ehristoforu's picture
Upload folder using huggingface_hub
0163a2c verified
raw
history blame
8.35 kB
import io
import os
import cv2
import base64
from typing import Dict, Any, List, Union, Literal
from pathlib import Path
import datetime
from enum import Enum
import numpy as np
import requests
from PIL import Image
PayloadOverrideType = Dict[str, Any]
timestamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
test_result_dir = Path(__file__).parent / "results" / f"test_result_{timestamp}"
test_expectation_dir = Path(__file__).parent / "expectations"
os.makedirs(test_expectation_dir, exist_ok=True)
resource_dir = Path(__file__).parents[2] / "images"
def read_image(img_path: Path) -> str:
img = cv2.imread(str(img_path))
_, bytes = cv2.imencode(".png", img)
encoded_image = base64.b64encode(bytes).decode("utf-8")
return encoded_image
def read_image_dir(img_dir: Path, suffixes=('.png', '.jpg', '.jpeg', '.webp')) -> List[str]:
"""Try read all images in given img_dir."""
img_dir = str(img_dir)
images = []
for filename in os.listdir(img_dir):
if filename.endswith(suffixes):
img_path = os.path.join(img_dir, filename)
try:
images.append(read_image(img_path))
except IOError:
print(f"Error opening {img_path}")
return images
girl_img = read_image(resource_dir / "1girl.png")
mask_img = read_image(resource_dir / "mask.png")
mask_small_img = read_image(resource_dir / "mask_small.png")
portrait_imgs = read_image_dir(resource_dir / "portrait")
realistic_girl_face_img = portrait_imgs[0]
living_room_img = read_image(resource_dir / "living_room.webp")
general_negative_prompt = """
(worst quality:2), (low quality:2), (normal quality:2), lowres, normal quality,
((monochrome)), ((grayscale)), skin spots, acnes, skin blemishes, age spot,
backlight,(ugly:1.331), (duplicate:1.331), (morbid:1.21), (mutilated:1.21),
(tranny:1.331), mutated hands, (poorly drawn hands:1.331), blurry, (bad anatomy:1.21),
(bad proportions:1.331), extra limbs, (missing arms:1.331), (extra legs:1.331),
(fused fingers:1.61051), (too many fingers:1.61051), (unclear eyes:1.331), bad hands,
missing fingers, extra digit, bad body, easynegative, nsfw"""
class StableDiffusionVersion(Enum):
"""The version family of stable diffusion model."""
UNKNOWN = 0
SD1x = 1
SD2x = 2
SDXL = 3
sd_version = StableDiffusionVersion(
int(os.environ.get("CONTROLNET_TEST_SD_VERSION", StableDiffusionVersion.SD1x.value))
)
is_full_coverage = os.environ.get("CONTROLNET_TEST_FULL_COVERAGE", None) is not None
class APITestTemplate:
is_set_expectation_run = os.environ.get("CONTROLNET_SET_EXP", "True") == "True"
def __init__(
self,
name: str,
gen_type: Union[Literal["img2img"], Literal["txt2img"]],
payload_overrides: PayloadOverrideType,
unit_overrides: Union[PayloadOverrideType, List[PayloadOverrideType]],
):
self.name = name
self.url = "http://localhost:7860/sdapi/v1/" + gen_type
self.payload = {
**(txt2img_payload if gen_type == "txt2img" else img2img_payload),
**payload_overrides,
}
unit_overrides = (
unit_overrides
if isinstance(unit_overrides, (list, tuple))
else [unit_overrides]
)
self.payload["alwayson_scripts"]["ControlNet"]["args"] = [
{
**default_unit,
**unit_override,
}
for unit_override in unit_overrides
]
def exec(self, result_only: bool = True) -> bool:
if not APITestTemplate.is_set_expectation_run:
os.makedirs(test_result_dir, exist_ok=True)
failed = False
response = requests.post(url=self.url, json=self.payload).json()
if "images" not in response:
print(response)
return False
dest_dir = (
test_expectation_dir
if APITestTemplate.is_set_expectation_run
else test_result_dir
)
results = response["images"][:1] if result_only else response["images"]
for i, base64image in enumerate(results):
img_file_name = f"{self.name}_{i}.png"
Image.open(io.BytesIO(base64.b64decode(base64image.split(",", 1)[0]))).save(
dest_dir / img_file_name
)
if not APITestTemplate.is_set_expectation_run:
try:
img1 = cv2.imread(os.path.join(test_expectation_dir, img_file_name))
img2 = cv2.imread(os.path.join(test_result_dir, img_file_name))
except Exception as e:
print(f"Get exception reading imgs: {e}")
failed = True
continue
if img1 is None:
print(f"Warn: No expectation file found {img_file_name}.")
