lling0212's picture
Update README
002bd9d
|
raw
history blame
18.3 kB
### Relevant imports & set up
```python
!pip install geopy > delete.txt
!pip install datasets > delete.txt
!pip install torch torchvision datasets > delete.txt
!pip install huggingface_hub > delete.txt
!rm delete.txt
```
```python
!pip install transformers
import transformers
```
```python
!huggingface-cli login --token [your_token]
```
```python
lat_mean = 39.95156937654321
lat_std = 0.0005992518588323268
lon_mean = -75.19136795987654
lon_std = 0.0007030395253318959
```
### Instructions
Our current best performing model is an ensemble of multiple models. To run it on hidden test data, first run the model definitions.
#### Load and define models
```python
from transformers import AutoModelForImageClassification, PretrainedConfig, PreTrainedModel
import torch
import torch.nn as nn
import os
from huggingface_hub import PyTorchModelHubMixin, hf_hub_download
class CustomConvNeXtConfig(PretrainedConfig):
model_type = "custom-convnext"
def __init__(self, num_labels=2, **kwargs):
super().__init__(**kwargs)
self.num_labels = num_labels # Register number of labels (output dimensions)
class CustomConvNeXtModel(PreTrainedModel):
config_class = CustomConvNeXtConfig
def __init__(self, config, model_name="facebook/convnext-tiny-224",
num_classes=2, train_final_layer_only=False):
super().__init__(config)
# Load pre-trained ConvNeXt model from Hugging Face
self.convnext = AutoModelForImageClassification.from_pretrained(model_name)
# Access the input features of the existing classifier
in_features = self.convnext.classifier.in_features
# Modify the classifier layer to match the number of output classes
self.convnext.classifier = nn.Linear(in_features, num_classes)
# Freeze previous weights if only training the final layer
if train_final_layer_only:
for name, param in self.convnext.named_parameters():
if "classifier" not in name:
param.requires_grad = False
else:
print(f"Unfrozen layer: {name}")
def forward(self, x):
return self.convnext(x)
@classmethod
def from_pretrained(cls, repo_id, model_name="facebook/convnext-tiny-224", **kwargs):
"""Load model weights and configuration from Hugging Face Hub."""
# Download model.safetensors from Hugging Face Hub
model_path = hf_hub_download(repo_id=repo_id, filename="model.safetensors")
# Download config.json from Hugging Face Hub
config_path = hf_hub_download(repo_id=repo_id, filename="config.json")
# Load configuration
config = CustomConvNeXtConfig.from_pretrained(config_path)
# Create the model
model = cls(config=config, model_name=model_name, num_classes=config.num_labels)
# Load state_dict from safetensors file
from safetensors.torch import load_file # Safetensors library
state_dict = load_file(model_path)
model.load_state_dict(state_dict)
return model
class CustomResNetConfig(PretrainedConfig):
model_type = "custom-resnet"
def __init__(self, num_labels=2, **kwargs):
super().__init__(**kwargs)
self.num_labels = num_labels # Register number of labels (output dimensions)
class CustomResNetModel(nn.Module, PyTorchModelHubMixin):
config_class = CustomResNetConfig
def __init__(self, model_name="microsoft/resnet-18",
num_classes=2,
train_final_layer_only=False):
super().__init__()
# Load pre-trained ResNet model from Hugging Face
self.resnet = AutoModelForImageClassification.from_pretrained(model_name)
# Access the Linear layer within the Sequential classifier
in_features = self.resnet.classifier[1].in_features # Accessing the Linear layer within the Sequential
# Modify the classifier layer to have the desired number of output classes
self.resnet.classifier = nn.Sequential(
nn.Flatten(),
nn.Linear(in_features, num_classes)
)
self.config = CustomResNetConfig(num_labels=num_classes)
# Freeze previous weights
if train_final_layer_only:
for name, param in self.resnet.named_parameters():
if "classifier" not in name:
param.requires_grad = False
else:
print(f"Unfrozen layer: {name}")
def forward(self, x):
return self.resnet(x)
def save_pretrained(self, save_directory, **kwargs):
"""Save model weights and custom configuration in Hugging Face format."""
os.makedirs(save_directory, exist_ok=True)
# Save model weights
torch.save(self.state_dict(), os.path.join(save_directory, "pytorch_model.bin"))
# Save configuration
self.config.save_pretrained(save_directory)
@classmethod
def from_pretrained(cls, repo_id, model_name="microsoft/resnet-18", **kwargs):
"""Load model weights and configuration from Hugging Face Hub or local directory."""
