] axes[0].get_xaxis().set_major_locator(MaxNLocator(integer=True)) self.artists = np.array([ axes[0].plot( np.arange(self.estimator.n_clusters), membership[i], label=self.sample_labels[i], color=self.sample_colors[i], ) for i in range(self.fdata.n_samples) ]) axes[0].set_xticks(np.arange(self.estimator.n_clusters)) axes[0].set_xticklabels(self.cluster_labels) axes[0].set_xlabel(x_label) axes[0].set_ylabel(y_label) fig.suptitle(title) class ClusterMembershipPlot(BasePlot): """ Class ClusterMembershipPlot. Args: estimator: estimator used to calculate the clusters. X: contains the samples which are grouped into different clusters. fig: figure over which the graph is plotted in case ax is not specified. If None and ax is also None, the figure is initialized. axes: axis over where the graph is plotted. If None, see param fig. sample_colors: contains in order the colors of each sample of the fdatagrid. sample_labels: contains in order the labels of each sample of the fdatagrid. cluster_labels: contains in order the names of each cluster the samples of the fdatagrid are classified into. colormap: colormap from which the colors of the plot are taken. x_label: Label for the x-axis. Defaults to "Cluster". y_label: Label for the y-axis. Defaults to "Degree of membership". title: Title for the figure where the clustering results are ploted. Defaults to "Degrees of membership of the samples to each cluster". """ def __init__( self, estimator: FuzzyClusteringEstimator, fdata: FData, chart: Figure | Axes | None = None, *, fig: Figure | None = None, axes: Axes | Sequence[Axes] | None = None, sort: int = -1, sample_labels: Sequence[str] | None = None, cluster_colors: Sequence[ColorLike] | None = None, cluster_labels: Sequence[str] | None = None, colormap: matplotlib.colors.Colormap = None, x_label: str | None = None, y_label: str | None = None, title: str | None = None, ) -> None: if colormap is None: colormap = plt.cm.get_cmap('rainbow') super().__init__( chart, fig=fig, axes=axes, ) self.fdata = fdata self.estimator = estimator self.sample_labels = sample_labels self.cluster_colors = ( None if cluster_colors is None else list(cluster_colors) ) self.cluster_labels = cluster_labels self.x_label = x_label self.y_label = y_label self.title = title self.colormap = colormap self.sort = sort @property def n_samples(self) -> int: return self.fdata.n_samples def _plot( self, fig: Figure, axes: Sequence[Axes], ) -> None: self.artists = np.full( (self.n_samples, self.n_subplots), None, dtype=Artist, ) try: check_is_fitted(self.estimator) check_fdata_same_dimensions( self.estimator.cluster_centers_, self.fdata, ) except NotFittedError: self.estimator.fit(self.fdata) membership = self.estimator.predict_proba(self.fdata) if self.sort < -1 or self.sort >= self.estimator.n_clusters: raise ValueError( "The sorting number must belong to " "the interval [-1, n_clusters)", ) _plot_clustering_checks( estimator=self.estimator, fdata=self.fdata, sample_colors=None, sample_labels=self.sample_labels, cluster_colors=self.cluster_colors, cluster_labels=self.cluster_labels, center_colors=None, center_labels=None, ) x_label, y_label, title = _get_labels( self.x_label, self.y_label, self.title, "Sample", ) if self.sample_labels is None: self.sample_labels = list( np.arange( self.fdata.n_samples, ).astype(np.str_), ) if self.cluster_colors is None: self.cluster_colors = list( self.colormap( np.arange(self.estimator.n_clusters) / (self.estimator.n_clusters - 1), ), ) if self.cluster_labels is None: self.cluster_labels = [ f'$CLUSTER: {i}$' for i in range(self.estimator.n_clusters) ] patches = [ mpatches.Patch( color=self.cluster_colors[i], label=self.cluster_labels[i], ) for i in range(self.estimator.n_clusters) ] if self.sort == -1: labels_dim = membership else: sample_indices = np.argsort(-membership[:, self.sort]) self.sample_labels = list( np.array(self.sample_labels)[sample_indices], ) labels_dim = np.copy(membership[sample_indices]) temp_labels = np.copy(labels_dim[:, 0]) labels_dim[:, 