davidilag's picture
End of training
df1e46d verified
---
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_trainer
datasets:
- ravnursson_asr
metrics:
- wer
model-index:
- name: whisper-tiny-fo-100h-5k-steps
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: ravnursson_asr
type: ravnursson_asr
config: ravnursson_asr
split: test
args: ravnursson_asr
metrics:
- name: Wer
type: wer
value: 35.313066237165295
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/setur/huggingface/runs/jnt4ip4i)
# whisper-tiny-fo-100h-5k-steps
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the ravnursson_asr dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4492
- Wer: 35.3131
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 0.7689 | 0.2320 | 1000 | 0.7920 | 52.4109 |
| 0.5534 | 0.4640 | 2000 | 0.5865 | 44.3024 |
| 0.4699 | 0.6961 | 3000 | 0.5051 | 39.9487 |
| 0.4446 | 0.9281 | 4000 | 0.4643 | 35.9573 |
| 0.3597 | 1.1601 | 5000 | 0.4492 | 35.3131 |
### Framework versions
- Transformers 4.42.4
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1