greenw0lf's picture
Update README.md
885c200
|
raw
history blame
4.38 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - common_voice_8_0
metrics:
  - wer
model-index:
  - name: wav2vec2-large-xls-r-1b-frisian-cv-8-10h
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_8_0
          type: common_voice_8_0
          config: fy-NL
          split: validation
          args: fy-NL
        metrics:
          - name: Wer
            type: wer
            value: 0.09612912441079846
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_8_0
          type: common_voice_8_0
          config: fy-NL
          split: test
          args: fy-NL
        metrics:
          - name: Wer
            type: wer
            value: 0.08830755889579418

wav2vec2-large-xls-r-1b-frisian-cv-8-10h

This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on the common_voice_8_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1207
  • Wer: 0.0961

And on the test set:

  • Wer: 0.0883

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
5.6342 1.32 300 2.9760 1.0
2.2716 2.63 600 0.6877 0.6024
1.1303 3.95 900 0.3522 0.3450
0.9038 5.26 1200 0.2714 0.2603
0.846 6.58 1500 0.2143 0.2036
0.8044 7.89 1800 0.1829 0.1788
0.7069 9.21 2100 0.1751 0.1667
0.6995 10.53 2400 0.1741 0.1727
0.7115 11.84 2700 0.1591 0.1486
0.677 13.16 3000 0.1636 0.1459
0.6032 14.47 3300 0.1535 0.1439
0.6218 15.79 3600 0.1427 0.1406
0.6519 17.11 3900 0.1498 0.1488
0.5739 18.42 4200 0.1438 0.1319
0.567 19.74 4500 0.1379 0.1322
0.4982 21.05 4800 0.1315 0.1237
0.5825 22.37 5100 0.1349 0.1252
0.5085 23.68 5400 0.1297 0.1233
0.4946 25.0 5700 0.1343 0.1127
0.5677 26.32 6000 0.1323 0.1228
0.4858 27.63 6300 0.1292 0.1098
0.4709 28.95 6600 0.1267 0.1204
0.3241 30.26 6900 0.1315 0.1274
0.2796 31.58 7200 0.1315 0.1202
0.3171 32.89 7500 0.1315 0.1200
0.2591 34.21 7800 0.1322 0.1106
0.2716 35.53 8100 0.1233 0.1030
0.2446 36.84 8400 0.1273 0.1087
0.2377 38.16 8700 0.1243 0.1101
0.2183 39.47 9000 0.1230 0.1116
0.2059 40.79 9300 0.1240 0.1001
0.1916 42.11 9600 0.1223 0.1003
0.196 43.42 9900 0.1246 0.0965
0.1969 44.74 10200 0.1222 0.1038
0.1951 46.05 10500 0.1208 0.1003
0.1809 47.37 10800 0.1213 0.1003
0.1793 48.68 11100 0.1202 0.0959
0.1837 50.0 11400 0.1207 0.0961

Framework versions

  • Transformers 4.28.1
  • Pytorch 2.0.0+cu117
  • Datasets 2.11.0
  • Tokenizers 0.13.3