griffio's picture
rotated_maps
38628db verified
metadata
library_name: peft
license: apache-2.0
base_model: google/vit-large-patch16-224-in21k
tags:
  - image-classification
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: vit-large-patch16-224-in21k-testing-dungeons-lora-27Dec24-0001
    results:
      - task:
          type: image-classification
          name: Image Classification
        dataset:
          name: rotated_maps
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - type: accuracy
            value: 0.9607142857142857
            name: Accuracy

vit-large-patch16-224-in21k-testing-dungeons-lora-27Dec24-0001

This model is a fine-tuned version of google/vit-large-patch16-224-in21k on the rotated_maps dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1076
  • Accuracy: 0.9607

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.005
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 12
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.7273 2 1.5502 0.2946
No log 1.7273 4 1.1408 0.6696
No log 2.7273 6 1.0113 0.6036
No log 3.7273 8 0.6030 0.8411
5.1081 4.7273 10 0.4665 0.8625
5.1081 5.7273 12 0.4145 0.8643
5.1081 6.7273 14 0.2846 0.9107
5.1081 7.7273 16 0.2386 0.9125
5.1081 8.7273 18 0.1564 0.9554
0.7653 9.7273 20 0.1178 0.9679
0.7653 10.7273 22 0.1241 0.9536
0.7653 11.7273 24 0.1076 0.9607

Framework versions

  • PEFT 0.14.0
  • Transformers 4.47.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0