gandolfi's picture
Upload README.md with huggingface_hub
e1d0c12 verified
metadata
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - feature-extraction
  - sentence-similarity
  - mteb
  - llama-cpp
  - gguf-my-repo
base_model: manu/bge-m3-custom-fr
model-index:
  - name: bge-m3-custom-fr
    results:
      - task:
          type: Clustering
        dataset:
          name: MTEB AlloProfClusteringP2P
          type: lyon-nlp/alloprof
          config: default
          split: test
          revision: 392ba3f5bcc8c51f578786c1fc3dae648662cb9b
        metrics:
          - type: v_measure
            value: 56.727459716713
          - type: v_measure
            value: 38.19920006179227
      - task:
          type: Reranking
        dataset:
          name: MTEB AlloprofReranking
          type: lyon-nlp/mteb-fr-reranking-alloprof-s2p
          config: default
          split: test
          revision: e40c8a63ce02da43200eccb5b0846fcaa888f562
        metrics:
          - type: map
            value: 65.17465797499942
          - type: mrr
            value: 66.51400197384653
      - task:
          type: Retrieval
        dataset:
          name: MTEB AlloprofRetrieval
          type: lyon-nlp/alloprof
          config: default
          split: test
          revision: 2df7bee4080bedf2e97de3da6bd5c7bc9fc9c4d2
        metrics:
          - type: map_at_1
            value: 29.836000000000002
          - type: map_at_10
            value: 39.916000000000004
          - type: map_at_100
            value: 40.816
          - type: map_at_1000
            value: 40.877
          - type: map_at_3
            value: 37.294
          - type: map_at_5
            value: 38.838
          - type: mrr_at_1
            value: 29.836000000000002
          - type: mrr_at_10
            value: 39.916000000000004
          - type: mrr_at_100
            value: 40.816
          - type: mrr_at_1000
            value: 40.877
          - type: mrr_at_3
            value: 37.294
          - type: mrr_at_5
            value: 38.838
          - type: ndcg_at_1
            value: 29.836000000000002
          - type: ndcg_at_10
            value: 45.097
          - type: ndcg_at_100
            value: 49.683
          - type: ndcg_at_1000
            value: 51.429
          - type: ndcg_at_3
            value: 39.717
          - type: ndcg_at_5
            value: 42.501
          - type: precision_at_1
            value: 29.836000000000002
          - type: precision_at_10
            value: 6.149
          - type: precision_at_100
            value: 0.8340000000000001
          - type: precision_at_1000
            value: 0.097
          - type: precision_at_3
            value: 15.576
          - type: precision_at_5
            value: 10.698
          - type: recall_at_1
            value: 29.836000000000002
          - type: recall_at_10
            value: 61.485
          - type: recall_at_100
            value: 83.428
          - type: recall_at_1000
            value: 97.461
          - type: recall_at_3
            value: 46.727000000000004
          - type: recall_at_5
            value: 53.489
      - task:
          type: Classification
        dataset:
          name: MTEB AmazonReviewsClassification (fr)
          type: mteb/amazon_reviews_multi
          config: fr
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 42.332
          - type: f1
            value: 40.801800929404344
      - task:
          type: Retrieval
        dataset:
          name: MTEB BSARDRetrieval
          type: maastrichtlawtech/bsard
          config: default
          split: test
          revision: 5effa1b9b5fa3b0f9e12523e6e43e5f86a6e6d59
        metrics:
          - type: map_at_1
            value: 0
          - type: map_at_10
            value: 0
          - type: map_at_100
            value: 0.011000000000000001
          - type: map_at_1000
            value: 0.018000000000000002
          - type: map_at_3
            value: 0
          - type: map_at_5
            value: 0
          - type: mrr_at_1
            value: 0
          - type: mrr_at_10
            value: 0
          - type: mrr_at_100
            value: 0.011000000000000001
          - type: mrr_at_1000
            value: 0.018000000000000002
          - type: mrr_at_3
            value: 0
          - type: mrr_at_5
            value: 0
          - type: ndcg_at_1
            value: 0
          - type: ndcg_at_10
            value: 0
          - type: ndcg_at_100
            value: 0.13999999999999999
          - type: ndcg_at_1000
            value: 0.457
          - type: ndcg_at_3
            value: 0
          - type: ndcg_at_5
            value: 0
          - type: precision_at_1
            value: 0
          - type: precision_at_10
            value: 0
          - type: precision_at_100
            value: 0.009000000000000001
          - type: precision_at_1000
            value: 0.004
          - type: precision_at_3
            value: 0
          - type: precision_at_5
            value: 0
          - type: recall_at_1
            value: 0
          - type: recall_at_10
            value: 0
          - type: recall_at_100
