|
--- |
|
library_name: peft |
|
license: gemma |
|
base_model: google/paligemma2-28b-pt-448 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: PG2-28b-pt-448-COND_GEN |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# PG2-28b-pt-448-COND_GEN |
|
|
|
This model is a fine-tuned version of [google/paligemma2-28b-pt-448](https://huggingface.co/google/paligemma2-28b-pt-448) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0000 |
|
- Accuracy: 0.0 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 2 |
|
- num_epochs: 2 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:------:|:----:|:---------------:|:--------:| |
|
| 0.4437 | 0.1001 | 200 | 0.0036 | 1.0 | |
|
| 0.3054 | 0.2001 | 400 | 0.0002 | 1.0 | |
|
| 0.3504 | 0.3002 | 600 | 0.0001 | 1.0 | |
|
| 0.2364 | 0.4002 | 800 | 0.0001 | 0.0 | |
|
| 0.257 | 0.5003 | 1000 | 0.0001 | 0.0 | |
|
| 0.3007 | 0.6003 | 1200 | 0.0002 | 0.0 | |
|
| 0.2468 | 0.7004 | 1400 | 0.0001 | 0.0 | |
|
| 0.278 | 0.8004 | 1600 | 0.0001 | 0.0 | |
|
| 0.2576 | 0.9005 | 1800 | 0.0001 | 0.0 | |
|
| 0.3052 | 1.0005 | 2000 | 0.0005 | 0.0 | |
|
| 0.0982 | 1.1006 | 2200 | 0.0001 | 0.0 | |
|
| 0.103 | 1.2006 | 2400 | 0.0001 | 0.0 | |
|
| 0.1191 | 1.3007 | 2600 | 0.0001 | 0.0 | |
|
| 0.1137 | 1.4007 | 2800 | 0.0001 | 1.0 | |
|
| 0.1567 | 1.5008 | 3000 | 0.0001 | 0.0 | |
|
| 0.0758 | 1.6008 | 3200 | 0.0000 | 0.0 | |
|
| 0.0969 | 1.7009 | 3400 | 0.0001 | 0.0 | |
|
| 0.1034 | 1.8009 | 3600 | 0.0000 | 0.0 | |
|
| 0.0513 | 1.9010 | 3800 | 0.0000 | 0.0 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.14.0 |
|
- Transformers 4.48.0 |
|
- Pytorch 2.5.1+cu124 |
|
- Datasets 3.2.0 |
|
- Tokenizers 0.21.0 |