|
<!-- markdownlint-disable first-line-h1 --> |
|
<!-- markdownlint-disable html --> |
|
<!-- markdownlint-disable no-duplicate-header --> |
|
|
|
<div align="center"> |
|
<img src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/logo.svg?raw=true" width="60%" alt="DeepSeek LLM" /> |
|
</div> |
|
<hr> |
|
<div align="center"> |
|
|
|
<a href="https://www.deepseek.com/" target="_blank"> |
|
<img alt="Homepage" src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/badge.svg?raw=true" style="display: inline-block; vertical-align: middle;"/> |
|
</a> |
|
<a href="https://chat.deepseek.com/" target="_blank"> |
|
<img alt="Chat" src="https://img.shields.io/badge/🤖%20Chat-DeepSeek%20LLM-536af5?color=536af5&logoColor=white?raw=true" style="display: inline-block; vertical-align: middle;"/> |
|
</a> |
|
<a href="https://huggingface.co/deepseek-ai" target="_blank"> |
|
<img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-DeepSeek%20AI-ffc107?color=ffc107&logoColor=white?raw=true" style="display: inline-block; vertical-align: middle;"/> |
|
</a> |
|
|
|
<a href="https://discord.gg/Tc7c45Zzu5" target="_blank"> |
|
<img alt="Discord" src="https://img.shields.io/badge/Discord-DeepSeek%20AI-7289da?logo=discord&logoColor=white&color=7289da?raw=true" style="display: inline-block; vertical-align: middle;"/> |
|
</a> |
|
<a href="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/qr.jpeg" target="_blank"> |
|
<img alt="Wechat" src="https://img.shields.io/badge/WeChat-DeepSeek%20AI-brightgreen?logo=wechat&logoColor=white?raw=true"style="display: inline-block; vertical-align: middle;" /> |
|
</a> |
|
<a href="https://twitter.com/deepseek_ai" target="_blank"> |
|
<img alt="Twitter Follow" src="https://img.shields.io/badge/Twitter-deepseek_ai-white?logo=x&logoColor=white?raw=true" style="display: inline-block; vertical-align: middle;"/> |
|
</a> |
|
<a href="LICENSE-CODE"> |
|
<img alt="Code License" src="https://img.shields.io/badge/Code_License-MIT-f5de53?&color=f5de53?raw=true"style="display: inline-block; vertical-align: middle;"> |
|
</a> |
|
<a href="LICENSE-MODEL"> |
|
<img alt="Model License" src="https://img.shields.io/badge/Model_License-Model_Agreement-f5de53?&color=f5de53?raw=true"style="display: inline-block; vertical-align: middle;"> |
|
</a> |
|
</div> |
|
|
|
|
|
<p align="center"> |
|
<a href="#2-model-downloads">Model Download</a> | |
|
<a href="#3-evaluation-results">Evaluation Results</a> | |
|
<a href="#4-model-architecture">Model Architecture</a> | |
|
<a href="#6-api-platform">API Platform</a> | |
|
<a href="#8-license">License</a> | |
|
<a href="#9-citation">Citation</a> |
|
</p> |
|
|
|
<p align="center"> |
|
<a href="https://arxiv.org/abs/2405.04434"><b>Paper Link</b>👁️</a> |
|
</p> |
|
|
|
# DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model |
|
|
|
## 1. Introduction |
|
Today, we’re introducing DeepSeek-V2, a strong Mixture-of-Experts (MoE) language model characterized by economical training and efficient inference. It comprises 236B total parameters, of which 21B are activated for each token. Compared with DeepSeek 67B, DeepSeek-V2 achieves stronger performance, and meanwhile saves 42.5% of training costs, reduces the KV cache by 93.3%, and boosts the maximum generation throughput to 5.76 times. |
|
|
|
<p align="center"> |
|
|
|
<div style="display: flex; justify-content: center;"> |
|
<img src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/activationparameters.png?raw=true" style="height:300px; width:auto; margin-right:10px"> |
|
<img src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/trainingcost.png?raw=true" style="height:300px; width:auto; margin-left:10px"> |
|
</div> |
|
</p> |
|