0] = labels_dim[:, self.sort] labels_dim[:, self.sort] = temp_labels # Swap self.cluster_colors[0], self.cluster_colors[self.sort] = ( self.cluster_colors[self.sort], self.cluster_colors[0], ) conc = np.zeros((self.fdata.n_samples, 1)) labels_dim = np.concatenate((conc, labels_dim), axis=-1) bars = [ axes[0].bar( np.arange(self.fdata.n_samples), labels_dim[:, i + 1], bottom=np.sum(labels_dim[:, :(i + 1)], axis=1), color=self.cluster_colors[i], ) for i in range(self.estimator.n_clusters) ] for b in bars: b.remove() b.figure = None for i in range(self.n_samples): collection = PatchCollection( [ Rectangle( bar.patches[i].get_xy(), bar.patches[i].get_width(), bar.patches[i].get_height(), color=bar.patches[i].get_facecolor(), ) for bar in bars ], match_original=True, ) axes[0].add_collection(collection) self.artists[i, 0] = collection fig.canvas.draw() axes[0].set_xticks(np.arange(self.fdata.n_samples)) axes[0].set_xticklabels(self.sample_labels) axes[0].set_xlabel(x_label) axes[0].set_ylabel(y_label) axes[0].legend(handles=patches) fig.suptitle(title)
scikit-fda-sim
/scikit-fda-sim-0.7.1.tar.gz/scikit-fda-sim-0.7.1/skfda/exploratory/visualization/clustering.py
clustering.py
from __future__ import annotations from typing import Sequence, Tuple import matplotlib import matplotlib.patches as mpatches import matplotlib.pyplot as plt import numpy as np from matplotlib.artist import Artist from matplotlib.axes import Axes from matplotlib.collections import PatchCollection from matplotlib.figure import Figure from matplotlib.patches import Rectangle from matplotlib.ticker import MaxNLocator from sklearn.exceptions import NotFittedError from sklearn.utils.validation import check_is_fitted from typing_extensions import Protocol from ...misc.validation import check_fdata_same_dimensions from ...representation import FData, FDataGrid from ...typing._numpy import NDArrayFloat, NDArrayInt from ._baseplot import BasePlot from ._utils import ColorLike, _darken, _set_labels class ClusteringEstimator(Protocol): @property def n_clusters(self) -> int: pass @property def cluster_centers_(self) -> FDataGrid: pass @property def labels_(self) -> NDArrayInt: pass def fit(self, X: FDataGrid) -> ClusteringEstimator: pass def predict(self, X: FDataGrid) -> NDArrayInt: pass class FuzzyClusteringEstimator(ClusteringEstimator, Protocol): def predict_proba(self, X: FDataGrid) -> NDArrayFloat: pass def _plot_clustering_checks( estimator: ClusteringEstimator, fdata: FData, sample_colors: Sequence[ColorLike] | None, sample_labels: Sequence[str] | None, cluster_colors: Sequence[ColorLike] | None, cluster_labels: Sequence[str] | None, center_colors: Sequence[ColorLike] | None, center_labels: Sequence[str] | None, ) -> None: """Check the arguments.""" if ( sample_colors is not None and len(sample_colors) != fdata.n_samples ): raise ValueError( "sample_colors must contain a color for each sample.", ) if ( sample_labels is not None and len(sample_labels) != fdata.n_samples ): raise ValueError( "sample_labels must contain a label for each sample.", ) if ( cluster_colors is not None and len(cluster_colors) != estimator.n_clusters ): raise ValueError( "cluster_colors must contain a color for each cluster.", ) if ( cluster_labels is not None and len(cluster_labels) != estimator.n_clusters ): raise ValueError( "cluster_labels must contain a label for each cluster.", ) if ( center_colors is not None and len(center_colors) != estimator.n_clusters ): raise ValueError( "center_colors must contain a color for each center.", ) if ( center_labels is not None and len(center_labels) != estimator.n_clusters ): raise ValueError( "centers_labels must contain a label for each center.", ) def _get_labels( x_label: str | None, y_label: str | None, title: str | None, xlabel_str: str, ) -> Tuple[str, str, str]: """ Get the axes labels. Set the arguments *xlabel*, *ylabel*, *title* passed to the plot functions :func:`plot_cluster_lines <skfda.exploratory.visualization.clustering_plots.plot_cluster_lines>` and :func:`plot_cluster_bars <skfda.exploratory.visualization.clustering_plots.plot_cluster_bars>`, in case they are not set yet. Args: x_label: Label for the x-axes. y_label: Label for the y-axes. title: Title for the figure where the clustering results are ploted. xlabel_str: In case xlabel is None, string to use for the labels in the x-axes. Returns: xlabel: Labels for the x-axes. ylabel: Labels for the y-axes. title: Title for the figure where the clustering results are plotted. """ if x_label is None: x_label = xlabel_str if y_label is None: y_label = "Degree of membership" if title is None: title = "Degrees of membership of the samples to each cluster" return x_label, y_label, title class ClusterPlot(BasePlot): """ ClusterPlot class. Args: estimator: estimator used to calculate the clusters. X: contains the samples which are grouped into different clusters. fig: figure over which the graphs are plotted in case ax is not specified. If None and ax is also None, the figure is initialized. axes: axis over where the graphs are plotted. If None, see param fig. n_rows: designates the number of rows of the figure to plot the different dimensions of the image. Only specified if fig and ax are None. n_cols: designates the number of columns of the figure to plot the different dimensions of the image. Only specified if fig and ax are None. sample_labels: contains in order the labels of each sample of the fdatagrid. cluster_colors: contains in order the colors of each cluster the samples of the fdatagrid are classified into. cluster_labels: contains in order the names of each cluster the samples of the fdatagrid are classified into. center_colors: contains in order the colors of each centroid of the clusters the samples of the fdatagrid are classified into. center_labels: contains in order the labels of each centroid of the clusters the samples of the fdatagrid are classified into. center_width: width of the centroid curves. colormap: colormap from which the colors of the plot are taken. Defaults to `rainbow`. """ def __init__( self, estimator: ClusteringEstimator, fdata: FDataGrid, chart: Figure | Axes | None = None, fig: Figure | None = None, axes: Axes | Sequence[Axes] | None = None, n_rows: int | None = None, n_cols: int | None = None, sample_labels: Sequence[str] | None = None, cluster_colors: Sequence[ColorLike] | None = None, cluster_labels: Sequence[str] | None = None, center_colors: Sequence[ColorLike] | None = None, center_labels: Sequence[str] | None = None, center_width: int = 3, colormap: matplotlib.colors.Colormap = None, ) -> None: if colormap is None: colormap = plt.cm.get_cmap('rainbow') super().__init__( chart, fig=fig, axes=axes, n_rows=n_rows, n_cols=n_cols, ) self.fdata = fdata self.estimator = estimator self.sample_labels = sample_labels self.cluster_colors = cluster_colors self.cluster_labels = cluster_labels self.center_colors = center_colors self.center_labels = center_labels self.center_width = center_width self.colormap = colormap @property def n_subplots(self) -> int: return self.fdata.dim_codomain @property def n_samples(self) -> int: return self.fdata.n_samples def _plot_clusters( self, fig: Figure, axes: Sequence[Axes], ) -> None: """Implement the plot of the FDataGrid samples by clusters.""" _plot_clustering_checks( estimator=self.estimator, fdata=self.fdata, sample_colors=None, sample_labels=self.sample_labels, cluster_colors=self.cluster_colors, cluster_labels=self.cluster_labels, center_colors=self.center_colors, center_labels=self.center_labels, ) if self.sample_labels is None: self.sample_labels = [ f'$SAMPLE: {i}$' for i in range(self.fdata.n_samples) ] if self.cluster_colors is None: self.cluster_colors = self.colormap( np.arange(self.estimator.n_clusters) / (self.estimator.n_clusters - 1), ) if self.cluster_labels is None: self.cluster_labels = [ f'$CLUSTER: {i}$' for i in range(self.estimator.n_clusters) ] if self.center_colors is None: self.center_colors = [_darken(c, 0.5) for c in self.cluster_colors] if self.center_labels is None: self.center_labels = [ f'$CENTER: {i}$' for i in range(self.estimator.n_clusters) ] colors_by_cluster = np.asarray(self.cluster_colors)[self.labels] patches = [ mpatches.Patch( color=self.cluster_colors[i], label=self.cluster_labels[i], ) for i in range(self.estimator.n_clusters) ] artists = [ axes[j].plot( self.fdata.grid_points[0], self.fdata.data_matrix[i, :, j], c=colors_by_cluster[i], label=self.sample_labels[i], ) for j in range(self.fdata.dim_codomain) for i in range(self.fdata.n_samples) ] self.artists = np.array(artists).reshape( (self.n_subplots, self.n_samples), ).T for j in range(self.fdata.dim_codomain): for i in range(self.estimator.n_clusters): axes[j].plot( self.fdata.grid_points[0], self.estimator.cluster_centers_.data_matrix[i, :, j], c=self.center_colors[i], label=self.center_labels[i], linewidth=self.center_width, ) axes[j].legend(handles=patches) _set_labels(self.fdata, fig, axes) def _plot( self, fig: Figure, axes: Sequence[Axes], ) -> None: try: check_is_fitted(self.estimator) check_fdata_same_dimensions( self.estimator.cluster_centers_, self.fdata, ) except NotFittedError: self.estimator.fit(self.fdata) self.labels = self.estimator.labels_ self._plot_clusters(fig=fig, axes=axes) class ClusterMembershipLinesPlot(BasePlot): """ Class ClusterMembershipLinesPlot. Args: estimator: estimator used to calculate the clusters. X: contains the samples which are grouped into different clusters. fig: figure over which the graph is plotted in case ax is not specified. If None and ax is also None, the figure is initialized. axes: axis over where the graph is plotted. If None, see param fig. sample_colors: contains in order the colors of each sample of the fdatagrid. sample_labels: contains in order the labels of each sample of the fdatagrid. cluster_labels: contains in order the names of each cluster the samples of the fdatagrid are classified into. colormap: colormap from which the colors of the plot are taken. x_label: Label for the x-axis. Defaults to "Cluster". y_label: Label for the y-axis. Defaults to "Degree of membership". title: Title for the figure where the clustering results are ploted. Defaults to "Degrees of membership of the samples to each cluster". """ def __init__( self, estimator: FuzzyClusteringEstimator, fdata: FDataGrid, *, chart: Figure | Axes | None = None, fig: Figure | None = None, axes: Axes | Sequence[Axes] | None = None, sample_colors: Sequence[ColorLike] | None = None, sample_labels: Sequence[str] | None = None, cluster_labels: Sequence[str] | None = None, colormap: matplotlib.colors.Colormap = None, x_label: str | None = None, y_label: str | None = None, title: str | None = None, ) -> None: if colormap is None: colormap = plt.cm.get_cmap('rainbow') super().__init__( chart, fig=fig, axes=axes, ) self.fdata = fdata self.estimator = estimator self.sample_labels = sample_labels self.sample_colors = sample_colors self.cluster_labels = cluster_labels self.x_label = x_label self.y_label = y_label self.title = title self.colormap = colormap @property def n_samples(self) -> int: return self.fdata.n_samples def _plot( self, fig: Figure, axes: Sequence[Axes], ) -> None: try: check_is_fitted(self.estimator) check_fdata_same_dimensions( self.estimator.cluster_centers_, self.fdata, ) except NotFittedError: self.estimator.fit(self.fdata) membership = self.estimator.predict_proba(self.fdata) _plot_clustering_checks( estimator=self.estimator, fdata=self.fdata, sample_colors=self.sample_colors, sample_labels=self.sample_labels, cluster_colors=None, cluster_labels=self.cluster_labels, center_colors=None, center_labels=None, ) x_label, y_label, title = _get_labels( self.x_label, self.y_label, self.title, "Cluster", ) if self.sample_colors is None: self.cluster_colors = self.colormap( np.arange(self.estimator.n_clusters) / (self.estimator.n_clusters - 1), ) labels_by_cluster = self.estimator.labels_ self.sample_colors = self.cluster_colors[labels_by_cluster] if self.sample_labels is None: self.sample_labels = [ f'$SAMPLE: {i}$' for