erlend123's picture
End of training
e4d496f verified
|
raw
history blame
2.69 kB
metadata
library_name: peft
license: gemma
base_model: google/paligemma2-28b-pt-448
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: PG2-28b-pt-448-COND_GEN
    results: []

PG2-28b-pt-448-COND_GEN

This model is a fine-tuned version of google/paligemma2-28b-pt-448 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0000
  • Accuracy: 0.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 2
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.4437 0.1001 200 0.0036 1.0
0.3054 0.2001 400 0.0002 1.0
0.3504 0.3002 600 0.0001 1.0
0.2364 0.4002 800 0.0001 0.0
0.257 0.5003 1000 0.0001 0.0
0.3007 0.6003 1200 0.0002 0.0
0.2468 0.7004 1400 0.0001 0.0
0.278 0.8004 1600 0.0001 0.0
0.2576 0.9005 1800 0.0001 0.0
0.3052 1.0005 2000 0.0005 0.0
0.0982 1.1006 2200 0.0001 0.0
0.103 1.2006 2400 0.0001 0.0
0.1191 1.3007 2600 0.0001 0.0
0.1137 1.4007 2800 0.0001 1.0
0.1567 1.5008 3000 0.0001 0.0
0.0758 1.6008 3200 0.0000 0.0
0.0969 1.7009 3400 0.0001 0.0
0.1034 1.8009 3600 0.0000 0.0
0.0513 1.9010 3800 0.0000 0.0

Framework versions

  • PEFT 0.14.0
  • Transformers 4.48.0
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0