metadata
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_trainer
datasets:
- ravnursson_asr
metrics:
- wer
model-index:
- name: whisper-tiny-fo-100h-5k-steps
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: ravnursson_asr
type: ravnursson_asr
config: ravnursson_asr
split: test
args: ravnursson_asr
metrics:
- name: Wer
type: wer
value: 35.313066237165295
whisper-tiny-fo-100h-5k-steps
This model is a fine-tuned version of openai/whisper-tiny on the ravnursson_asr dataset. It achieves the following results on the evaluation set:
- Loss: 0.4492
- Wer: 35.3131
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.7689 | 0.2320 | 1000 | 0.7920 | 52.4109 |
0.5534 | 0.4640 | 2000 | 0.5865 | 44.3024 |
0.4699 | 0.6961 | 3000 | 0.5051 | 39.9487 |
0.4446 | 0.9281 | 4000 | 0.4643 | 35.9573 |
0.3597 | 1.1601 | 5000 | 0.4492 | 35.3131 |
Framework versions
- Transformers 4.42.4
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1