We pretrained DeepSeek-V2 on a diverse and high-quality corpus comprising 8.1 trillion tokens. This comprehensive pretraining was followed by a process of Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL) to fully unleash the model's capabilities. The evaluation results validate the effectiveness of our approach as DeepSeek-V2 achieves remarkable performance on both standard benchmarks and open-ended generation evaluation. |
|
|
|
## 2. Model Downloads |
|
|
|
<div align="center"> |
|
|
|
| **Model** | **Context Length** | **Download** | |
|
| :------------: | :------------: | :------------: | |
|
| DeepSeek-V2 | 128k | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-V2) | |
|
| DeepSeek-V2-Chat (RL) | 128k | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-V2-Chat) | |
|
|
|
</div> |
|
|
|
Due to the constraints of HuggingFace, the open-source code currently experiences slower performance than our internal codebase when running on GPUs with Huggingface. To facilitate the efficient execution of our model, we offer a dedicated vllm solution that optimizes performance for running our model effectively. |
|
|
|
## 3. Evaluation Results |
|
### Base Model |
|
#### Standard Benchmark |
|
|
|
<div align="center"> |
|
|
|
| **Benchmark** | **Domain** | **LLaMA3 70B** | **Mixtral 8x22B** | **DeepSeek-V1 (Dense-67B)** | **DeepSeek-V2 (MoE-236B)** | |
|
|:-----------:|:--------:|:------------:|:---------------:|:-------------------------:|:------------------------:| |
|
| **MMLU** | English | 78.9 | 77.6 | 71.3 | 78.5 | |
|
| **BBH** | English | 81.0 | 78.9 | 68.7 | 78.9 | |
|
| **C-Eval** | Chinese | 67.5 | 58.6 | 66.1 | 81.7 | |
|
| **CMMLU** | Chinese | 69.3 | 60.0 | 70.8 | 84.0 | |
|
| **HumanEval** | Code | 48.2 | 53.1 | 45.1 | 48.8 | |
|
| **MBPP** | Code | 68.6 | 64.2 | 57.4 | 66.6 | |
|
| **GSM8K** | Math | 83.0 | 80.3 | 63.4 | 79.2 | |
|
| **Math** | Math | 42.2 | 42.5 | 18.7 | 43.6 | |
|
|
|
</div> |
|
For more evaluation details, such as few-shot settings and prompts, please check our paper. |
|
|
|
#### Context Window |
|
<p align="center"> |
|
<img width="80%" src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/niah.png?raw=true"> |
|
</p> |
|
|
|
Evaluation results on the ``Needle In A Haystack`` (NIAH) tests. DeepSeek-V2 performs well across all context window lengths up to **128K**. |
|
|
|
### Chat Model |
|
#### Standard Benchmark |
|
<div align="center"> |
|
|
|
| Benchmark | Domain | QWen1.5 72B Chat | Mixtral 8x22B | LLaMA3 70B Instruct | DeepSeek-V1 Chat (SFT) | DeepSeek-V2 Chat (SFT) | DeepSeek-V2 Chat (RL) | |
|
|:-----------:|:----------------:|:------------------:|:---------------:|:---------------------:|:-------------:|:-----------------------:|:----------------------:| |
|
| **MMLU** | English | 76.2 | 77.8 | 80.3 | 71.1 | 78.4 | 77.8 | |
|
| **BBH** | English | 65.9 | 78.4 | 80.1 | 71.7 | 81.3 | 79.7 | |
|
| **C-Eval** | Chinese | 82.2 | 60.0 | 67.9 | 65.2 | 80.9 | 78.0 | |
|
| **CMMLU** | Chinese | 82.9 | 61.0 | 70.7 | 67.8 | 82.4 | 81.6 | |
|
| **HumanEval** | Code | 68.9 | 75.0 | 76.2 | 73.8 | 76.8 | 81.1 | |
|
| **MBPP** | Code | 52.2 | 64.4 | 69.8 | 61.4 | 70.4 | 72.0 | |
|
| **LiveCodeBench (0901-0401)** | Code | 18.8 | 25.0 | 30.5 | 18.3 | 28.7 | 32.5 | |
|
| **GSM8K** | Math | 81.9 | 87.9 | 93.2 | 84.1 | 90.8 | 92.2 | |
|
| **Math** | Math | 40.6 | 49.8 | 48.5 | 32.6 | 52.7 | 53.9 | |
|
|
|
</div> |
|
|
|
#### English Open Ended Generation Evaluation |
|
We evaluate our model on AlpacaEval 2.0 and MTBench, showing the competitive performance of DeepSeek-V2-Chat-RL on English conversation generation. |
|
<p align="center"> |
|
<img width="50%" src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/mtbench.png?raw=true" /> |
|
</p> |
|
|
|
#### Chinese Open Ended Generation Evaluation |
|
**Alignbench** (https://arxiv.org/abs/2311.18743) |
|