i in range(self.fdata.n_samples) ] if self.cluster_labels is None: self.cluster_labels = [ f'${i}$' for i in range(self.estimator.n_clusters) ] axes[0].get_xaxis().set_major_locator(MaxNLocator(integer=True)) self.artists = np.array([ axes[0].plot( np.arange(self.estimator.n_clusters), membership[i], label=self.sample_labels[i], color=self.sample_colors[i], ) for i in range(self.fdata.n_samples) ]) axes[0].set_xticks(np.arange(self.estimator.n_clusters)) axes[0].set_xticklabels(self.cluster_labels) axes[0].set_xlabel(x_label) axes[0].set_ylabel(y_label) fig.suptitle(title) class ClusterMembershipPlot(BasePlot): """ Class ClusterMembershipPlot. Args: estimator: estimator used to calculate the clusters. X: contains the samples which are grouped into different clusters. fig: figure over which the graph is plotted in case ax is not specified. If None and ax is also None, the figure is initialized. axes: axis over where the graph is plotted. If None, see param fig. sample_colors: contains in order the colors of each sample of the fdatagrid. sample_labels: contains in order the labels of each sample of the fdatagrid. cluster_labels: contains in order the names of each cluster the samples of the fdatagrid are classified into. colormap: colormap from which the colors of the plot are taken. x_label: Label for the x-axis. Defaults to "Cluster". y_label: Label for the y-axis. Defaults to "Degree of membership". title: Title for the figure where the clustering results are ploted. Defaults to "Degrees of membership of the samples to each cluster". """ def __init__( self, estimator: FuzzyClusteringEstimator, fdata: FData, chart: Figure | Axes | None = None, *, fig: Figure | None = None, axes: Axes | Sequence[Axes] | None = None, sort: int = -1, sample_labels: Sequence[str] | None = None, cluster_colors: Sequence[ColorLike] | None = None, cluster_labels: Sequence[str] | None = None, colormap: matplotlib.colors.Colormap = None, x_label: str | None = None, y_label: str | None = None, title: str | None = None, ) -> None: if colormap is None: colormap = plt.cm.get_cmap('rainbow') super().__init__( chart, fig=fig, axes=axes, ) self.fdata = fdata self.estimator = estimator self.sample_labels = sample_labels self.cluster_colors = ( None if cluster_colors is None else list(cluster_colors) ) self.cluster_labels = cluster_labels self.x_label = x_label self.y_label = y_label self.title = title self.colormap = colormap self.sort = sort @property def n_samples(self) -> int: return self.fdata.n_samples def _plot( self, fig: Figure, axes: Sequence[Axes], ) -> None: self.artists = np.full( (self.n_samples, self.n_subplots), None, dtype=Artist, ) try: check_is_fitted(self.estimator) check_fdata_same_dimensions( self.estimator.cluster_centers_, self.fdata, ) except NotFittedError: self.estimator.fit(self.fdata) membership = self.estimator.predict_proba(self.fdata) if self.sort < -1 or self.sort >= self.estimator.n_clusters: raise ValueError( "The sorting number must belong to " "the interval [-1, n_clusters)", ) _plot_clustering_checks( estimator=self.estimator, fdata=self.fdata, sample_colors=None, sample_labels=self.sample_labels, cluster_colors=self.cluster_colors, cluster_labels=self.cluster_labels, center_colors=None, center_labels=None, ) x_label, y_label, title = _get_labels( self.x_label, self.y_label, self.title, "Sample", ) if self.sample_labels is None: self.sample_labels = list( np.arange( self.fdata.n_samples, ).astype(np.str_), ) if self.cluster_colors is None: self.cluster_colors = list( self.colormap( np.arange(self.estimator.n_clusters) / (self.estimator.n_clusters - 1), ), ) if self.cluster_labels is None: self.cluster_labels = [ f'$CLUSTER: {i}$' for i in range(self.estimator.n_clusters) ] patches = [ mpatches.Patch( color=self.cluster_colors[i], label=self.cluster_labels[i], ) for i in range(self.estimator.n_clusters) ] if self.sort == -1: labels_dim = membership else: sample_indices = np.argsort(-membership[:, self.sort]) self.sample_labels = list( np.array(self.sample_labels)[sample_indices], ) labels_dim = np.copy(membership[sample_indices]) temp_labels = np.copy(labels_dim[:, 0]) labels_dim[:, 0] = labels_dim[:, self.sort] labels_dim[:, self.sort] = temp_labels # Swap self.cluster_colors[0], self.cluster_colors[self.sort] = ( self.cluster_colors[self.sort], self.cluster_colors[0], ) conc = np.zeros((self.fdata.n_samples, 1)) labels_dim = np.concatenate((conc, labels_dim), axis=-1) bars = [ axes[0].bar( np.arange(self.fdata.n_samples), labels_dim[:, i + 1], bottom=np.sum(labels_dim[:, :(i + 1)], axis=1), color=self.cluster_colors[i], ) for i in range(self.estimator.n_clusters) ] for b in bars: b.remove() b.figure = None for i in range(self.n_samples): collection = PatchCollection( [ Rectangle( bar.patches[i].get_xy(), bar.patches[i].get_width(), bar.patches[i].get_height(), color=bar.patches[i].get_facecolor(), ) for bar in bars ], match_original=True, ) axes[0].add_collection(collection) self.artists[i, 0] = collection fig.canvas.draw() axes[0].set_xticks(np.arange(self.fdata.n_samples)) axes[0].set_xticklabels(self.sample_labels) axes[0].set_xlabel(x_label) axes[0].set_ylabel(y_label) axes[0].legend(handles=patches) fig.suptitle(title)
0.967302
0.519765
from __future__ import annotations import numpy as np from matplotlib.artist import Artist from matplotlib.axes import Axes from matplotlib.figure import Figure from ...representation import FDataGrid from ..outliers import OutliergramOutlierDetector from ._baseplot import BasePlot class Outliergram(BasePlot): """ Outliergram method of visualization. Plots the :class:`Modified Band Depth (MBD)<skfda.exploratory.depth.ModifiedBandDepth>` on the Y axis and the :func:`Modified Epigraph Index (MEI)<skfda.exploratory.stats.modified_epigraph_index>` on the X axis. These points will create the form of a parabola. The shape outliers will be the points that appear far from this curve. Args: fdata: functional data set that we want to examine. chart: figure over with the graphs are plotted or axis over where the graphs are plotted. If None and ax is also None, the figure is initialized. fig: figure over with the graphs are plotted in case ax is not specified. If None and ax is also None, the figure is initialized. axes: axis where the graphs are plotted. If None, see param fig. n_rows: designates the number of rows of the figure to plot the different dimensions of the image. Only specified if fig and ax are None. n_cols: designates the number of columns of the figure to plot the different dimensions of the image. Only specified if fig and ax are None. Attributes: mbd: result of the calculation of the Modified Band Depth on our dataset. Represents the mean time a curve stays between other pair of curves, being a good measure of centrality. mei: result of the calculation of the Modified Epigraph Index on our dataset. Represents the mean time a curve stays below other curve. References: López-Pintado S., Romo J.. (2011). A half-region depth for functional data, Computational Statistics & Data Analysis, volume 55 (page 1679-1695). Arribas-Gil A., Romo J.. Shape outlier detection and visualization for functional data: the outliergram https://academic.oup.com/biostatistics/article/15/4/603/266279 """ def __init__( self, fdata: FDataGrid, chart: Figure | Axes | None = None, *, fig: Figure | None = None, axes: Axes | None = None, factor: float = 1.5, ) -> None: BasePlot.__init__( self, chart, fig=fig, axes=axes, ) self.fdata = fdata self.factor = factor self.outlier_detector = OutliergramOutlierDetector(factor=factor) self.outlier_detector.fit(fdata) indices = np.argsort(self.outlier_detector.mei_) self._parabola_ordered = self.outlier_detector.parabola_[indices] self._mei_ordered = self.outlier_detector.mei_[indices] @property def n_samples(self) -> int: return self.fdata.n_samples def _plot( self, fig: Figure, axes: Axes, ) -> None: self.artists = np.zeros( (self.n_samples, 1), dtype=Artist, ) for i, (mei, mbd) in enumerate( zip(self.outlier_detector.mei_, self.outlier_detector.mbd_), ): self.artists[i, 0] = axes[0].scatter( mei, mbd, picker=2, ) axes[0].plot( self._mei_ordered, self._parabola_ordered, ) shifted_parabola = ( self._parabola_ordered - self.outlier_detector.max_inlier_distance_ ) axes[0].plot( self._mei_ordered, shifted_parabola, linestyle='dashed', ) # Set labels of graph if self.fdata.dataset_name is not None: axes[0].set_title(self.fdata.dataset_name) axes[0].set_xlabel("MEI") axes[0].set_ylabel("MBD") axes[0].set_xlim([0, 1]) axes[0].set_ylim([ 0, # Minimum MBD 1, # Maximum MBD ])
