metadata
language: en
license: mit
base_model: answerdotai/ModernBERT-base
tags:
- text-classification
- ModernBERT-base
datasets:
- disham993/ElectricalDeviceFeedbackBalanced
metrics:
- epoch: 1
- eval_f1: 0.806771655637414
- eval_accuracy: 0.8269230769230769
- eval_runtime: 1.6141
- eval_samples_per_second: 837.642
- eval_steps_per_second: 13.63
disham993/electrical-classification-ModernBERT-base
Model description
This model is fine-tuned from answerdotai/ModernBERT-base for text-classification tasks.
Training Data
The model was trained on the disham993/ElectricalDeviceFeedbackBalanced dataset.
Model Details
- Base Model: answerdotai/ModernBERT-base
- Task: text-classification
- Language: en
- Dataset: disham993/ElectricalDeviceFeedbackBalanced
Training procedure
Training hyperparameters
[Please add your training hyperparameters here]
Evaluation results
Metrics\n- epoch: 1.0\n- eval_f1: 0.806771655637414\n- eval_accuracy: 0.8269230769230769\n- eval_runtime: 1.6141\n- eval_samples_per_second: 837.642\n- eval_steps_per_second: 13.63
Usage
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("disham993/electrical-classification-ModernBERT-base")
model = AutoModel.from_pretrained("disham993/electrical-classification-ModernBERT-base")
Limitations and bias
[Add any known limitations or biases of the model]
Training Infrastructure
[Add details about training infrastructure used]
Last update
2025-01-05