<div align="center"> |
|
|
|
| **模型** | **开源/闭源** | **总分** | **中文推理** | **中文语言** | |
|
| :---: | :---: | :---: | :---: | :---: | |
|
| gpt-4-1106-preview | 闭源 | 8.01 | 7.73 | 8.29 | |
|
| DeepSeek-V2 Chat (RL) | 开源 | 7.91 | 7.45 | 8.35 | |
|
| erniebot-4.0-202404 (文心一言) | 闭源 | 7.89 | 7.61 | 8.17 | |
|
| DeepSeek-V2 Chat (SFT) | 开源 | 7.74 | 7.30 | 8.17 | |
|
| gpt-4-0613 | 闭源 | 7.53 | 7.47 | 7.59 | |
|
| erniebot-4.0-202312 (文心一言) | 闭源 | 7.36 | 6.84 | 7.88 | |
|
| moonshot-v1-32k-202404 (月之暗面) | 闭源 | 7.22 | 6.42 | 8.02 | |
|
| Qwen1.5-72B-Chat (通义千问) | 开源 | 7.19 | 6.45 | 7.93 | |
|
| DeepSeek-67B-Chat | 开源 | 6.43 | 5.75 | 7.11 | |
|
| Yi-34B-Chat (零一万物) | 开源 | 6.12 | 4.86 | 7.38 | |
|
| gpt-3.5-turbo-0613 | 闭源 | 6.08 | 5.35 | 6.71 | |
|
|
|
</div> |
|
|
|
#### Coding Benchmarks |
|
We evaluate our model on LiveCodeBench (0901-0401), a benchmark designed for live coding challenges. As illustrated, DeepSeek-V2 demonstrates considerable proficiency in LiveCodeBench, achieving a Pass@1 score that surpasses several other sophisticated models. This performance highlights the model's effectiveness in tackling live coding tasks. |
|
|
|
<p align="center"> |
|
<img width="50%" src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/code_benchmarks.png?raw=true"> |
|
</p> |
|
|
|
## 4. Model Architecture |
|
DeepSeek-V2 adopts innovative architectures to guarantee economical training and efficient inference: |
|
- For attention, we design MLA (Multi-head Latent Attention), which utilizes low-rank key-value union compression to eliminate the bottleneck of inference-time key-value cache, thus supporting efficient inference. |
|
- For Feed-Forward Networks (FFNs), we adopt DeepSeekMoE architecture, a high-performance MoE architecture that enables training stronger models at lower costs. |
|
|
|
<p align="center"> |
|
<img width="90%" src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/architecture.png?raw=true" /> |
|
</p> |
|
|
|
## 5. Chat Website |
|
You can chat with the DeepSeek-V2 on DeepSeek's official website: [chat.deepseek.com](https://chat.deepseek.com/sign_in) |
|
|
|
## 6. API Platform |
|
We also provide OpenAI-Compatible API at DeepSeek Platform: [platform.deepseek.com](https://platform.deepseek.com/). Sign up for over millions of free tokens. And you can also pay-as-you-go at an unbeatable price. |
|
|
|
|
|
<p align="center"> |
|
<img width="40%" src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/model_price.png?raw=true"> |
|
</p> |
|
|
|
|
|
## 7. How to run locally |
|
**To utilize DeepSeek-V2 in BF16 format for inference, 80GB*8 GPUs are required.** |
|
### Inference with Huggingface's Transformers |
|
You can directly employ [Huggingface's Transformers](https://github.com/huggingface/transformers) for model inference. |
|
|
|
#### Text Completion |
|
```python |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig |
|
|
|
model_name = "deepseek-ai/DeepSeek-V2" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) |
|
# `max_memory` should be set based on your devices |
|
max_memory = {i: "75GB" for i in range(8)} |
|
# `device_map` cannot be set to `auto` |
|
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, device_map="sequential", torch_dtype=torch.bfloat16, max_memory=max_memory, attn_implementation="eager") |
|
model.generation_config = GenerationConfig.from_pretrained(model_name) |
|
model.generation_config.pad_token_id = model.generation_config.eos_token_id |
|
|
|
text = "An attention function can be described as mapping a query and a set of key-value pairs to an output, where the query, keys, values, and output are all vectors. The output is" |
|
inputs = tokenizer(text, return_tensors="pt") |
|
outputs = model.generate(**inputs.to(model.device), max_new_tokens=100) |
