diegoale1248's picture
Model save
9e7869d
metadata
license: mit
base_model: neuralmind/bert-base-portuguese-cased
tags:
  - generated_from_trainer
metrics:
  - f1
  - accuracy
model-index:
  - name: finetuned-bert-categories-estimation
    results: []

finetuned-bert-categories-estimation

This model is a fine-tuned version of neuralmind/bert-base-portuguese-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4080
  • F1: 0.9054
  • Accuracy: 0.9277

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss F1 Accuracy
4.3517 0.13 100 3.6120 0.0934 0.3599
3.2593 0.25 200 2.7209 0.1848 0.5085
2.584 0.38 300 2.1874 0.2784 0.5952
2.1208 0.51 400 1.8393 0.3656 0.6504
1.7726 0.63 500 1.5560 0.4633 0.7121
1.5799 0.76 600 1.3686 0.5185 0.7442
1.3384 0.89 700 1.2079 0.5896 0.7759
1.2751 1.01 800 1.0736 0.6044 0.7941
1.0223 1.14 900 0.9892 0.6353 0.8089
0.9095 1.27 1000 0.9277 0.6699 0.8157
0.8496 1.39 1100 0.8370 0.6973 0.8311
0.7735 1.52 1200 0.7878 0.7093 0.8349
0.7058 1.65 1300 0.7299 0.7239 0.8481
0.6545 1.77 1400 0.6823 0.7444 0.8563
0.6652 1.9 1500 0.6623 0.7547 0.8609
0.5905 2.03 1600 0.6079 0.7660 0.8663
0.4679 2.15 1700 0.5910 0.7867 0.8696
0.4415 2.28 1800 0.5668 0.8034 0.8785
0.4377 2.41 1900 0.5580 0.8068 0.8796
0.4262 2.53 2000 0.5366 0.8054 0.8815
0.4272 2.66 2100 0.5094 0.8189 0.8880
0.3979 2.79 2200 0.4966 0.8229 0.8898
0.3763 2.92 2300 0.4838 0.8349 0.8950
0.366 3.04 2400 0.4742 0.8340 0.8950
0.2686 3.17 2500 0.4591 0.8365 0.8966
0.2735 3.3 2600 0.4676 0.8393 0.8958
0.2582 3.42 2700 0.4263 0.8580 0.9025
0.2451 3.55 2800 0.4383 0.8526 0.8988
0.2626 3.68 2900 0.4420 0.8554 0.9018
0.248 3.8 3000 0.4153 0.8658 0.9080
0.2634 3.93 3100 0.4082 0.8666 0.9088
0.2 4.06 3200 0.4162 0.8716 0.9090
0.1717 4.18 3300 0.4032 0.8748 0.9117
0.19 4.31 3400 0.4019 0.8747 0.9117
0.1507 4.44 3500 0.4118 0.8789 0.9139
0.16 4.56 3600 0.4107 0.8815 0.9139
0.1716 4.69 3700 0.4105 0.8826 0.9132
0.1545 4.82 3800 0.3945 0.8850 0.9180
0.1628 4.94 3900 0.3974 0.8907 0.9194
0.1123 5.07 4000 0.4060 0.8828 0.9166
0.0988 5.2 4100 0.4037 0.8847 0.9167
0.1065 5.32 4200 0.3959 0.8895 0.9201
0.1018 5.45 4300 0.4040 0.8875 0.9183
0.1091 5.58 4400 0.4044 0.8908 0.9199
0.1041 5.7 4500 0.3937 0.8943 0.9218
0.1154 5.83 4600 0.3981 0.8956 0.9205
0.0932 5.96 4700 0.3940 0.8967 0.9223
0.0835 6.08 4800 0.3914 0.8967 0.9224
0.065 6.21 4900 0.3905 0.8922 0.9215
0.0634 6.34 5000 0.3999 0.8924 0.9215
0.0618 6.46 5100 0.4013 0.8966 0.9226
0.0678 6.59 5200 0.3985 0.9004 0.9242
0.0666 6.72 5300 0.3892 0.8993 0.9239
0.0564 6.84 5400 0.4026 0.8986 0.9228
0.0704 6.97 5500 0.4011 0.9004 0.9236
0.0508 7.1 5600 0.4035 0.8987 0.9234
0.0395 7.22 5700 0.4131 0.8979 0.9216
0.0363 7.35 5800 0.4112 0.9022 0.9243
0.0443 7.48 5900 0.4079 0.9039 0.9251
0.0383 7.6 6000 0.4152 0.9031 0.9248
0.0384 7.73 6100 0.4075 0.9037 0.9258
0.0414 7.86 6200 0.4087 0.9035 0.9256
0.0449 7.98 6300 0.4066 0.9060 0.9262
0.0246 8.11 6400 0.4091 0.9041 0.9258
0.0275 8.24 6500 0.4085 0.9035 0.9262
0.0256 8.37 6600 0.4077 0.9048 0.9269
0.0307 8.49 6700 0.4040 0.9082 0.9285
0.0294 8.62 6800 0.4057 0.9067 0.9283
0.0226 8.75 6900 0.4069 0.9054 0.9274
0.0218 8.87 7000 0.4090 0.9053 0.9278
0.0333 9.0 7100 0.4053 0.9075 0.9286
0.0182 9.13 7200 0.4071 0.9063 0.9277
0.0176 9.25 7300 0.4058 0.9053 0.9278
0.0187 9.38 7400 0.4074 0.9060 0.9280
0.0185 9.51 7500 0.4069 0.9059 0.9278
0.0135 9.63 7600 0.4067 0.9049 0.9275
0.0118 9.76 7700 0.4076 0.9039 0.9267
0.0163 9.89 7800 0.4081 0.9050 0.9275

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.0