scikit-fda-sim
/scikit-fda-sim-0.7.1.tar.gz/scikit-fda-sim-0.7.1/skfda/exploratory/visualization/_outliergram.py
_outliergram.py
from __future__ import annotations import numpy as np from matplotlib.artist import Artist from matplotlib.axes import Axes from matplotlib.figure import Figure from ...representation import FDataGrid from ..outliers import OutliergramOutlierDetector from ._baseplot import BasePlot class Outliergram(BasePlot): """ Outliergram method of visualization. Plots the :class:`Modified Band Depth (MBD)<skfda.exploratory.depth.ModifiedBandDepth>` on the Y axis and the :func:`Modified Epigraph Index (MEI)<skfda.exploratory.stats.modified_epigraph_index>` on the X axis. These points will create the form of a parabola. The shape outliers will be the points that appear far from this curve. Args: fdata: functional data set that we want to examine. chart: figure over with the graphs are plotted or axis over where the graphs are plotted. If None and ax is also None, the figure is initialized. fig: figure over with the graphs are plotted in case ax is not specified. If None and ax is also None, the figure is initialized. axes: axis where the graphs are plotted. If None, see param fig. n_rows: designates the number of rows of the figure to plot the different dimensions of the image. Only specified if fig and ax are None. n_cols: designates the number of columns of the figure to plot the different dimensions of the image. Only specified if fig and ax are None. Attributes: mbd: result of the calculation of the Modified Band Depth on our dataset. Represents the mean time a curve stays between other pair of curves, being a good measure of centrality. mei: result of the calculation of the Modified Epigraph Index on our dataset. Represents the mean time a curve stays below other curve. References: López-Pintado S., Romo J.. (2011). A half-region depth for functional data, Computational Statistics & Data Analysis, volume 55 (page 1679-1695). Arribas-Gil A., Romo J.. Shape outlier detection and visualization for functional data: the outliergram https://academic.oup.com/biostatistics/article/15/4/603/266279 """ def __init__( self, fdata: FDataGrid, chart: Figure | Axes | None = None, *, fig: Figure | None = None, axes: Axes | None = None, factor: float = 1.5, ) -> None: BasePlot.__init__( self, chart, fig=fig, axes=axes, ) self.fdata = fdata self.factor = factor self.outlier_detector = OutliergramOutlierDetector(factor=factor) self.outlier_detector.fit(fdata) indices = np.argsort(self.outlier_detector.mei_) self._parabola_ordered = self.outlier_detector.parabola_[indices] self._mei_ordered = self.outlier_detector.mei_[indices] @property def n_samples(self) -> int: return self.fdata.n_samples def _plot( self, fig: Figure, axes: Axes, ) -> None: self.artists = np.zeros( (self.n_samples, 1), dtype=Artist, ) for i, (mei, mbd) in enumerate( zip(self.outlier_detector.mei_, self.outlier_detector.mbd_), ): self.artists[i, 0] = axes[0].scatter( mei, mbd, picker=2, ) axes[0].plot( self._mei_ordered, self._parabola_ordered, ) shifted_parabola = ( self._parabola_ordered - self.outlier_detector.max_inlier_distance_ ) axes[0].plot( self._mei_ordered, shifted_parabola, linestyle='dashed', ) # Set labels of graph if self.fdata.dataset_name is not None: axes[0].set_title(self.fdata.dataset_name) axes[0].set_xlabel("MEI") axes[0].set_ylabel("MBD") axes[0].set_xlim([0, 1]) axes[0].set_ylim([ 0, # Minimum MBD 1, # Maximum MBD ])
0.952364
0.799403