extensions / sd-webui-supermerger /scripts /kohyas /extract_lora_from_models.py
ehristoforu's picture
Upload folder using huggingface_hub
0163a2c verified
raw
history blame
7.98 kB
# extract approximating LoRA by svd from two SD models
# The code is based on https://github.com/cloneofsimo/lora/blob/develop/lora_diffusion/cli_svd.py
# Thanks to cloneofsimo!
import argparse
import json
import os
import time
import torch
from safetensors.torch import load_file, save_file
from tqdm import tqdm
from scripts.kohyas import sai_model_spec,model_util,sdxl_model_util,lora
CLAMP_QUANTILE = 0.99
MIN_DIFF = 1e-1
def save_to_file(file_name, model, state_dict, dtype):
if dtype is not None:
for key in list(state_dict.keys()):
if type(state_dict[key]) == torch.Tensor:
state_dict[key] = state_dict[key].to(dtype)
if os.path.splitext(file_name)[1] == ".safetensors":
save_file(model, file_name)
else:
torch.save(model, file_name)
def svd(args):
def str_to_dtype(p):
if p == "float":
return torch.float
if p == "fp16":
return torch.float16
if p == "bf16":
return torch.bfloat16
return None
assert args.v2 != args.sdxl or (
not args.v2 and not args.sdxl
), "v2 and sdxl cannot be specified at the same time / v2とsdxlは同時に指定できません"
if args.v_parameterization is None:
args.v_parameterization = args.v2
save_dtype = str_to_dtype(args.save_precision)
# load models
if not args.sdxl:
print(f"loading original SD model : {args.model_org}")
text_encoder_o, _, unet_o = model_util.load_models_from_stable_diffusion_checkpoint(args.v2, args.model_org)
text_encoders_o = [text_encoder_o]
print(f"loading tuned SD model : {args.model_tuned}")
text_encoder_t, _, unet_t = model_util.load_models_from_stable_diffusion_checkpoint(args.v2, args.model_tuned)
text_encoders_t = [text_encoder_t]
model_version = model_util.get_model_version_str_for_sd1_sd2(args.v2, args.v_parameterization)
else:
print(f"loading original SDXL model : {args.model_org}")
text_encoder_o1, text_encoder_o2, _, unet_o, _, _ = sdxl_model_util.load_models_from_sdxl_checkpoint(
sdxl_model_util.MODEL_VERSION_SDXL_BASE_V1_0, args.model_org, "cpu"
)
text_encoders_o = [text_encoder_o1, text_encoder_o2]
print(f"loading original SDXL model : {args.model_tuned}")
text_encoder_t1, text_encoder_t2, _, unet_t, _, _ = sdxl_model_util.load_models_from_sdxl_checkpoint(
sdxl_model_util.MODEL_VERSION_SDXL_BASE_V1_0, args.model_tuned, "cpu"
)
text_encoders_t = [text_encoder_t1, text_encoder_t2]
model_version = sdxl_model_util.MODEL_VERSION_SDXL_BASE_V1_0
# create LoRA network to extract weights: Use dim (rank) as alpha
if args.conv_dim is None:
kwargs = {}
else:
kwargs = {"conv_dim": args.conv_dim, "conv_alpha": args.conv_dim}
lora_network_o = lora.create_network(1.0, args.dim, args.dim, None, text_encoders_o, unet_o, **kwargs)
lora_network_t = lora.create_network(1.0, args.dim, args.dim, None, text_encoders_t, unet_t, **kwargs)
assert len(lora_network_o.text_encoder_loras) == len(
lora_network_t.text_encoder_loras
), f"model version is different (SD1.x vs SD2.x) / それぞれのモデルのバージョンが違います(SD1.xベースとSD2.xベース) "
# get diffs
diffs = {}
text_encoder_different = False
for i, (lora_o, lora_t) in enumerate(zip(lora_network_o.text_encoder_loras, lora_network_t.text_encoder_loras)):
lora_name = lora_o.lora_name
module_o = lora_o.org_module
module_t = lora_t.org_module
diff = args.alpha * module_t.weight - args.beta * module_o.weight
# Text Encoder might be same
if not text_encoder_different and torch.max(torch.abs(diff)) > MIN_DIFF:
text_encoder_different = True
print(f"Text encoder is different. {torch.max(torch.abs(diff))} > {MIN_DIFF}")
diff = diff.float()
diffs[lora_name] = diff
if not text_encoder_different:
print("Text encoder is same. Extract U-Net only.")