# Download pytorch_model.bin from Hugging Face Hub
model_path = hf_hub_download(repo_id=repo_id, filename="pytorch_model.bin")
# Download config.json from Hugging Face Hub
config_path = hf_hub_download(repo_id=repo_id, filename="config.json")
# Load configuration
config = CustomResNetConfig.from_pretrained(config_path)
# Create the model
model = cls(model_name=model_name, num_classes=config.num_labels)
# Load state_dict
model.load_state_dict(torch.load(model_path, map_location=torch.device("cpu")))
return model
class CustomEfficientNetConfig(PretrainedConfig):
model_type = "custom-efficientnet"
def __init__(self, num_labels=2, **kwargs):
super().__init__(**kwargs)
self.num_labels = num_labels # Register number of labels (output dimensions)
class CustomEfficientNetModel(PreTrainedModel):
config_class = CustomEfficientNetConfig
def __init__(self, config, model_name="google/efficientnet-b0",
num_classes=2, train_final_layer_only=False):
super().__init__(config)
# Load pre-trained EfficientNet model from Hugging Face
self.efficientnet = AutoModelForImageClassification.from_pretrained(model_name)
# Access the input features of the existing classifier
in_features = self.efficientnet.classifier.in_features
# Modify the classifier layer to match the number of output classes
self.efficientnet.classifier = nn.Sequential(
nn.Linear(in_features, num_classes)
)
# Freeze previous weights if only training the final layer
if train_final_layer_only:
for name, param in self.efficientnet.named_parameters():
if "classifier" not in name:
param.requires_grad = False
else:
print(f"Unfrozen layer: {name}")
def forward(self, x):
return self.efficientnet(x)
@classmethod
def from_pretrained(cls, repo_id, model_name="google/efficientnet-b0", **kwargs):
"""Load model weights and configuration from Hugging Face Hub."""
# Attempt to download the safetensors model file
try:
model_path = hf_hub_download(repo_id=repo_id, filename="model.safetensors")
state_dict = load_file(model_path)
except Exception as e:
raise ValueError(
f"Failed to download or load 'model.safetensors' from {repo_id}. Ensure the file exists."
) from e
# Download config.json from Hugging Face Hub
config_path = hf_hub_download(repo_id=repo_id, filename="config.json")
# Load configuration
config = CustomEfficientNetConfig.from_pretrained(config_path)
# Create the model
model = cls(config=config, model_name=model_name, num_classes=config.num_labels)
# Load the state_dict into the model
model.load_state_dict(state_dict)
return model
class CustomViTConfig(PretrainedConfig):
model_type = "custom-vit"
def __init__(self, num_labels=2, **kwargs):
super().__init__(**kwargs)
self.num_labels = num_labels # Register number of labels (output dimensions)
class CustomViTModel(PreTrainedModel):
config_class = CustomViTConfig
def __init__(self, config, model_name="google/vit-base-patch16-224",
num_classes=2, train_final_layer_only=False):
super().__init__(config)
# Load pre-trained ViT model from Hugging Face
self.vit = AutoModelForImageClassification.from_pretrained(model_name)
# Access the input features of the existing classifier
in_features = self.vit.classifier.in_features
# Modify the classifier layer to match the number of output classes
self.vit.classifier = nn.Linear(in_features, num_classes)
# Freeze previous weights if only training the final layer
if train_final_layer_only:
for name, param in self.vit.named_parameters():
if "classifier" not in name:
param.requires_grad = False
else:
print(f"Unfrozen layer: {name}")
def forward(self, x):
return self.vit(x)
@classmethod
def from_pretrained(cls, repo_id, model_name="google/vit-base-patch16-224", **kwargs):
# Attempt to download the safetensors model file
try:
model_path = hf_hub_download(repo_id=repo_id, filename="model.safetensors")
state_dict = load_file(model_path)
except Exception as e:
raise ValueError(
f"Failed to download or load 'model.safetensors' from {repo_id}. Ensure the file exists."