            value: 0.901
          - type: recall_at_1000
            value: 3.604
          - type: recall_at_3
            value: 0
          - type: recall_at_5
            value: 0
      - task:
          type: Clustering
        dataset:
          name: MTEB HALClusteringS2S
          type: lyon-nlp/clustering-hal-s2s
          config: default
          split: test
          revision: e06ebbbb123f8144bef1a5d18796f3dec9ae2915
        metrics:
          - type: v_measure
            value: 24.1294565929144
      - task:
          type: Clustering
        dataset:
          name: MTEB MLSUMClusteringP2P
          type: mlsum
          config: default
          split: test
          revision: b5d54f8f3b61ae17845046286940f03c6bc79bc7
        metrics:
          - type: v_measure
            value: 42.12040762356958
          - type: v_measure
            value: 36.69102548662494
      - task:
          type: Classification
        dataset:
          name: MTEB MTOPDomainClassification (fr)
          type: mteb/mtop_domain
          config: fr
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 90.3946132164109
          - type: f1
            value: 90.15608090764273
      - task:
          type: Classification
        dataset:
          name: MTEB MTOPIntentClassification (fr)
          type: mteb/mtop_intent
          config: fr
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 60.87691825869088
          - type: f1
            value: 43.56160799721332
      - task:
          type: Classification
        dataset:
          name: MTEB MasakhaNEWSClassification (fra)
          type: masakhane/masakhanews
          config: fra
          split: test
          revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60
        metrics:
          - type: accuracy
            value: 70.52132701421802
          - type: f1
            value: 66.7911493789742
      - task:
          type: Clustering
        dataset:
          name: MTEB MasakhaNEWSClusteringP2P (fra)
          type: masakhane/masakhanews
          config: fra
          split: test
          revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60
        metrics:
          - type: v_measure
            value: 34.60975901092521
          - type: v_measure
            value: 32.8092912406207
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (fr)
          type: mteb/amazon_massive_intent
          config: fr
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 66.70477471418964
          - type: f1
            value: 64.4848306188641
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (fr)
          type: mteb/amazon_massive_scenario
          config: fr
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 74.57969065232011
          - type: f1
            value: 73.58251655418402
      - task:
          type: Retrieval
        dataset:
          name: MTEB MintakaRetrieval (fr)
          type: jinaai/mintakaqa
          config: fr
          split: test
          revision: efa78cc2f74bbcd21eff2261f9e13aebe40b814e
        metrics:
          - type: map_at_1
            value: 14.005
          - type: map_at_10
            value: 21.279999999999998
          - type: map_at_100
            value: 22.288
          - type: map_at_1000
            value: 22.404
          - type: map_at_3
            value: 19.151
          - type: map_at_5
            value: 20.322000000000003
          - type: mrr_at_1
            value: 14.005
          - type: mrr_at_10
            value: 21.279999999999998
          - type: mrr_at_100
            value: 22.288
          - type: mrr_at_1000
            value: 22.404
          - type: mrr_at_3
            value: 19.151
          - type: mrr_at_5
            value: 20.322000000000003
          - type: ndcg_at_1
            value: 14.005
          - type: ndcg_at_10
            value: 25.173000000000002
          - type: ndcg_at_100
            value: 30.452
          - type: ndcg_at_1000
            value: 34.241
          - type: ndcg_at_3
            value: 20.768
          - type: ndcg_at_5
            value: 22.869
          - type: precision_at_1
            value: 14.005
          - type: precision_at_10
            value: 3.759
          - type: precision_at_100
            value: 0.631
          - type: precision_at_1000
            value: 0.095
          - type: precision_at_3
            value: 8.477
          - type: precision_at_5
            value: 6.101999999999999
          - type: recall_at_1
            value: 14.005
          - type: recall_at_10
            value: 37.592
          - type: recall_at_100
            value: 63.144999999999996
          - type: recall_at_1000
            value: 94.513
          - type: recall_at_3
            value: 25.430000000000003
          - type: recall_at_5
            value: 30.508000000000003
      - task:
          type: PairClassification
        dataset:
          name: MTEB OpusparcusPC (fr)
          type: GEM/opusparcus
          config: fr
          split: test
          revision: 9e9b1f8ef51616073f47f306f7f47dd91663f86a
        metrics:
          - type: cos_sim_accuracy