lora_network_o.text_encoder_loras = []
diffs = {}
for i, (lora_o, lora_t) in enumerate(zip(lora_network_o.unet_loras, lora_network_t.unet_loras)):
lora_name = lora_o.lora_name
module_o = lora_o.org_module
module_t = lora_t.org_module
diff = args.alpha * module_t.weight - args.beta * module_o.weight
diff = diff.float()
if args.device:
diff = diff.to(args.device)
diffs[lora_name] = diff
# make LoRA with svd
print("calculating by svd")
lora_weights = {}
with torch.no_grad():
for lora_name, mat in tqdm(list(diffs.items())):
# if args.conv_dim is None, diffs do not include LoRAs for conv2d-3x3
conv2d = len(mat.size()) == 4
kernel_size = None if not conv2d else mat.size()[2:4]
conv2d_3x3 = conv2d and kernel_size != (1, 1)
rank = args.dim if not conv2d_3x3 or args.conv_dim is None else args.conv_dim
out_dim, in_dim = mat.size()[0:2]
if args.device:
mat = mat.to(args.device)
# print(lora_name, mat.size(), mat.device, rank, in_dim, out_dim)
rank = min(rank, in_dim, out_dim) # LoRA rank cannot exceed the original dim
if conv2d:
if conv2d_3x3:
mat = mat.flatten(start_dim=1)
else:
mat = mat.squeeze()
U, S, Vh = torch.linalg.svd(mat)
U = U[:, :rank]
S = S[:rank]
U = U @ torch.diag(S)
Vh = Vh[:rank, :]
dist = torch.cat([U.flatten(), Vh.flatten()])
hi_val = torch.quantile(dist, CLAMP_QUANTILE)
low_val = -hi_val
U = U.clamp(low_val, hi_val)
Vh = Vh.clamp(low_val, hi_val)
if conv2d:
U = U.reshape(out_dim, rank, 1, 1)
Vh = Vh.reshape(rank, in_dim, kernel_size[0], kernel_size[1])
U = U.to("cpu").contiguous()
Vh = Vh.to("cpu").contiguous()
lora_weights[lora_name] = (U, Vh)
# make state dict for LoRA
lora_sd = {}
for lora_name, (up_weight, down_weight) in lora_weights.items():
lora_sd[lora_name + ".lora_up.weight"] = up_weight
lora_sd[lora_name + ".lora_down.weight"] = down_weight
lora_sd[lora_name + ".alpha"] = torch.tensor(down_weight.size()[0])
# load state dict to LoRA and save it
lora_network_save, lora_sd = lora.create_network_from_weights(1.0, None, None, text_encoders_o, unet_o, weights_sd=lora_sd)
lora_network_save.apply_to(text_encoders_o, unet_o) # create internal module references for state_dict
info = lora_network_save.load_state_dict(lora_sd)
print(f"Loading extracted LoRA weights: {info}")
dir_name = os.path.dirname(args.save_to)
if dir_name and not os.path.exists(dir_name):
os.makedirs(dir_name, exist_ok=True)
# minimum metadata
net_kwargs = {}
if args.conv_dim is not None:
net_kwargs["conv_dim"] = args.conv_dim
net_kwargs["conv_alpha"] = args.conv_dim
metadata = {
"ss_v2": str(args.v2),
"ss_base_model_version": model_version,
"ss_network_module": "networks.lora",
"ss_network_dim": str(args.dim),
"ss_network_alpha": str(args.dim),
"ss_network_args": json.dumps(net_kwargs),
}
if not args.no_metadata:
title = os.path.splitext(os.path.basename(args.save_to))[0]
sai_metadata = sai_model_spec.build_metadata(
None, args.v2, args.v_parameterization, args.sdxl, True, False, time.time(), title=title
)
metadata.update(sai_metadata)
lora_network_save.save_weights(args.save_to, save_dtype, metadata)
return f"LoRA weights are saved to: {args.save_to}"