davanstrien's picture
davanstrien HF staff
update model card README.md
8c94699
|
raw
history blame
2.27 kB
metadata
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
  - generated_from_trainer
datasets:
  - aesdd
metrics:
  - accuracy
model-index:
  - name: distilhubert-finetuned-AESDD
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: aesdd
          type: aesdd
          config: AESDD
          split: train
          args: AESDD
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9016393442622951

distilhubert-finetuned-AESDD

This model is a fine-tuned version of ntu-spml/distilhubert on the aesdd dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4389
  • Accuracy: 0.9016

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.1249 1.0 68 1.1905 0.5082
0.7441 2.0 136 0.8850 0.6721
0.5941 3.0 204 0.6579 0.8361
0.4349 4.0 272 0.9638 0.6721
0.2612 5.0 340 0.5081 0.8689
0.1883 6.0 408 0.6223 0.8197
0.0978 7.0 476 0.4671 0.8689
0.0425 8.0 544 0.4338 0.8852
0.0264 9.0 612 0.4488 0.8525
0.0219 10.0 680 0.4389 0.9016

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.2
  • Tokenizers 0.13.3