) from e
# Download config.json from Hugging Face Hub
config_path = hf_hub_download(repo_id=repo_id, filename="config.json")
# Load configuration
config = CustomViTConfig.from_pretrained(config_path)
# Create the model
model = cls(config=config, model_name=model_name, num_classes=config.num_labels)
# Load the state_dict into the model
model.load_state_dict(state_dict)
return model
# Define the WeightedEnsembleModel class
class WeightedEnsembleModel(nn.Module):
def __init__(self, models, weights):
"""
Initialize the ensemble model with individual models and their weights.
"""
super(WeightedEnsembleModel, self).__init__()
self.models = nn.ModuleList(models) # Wrap models in ModuleList
self.weights = weights
def forward(self, images):
"""
Forward pass for the ensemble model.
Performs weighted averaging of logits from individual models.
"""
ensemble_logits = torch.zeros((images.size(0), 2)).to(images.device) # Initialize logits
for model, weight in zip(self.models, self.weights):
outputs = model(images)
logits = outputs.logits if hasattr(outputs, "logits") else outputs # Extract logits
ensemble_logits += weight * logits # Weighted sum of logits
return ensemble_logits
```
Now, load the model weights from huggingface.
```python
from transformers import AutoModelForImageClassification
import torch
from sklearn.metrics import mean_absolute_error, mean_squared_error
import matplotlib.pyplot as plt
import numpy as np
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
```
```python
#resnet
resnet = CustomResNetModel.from_pretrained(
"final-project-5190/model-resnet-50-base",
model_name="microsoft/resnet-50"
)
#convnext
convnext=CustomConvNeXtModel.from_pretrained(
"final-project-5190/model-convnext-tiny-reducePlateau",
model_name="facebook/convnext-tiny-224")
#vit
vit = CustomViTModel.from_pretrained(
"final-project-5190/model-ViT-base",
model_name="google/vit-base-patch16-224"
)
#efficientnet
efficientnet = CustomEfficientNetModel.from_pretrained(
"final-project-5190/model-efficientnet-b0-base",
model_name="google/efficientnet-b0"
)
models = [convnext, resnet, vit, efficientnet]
weights = [0.28, 0.26, 0.20, 0.27]
```
#### For data loading
```python
# Download
from datasets import load_dataset, Image
```
```python
import torch
import torch.nn as nn
import torchvision.models as models
import torchvision.transforms as transforms
from torch.utils.data import DataLoader, Dataset
from transformers import AutoImageProcessor, AutoModelForImageClassification, AutoConfig
from huggingface_hub import PyTorchModelHubMixin, hf_hub_download
from PIL import Image
import os
import numpy as np
class GPSImageDataset(Dataset):
def __init__(self, hf_dataset, transform=None, lat_mean=None, lat_std=None, lon_mean=None, lon_std=None):
self.hf_dataset = hf_dataset
self.transform = transform
# Compute mean and std from the dataframe if not provided
self.latitude_mean = lat_mean if lat_mean is not None else np.mean(np.array(self.hf_dataset['Latitude']))
self.latitude_std = lat_std if lat_std is not None else np.std(np.array(self.hf_dataset['Latitude']))
self.longitude_mean = lon_mean if lon_mean is not None else np.mean(np.array(self.hf_dataset['Longitude']))
self.longitude_std = lon_std if lon_std is not None else np.std(np.array(self.hf_dataset['Longitude']))
def __len__(self):
return len(self.hf_dataset)
def __getitem__(self, idx):
# Extract data
example = self.hf_dataset[idx]
# Load and process the image
image = example['image']
latitude = example['Latitude']
longitude = example['Longitude']
# image = image.rotate(-90, expand=True)
if self.transform:
image = self.transform(image)
# Normalize GPS coordinates
latitude = (latitude - self.latitude_mean) / self.latitude_std
longitude = (longitude - self.longitude_mean) / self.longitude_std
gps_coords = torch.tensor([latitude, longitude], dtype=torch.float32)
return image, gps_coords
```
```python
# Dataloader + Visualize
transform = transforms.Compose([
transforms.RandomResizedCrop(224), # Random crop and resize to 224x224
transforms.RandomHorizontalFlip(), # Random horizontal flip
# transforms.RandomRotation(degrees=15), # Random rotation between -15 and 15 degrees
transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1), # Random color jitter
# transforms.GaussianBlur(kernel_size=(3, 5), sigma=(0.1, 2.0)),
# transforms.RandomPerspective(distortion_scale=0.5, p=0.5),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
# Optionally, you can create a separate transform for inference without augmentations
inference_transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
```
Here's an exmaple of us testing the ensemble on the release test set. You can just change the load release_data line below and run the rest of the code to obtain rMSE.