            value: 81.60762942779292
          - type: cos_sim_ap
            value: 93.33850264444463
          - type: cos_sim_f1
            value: 87.24705882352941
          - type: cos_sim_precision
            value: 82.91592128801432
          - type: cos_sim_recall
            value: 92.05561072492551
          - type: dot_accuracy
            value: 81.60762942779292
          - type: dot_ap
            value: 93.33850264444463
          - type: dot_f1
            value: 87.24705882352941
          - type: dot_precision
            value: 82.91592128801432
          - type: dot_recall
            value: 92.05561072492551
          - type: euclidean_accuracy
            value: 81.60762942779292
          - type: euclidean_ap
            value: 93.3384939260791
          - type: euclidean_f1
            value: 87.24705882352941
          - type: euclidean_precision
            value: 82.91592128801432
          - type: euclidean_recall
            value: 92.05561072492551
          - type: manhattan_accuracy
            value: 81.60762942779292
          - type: manhattan_ap
            value: 93.27064794794664
          - type: manhattan_f1
            value: 87.27440999537251
          - type: manhattan_precision
            value: 81.7157712305026
          - type: manhattan_recall
            value: 93.64448857994041
          - type: max_accuracy
            value: 81.60762942779292
          - type: max_ap
            value: 93.33850264444463
          - type: max_f1
            value: 87.27440999537251
      - task:
          type: PairClassification
        dataset:
          name: MTEB PawsX (fr)
          type: paws-x
          config: fr
          split: test
          revision: 8a04d940a42cd40658986fdd8e3da561533a3646
        metrics:
          - type: cos_sim_accuracy
            value: 61.95
          - type: cos_sim_ap
            value: 60.8497942066519
          - type: cos_sim_f1
            value: 62.53032928942807
          - type: cos_sim_precision
            value: 45.50958627648839
          - type: cos_sim_recall
            value: 99.88925802879291
          - type: dot_accuracy
            value: 61.95
          - type: dot_ap
            value: 60.83772617132806
          - type: dot_f1
            value: 62.53032928942807
          - type: dot_precision
            value: 45.50958627648839
          - type: dot_recall
            value: 99.88925802879291
          - type: euclidean_accuracy
            value: 61.95
          - type: euclidean_ap
            value: 60.8497942066519
          - type: euclidean_f1
            value: 62.53032928942807
          - type: euclidean_precision
            value: 45.50958627648839
          - type: euclidean_recall
            value: 99.88925802879291
          - type: manhattan_accuracy
            value: 61.9
          - type: manhattan_ap
            value: 60.87914286416435
          - type: manhattan_f1
            value: 62.491349480968864
          - type: manhattan_precision
            value: 45.44539506794162
          - type: manhattan_recall
            value: 100
          - type: max_accuracy
            value: 61.95
          - type: max_ap
            value: 60.87914286416435
          - type: max_f1
            value: 62.53032928942807
      - task:
          type: STS
        dataset:
          name: MTEB SICKFr
          type: Lajavaness/SICK-fr
          config: default
          split: test
          revision: e077ab4cf4774a1e36d86d593b150422fafd8e8a
        metrics:
          - type: cos_sim_pearson
            value: 81.24400370393097
          - type: cos_sim_spearman
            value: 75.50548831172674
          - type: euclidean_pearson
            value: 77.81039134726188
          - type: euclidean_spearman
            value: 75.50504199480463
          - type: manhattan_pearson
            value: 77.79383923445839
          - type: manhattan_spearman
            value: 75.472882776806
      - task:
          type: STS
        dataset:
          name: MTEB STS22 (fr)
          type: mteb/sts22-crosslingual-sts
          config: fr
          split: test
          revision: eea2b4fe26a775864c896887d910b76a8098ad3f
        metrics:
          - type: cos_sim_pearson
            value: 80.48474973785514
          - type: cos_sim_spearman
            value: 81.69566405041475
          - type: euclidean_pearson
            value: 78.32784472269549
          - type: euclidean_spearman
            value: 81.69566405041475
          - type: manhattan_pearson
            value: 78.2856100079857
          - type: manhattan_spearman
            value: 81.84463256785325
      - task:
          type: STS
        dataset:
          name: MTEB STSBenchmarkMultilingualSTS (fr)
          type: PhilipMay/stsb_multi_mt
          config: fr
          split: test
          revision: 93d57ef91790589e3ce9c365164337a8a78b7632
        metrics:
          - type: cos_sim_pearson
            value: 80.68785966129913
          - type: cos_sim_spearman
            value: 81.29936344904975
          - type: euclidean_pearson
            value: 80.25462090186443
          - type: euclidean_spearman