continue
if not expect_same_image(
img1,
img2,
diff_img_path=str(test_result_dir
/ img_file_name.replace(".png", "_diff.png")),
):
failed = True
return not failed
def expect_same_image(img1, img2, diff_img_path: str) -> bool:
# Calculate the difference between the two images
diff = cv2.absdiff(img1, img2)
# Set a threshold to highlight the different pixels
threshold = 30
diff_highlighted = np.where(diff > threshold, 255, 0).astype(np.uint8)
# Assert that the two images are similar within a tolerance
similar = np.allclose(img1, img2, rtol=0.5, atol=1)
if not similar:
# Save the diff_highlighted image to inspect the differences
cv2.imwrite(diff_img_path, diff_highlighted)
matching_pixels = np.isclose(img1, img2, rtol=0.5, atol=1)
similar_in_general = (matching_pixels.sum() / matching_pixels.size) >= 0.95
return similar_in_general
default_unit = {
"control_mode": 0,
"enabled": True,
"guidance_end": 1,
"guidance_start": 0,
"low_vram": False,
"pixel_perfect": True,
"processor_res": 512,
"resize_mode": 1,
"threshold_a": 64,
"threshold_b": 64,
"weight": 1,
}
img2img_payload = {
"batch_size": 1,
"cfg_scale": 7,
"height": 768,
"width": 512,
"n_iter": 1,
"steps": 10,
"sampler_name": "Euler a",
"prompt": "(masterpiece: 1.3), (highres: 1.3), best quality,",
"negative_prompt": "",
"seed": 42,
"seed_enable_extras": False,
"seed_resize_from_h": 0,
"seed_resize_from_w": 0,
"subseed": -1,
"subseed_strength": 0,
"override_settings": {},
"override_settings_restore_afterwards": False,
"do_not_save_grid": False,
"do_not_save_samples": False,
"s_churn": 0,
"s_min_uncond": 0,
"s_noise": 1,
"s_tmax": None,
"s_tmin": 0,
"script_args": [],
"script_name": None,
"styles": [],
"alwayson_scripts": {"ControlNet": {"args": [default_unit]}},
"denoising_strength": 0.75,
"initial_noise_multiplier": 1,
"inpaint_full_res": 0,
"inpaint_full_res_padding": 32,
"inpainting_fill": 1,
"inpainting_mask_invert": 0,
"mask_blur_x": 4,
"mask_blur_y": 4,
"mask_blur": 4,
"resize_mode": 0,
}
txt2img_payload = {
"alwayson_scripts": {"ControlNet": {"args": [default_unit]}},
"batch_size": 1,
"cfg_scale": 7,
"comments": {},
"disable_extra_networks": False,
"do_not_save_grid": False,
"do_not_save_samples": False,
"enable_hr": False,
"height": 768,
"hr_negative_prompt": "",
"hr_prompt": "",
"hr_resize_x": 0,
"hr_resize_y": 0,
"hr_scale": 2,
"hr_second_pass_steps": 0,
"hr_upscaler": "Latent",
"n_iter": 1,
"negative_prompt": "",
"override_settings": {},
"override_settings_restore_afterwards": True,
"prompt": "(masterpiece: 1.3), (highres: 1.3), best quality,",
"restore_faces": False,
"s_churn": 0.0,
"s_min_uncond": 0,
"s_noise": 1.0,
"s_tmax": None,
"s_tmin": 0.0,
"sampler_name": "Euler a",
"script_args": [],
"script_name": None,
"seed": 42,
"seed_enable_extras": True,
"seed_resize_from_h": -1,
"seed_resize_from_w": -1,
"steps": 10,
"styles": [],
"subseed": -1,
"subseed_strength": 0,
"tiling": False,
"width": 512,
}