```python
# Load test data
release_data = load_dataset("gydou/released_img", split="train")
```
```python
# Create dataset and dataloader using training mean and std
rel_dataset = GPSImageDataset(
hf_dataset=release_data,
transform=inference_transform,
lat_mean=lat_mean,
lat_std=lat_std,
lon_mean=lon_mean,
lon_std=lon_std
)
rel_dataloader = DataLoader(rel_dataset, batch_size=32, shuffle=False)
```
```python
# ensemble
ensemble_model = WeightedEnsembleModel(models=models, weights=weights).to(device)
# Validation
all_preds = []
all_actuals = []
ensemble_model.eval()
with torch.no_grad():
for images, gps_coords in rel_dataloader:
images, gps_coords = images.to(device), gps_coords.to(device)
# Weighted ensemble prediction using the new model
ensemble_logits = ensemble_model(images)
# Denormalize predictions and actual values
preds = ensemble_logits.cpu() * torch.tensor([lat_std, lon_std]) + torch.tensor([lat_mean, lon_mean])
actuals = gps_coords.cpu() * torch.tensor([lat_std, lon_std]) + torch.tensor([lat_mean, lon_mean])
all_preds.append(preds)
all_actuals.append(actuals)
# Concatenate all batches
all_preds = torch.cat(all_preds).numpy()
all_actuals = torch.cat(all_actuals).numpy()
# Compute error metrics
mae = mean_absolute_error(all_actuals, all_preds)
rmse = mean_squared_error(all_actuals, all_preds, squared=False)
print(f'Mean Absolute Error: {mae}')
print(f'Root Mean Squared Error: {rmse}')
# Convert predictions and actuals to meters
latitude_mean_radians = np.radians(lat_mean) # Convert to radians for cosine
meters_per_degree_latitude = 111000 # Constant
meters_per_degree_longitude = 111000 * np.cos(latitude_mean_radians) # Adjusted for latitude mean
all_preds_meters = all_preds.copy()
all_preds_meters[:, 0] *= meters_per_degree_latitude # Latitude to meters
all_preds_meters[:, 1] *= meters_per_degree_longitude # Longitude to meters
all_actuals_meters = all_actuals.copy()
all_actuals_meters[:, 0] *= meters_per_degree_latitude # Latitude to meters
all_actuals_meters[:, 1] *= meters_per_degree_longitude # Longitude to meters
# Compute error metrics in meters
mae_meters = mean_absolute_error(all_actuals_meters, all_preds_meters)
rmse_meters = mean_squared_error(all_actuals_meters, all_preds_meters, squared=False)
print(f"Mean Absolute Error (meters): {mae_meters:.2f}")
print(f"Root Mean Squared Error (meters): {rmse_meters:.2f}")
```
After running inference on the release test set, our results are the following.
- Release Dataset Mean Absolute Error: 0.0004267849560326909
- Release Dataset Root Mean Squared Error: 0.0005247778631268114
- Mean Absolute Error (meters): 41.90
- Root Mean Squared Error (meters): 51.29