|
|
|
result = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
print(result) |
|
``` |
|
|
|
#### Chat Completion |
|
```python |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig |
|
|
|
model_name = "deepseek-ai/DeepSeek-V2-Chat" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) |
|
# `max_memory` should be set based on your devices |
|
max_memory = {i: "75GB" for i in range(8)} |
|
# `device_map` cannot be set to `auto` |
|
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, device_map="sequential", torch_dtype=torch.bfloat16, max_memory=max_memory, attn_implementation="eager") |
|
model.generation_config = GenerationConfig.from_pretrained(model_name) |
|
model.generation_config.pad_token_id = model.generation_config.eos_token_id |
|
|
|
messages = [ |
|
{"role": "user", "content": "Write a piece of quicksort code in C++"} |
|
] |
|
input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt") |
|
outputs = model.generate(input_tensor.to(model.device), max_new_tokens=100) |
|
|
|
result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True) |
|
print(result) |
|
``` |
|
|
|
The complete chat template can be found within `tokenizer_config.json` located in the huggingface model repository. |
|
|
|
An example of chat template is as belows: |
|
|
|
```bash |
|
<|begin▁of▁sentence|>User: {user_message_1} |
|
|
|
Assistant: {assistant_message_1}<|end▁of▁sentence|>User: {user_message_2} |
|
|
|
Assistant: |
|
``` |
|
|
|
You can also add an optional system message: |
|
|
|
```bash |
|
<|begin▁of▁sentence|>{system_message} |
|
|
|
User: {user_message_1} |
|
|
|
Assistant: {assistant_message_1}<|end▁of▁sentence|>User: {user_message_2} |
|
|
|
Assistant: |
|
``` |
|
|
|
### Inference with vLLM (recommended) |
|
To utilize [vLLM](https://github.com/vllm-project/vllm) for model inference, please merge this Pull Request into your vLLM codebase: https://github.com/vllm-project/vllm/pull/4650. |
|
|
|
```python |
|
from transformers import AutoTokenizer |
|
from vllm import LLM, SamplingParams |
|
|
|
max_model_len, tp_size = 8192, 8 |
|
model_name = "deepseek-ai/DeepSeek-V2-Chat" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
llm = LLM(model=model_name, tensor_parallel_size=tp_size, max_model_len=max_model_len, trust_remote_code=True, enforce_eager=True) |
|
sampling_params = SamplingParams(temperature=0.3, max_tokens=256, stop_token_ids=[tokenizer.eos_token_id]) |
|
|
|
messages_list = [ |
|
[{"role": "user", "content": "Who are you?"}], |
|
[{"role": "user", "content": "Translate the following content into Chinese directly: DeepSeek-V2 adopts innovative architectures to guarantee economical training and efficient inference."}], |
|
[{"role": "user", "content": "Write a piece of quicksort code in C++."}], |
|
] |
|
|
|
prompt_token_ids = [tokenizer.apply_chat_template(messages, add_generation_prompt=True) for messages in messages_list] |
|
|
|
outputs = llm.generate(prompt_token_ids=prompt_token_ids, sampling_params=sampling_params) |
|
|
|
generated_text = [output.outputs[0].text for output in outputs] |
|
print(generated_text) |
|
``` |
|
|
|
## 8. License |
|
This code repository is licensed under [the MIT License](LICENSE-CODE). The use of DeepSeek-V2 Base/Chat models is subject to [the Model License](LICENSE-MODEL). DeepSeek-V2 series (including Base and Chat) supports commercial use. |
|
|
|
## 9. Citation |
|
``` |
|
@misc{deepseekv2, |
|
title={DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model}, |
|
author={DeepSeek-AI}, |
|
year={2024}, |
|
eprint={2405.04434}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
## 10. Contact |
|
If you have any questions, please raise an issue or contact us at [[email protected]]([email protected]). |
|
|