            value: 81.29928746010391
          - type: manhattan_pearson
            value: 80.17083094559602
          - type: manhattan_spearman
            value: 81.18921827402406
      - task:
          type: Summarization
        dataset:
          name: MTEB SummEvalFr
          type: lyon-nlp/summarization-summeval-fr-p2p
          config: default
          split: test
          revision: b385812de6a9577b6f4d0f88c6a6e35395a94054
        metrics:
          - type: cos_sim_pearson
            value: 31.66113105701837
          - type: cos_sim_spearman
            value: 30.13316633681715
          - type: dot_pearson
            value: 31.66113064418324
          - type: dot_spearman
            value: 30.13316633681715
      - task:
          type: Reranking
        dataset:
          name: MTEB SyntecReranking
          type: lyon-nlp/mteb-fr-reranking-syntec-s2p
          config: default
          split: test
          revision: b205c5084a0934ce8af14338bf03feb19499c84d
        metrics:
          - type: map
            value: 85.43333333333334
          - type: mrr
            value: 85.43333333333334
      - task:
          type: Retrieval
        dataset:
          name: MTEB SyntecRetrieval
          type: lyon-nlp/mteb-fr-retrieval-syntec-s2p
          config: default
          split: test
          revision: aa460cd4d177e6a3c04fcd2affd95e8243289033
        metrics:
          - type: map_at_1
            value: 65
          - type: map_at_10
            value: 75.19200000000001
          - type: map_at_100
            value: 75.77000000000001
          - type: map_at_1000
            value: 75.77000000000001
          - type: map_at_3
            value: 73.667
          - type: map_at_5
            value: 75.067
          - type: mrr_at_1
            value: 65
          - type: mrr_at_10
            value: 75.19200000000001
          - type: mrr_at_100
            value: 75.77000000000001
          - type: mrr_at_1000
            value: 75.77000000000001
          - type: mrr_at_3
            value: 73.667
          - type: mrr_at_5
            value: 75.067
          - type: ndcg_at_1
            value: 65
          - type: ndcg_at_10
            value: 79.145
          - type: ndcg_at_100
            value: 81.34400000000001
          - type: ndcg_at_1000
            value: 81.34400000000001
          - type: ndcg_at_3
            value: 76.333
          - type: ndcg_at_5
            value: 78.82900000000001
          - type: precision_at_1
            value: 65
          - type: precision_at_10
            value: 9.1
          - type: precision_at_100
            value: 1
          - type: precision_at_1000
            value: 0.1
          - type: precision_at_3
            value: 28.000000000000004
          - type: precision_at_5
            value: 18
          - type: recall_at_1
            value: 65
          - type: recall_at_10
            value: 91
          - type: recall_at_100
            value: 100
          - type: recall_at_1000
            value: 100
          - type: recall_at_3
            value: 84
          - type: recall_at_5
            value: 90
      - task:
          type: Retrieval
        dataset:
          name: MTEB XPQARetrieval (fr)
          type: jinaai/xpqa
          config: fr
          split: test
          revision: c99d599f0a6ab9b85b065da6f9d94f9cf731679f
        metrics:
          - type: map_at_1
            value: 40.225
          - type: map_at_10
            value: 61.833000000000006
          - type: map_at_100
            value: 63.20400000000001
          - type: map_at_1000
            value: 63.27
          - type: map_at_3
            value: 55.593
          - type: map_at_5
            value: 59.65200000000001
          - type: mrr_at_1
            value: 63.284
          - type: mrr_at_10
            value: 71.351
          - type: mrr_at_100
            value: 71.772
          - type: mrr_at_1000
            value: 71.786
          - type: mrr_at_3
            value: 69.381
          - type: mrr_at_5
            value: 70.703
          - type: ndcg_at_1
            value: 63.284
          - type: ndcg_at_10
            value: 68.49199999999999
          - type: ndcg_at_100
            value: 72.79299999999999
          - type: ndcg_at_1000
            value: 73.735
          - type: ndcg_at_3
            value: 63.278
          - type: ndcg_at_5
            value: 65.19200000000001
          - type: precision_at_1
            value: 63.284
          - type: precision_at_10
            value: 15.661
          - type: precision_at_100
            value: 1.9349999999999998
          - type: precision_at_1000
            value: 0.207
          - type: precision_at_3
            value: 38.273
          - type: precision_at_5
            value: 27.397
          - type: recall_at_1
            value: 40.225
          - type: recall_at_10
            value: 77.66999999999999
          - type: recall_at_100
            value: 93.887
          - type: recall_at_1000
            value: 99.70599999999999
          - type: recall_at_3
            value: 61.133
          - type: recall_at_5
            value: 69.789

