File size: 9,064 Bytes
28caf3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1bdd317
28caf3b
e3db370
 
 
 
 
1bdd317
 
 
e3db370
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb40463
e3db370
 
 
1bdd317
e3db370
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb40463
 
1bdd317
e3db370
1bdd317
 
e3db370
 
 
 
28caf3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1bdd317
bb40463
28caf3b
1bdd317
e3db370
 
28caf3b
 
1bdd317
 
 
28caf3b
 
 
e3db370
 
 
 
 
28caf3b
 
 
 
1bdd317
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
---
license: mit
base_model: ai-forever/ruElectra-medium
tags:
- generated_from_trainer
model-index:
- name: rubert-electra-srl
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# rubert-electra-srl

This model is a fine-tuned version of [ai-forever/ruElectra-medium](https://huggingface.co/ai-forever/ruElectra-medium) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0448
- Addressee Precision: 0.9583
- Addressee Recall: 1.0
- Addressee F1: 0.9787
- Addressee Number: 23
- Benefactive Precision: 0.0
- Benefactive Recall: 0.0
- Benefactive F1: 0.0
- Benefactive Number: 2
- Causator Precision: 0.9773
- Causator Recall: 0.9773
- Causator F1: 0.9773
- Causator Number: 44
- Cause Precision: 0.9259
- Cause Recall: 0.7143
- Cause F1: 0.8065
- Cause Number: 35
- Contrsubject Precision: 1.0
- Contrsubject Recall: 0.9429
- Contrsubject F1: 0.9706
- Contrsubject Number: 35
- Deliberative Precision: 0.9231
- Deliberative Recall: 1.0
- Deliberative F1: 0.9600
- Deliberative Number: 24
- Destinative Precision: 1.0
- Destinative Recall: 1.0
- Destinative F1: 1.0
- Destinative Number: 7
- Directivefinal Precision: 1.0
- Directivefinal Recall: 1.0
- Directivefinal F1: 1.0
- Directivefinal Number: 1
- Experiencer Precision: 0.9030
- Experiencer Recall: 0.9441
- Experiencer F1: 0.9231
- Experiencer Number: 286
- Instrument Precision: 0.9
- Instrument Recall: 0.9
- Instrument F1: 0.9
- Instrument Number: 10
- Object Precision: 0.9484
- Object Recall: 0.9519
- Object F1: 0.9502
- Object Number: 541
- Overall Precision: 0.9369
- Overall Recall: 0.9425
- Overall F1: 0.9397
- Overall Accuracy: 0.9883
- Limitative F1: 0.0
- Limitative Number: 0.0
- Limitative Precision: 0.0
- Limitative Recall: 0.0
- Directiveinitial F1: 0.0
- Directiveinitial Number: 0.0
- Directiveinitial Precision: 0.0
- Directiveinitial Recall: 0.0
- Mediative F1: 0.0
- Mediative Number: 0.0
- Mediative Precision: 0.0
- Mediative Recall: 0.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.00016666401556632117
- train_batch_size: 1
- eval_batch_size: 1
- seed: 708526
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.21
- num_epochs: 3
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Addressee Precision | Addressee Recall | Addressee F1 | Addressee Number | Benefactive Precision | Benefactive Recall | Benefactive F1 | Benefactive Number | Causator Precision | Causator Recall | Causator F1 | Causator Number | Cause Precision | Cause Recall | Cause F1 | Cause Number | Contrsubject Precision | Contrsubject Recall | Contrsubject F1 | Contrsubject Number | Deliberative Precision | Deliberative Recall | Deliberative F1 | Deliberative Number | Destinative Precision | Destinative Recall | Destinative F1 | Destinative Number | Directivefinal Precision | Directivefinal Recall | Directivefinal F1 | Directivefinal Number | Experiencer Precision | Experiencer Recall | Experiencer F1 | Experiencer Number | Instrument Precision | Instrument Recall | Instrument F1 | Instrument Number | Object Precision | Object Recall | Object F1 | Object Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | Limitative F1 | Limitative Number | Limitative Precision | Limitative Recall | Directiveinitial F1 | Directiveinitial Number | Directiveinitial Precision | Directiveinitial Recall | Mediative F1 | Mediative Number | Mediative Precision | Mediative Recall |
|:-------------:|:-----:|:----:|:---------------:|:-------------------:|:----------------:|:------------:|:----------------:|:---------------------:|:------------------:|:--------------:|:------------------:|:------------------:|:---------------:|:-----------:|:---------------:|:---------------:|:------------:|:--------:|:------------:|:----------------------:|:-------------------:|:---------------:|:-------------------:|:----------------------:|:-------------------:|:---------------:|:-------------------:|:---------------------:|:------------------:|:--------------:|:------------------:|:------------------------:|:---------------------:|:-----------------:|:---------------------:|:---------------------:|:------------------:|:--------------:|:------------------:|:--------------------:|:-----------------:|:-------------:|:-----------------:|:----------------:|:-------------:|:---------:|:-------------:|:-----------------:|:--------------:|:----------:|:----------------:|:-------------:|:-----------------:|:--------------------:|:-----------------:|:-------------------:|:-----------------------:|:--------------------------:|:-----------------------:|:------------:|:----------------:|:-------------------:|:----------------:|
| 0.1548        | 1.0   | 1471 | 0.1755          | 0.6667              | 0.5217           | 0.5854       | 23               | 0.0                   | 0.0                | 0.0            | 2                  | 0.5714             | 0.8182          | 0.6729      | 44              | 0.5217          | 0.3429       | 0.4138   | 35           | 0.4103                 | 0.4571              | 0.4324          | 35                  | 0.0                    | 0.0                 | 0.0             | 24                  | 0.0                   | 0.0                | 0.0            | 7                  | 0.0                      | 0.0                   | 0.0               | 1                     | 0.8645                | 0.8252             | 0.8444         | 286                | 0.0                  | 0.0               | 0.0           | 10                | 0.7711           | 0.8965        | 0.8291    | 541           | 0.7627            | 0.7907         | 0.7764     | 0.9582           | 0.0           | 0.0               | 0.0                  | 0.0               | 0.0                 | 0.0                     | 0.0                        | 0.0                     | 0.0          | 0.0              | 0.0                 | 0.0              |
| 0.1209        | 2.0   | 2942 | 0.0797          | 0.9130              | 0.9130           | 0.9130       | 23               | 0.0                   | 0.0                | 0.0            | 2                  | 0.9348             | 0.9773          | 0.9556      | 44              | 0.8462          | 0.6286       | 0.7213   | 35           | 0.8889                 | 0.9143              | 0.9014          | 35                  | 0.75                   | 0.875               | 0.8077          | 24                  | 1.0                   | 0.4286             | 0.6            | 7                  | 0.0                      | 0.0                   | 0.0               | 1                     | 0.8993                | 0.8741             | 0.8865         | 286                | 0.875                | 0.7               | 0.7778        | 10                | 0.9336           | 0.9094        | 0.9213    | 541           | 0.9138            | 0.8839         | 0.8986     | 0.9808           | 0.0           | 0.0               | 0.0                  | 0.0               | 0.0                 | 0.0                     | 0.0                        | 0.0                     | 0.0          | 0.0              | 0.0                 | 0.0              |
| 0.0559        | 3.0   | 4413 | 0.0448          | 0.9583              | 1.0              | 0.9787       | 23               | 0.0                   | 0.0                | 0.0            | 2                  | 0.9773             | 0.9773          | 0.9773      | 44              | 0.9259          | 0.7143       | 0.8065   | 35           | 1.0                    | 0.9429              | 0.9706          | 35                  | 0.9231                 | 1.0                 | 0.9600          | 24                  | 1.0                   | 1.0                | 1.0            | 7                  | 1.0                      | 1.0                   | 1.0               | 1                     | 0.9030                | 0.9441             | 0.9231         | 286                | 0.9                  | 0.9               | 0.9           | 10                | 0.9484           | 0.9519        | 0.9502    | 541           | 0.9369            | 0.9425         | 0.9397     | 0.9883           | 0.0           | 0.0               | 0.0                  | 0.0               | 0.0                 | 0.0                     | 0.0                        | 0.0                     | 0.0          | 0.0              | 0.0                 | 0.0              |


### Framework versions

- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1