gandolfi/bge-m3-custom-fr-Q4_K_M-GGUF

This model was converted to GGUF format from manu/bge-m3-custom-fr using llama.cpp via the ggml.ai's GGUF-my-repo space. Refer to the original model card for more details on the model.

Use with llama.cpp

Install llama.cpp through brew (works on Mac and Linux)

brew install llama.cpp

Invoke the llama.cpp server or the CLI.

CLI:

llama-cli --hf-repo gandolfi/bge-m3-custom-fr-Q4_K_M-GGUF --hf-file bge-m3-custom-fr-q4_k_m.gguf -p "The meaning to life and the universe is"

Server:

llama-server --hf-repo gandolfi/bge-m3-custom-fr-Q4_K_M-GGUF --hf-file bge-m3-custom-fr-q4_k_m.gguf -c 2048

Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.

git clone https://github.com/ggerganov/llama.cpp

Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1 flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).

cd llama.cpp && LLAMA_CURL=1 make

Step 3: Run inference through the main binary.

./llama-cli --hf-repo gandolfi/bge-m3-custom-fr-Q4_K_M-GGUF --hf-file bge-m3-custom-fr-q4_k_m.gguf -p "The meaning to life and the universe is"

or

./llama-server --hf-repo gandolfi/bge-m3-custom-fr-Q4_K_M-GGUF --hf-file bge-m3-custom-fr-q4_k_m.gguf -c 2048